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Disclaimer: The following lecture notes are very rough. Some parts are rather
precise while others are very sketchy, probably because our understanding is also
uneven. The attribution of results might not always be the most appropriate. We
apologize for all that and hope that these notes may still be useful for some people.
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Notations:

• Op(A) denotes an unspecified open neighborhood of A.

• pri denotes the projection on the i-th factor of a product.

1 Liouville and Weinstein manifolds

1.1 Symplectic convexity

A symplectic form on a manifold W is a closed non-degenerate 2-form. If it exists
then W has even dimension 2n and admits an almost complex structure. A vector
field X is called Liouville if X.ω = ω (the dot stands for Lie derivative). From the
Lie-Cartan formula, we have dλ = ω where λ = Xyω is the associated Liouville form
(y stands for interior product). The flow φtX of X exponentially expands both λ and
ω: (φtX)∗λ = etλ, (φtX)∗ω = etω. Liouville vector fields have a transverse contact
structure:

• if i : Σ→ W is a hypersurface transverse to X, then α = i∗λ is a contact form
on Σ:

α ∧ (dα)n−1 = i∗(λ ∧ (dλ)n−1) =
1

n
i∗(Xyωn).

The hyperplane field ξ = kerα is called a contact structure.

• if h : Σ → Σ′ is the holonomy diffeomorphism between two hypersurfaces
transverse to X then h∗ξ = ξ′ where ξ and ξ′ are the contact structures induced
respectively on Σ and Σ′ as above: there exists a smooth function t : Σ → R
so that, ∀p ∈ Σ, h(p) = φ

t(p)
X (p), then we have

h∗λ = et(p)λ+ λ(X)dt = et(p)λ.

Note that the contact form is not preserved by holonomy, only its kernel is.
A cooriented hypersuface Σ in a symplectic manifold (W,ω) is called ω-convex

if there exists a Liouville vector field transverse to Σ (one may require X to be
defined only near Σ, or on the whole W , leading to different notions). The first
systematic study of symplectic convexity appeared in [EG91], but this notion had
been considered previously especially by Weinstein. The Reeb vector field Rα of
α = i∗(Xyω) (defined by Rαydα = 0 and α(Rα) = 1) spans the characteristic
foliation ker(i∗ω), and this implies particular dynamical properties of this foliation.
Weinstein conjectured in [Wei79] that any closed ω-convex hypersurface has at least
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one closed orbit. Viterbo proved it in the case of R2n (see [Vit87]), while Ginzburg
and Herman found examples of hypersurfaces in R2n without closed characteristics,
hence not ω-convex. There are much simpler obstructions to ω-convexity. First
observe that the characteristic foliation of a cooriented hypersurface is naturally
oriented by the rule: a vector v spanning ker(i∗ω) is positive if ω(n, v) > 0 for n
positively transverse to Σ. Second, for such a positive v, and λ a convex, resp.
concave Liouville form, we have ω(X, v) = λ(v) > 0, resp. < 0. Third, if γ is a
homologically trivial periodic orbit, then the action

∫
γ
λ does not depend on the

choice of a primitive λ for ω. If this action is zero or if there exists two such orbits
with actions of opposite signs, then Σ is neither convex nor concave. This kind
of consideration have been pushed much further by McDuff, who gave a complete
characterization of (local) ω-convexity for closed hypersurfaces in terms of dynamical
properties of the characteristic foliation (see [McD87, section 5]). In this spirit, see
also exercise 1 below. The first systematic study of symplectic convexity appeared
in [EG91].

Examples 1) In R2n we have the symplectic form ω0 =
∑

dxi ∧ dyi and the radial
Liouville vector field X = 1

2
(
∑
xi∂xi + yi∂yi). A closed hypersurface transverse to X

is diffeomorphic to a sphere and bounds a domain in R2n which is star-shaped from
the origin. The contact structure induced is the standard contact structure on S2n−1.
On the unit sphere, the Reeb flow spans the Hopf fibration: Rα = 2(xi∂yi − yi∂xi) =
2izi and φRαt (zi) = e2it(zi) is totally periodic of period π. One can get only n
non-degenerate orbits by considering a well-chosen ellipsoïd instead. It was proved
by Rabinowitz in [Rab79] that any such hypersurface admits at least one closed
characteristic.

2) The cotangent bundle T∗M has a canonical Liouville form λ = pdq. The
corresponding Liouville vector field is radial in each fiber X = p∂p. Closed hypersur-
faces transverse to X are boundaries of tubular neighborhoods of the zero section. If
the intersection with each fiber is an ellipsoïd, then this corresponds to the unit disc
bundle for some riemannian metric on M and the Reeb flow is the geodesic flow of
this metric: in local coordinates g = gij, ω =

∑
dpi ∧ dqi, Σ = {

∑
gijpipj = 1}, and

the Reeb vector field writes

Rα =
∑
i,j

(
gijpi∂qj −

1

2

∑
k

∂gij
∂qk

pipj∂pk

)
.

After some computation (exercise 2) we can get from this the second order equation
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for geodesics:
q̈i +

∑
jk

Γijkq̇j q̇k = 0,

where
Γijk =

1

2

∑
l

gil
(
∂glj
∂qk

+
∂glk
∂qj
− ∂gjk

∂ql

)
.

3) The symplectization SξM = {β ∈ T∗M, ker β = ξ} of a contact manifold
(M, ξ) is endowed with λ and X restricted from T∗M . It is the local model near
any ω-convex hypersurface. The sections of the bundle SξM → M are precisely
the contact forms for ξ. The choice of a contact form α provides a trivialization
SξM = R+ × M where λ = rα with the coordinate in R+ denoted by r. The
functions H : SξM → R satisfying X.H = H are called homogeneous or linear,
they read H(r, p) = rh(p) for some function h : M → R in a trivialization. The
Hamiltonian vector field of H lifts a contact vector field (see exercise 3, which in
a trivialization is the one associated to h and α. More generally every contact
geometric property can be rephrased in terms of equivariant symplectic geometry
of the symplectization. R2n \ 0 is the symplectization of S2n−1 and T∗M \M (zero
section removed) is the symplectization of the cosphere bundle S T∗M (i.e., the space
of cooriented hyperplanes tangent to M).

4) From [Wei79, section 3]. Start with the round sphere S3 in C2. In an arbi-
trarily small neighborhood of a Hopf fiber, twist the sphere so that it coincides with
the round sphere in a neighborhood of this hopf fiber but with opposite coorienta-
tion. Then this hypersurface is neither convex nor concave because it has closed
characteristics of both positive and negative action (see the discussion above).

1.2 Liouville structures

Definition 1.1. A Liouville structure on a compact cobordism is a symplectic form ω
together with a Liouville vector field X which is positively transverse to the boundary
(i.e., inward pointing along ∂−W and outward pointing along ∂+W ).

By Stokes’ formula, such a Liouville structure may exist only if ∂+W 6= ∅:∫
W

ωn =

∫
∂+W

λ ∧ (dλ)n−1 −
∫
∂−W

λ ∧ (dλ)n−1,

each integral is non-negative and the left hand side is positive. A compact Liou-
ville cobordism carries interesting quantitative invariants such as symplectic volume,
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capacities, actions of closed characteristics on the boundary, etc. However in cer-
tain situations it is more appropriate to rule these out by attaching cylindrical ends
to W , the object then becomes more topological. Explicitly, one uses the Liou-
ville flow of X to get collar neighborhoods of ∂±W of the form [1, 1 + ε] × ∂−W
and [1 − ε, 1] × ∂+W on which λ reads rα− and rα+, and then smoothly glue the
cylindrical ends ]0, 1] × ∂−W and [1,+∞[×∂+W . The resulting object is called the
completion of W : it has a complete Liouville vector field and it is of finite type,
namely there is a proper function φ : W → R which, outside of a compact set of W ,
is Lyapunov and without critical points. The contact manifold at ± infinity ∂±∞W
is canonically defined as the orbit space of the Liouville trajectories near ±infinity.
Any choice of hypersurface transverse to X near ± infinity is a model for ∂±∞W
and provides a contact form for it. The general notion of (infinite type) Liouville
structure is as follows: (W,ω,X) such that X is complete and there exists a proper
function φ and a sequence ci −→

i→±∞
±∞ such that X.φ > 0 on φ−1(ci).

A version of Moser stability holds in this context but requires some care. A
Liouville homotopy (ωt, λt, Xt), t ∈ [0, 1], is a smooth family of complete Liouville
structures such that for all t there is a proper function φt and a sequence cti −→

i→±∞
±∞

such that for s close enough to t, Xs.φt > 0 along φ−1
t (cti).

Proposition 1.2. [CE12, proposition 11.8]
If λt is a Liouville homotopy, then there exists an ambiant isotopy φt and a smooth

family of functions ht so that φ∗tλt = λ0 + dht.

The more naive notion of homotopy, simply a smooth family of Liouville struc-
tures, (i.e., remove "for s close enough to t" in the above) is not reasonable: it would
make all Liouville manifold structures on R2n homotopic (exercise 4).

In the sequel we will simply use the term Liouville manifold to mean a complete
Liouville structure without concave end (i.e. the function φ is exhausting: proper
and bounded below). A Liouville manifold may be of infinite type for topological
reasons (for example, its homology could be infinite dimensional) but, as discovered
by Mark McLean, this can also happen for purely symplectic reason: there is a
Liouville manifold structure on R8 which is not of finite type [Sei08, theorem 7.1].

(Warning: the following contains self-advertisement) For a finite type Liouville
manifold (W,ω,X, λ), the contact manifold at infinity (∂∞W, ξ) is well-defined by
λ (this is the space of orbits of X at infinity, with induced ξ = kerλ) but not by
ω. It is proved in [Cou14], that on T∗ L(7, 1), there is a function h (not compactly
supported) such that the contact manifold at infinity of λcan + dh is diffeomorphic
to L(7, 2) × S2 (and this is not diffeomorphic to S T∗ L(7, 1) = L(7, 1) × S2). This
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can be interpreted as the fact that there are finite type Liouville structures that
are connected in the space of Liouville structures but not in the space of finite type
Liouville structures.

1.3 Weinstein structures

It is hard to understand Liouville structures because the dynamics of the Liouville
vector field is uncontrolled, we tame it by requiring the existence of a Lyapunov
function.

Definition 1.3. A weinstein structure on a compact cobordismW is a triple (ω,X, φ)
such that φ is a Morse function (constant on ∂−W and on ∂+W without critical points
on ∂W ), (ω,X) is a Liouville structure and X is a pseudo-gradient vector field for
φ (see exercise 5). Such a function φ is called ω-convex.

Again, it is convenient to complete a Weinstein cobordism by attaching cylindrical
ends, the Morse function φ can be extended to the completion as a proper Morse
function without adding any critical point. In the case where ∂−W , the resulting
object will be called a finite type Weinstein manifold.

The examples of Liouville manifold given above R2n, T∗M are Weinstein mani-
folds and can be nicely characterized using this notion, see exercises 6 and 7.

Recall that the stable manifold theorem asserts that for each critical point p,
there is a neighborhood U of p such that the subsets

W
s/u
X (U ; p) = {q ∈ U ;φtX(q) −→

t→+/−∞
p}

are smoothly embedded discs that meet transversely at p and whose tangent spaces
at p are the stable and unstables subspaces of the linearized vector field. Assuming
that X is complete, one can then use the flow of X to prove that the global stable
and unstable manifolds

W
s/u
X (p) = {q ∈ W ;φtX(q) −→

t→+/−∞
p}

are embedded submanifolds (not properly embedded though), diffeomorphic to eu-
clidean spaces. The following proposition is fundamental.

Proposition 1.4. Let p be a hyperbolic zero of a Liouville vector field X in a sym-
plectic manifold (W,ω). The stable manifold of p is ω-isotropic and the unstable
manifold of p is ω-coisotropic.
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Proof. We restrict to the case where X is a linear vector field in a symplectic vector
space (E,ω) and we view X as an endomorphism of E. In this case the stable and
unstable manifolds are vector subspaces and can be given explicitly:

E± =
⊕

λ∈Sp(X),±Re(λ)>0

⊕
k>1

ker(X − λ id)k

the stable and unstables subspaces, we have E = E+ ⊕ E−.
E− is isotropic: for u, v ∈ E−, ω(u, v) = e−tω(etXu, etXv) −→

t→+∞
0. Note that this

argument also works if X is a symplectic vector field, i.e. X.ω = 0.
E+ is coisotropic: the symplectic orthogonal (E+)ω is X-invariant because E+ is

X-invariant and ω is X-invariant up to scaling. Since ω is non-degenerate and E−
is isotropic, we have E− ∩ (E+)ω = 0 and hence (E+)ω is contained in E+.

In particular, the critical points of an ω-convex Morse function have index 6 n,
this is a strong topological restriction on Weinstein manifolds, as opposed to Liouville
manifolds.

The stable manifolds of the critical points of a Weinstein structure are isotropic,
and since they are tangent toX, the Liouville form λ vanishes on their tangent spaces
and so they intersect the level sets of φ along isotropic submanifolds for the contact
structure ξ = kerλ. Conversely, as we will discuss now, we can build Weinstein
cobordisms by attaching handles along isotropic spheres in the contact level sets.

1.4 Handle attachment

We start from the following data: a contact manifold (M, ξ), an isotropic sphere
j : Sk−1 → M and a symplectic trivialization of the symplectic normal bundle of j,
i.e. (T Sk−1)⊥/T Sk−1 ' Cn−k (here ⊥ refers to the canonical conformal symplectic
structure on ξ). The following model is exposed in [Wei91].

Consider R2n = T∗Rk × Cn−k with the symplectic form ω =
∑k

i=1 dpi ∧ dqi +∑n−k
j=1 dxj∧dyj and the Liouville vector field X = 2

∑
i pi∂pi−

∑
qi∂qi +

1
2

∑
j xj∂xj +

yj∂yj . The stable/unstable subspaces are E+ = {q = 0} ' R2n−k and E− = {p =
z = 0} ' Rk. For ε > 0, consider the region Hε = {|q| 6 1, |p|2 + |z|2 6 ε} which
is a tubular neighborhood of the isotropic disc Dk = {p = 0, z = 0, |q| 6 1}. Let us
saturate Hε by the Liouville flow to get Mε, a "non-compact Morse model". Then
Mε \E+ can be identified with the symplectization of a small neighbourhood of Sk−1

in (M, ξ) via the choice of a Weinstein tubular neighborhood of Sk−1. This choice
depends on parameters in a contractible space provided they are consistent with our
choice of symplectic framing. Then one considers SξM ∪Mε where we glue using
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the previous identification. One can then modify any section α of SξM to make it
coincide with {|p|2 + |z|2 = ε} near E− and this will serve as top boundary for a
Weinstein cobordism. One can also construct a function φ with pseudo gradient X
and appropriate boundary conditions. As an application one can define the connect
sum of two contact manifolds as the result of attaching a 1-handle. See exercise 8
for a handle attachment description of T∗ Sn.

For n = 2, a finite type Weinstein manifold can be presented as one 0-handle,
a bunch of 1-handles, and 2-handles. After attaching the 1-handles, the contact
manifold is a connect sum of S1× S2 and there is a standard way to draw the attaching
Legendrian spheres in this manifold. This makes the theory very combinatorial and
computable in this case.

Also note that one can attach handles backwards, i.e. on the concave end. For
that one needs to find a contact embedding of a neighborhood of the "coisotropic"
sphere S2n−k−1. But if k < n, it is harder to control such spheres and this is less used
(unless (M, ξ) is overtwisted, as in [EM15]).

It is also possible to build Lagrangian submanifolds in Weinstein cobordisms by
attaching handles. The main remark is that in the model handle T∗Rk × Cn−k,
there are Lagrangian subcobordisms T∗Rj Rk × Rn−k = {qj+1 = · · · = qk = 0, p1 =
· · · = pj = 0, y = 0} for 0 6 j 6 k on which the function φ = |p|2 − |q|2 + |z|2
has a critical point of index j at 0. The Lagrangian cobordisms that admit such a
Weinstein handle presentation are called regular, see [EGL15].

1.5 Hamiltonian dynamics and Weinstein structure

In view of computing symplectic homology, we explain how to construct linear at in-
finity Hamiltonians whose dynamics can be controlled using the handle presentation.
The following statement should be checked more carefully.

Proposition 1.5. Let (V, ω,X, φ) be a Weinstein manifold of finite type, T > 0 and
α a contact form for M = ∂∞V which has no periodic orbit of period T . There exists
an exhausting function H : V → R which is linear at infinity (X.H = H) and whose
1-periodic orbits are precisely the following:

• critical points of φ (a finite set).

• Reeb orbits of α of period < T .

Moreover, one can impose the Conley-Zehnder index of the subcritical critical points
of f to be arbitrary large.
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Sketch of proof. We start from the function φ, in the region SM = M×]0,+∞[⊂ V ,
we deform the function φ (by pushing its level sets along the trajectories of X) so
that its coincides with Tr near the region {r > 1}. By our assumption, there are no
1-periodic orbits of φ in this region, since Xφ = TRα there. Now we modify φ in the
region A = {φ 6 T}. For ε > 0 sufficiently small, the function εφ has no 1-periodic
orbit in the region A other than the critical points of φ. Near r = 1, φ = Tr, and we
interpolate between the function Tr and εTr by a smooth increasing function h(r).
We then get a function with the required properties (equal to εφ in A and equal to
Tr near infinity).

For the subcritical critical points, let us assume that φ = a + p2 − q2 + z2 in
an appropriate Darboux chart T∗Rk × Cn−k with k < n (this is possible after a
deformation of f near the critical point). We replace φ by a+p2− q2 + c|z|2 near the
critical point and leave φ unchanged out of a small neighborhood. For c > 0 very
large, this will make the Conley-Zehnder index very large.

For critical points of top index, there is no z coordinate to play with as in the
above proof and the Conley-Zehnder index cannot be changed. In fact, these critical
points survive in symplectic homology and are idempotent elements (reference ?
Tobias’ lectures ?).

The next goal is to understand the Reeb dynamics before and after Weinstein
surgery. A contact form α is called non-degenerate if all its closed orbits are non-
degenerate. For any T > 0, there is then finitely many Reeb orbits of period < T .
If we are given an isotropic sphere S, we require further that the map R × S → M
induced by the Reeb flow is transverse to S. In the subcritical case, this transversality
means that there are no Reeb chords, while in the Legendrian case, this means that
the Reeb chords are non-degenerate, and hence in finite number below any period T .

Proposition 1.6. A generic contact form is non-degenerate.

Here is the main statement, which is a building block in the work of Bourgeois,
Ekholm and Eliashberg in [BEE12].

Theorem 1.7. Let (M, ξ) be a contact manifold, S an isotropic sphere with trivialized
symplectic normal bundle and α a non-degenerate contact form. Let (M ′, ξ′) be the
result of Weinstein surgery along S. For any T > 0, there is a contact form α′ on
M ′ with the following properties:

• If S is subcritical, the Reeb orbits of period < T of α′ are in bijection with those
of α.
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• If S is Legendrian, the Reeb orbits of period < T of α′ are in bijection with
those of α + cyclic words in Reeb chords of S of total length < T .

Remark 1.8. It may be possible to deduce a simple proof of Cieliebak’s theorem (see
[Cie02]) that symplectic homology vanishes for subcritical Weinstein manifold from
all this.

1.6 Stein manifolds and affine varieties

Weinstein manifolds are the symplectic counterpart of Stein manifolds. These are
complex manifolds that admit a proper holomorphic embedding in CN for some
N . For such a submanifold X the function φ = |z|2 is exhausting and strictly
pluri-subharmonic (or i-convex), that is −ddcφ = 2idz ∧ dz̄ is a symplectic form
compatible with i. Conversely if a complex manifold (V, J) admits an exhausting
J-convex function φ, then it admits a proper holomorphic embedding in some CN by
a difficult theorem of Grauert. So we may take the existence of φ as the definition
of Stein manifolds. Moreover one can require φ to be Morse since Morse functions
are C∞-dense and J-convexity is preserved by a C2-small deformation. To φ is
associated a Weinstein structure (λφ = −dcφ, φ) (see exercise 9). Note however
that the gradient vector field may not be complete but this can be arranged by
composing by a sufficiently convex function g : R → R (see [CE12, proposition
2.11]). The ω-convex functions are the symplectic analogue of J-convex functions,
and are much easier too work with (in a sense because they just involve a condition
on the derivative not on the second derivative). It is a deep theorem of Cieliebak and
Eliashberg (see [CE12]), building on earlier work of Eliashberg ([Eli90]), that every
Weinstein structure can be deformed to one coming from a Stein structure.

An important class of examples of Stein manifolds are algebraic affine varieties.
Let L be an ample holomorphic line bundle on a complex manifold X. Ampleness
means that there exists a hermitian connection on L whose associated Chern con-
nection has curvature κ ∈ Ω2(X; iR) that writes κ = −iω where ω is a symplectic
form compatible with the complex structure on X. Take a holomorphic section s
which vanishes transversely and denote D = s−1(0) (one can also consider more sin-
gular divisors D). Then the function φ = − log |s| is an i-convex function on X \D.
Indeed, near a point of X \D, one can pick a local holomorphic trivialization where
s = 1, and the hermitian metric writes e−φ|.|. Then the curvature κ of the Chern
connection is −2∂∂φ (this follows from the definition of the Chern connection), writ-
ing κ = iω we get ω = 2i∂∂φ is a symplectic form compatible with i (by definition of
ampleness). But −ddc = 2i∂∂, so the claim follows. Moreover we have some control
on the critical points of φ (see the end of [McL09, section 2]).
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Lemma 1.9. There exists a compact set K of X \D, so that φ has no critical points
outside of K.

One can cook from this a more or less canonical finite type Weinstein manifold
structure on X \D. For more on this topic, see [McL09]. The examples leading to
theorem 1.13 come from such constructions.

1.7 Flexibility

A Weinstein structure is determined by all the attaching spheres of the critical points
(see exercise 10). One would need some results about the classification of isotropic
spheres up to isotopy. In the subcritical case (i.e., not Legendrian), Gromov proved
that the h-principle holds. This roughly means that the only obstructions for exis-
tence or isotopy of isotropic spheres are topological, there is no symplectic rigidity
phenomena. However, in the Legendrian case, there is symplectic rigidity: the Ben-
nequin inequalities are the first instance of this phenomenon, they give constraints on
the classical invariants of a Legendrian knot in R3. Eliashberg and Chekanov also dis-
covered Legendrian knots with the same classical invariants but still not Legendrian
isotopic.

In [Eli90], Eliashberg introduced a stabilization procedure for Legendrian sub-
manifolds which enabled him to prove that Legendrian spheres exist in every formal
class. This is the key to the following result:

Theorem 1.10 (Eliashberg). Let W be a manifold of dimension 2n > 6 with an
exhausting Morse function φ with critical points of index 6 n and a non-degenerate
two-form η. There is a Weinstein structure (ω,X, φ) where ω is homotopic to η in
the space of non-degenerate 2-forms.

This is wrong in dimension 4 because of Bennequin’s inequality.
Much later, Murphy discovered that a full h-principle holds in dimension > 5 for

a class of Legendrian submanifolds called loose (see [Mur12]). This result in partic-
ular reproves by a completely different method the existence result of Eliashberg for
Legendrian spheres, in fact the stabilization procedure produces loose Legendrian
submanifolds.

Definition 1.11. A Weinstein manifold (W,ω) is flexible if there exists an excellent
1 ω-convex function such that all attaching spheres of critical points of index n are
loose (in a level set just below the corresponding critical level set).

1excellent = Morse and with at most one critical point in each level set.
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There is deep subtlety in this definition. Murphy and Siegel discovered that this
actually depends on the function φ: on a flexible Weinstein manifold there always
exist excellent ω-convex functions φ which do not satisfy the above (see [?]).

Subcritical Weinstein structure are flexible, and Eliashberg and Gromov already
proved some flexibility results for subcritical Weinstein structures in [EG91]. This
work has then been developped by Cieliebak and Eliashberg in [CE12] culminating
in the following theorem.

Theorem 1.12 (Cieliebak-Eliashberg). Let W be a manifold of dimension 2n > 6
which admits an exhausting Morse function with critical points of index 6 n and a
non-degenerate 2-form η. Then there is a unique up to Weinstein homotopy flexible
Weinstein structure on W in the formal class η.

In addition to Gromov and Murphy’s h-principle for isotropic spheres, the above
theorem relies on non-trivial results from Cerf theory, specifically the fact that the
space of functions with critical points of index 6 n is connected.

Not every Weinstein manifold is flexible, for example we have:

Theorem 1.13 (McLean [McL09]). There exists infintely many non symplectomor-
phic Weinstein structures on R2n n > 4.

Subsequent work of Abouzaid-Seidel and Bourgeois-Ekholm-Eliashberg shows
that this exotica phenomenon holds much more generally in every dim > 6 (see
[CE12, theorem 17.2]).

1.8 Exercises

Exercise 1 (read on Chris Wendl’s blog). Let W be a symplectic manifold of dimen-
sion 2n > 4 and Σ ⊆ W a cooriented closed hypersurface. Prove that Σ cannot be
both ω-convex and ω-concave. Notice that this is wrong for n = 1.

Hint: if λ+ and λ− are convex and concave Liouville forms for Σ, then β = (λ+ − λ−) ∧ ωn−1 is a volume form but is
also exact β = d((λ+ − λ−) ∧ λ+ ∧ ωn−2).

Exercise 2. Check the computations of the Reeb flow on the unit cotangent bundle
and obtain the second order equation for geodesics.

Exercise 3. Prove that the Hamiltonian vector field of a function H : SξM → R
satisfying X.H = H lifts a contact vector field. Describe it in a trivialization.

Exercise 4. Prove that for the naive notion of Liouville homotopy, all Liouville
manifold structures on R2n are homotopic.

Hint: Let λ is a Liouville manifold structure on R2n. First, by adding to λ the differential of a function supported in
a neighborhood of zero, arrange that λ = 1

2
r2dθ near 0. Then for t ∈ [0, 1[, define λt as the pullback λ by z 7→ (1 − t)z and

extend by λ1 = r2dθ
2

.
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Exercise 5. Let φ be a Morse function and X a vector field satisfying X.φ > 0
away from critical points. Prove that X vanishes at critical points and that it has
hyperbolic zeroes (i.e. the eigenvalues of the linearized vector field have non zero real
part) if and only if the function X.φ has a non-degenerate minimum at each critical
point. Such a vector field is called a pseudo-gradient vector field for φ.

Exercise 6. Let (W,ω) be a symplectic manifold of dimension 2n which admits an
exhausting ω-convex function φ with just one critical point. Prove that W is exact
symplectomorphic to R2n.

Exercise 7. Let (W,ω) be a symplectic manifold which admits an exhausting ω-
convex Morse function φ and a Liouville pseudo-gradient X whose skeleton is an
embedded Lagrangian submanifold L. Prove that W is exact symplectomorphic to
T∗ L.

Exercise 8. Let S2n−1 be endowed with the standard contact structure and j : Sn−1 →
S2n−1 the standard Legendrian unknot. Prove that (−1)-surgery on S2n−1 along j
produces a contact manifold contactomorphic to the sphere cotangent bundle of Sn

with its standard contact structure.

Exercise 9 (Stein vs Weinstein). Let (V, J) be an almost-complex manifold. A
function φ : V → R is called J-convex if −ddcφ(v, Jv) > 0 for all v 6= 0, where
dcφ = dφ ◦ J .

1. Prove the identity: for any smooth function φ,

−ddcφ(v, Jw) + ddcφ(w, Jv) = dφ(NJ(v, w)),

where NJ(v, w) = [v, w]− [Jv, Jw]+J [Jv, w]+J [v, Jw] is the Nijenhuis tensor.

2. Conclude that, if J is integrable (i.e., NJ = 0), and φ is J-convex, ωφ := −ddcφ
is a symplectic form compatible with J .

3. Prove that the gradient of φ for the metric g(v, w) = ω(v, Jw) is equal to the
Liouville vector field dual to −dcφ.

Exercise 10. Let (W,ω) be a Weinstein manifold, φ an excellent ω-convex function,
and p a critical point of φ. Consider a regular level set N = φ−1(c) so that c < φ(p)
and φ−1[c, φ(p)] contains just one critical point, and the attaching sphere S ⊂ N
corresponding to a Liouville pseudo-gradient X. Prove that for any isotropic isotopy
(St)t∈[0,1] of S = S0, after a deformation of φ among Lyapunov functions for X, there
is a homotopy (Xt)t∈[0,1] of Liouville pseudo-gradients for φ that induces St.

13



2 Lefschetz fibrations and open book decomposi-
tions

2.1 lefschetz pencils in algebraic geometry

A hyperplane pencil in CPn is the set of hyperplanes containing a given codimension
2 projective subspace B′. We can describe it as a projective map CPn \ B′ → CP1.
Given a smooth projective variety X in CPn, we say that a hyperplane pencil is a
Lefschetz pencil for X if it is in general position with respect to X, namely:

1. the base locus B′ is transverse to X,

2. the holomorphic map f : X \ B → CP1, where B = B′ ∩ X, has only non-
degenerate critical points,

3. all critical values are distinct.

From the holomorphic Morse lemma we get, for each critical point p of f , holo-
morphic coordinates (z1, . . . , zn) centered at p and w centered at f(p) where f =
z2

1 + · · ·+ z2
n. The issue that f is not defined on B can be resolved in two ways:

• Blow-up B and get a map X̃ → CP1 where X̃ is the blow-up of X along B
(namely, replace B by its projectivized normal bundle).

• Remove a regular fiber and get a map W → C where W = X \ (f−1(∞) ∪B).

For example take the Veronese embedding CP2 → CP5 given by [x : y : z] 7→
[x2 : y2 : z2 : xy : yz : zx]. A hyperplane pencil on CP5 induces a pencil of conics on
CP2. If it is a Lefschetz pencil, then the base locus B is 4 points in general position
and the pencil is defined as the set of conics passing through these points. Exactly
three fibers are singular: they are union of two lines passing through B. Removing
a fiber one gets a Lefschetz fibration W → C with fiber a 4-punctured sphere and
three critical values.

Another example is the Segre embedding CP1 × CP1 → CP3 given by ([x1 :
y1], [x2 : y2]) 7→ [x : y : z : t] = [x1x2 : x1y2 : y1x2 : y1y2] whose image is the
quadric surface {xt = yz}. By removing a regular fiber, we get a Lefschetz fibration
f : W → C with fiber T∗ S1 and 2 critical points.

One can endow the total space W with a complete finite type Liouville structure
and in the first example we get T∗RP2 while in the second we get T∗ S2.
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2.2 Lefschetz fibrations on finite type Liouville manifolds

Lefschetz fibrations were introduced in symplectic geometry in the work of Donald-
son, who proved a remarkable existence result on compact symplectic geometry (see
[Don99]). To do this he invented so-called approximately holomorphic techniques,
and this proved useful for other applications later (see theorem 2.4 and 2.6). Here
we focus on the case of finite type Liouville manifold: we want to present them as the
total space of a Lefschetz fibration over C with fiber a finite type Liouville manifold.
Such a structure induces an open book decomposition of its contact boundary. A
good reference is [Sei03, section 1].

Definition 2.1. Let (W,ω,X, λ) be a finite type Liouville manifolds. A Lefschetz
fibration on W is a map f : W → C satisfying the following properties:

1. (Triviality near the horizontal boundary)

There exists a contact manifold (B, ξ), an open set U ⊆ W such that f :
W \ U → C is proper and a codimension zero embedding Φ : U → Sξ B × C
such that pr2 ◦Φ = f and Φ∗λ = pr∗1 λξ + pr∗2 µ where µ = 1

2
r2dθ.

2. (Lefschetz type critical points)

There are only finitely many points where df is not surjective and for any such
critical point p complex Darboux coordinates (z1, . . . , zn) centered at p so that
f(z1, . . . , zn) = f(p) + z2

1 + · · · + z2
n. Moreover, there is at most one critical

point in each fiber of f .

3. (Transversality to the vertical boundary)

There exists R > 0 such that X lifts the vector field 1
2
r∂r near the region

{|f | > R}.

4. (Symplectic fibers)

Away from the critical points, ω is non-degenerate on the fibers of f .

This is hard to digest, so we now make a long series of remarks about this def-
inition. Denote by crit(f) the set of critical points of f and by vcrit(f) the set of
critical values. By assumption the map f : crit(f)→ vcrit(f) is a bijection.

Symplectic connection On W \ crit(f), denote by V = ker df the vertical sub-
bundle of TW and byH the subbundle ω-orthogonal to V . We have the ω-orthogonal
decomposition

TW = V ⊕H.

15



So H is a connection in the sense of Ehresmann. We claim that the parallel transport
maps are well-defined. If γ : [0, 1] → C \ vcrit(f) is a smooth path, for each p ∈
f−1(γ(0)), we lift it as a horizontal path γ̃ : [0, 1] → W starting from W , namely
dγ̃
dt
∈ H, and declare γ̃(1) to be the image of p. However it is not clear the the

path γ̃ can be defined up to t = 1, but this is ensured by the first condition: in
the trivialization Φ, the decomposition V ⊕H coincides with T Sξ B ⊕ TC because
the Liouville form λ splits as pr∗1 λξ + pr∗2 µ, hence when γ̃ enters U , then pr1 ◦Φ ◦ γ̃
is constant and γ̃ cannot escape to infinity. Moreover, the parallel transport maps
are exact symplectomorphisms in the following strong sense: if φ : f−1(γ(0)) →
f−1(γ(1)) is the parallel transport map, we have φ∗λ = λ+ dk where k is a smooth
function which vanishes outside of a compact set. Indeed, let w ∈ C, ν̃ be the
horizontal lift of a vector field ν defined near w, and iw : f−1(w)→ W the inclusion,
we have:

i∗w(ν̃.λ) = i∗w(ν̃yω) + i∗w(d(ν̃yλ)) = dh

where h = i∗w(ν̃yλ) is not necesseraly compactly supported but it is constant at
infinity by inspection in the trivialized region U . One can then subtract this constant
and the claim follows by integrating this equation. Hence regular fibers are all exact
symplectomorphic, we pick one and call it (F, ωF , XF , λF ). We have ∂∞F = B and
a canonical embedding Sξ B → F near the convex end, so we may equivalently let
the trivialization Φ take values in F × C.

The map f : f−1(C \ vcrit(f)) → C \ vcrit(f) inherits the structure of a locally
trivial fibration with fiber F and structure group

Sympe(F ) = {φ ∈ Diff(F )|φ∗λF = λF+dh, φ = id and h = 0 outside of a compact set}.

To find a local trivialization of this bundle around w ∈ C \ vcrit(f), consider
the rays starting from w and lift them horizontally, this allows to define a map
Φ : F × Op(w) → W with f ◦ Φ = pr2 and so that the lifted rays are the obvious
ones in F × Op(w). Since parallel transport maps are exact symplectomorphisms,
we automatically have

Φ∗λ = pr∗1 λF + dR + ν

where R is a function which vanishes near the horizontal boundary and ν is a 1-form
which vanishes on vertical vectors and writes pr∗2 µ near the horizontal boundary.
Using polar coordinates (r, θ) centered at w the 1-form ν can be written ν = Kdr+
Hdθ where K and H are functions of (r, θ) near the horizontal boundary. The
functions K and H should be thought of as Hamiltonians generating the parallel
transport maps along the r and θ directions. In fact, since we have trivialized f
along rays from w, the function K is constant on each fiber everywhere (not just
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near the horizontal boundary). We will come back to this kind of computations
when discussing the symplectic Dehn twist.

Thurston’s trick If one has a manifold W ′ with a 1-form λ (but ω = dλ not
necessarily symplectic) and a map f : W ′ → C satisfying 2. and 4. and the following
modified 1.

1’. There exists an open set U ⊆ W such that f : W \ U → C is proper and a
codimension 0 embedding Φ : U → F × C such that pr2 ◦Φ = f and Φ∗λ =
pr∗1 λF .

then one can construct a complete finite type Liouville manifold W (diffeomorphic
to W ′) with a map still denoted f : W → C which is a Lefschetz fibration with
same fiber as f : W ′ → C. This is a version of Thurston’s trick as in [Thu76]. The
starting point is to consider the 1-form λk = λ + kf ∗µ where µ = 1

2
r2dθ. Near

the critical points, there are complex coordinates in which f = f(p) + z2
1 + · · · + z2

n

and dλ = dx1 ∧ dy1 + · · · + dxn ∧ dyn. Since f is holomorphic f ∗dµ(v, Jv) =
dµ(df(v), idf(v)) > 0 and hence dλ + kf ∗dµ is symplectic. Away from critical
points, we have the decomposition TW = V ⊕H which is still orthogonal for dλk.
Observe that near the critical points, df : H → TC is orientation preserving, so
f ∗dµ is positive on H. Hence there exists K > 0 such that for any k > K, dλk
becomes positive on H everywhere, and since it is unchanged on V , it is a symplectic
form. Now let us compute the corresponding Liouville vector field Xk for k > K and
away from critical points. Denote by Z = 1

2
r∂r the Liouville vector field of µ (notice

this is the same for kµ) and by Z̃ its horizontal lift. We have Z̃y(kπ∗dµ) = kπ∗µ.
Denoting by πV and πH the projections to V and H, there is a vertical vector T
such that Tydλ = λ ◦ πV (because dλ is non-degenerate on V ). Since λ ◦ πH − Z̃ydλ

vanishes on V , there is an horizontal vector Yk such that Ykydλk = λ ◦ πH − Z̃ydλ.
Finally Xk = Z̃ + T + Yk is the vector field that we are looking for:

Xky(dλ+ kπ∗dµ) = Z̃ydλ+ kπ∗µ+ λ ◦ πV + λ ◦ πH − Z̃ydλ

= λ+ kπ∗µ.

The key point now is that Yk −→
k→+∞

0, so for any R > 0 such that vcrit(f) ⊂ {|w| <
R}, and k sufficiently large, Xk is transverse to the hypersurface MR = {|f | = R}.
The last step to constructW is to complete {|f | 6 R} in the horizontal direction and
extend the map f . Denote by αk the contact form induced by λk on MR and glue
[1,+∞[×MR to {|f | 6 R} as we did for the completion of a Liouville domain (recall
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this is a canonical procedure), this is our manifoldW . The Liouville form λk smoothly
extends as uαk in the region [1,+∞[×MR, where u is the coordinate in [1,+∞[.
Finally we extend f to [1,+∞[×M by: f(u, p) =

√
uf(1, p) (this actually needs to

be smoothed near MR \ U). This does not add any critical point and the fiber over
reiθ for r > R is symplectic for it is the image of the fiber over Reiθ by the Liouville
flow at time 2 ln(r/R). The last thing we need to check is that the trivialization
near the horizontal boundary can be extended over the whole C. This is done by
horizontally lifting rays from the origin and extending the trivialization. Explictly, in
the region [1,+∞[×MR, the horizontal subbundle H is spanned by ∂θ and ∂u − XF

u
.

Hence we extend the embedding U → F × C by (u, θ, q) 7→ (φ
ln(u)
XF

(q),
√
uReiθ) and

check:
Φ∗(λF +

kr2

2
dθ) = u(λF +

kR2

2
dθ).

Finally, compose f by w 7→ w√
k
to exactly match condition 1. of definition 2.1.

2.3 The boundary of a Lefschetz fibration as an open book

Let (W,ω,X, λ) be a complete finite type Liouville manifold and f : W → C be a
Lefschetz fibration with fiber (F, ωF , XF , λF ). We explain now how this induces a
natural decomposition of the ideal boundaryM = ∂∞(W,λ). Take R > 0 sufficiently
large so that vcrit(f) ⊂ {f < R} and X lifts 1

2
r∂r near {f > R}. Consider also a

trivialization Φ : U → F ×C near the horizontal boundary and a contact form α on
∂∞F so that F × [1,+∞[×DR ⊂ Φ(U) where [1,+∞[×F ⊂ F is the cylindrical end
where λF = uα. Then this exhibits M as the union of two pieces:

• (Suspension of a page) {|f | = R} with contact form λ,

• (Neighborhood of the binding) {u ◦ Φ = 1} with contact form α + 1
2
r2dθ.

These two pieces are naturally glued in M by the Liouville flow. The central fiber
f−1(0) intersects M in the closed codimension 2 submanifold B = ∂inftyF and the
map θ = arg(f) : {f = R} → R/2πZ is actually well-defined as a map M \ B →
R/2πZ since X lifts 1

2
r∂r in {|f | > R}.

Definition 2.2. An open book decomposition of a closed manifold M is a closed
codimension 2 submanifold B with trivial normal bundle together with a fibration θ :
M \B → R/2πZ which is equal to the angle coordinate in some tubular neighborhood
D2 ×B of B.
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B is called the binding and the fibers of θ (or rather their closures in M) are
called the pages of the open book. Such topological decomposition have been exten-
sively studied. For example it is known that every oriented odd-dimensional manifold
admits such a decomposition (Alexander in dimension 3, Lawson and Quinn in di-
mension > 5). Their importance in contact geometry has been discovered by Giroux
(see [Gir02]), who made the following definition

Definition 2.3. Let M be a closed manifold. A contact structure ξ is carried by an
open book decomposition (B, θ) if there exists a contact form α with the following
properties:

• α is a positive contact form on B,

• dα is a positive symplectic form on the pages,

• the orientations of B coming from α and from the oriented pages agree.

Such a contact form is said to be adapted to the open book.

and proved the following theorem.

Theorem 2.4 (Giroux). On a closed manifold, every contact structure is carried by
an open book.

While in dimension 3 there is a combinatorial proof, the higher dimensional case
relies on Donaldson’s so-called approximately holomorphic geometry.

Let us come back to our discussion of Lefschetz fibrations. We claim that (B, θ)
as defined just before definition 2.2 is an open book decomposition which carries ξ.
One simply needs to construct an adapted contact form, there are infinitely many
ways to do it, here is one. The contact form on {|f | = R} writes R2

r2 (α + kr2

2
dθ)

because 2 ln(R/r) is the time that it takes to flow from {Φ ◦ u = 1} to {|f | = R}.
Pick a function ρ(r) which satisfies ρ(r) = R2

r2 near r = R, ρ(r) = 2− r2 near 0 and
with ρ′ < 0 away from zero, and consider αρ = ρ(r)(λF + kr2

2
dθ). This smoothly glues

with the contact form on {|f | = R} and is adapted to the open book decomposition.
The contact form αρ endows the pages {θ = 0} with a Liouville domain structure.
In fact, the contact form induced by λ on {|f | = R} is exact symplectomorphic to
F and in a sense more canonical, but it converges to +∞ on the binding.

To finish the discussion of the contact boundary, we discuss the monodromy of
the open book. Let F be the fiber over R ∈ C. The parallel transport around the
loop Reit, t ∈ [0, 2π] gives an elementm ∈ Sympe(F ), this is called the monodromy of
the open book. Its conjugacy class in π0Sympe(F ) determines the contact manifold
up to contactomorphism.
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Construction of a contact manifold from a symplectic open book There
are several ways to proceed, here is one way. Consider a complete finite type Liouville
manifold (F, λ) together with a symplectic diffeomorphism φ which is the identity
outside of a compact set.

Lemma 2.5. There is family (φt)t∈[0,1] of symplectic diffeomorphisms equal to the
identity outside of a compact set, and a positive function h : F → R equal to 2π
outside of a compact set such that φ0 = φ and φ∗1λ = λ+ dh.

Proof. We have φ∗λ = λ + β where β is a compactly supported closed 1-form. The
vector field Z defined by Zydλ = −β is a symplectic vector field and it vanishes
outside of a compact set, so it is complete. One computes that (φtZ)∗β = β and
(φtZ)∗λ− tβ + dkt for some compactly supported functions kt.

Then ψt = φ ◦ φtZ satisfies ψ0 = φ and

ψ∗1λ = (φ1
Z)∗(λ+ β) = λ− β + dk1 + β = λ+ dk1.

At this point, one could take ψt = φt and h = k1 + 2π but the only issue is that h
need not be positive. We arrange this by a second deformation as follows. Consider
the Liouville vector field X dual to λ and, for T ∈ R, θT = φ−TX ◦ ψ1 ◦ φTX . We have

θ∗Tλ = (φTX)∗(ψ∗1(e−Tλ)) = e−T (φTX)∗(λ+ dk1) = λ+ e−Td(k1 ◦ φT ).

For T > 0 large enough, sup |e−Tk1 ◦ φT | < 2π as required.

We assume that φ has been deformed using the lemma so that φ∗λ = λ+dh with
h > 0 and h = 2π outside of a compact set.

Consider the manifold R×F with the contact structure ξ = ker(dθ+ λ) and the
Z-action generated by

ψ : (θ, x) 7→ (θ − h(x), φ(x)).

One checks that this action preserves the contact structure: ψ∗(dθ+ λ) = dθ− dh+
λ + dh = dθ + λ, and that the action is free and proper (this is the place where
we use h > 0). Hence the quotient space Mφ is a contact manifold, actually the
contact form dθ + λ descends to the quotient, and moreover the end of this contact
manifold is canonically identified with that of R/2πZ×F because φ = id and h = 2π
outside of a compact set. It remains to close the manifold Mφ by adding the binding
B = ∂∞F . We want a neighborhood of the binding to be contactomorphic to D2×B
with contact structure ker(r2dθ + α) where α is a contact form for B. For ε > 0
sufficiently small we have a contact embedding jε : D2

ε \ {0} × B → Mφ given by
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jε(r, θ, x) = (θ, i( 1
r2 , x)) where i :]0,+∞[×B → F is the trivialization of SB induced

by α composed with the inclusion in F : indeed

j∗ε (dθ + λ) = dθ +
α

r2

We can now form:
Mφ = (D2

ε ×B)
⋃
jε

Mφ.

The first summand is a neighborhood of the binding while the second is the suspen-
sion of the symplectic diffeomorphism φ, and they are glued together by a contacto-
morphism between open subsets, so the result is a smooth contact manifold.

2.4 Critical points and vanishing cycles

So far we have mainly been concerned with the structure at infinity in a Lefschetz
fibration. It is high time we dicuss the interior and especially the Lefschetz critical
points. We closely follow [Sei03].

Radial trivialization and monodromy Let f : Cn → C be the map f(z1, . . . , zn) =
z2

1 + · · · + z2
n. Endow Cn with the standard Liouville form λ = 1

2

∑
r2
i dθi. First we

introduce the cotangent space of the (n− 1)-sphere as

T∗ Sn−1 = {(p, q) ∈ Rn × Rn||q| = 1, 〈p, q〉 = 0},

in which the canonical 1-form writes λcan =
∑n

i=1 pidqi but also λcan = 1
2

∑
(pidqi −

qidpi) since 〈p, q〉 = 0. For s > 0, the fiber f−1(s) is given by the equations |x|2 −
|y|2 = s, 〈x, y〉 = 0 and the map Φs : f−1(s)→ T∗ Sn−1 given by

Φs(x+ iy) = (−|x|y, x
|x|

)

is a diffeomorphism and satisfies Φ∗sλcan = λ:

Φ∗sλcan = −1

2

∑
yidxi +

1

2

∑
xidyi −

∑
xiyi

(
−|x|d(

1

|x|
) +

1

|x|
d(|x|)

)
= λ.

For s = 0, this map is still well-defined and gives a diffeomorphism Φ0 : f−1(0)\{0} →
T∗ Sn−1 \ Sn−1.

We claim that the parallel transport maps are well-defined. First observe that
the horizontal distribution at z 6= 0, is spanned over C by (z̄1, . . . , z̄n): for v ∈
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Cn,df(v) = f ′(z)dz(v) = 2
∑
zivi = 2h(z̄, v) = 2(ω(iz̄, v) + iω(z̄, v)) where h(u, v) =∑

ūivi is the standard hermitian metric. Now we introduce the magical function
κ(z) = |z|4 − |f(z)|2 which is horizontal: recall first that a vector v ∈ Cn can be
written in complex coordinates v = v∂z + v̄∂z̄ and compute:

dzκ = 2|z|2(
∑
i

zidz̄i + z̄idzi)− 2f(z)
∑

z̄idz̄i − 2f(z)
∑

zidzi

and
dzκ(z̄∂z + z∂z̄) = 0, dzκ(iz̄∂z − iz∂z̄)) = 0.

The function κ is proper on {|f | 6 R} for any R so our claim follows. The exis-
tence of this function may seem miraculous, but as was explained to me by Maksim
Maydanskiy, it can be nicely interpreted using the moment map of the O(n)-action
g(x+ iy) = gx+ igy for g ∈ O(n), which preserves f (ask him !).

It is possible to explicitly compute the monodromy m around the loop seit, t ∈
[0, 2π] and get an exact symplectomorphism of T∗ Sn−1 by conjugating with Φs.
However it is not compactly supported so does not fit the framework introduced
before: m is not an element of Sympe(T∗ Sn). We follow another approach which
will help us to deform λ to get an actual Lefschetz fibration in the sense of definition
2.1. Consider the rays through the origin and their horizontal lifts. Using the fact
that κ is horizontal and identifying f−1(0) \ {0} with T∗ Sn−1 \ Sn−1 via Φ0, this
uniquely defines a diffeomorphism

Ψ : T∗ Sn−1 \ Sn−1×C→ Cn \ κ−1(0)

which satisfies f ◦Ψ = pr2. To get an explicit formula, one computes the horizontal
lift ∂̃r of ∂r = x∂x+y∂y

r
:

∂̃r =
f(z)z̄

2|f(z)||z|2

A computation shows that i∗w(∂̃r.λ) for all fibers iw : f−1(w) → Cn, and hence we
know a priori the general expression of the Liouville form:

Ψ∗λ = λcan −Kdθ

To compute an explicit expression for Ψ, we have to solve the differential equation

żt =
eiθz̄t
2|zt|2

.
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Since κ is constant along the trajectory, we have |zt|4 − t2 = |z0|4 = 4|p|2 (note
that κ ◦ Φ−1

0 = 4|p|2). Now a straightforward computation (see exercise 13) yields
the following formula:

Ψ(p, q, reiθ) =
|p| 12√

2
(((1 +

r2

4|p|2
)

1
2 + 1)

1
2 (q − i p

|p|
) + ((1 +

r2

4|p|2
)

1
2 − 1)

1
2 eiθ(q + i

p

|p|
))

From this expression we compute K:

K(p, q, reiθ) = Kr(p) =
1

2

(
|p| − (|p|2 +

r2

4
)

1
2

)
.

The monodromy around the loop reit, t ∈ [0, 2π] is the time 2π-flow of Kr: indeed
XKr + ∂θ is the horizontal lift of ∂θ for it spans the kernel of dλ on the cylinder of
radius r. It is not clear however that this monodromy smoothly extends to the zero-
section because |p| is not smooth there but we claim this is the case. The hamiltonian
Kr is the sum of terms and they Poisson commute because they are functions of |p|.
The Hamiltonian |p| generates the normalized geodesic flow:

σt(p, q) = (cos(t)p− sin(t)|p|q, cos(t)q + sin(t)
p

|p|
).

At time π (or 2π for |p|
2
), this map is the differential of the antipodal map.

which clearly extends to the zero-section. Hence the time 2π-flow of Kr is a well-
defined exact symplectomorphism of T∗ Sn. The last issue is that it is not compactly
supported, so we truncate this hamiltonian: for ρ > 0, we pick a function g(t) which
equals 0 near 0, 1 near ρ and g′(t) > 0. We claim that the 1-form

λ′ = Ψ∗(λcan + (g(|p|)− 1)Kr(p)dθ)

smoothly extends to Cn (see [Sei03]).
For this new form λ′ the monodromy around a circle centered at 0 is an element of

Sympe(T∗ Sn−1), we call it a symplectic Dehn twist. Note that by chosing ρ very small,
we can make the support of the symplectic Dehn twist contained in an arbitrarily
neighborhood of the zero-section.

Vanishing cycles Let γ : [0, 1] → C be an embedded path with γ(1) = 0. As
we shall see, associated to this path is a Lagrangian disk in Cn called the Lefschetz
thimble, with boundary an exact Lagrangian sphere in f−1(γ(0)) called the vanishing
cycle. Let γ̃ : [0, 1[→ Cn be an horizontal lift, this is well-defined because the function
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κ is preserved. Then γ̃ converges to 0 when t → 1 if and only if κ = 0 along the
path. Hence the union of all the points that parallel transport to 0 above the path
γ is precisely Dγ = f−1(γ) ∩ κ−1(0). We claim that Dγ is a smooth Lagrangian disk
which intersect the fiber over γ(t) in an exact Lagrangian sphere for t < 1 and a
single point (the origin) for t = 1. Let us first look at the case where γ(t) = 1 − t.
Then the equations for Dγ are 〈x, y〉 = 0, 0 6 |x|2−|y|2 6 1, |x||y| = 0 or equivalently
y = 0, |x| 6 1, which is obviously a smooth Lagrangian disk, λ actually vanishes on
Dγ. For the general case we make two observations. First, for z in the fiber over seiθ,
one notices that ze−iθ/2 lies in the fiber over s, and hence κ−1(0)∩f−1(seiθ) = e−i

θ
2Ls

where Ls = {y = 0, |x| =
√
s} = Φ−1

s (Sn−1). This is an exact Lagrangian sphere
because the unitary map z 7→ e−i

θ
2 z preserves λ. Moreover, in the neighborhood of

0, Dγ can be mapped to the subspace {y = 0} via the diffeomorphism z 7→ e−iθ(z)/2z
where θ(z) is smooth determination of the argument of f(z) defined on Dγ near
0. This shows that Dγ is a smooth embedded disk, the fact that it is Lagrangian
can be deduced from the following: it intersects the regular fibers in Lagrangian
submanifolds and it is horizontal.

Here is another argument which is less elementary for it involves the stable man-
ifold theorem but applies more generally, especially in the case where ω is not as-
sumed to be standard near the critical points. This trick is attributed to Donaldson
in [Sei03]. Pick a function h defined in a neighborhood V of the image of γ, which
vanishes transversely along γ and such that (γ′(t),∇h(γ(t))) is an oriented R-basis
of C, and H = h ◦ f a Hamiltonian defined near f−1(V ). We claim that XH has
an hyperbolic zero at the origin and that its trajectories over γ are horizontal and
converge to 0. Then Dγ can be alternatively defined as the stable manifold of the
origin for XH and it follows from the stable manifold theorem that Dγ is a smooth
embedded disk. The fact that Dγ is Lagrangian can be deduced from the proof of
proposition 1.4.

When we vary the path by a homotopy, the corresponding vanishing cycles moves
by an exact Lagrangian isotopy, which can then be extended as a Hamiltonian isotopy
of the fiber. Also, it is possible to deform a vanishing cycle by a Hamiltonian isotopy
by deforming the Lefschetz fibration.

Matching cycles Let γ be a path joining two critical values. In the middle of the
path, there are two vanishing cycles coming from both sides, if they are Hamiltonian
isotopic, then after a suitable deformation the Lefschetz fibration, the Lefschetz
thimbles glue into a Lagrangian sphere in the total space. It is an interesting way of
producing Lagrangian spheres in the total space.
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2.5 Examples

The trivial fibration Let (F, λF ) be a complete finite type Liouville manifold,
W = F × C endowed with λ = λF + 1

2
r2dθ and f = pr2 : W → C. The contact

boundary M has an open book decomposition with page F and monodromy id.
When F = Cn−1, we find the standard open book decomposition of S2n−1 with page
Cn and monodromy id. The unit sphere actually represents an adapted contact form
in this case (exercise 11).

One critical point Consider the map f : Cn → C given by f(z1, . . . , zn) =
z2

1 + · · ·+z2
n, and equip Cn with the Liouville structure λ′ constructed in the previous

section. Using Thurston’s trick plus some tweaking near the vertical boundary as
explained in a previous section, we can make Cn into a complete Liouville manifold
with compatible Lefschetz fibration f ′ : Cn → C which has just one critical point,
fiber T∗ Sn−1, vanishing cycle the zero-section and monodromy a symplectic Dhen
twist about the zero-section. In particular it exhibits the standard sphere S2n−1 as an
open book with page T∗ Sn−1 and monodromy a symplectic Dehn twist (see exercise
12).

Two critical points Consider the affine quadric W = {z2
1 + · · · + z2

n + w2 = 1}
in Cn+1 and the map f : W → C equal to the coordinate w. There are exactly two
critical points with critical values 1 and −1. The fiber is T∗ Sn−1 and the vanishing
cycles are both equal to the zero-section. The total space is T∗ Sn.

Milnor fiber Consider W = {z2
1 + · · · + z2

n + wk+1 = 1} with the projection to
w. The critical values are the (k + 1)-th roots of unity. The total space is called
the Ak Milnor fiber, and can be described as a plumbing of k copies of T∗ Sn. The
k zero sections of these T∗ Sn form a chain (Ak-type) of Lagrangian spheres and can
be described as matching cycles corresponding to all the sides of the k+ 1-gon (with
vertices the roots of unity) but one.

2.6 Basis of vanishing cycles, Hurwitz moves

Let W → C be a Lefschetz fibration assume 0 is a regular value and denote by F
the fiber over 0. Pick a basis of vanishing paths : γ1, . . . , γm disjoint embedded paths
from 0 to the critical points, ordered consistently with the natural counter-clockwise
cyclic order in a neighbourhood of zero. This gives a collection (L1, . . . , Lm) of exact
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Lagrangian spheres (the vanishing cycles) in F . This collection itself is not an invari-
ant of the Lefschetz fibration because it depends on the choice of vanishing paths,
however two such choices differ by a finite number of the following modification:

• isotopies

• cyclic permutation of (γ1, . . . , γm).

• Hurwitz moves : for i ∈ Z/m, change γi, γi+1 for γ′i, γ′i+1 with either γ′i = γi+1

and γ′i+1 = β−1
i+1γi, or γ′i = βiγi+1 and γ′i+1 = γi, where βi is a small loop bases

at 0 encircling pi and very close to the path γi. The new vanishing cycles are
(L′i, L

′
i+1) = (Li+1, τ

−1
Li+1

(Li)) or (τLi(Li+1), Li), the other ones being unchanged.

One can interpret this in terms of the Braid group on m strands Bm and the
Hurwitz moves correspond to the standard generator σi and its inverse.

Conversely, this can be used to construct Liouville manifolds: given a Liouville
manifold F with a sequence (L1, . . . , Lm) of parametrized exact Lagrangian spheres,
it is possible to construct a Liouville manifold W with a Lefschetz fibration W → C
with critical values ζ i, for i = 0 . . .m−1 and ζ = e

2iπ
m , and vanishing cycles associated

to the rays from the origin are precisely L1, . . . , Lm. Changing (L1, . . . , Lm) by
Hamiltonian isotopies in F , cyclic permutations or Hurwitz moves does not change
the total space because it just corresponds to another choice of basis of vanishing
paths.

There is yet another operation which leaves the total space W unchanged:

• stabilization: attach a Weinstein handle to F along a Legendrian sphere which
bounds an exact Lagrangian disk L and replace (L1, . . . , Lm) by (L1, . . . , Lm, Lm+1)
where Lm+1 is the union of L and the core of the Weinstein handle.

This can been interpreted as composing W with a Weinstein cobordism with a
pair of critical points of index n− 1 and n in cancellation position.

2.7 Weinstein structures and Lefschetz fibrations

If f : W → C is a Lefschetz fibration with fiber F which is itself a finite type
Weinstein manifold, then W is also Weinstein. We start with an exhausting convex
function φ0 on the central fiber F0. By Thurston’s trick as explained above, one
can make the Liouville vector field transverse to small tubes {|f | = r} around the
central fiber. Hence φ = φ0 + |f |2 is a Lyapunov function for X near F0. As we let
the radius of this tube grow, it will meet critical points of f . When this occurs, this
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corresponds to the attachment of a critical Weinstein handle along the corresponding
vanishing cycle (lifted as a Legendrian in the boundary of the tube). The Lyapunov
function φ can be extended over the handle.

The converse statement is much harder and makes use of Donaldson’s techniques.

Theorem 2.6 (Giroux-Pardon [GP14]). Any Weinstein manifold admits a Lefschetz
fibration over C with Weinstein fiber.

2.8 Exercises

Exercise 11. Show that on S2n−1, the standard contact structure ξ = ker(
∑
r2
i dθi)

is carried by the open book (B = {rn = 0}, θ = θn). Hint: the contact form α =
1
2

∑n
i=1 r

2
i dθi is adapted.

Exercise 12. For n = 2, instead of f = z2
1 + z2

2 we consider f = z1z2. Prove that
the unit sphere is an adapted contact form for the open book θ = θ1 + θ2 = arg(f).

Exercise 13. Check the computations of the radial trivialization for f = z2
1 +· · ·+z2

n.

Exercise 14. In the construction of the contact manifold associated to a symplectic
open book, show how to exhibit an "arbitrary large" neighborhood of the binding: for
any contact form α for B and R > 0, there exists an embedding i : B × D2

R → Mφ

which is the identity on B × {0} and satisfies i∗ξ = ker(α + r2dθ).
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