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1 Floer homology on non-compact manifolds

• Symplectic homology is an attempt to generalize Floer homology to non-compact
symplectic manifolds

• Let (V, ω) be a symplectic manifold, J an ω-compatible almost complex structure
and H : S1 × V → R a Hamiltonian

• What could go wrong if we want to define FH(H) via the Floer equation

∂su+ J(u)
(
∂tu−XH(u)

)
= 0 ? (∗)

– FC∗(H) could be of infinite rank even for fixed degree and then ∂Fx might
involve infinite sums ⇒ could be not well-defined

– For fixed 1-periodic orbits x, y ofXH the solutions u of (∗) with lims→−∞ u = x
and lims→+∞ u = y might not be contained in a compact subset of V
⇒M(x, y) has no nice compactification.

⇒ We have to restrict the class of open symplectic manifolds and the class of Hamil-
tonians

• Let (V, ω) be a compact symplectic manifold with positive contact type boundary
Σ = ∂V , i.e. near Σ, there exists a vector field Y such that LY ω = ω and Y points
out of V along Σ. By the way, Y is called a Liouville field for ω.
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• Define the Liouville form λ by λ := ιY ω and note that LY λ = λ. It restricts to
a contact form α := λ|TΣ on Σ with Reeb vector field R and contact structure
ξ := kerα.

• The flow ϕt of Y for t ∈ (−ε, 0] symplectically identifies a collar neighbourhood of

Σ with
(
Σ× (−ε, 0], d(er · α)

)
. Define the completion (V̂ , ω̂) by

V̂ = V ∪ϕt Σ× (−ε,∞)

ω̂ =

{
ω on V

d(er · α) on Σ× (−ε,∞)
.

• Call H cylindrical at infinity if there exists R > −ε and a function h : R→ R such
that

H(y, r) = h(er) on Σ× [R,∞) ⊂ V̂

Note that on Σ × [R,∞) we have XH = h′(er) · R, as dH(y,r) = h′(er) · d(er) and
ω(y,r) = d(er) ∧ α + er · dα.

• Call J cylindrical at infinity if it is time independent and of the form

Jξ = ξ and J∂r = R ⇔ d(er) ◦ J = −λ on Σ× [R,∞).

Proposition (Maximum Principle). Let Hs, J be cylindrical at infinity with ∂sh
′
s ≤ 0

and let u : R×S1 → V̂ be a solution of (∗) such that lims→±∞ u ⊂ V̂ \Σ× [R,∞). Then

u(R× S1) ⊂ V̂ \ Σ× [R,∞).

Remark. A similar result holds, if Hs is of the form Hs(y, r) = hs(e
r−fs(y)), i.e. if we

consider a different contact form α′ := ef(y) · α. The proof is similar but more involved
(see [2]).

Lemma (E. Hopf’s Weak Maximum Principle). Let Ω ⊂ Rn be a bounded open domain.
Consider a differential operator of the form

L :=
n∑
k=1

∂2

∂2xk
+

n∑
k=1

bk(x)
∂

∂xk

such that the functions bk are uniformly bounded on Ω. If ρ is a C2-function on Ω such
that Lρ ≥ 0, then ρ attains its maximum on ∂Ω.

Proof:

1. Assume that Lρ > 0. As ρ is continuous, it attains its maximum on Ω. If ρ attains
the maximum at x0 ∈ Ω then

∂ρ

∂xk
(x0) = 0 and

∂2ρ

∂2xk
(x0) ≤ 0 ∀k.

Hence Lρ ≤ 0, a contradiction.
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2. Now assume the general case Lρ ≥ 0. Assume that Ω is inside {|x1| ≤ d}. Consider
σ(x) := ρ(x) + ε · eα·x1 with α, ε > 0. Then

Lσ = Lρ+ ε ·
(
α2 + αb1(x)

)
eα·x1

≥ ε ·
(
α2 − α||b1||∞

)
eα·x1 .

⇒ for α large enough, we find Lσ > 0. By 1. σ attains its maximum at the
boundary

⇒ sup
Ω
ρ ≤ sup

Ω
σ = sup

∂Ω
σ ≤ sup

∂Ω
ρ+ ε · eαd

With ε→ 0 we find the Lemma.

Proof of the Proposition. We consider the function ρ = er ◦ u. Then

∂sρ = d(er)(∂su) = d(er)
(
− J(∂tu−XH)

)
= λ(∂tu−XH)

= λ(∂tu)− ρ · α(h′(ρ) · R)

= λ(∂t)− h′(ρ) · ρ
∂tρ = d(er)(∂tu) = d(er)

(
J∂su+XH

)
= −λ(∂su) + d(er)(XH)︸ ︷︷ ︸

=0,as orbits of XH stay in fixed r-levels

⇒ ∆ρ = ∂s
(
λ(∂tu)− h′(ρ) · ρ

)
− ∂tλ(∂su)

= ∂sλ(∂tu)− ∂tλ(∂su)− h′(ρ)∂sρ− (∂sh
′)(ρ) · ρ− h′′(ρ) · ρ · ∂sρ

= dλ(∂su, ∂tu)− λ
(

[∂su, ∂tu]︸ ︷︷ ︸
=0

)
− dH(∂su)− (∂sh

′)(ρ) · ρ− h′′(ρ) · ρ · ∂sρ

= ω(∂su, ∂tu−XH)− (∂sh
′)(ρ) · ρ− h′′(ρ) · ρ · ∂sρ

= |∂su|2 − (∂sh
′)(ρ) · ρ− h′′(ρ)(ρ) · ρ · ∂sρ

⇔ ∆ρ+ (h′′(ρ) · ρ) · ∂sρ ≥ |∂su|2 − (∂sh
′)(ρ) · ρ ≥ 0.

Now let Ω := u−1
(
Σ × (R + ε,∞)

)
. Due to the assumptions on the asymptotics of

U , Ω is bounded. By Lemma 1 we find that ρ attains its maximum on ∂Ω. Hence
u(s, t) ⊂ V̂ \ Σ× (R + ε,∞) for all ε > 0. With ε→ 0, the proposition follows.

2 First definition of symplectic homology

Now we give the definition of symplectic homology following Viterbo.

• The spectrum of (Σ, α) is spec(Σ, α) := {l |α has ±l-periodic Reeb orbits} ∪ {0}
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• Call a Hamiltonian admissible, writing H ∈ Ad(Σ, α), if it is cylindrical at infinity
with

h(er) = a · er + b, where a ∈ R \ spec(Σ, α)

and all 1-periodic orbits are non-degenerate.

• Note that admissible Hamiltonians have only finitely many 1-periodic orbits. In
view of the Maximum Principle we hence find that FH∗(H) is well-defined. How-
ever, these groups depend strongly on H. Note that with the Maximum Principle,
we get connecting homomorphisms FH∗(H+) → FH∗(H−) only if H− ≥ H+ on
Σ× [R,∞) for some large R. However, for H1 ≤ H2 ≤ H3 we still have commuta-
tive diagrams

FH∗(H1) //

&&

FH∗(H2)

xx
FH∗(H3)

.

• Define a partial order ≺ on Ad(Σ, α) by H1 ≺ H2 iff H1 ≤ H2 on Σ × [R,∞) for
some large R. Then define

SH∗(V ) := lim
−→

H∈Ad(Σ,α)

FH∗(H).

3 Direct and inverse limits

• A direct set (M,≺) is a set M with a partial order ≺ such that for each pair
α, β ∈M there exists γ ∈M with α, β ≺ γ (Example (Ad(Σ, α),≺)).

• A subset M ′ ⊂M is cofinal if for every α ∈M exists γ ∈M ′ such that α ≺ γ (Ex.
Hn ∈ Ad(Σ, α) with an →∞).

• A direct system of R-modules over (M,≺) consists of R-modules Xα ∀α ∈M and
R-linear maps ιβα : Xα → Xβ ∀α ≺ β such that ιαα = id, ιγα = ιγβιβα ∀α ≺
β ≺ γ (Ex. (Ad(Σ, α),≺) with XH = FH(H)).

• Let Q ⊂
⊕

α∈M Xα be a submodule generated by the elements ιβαxα − xα for any
α ≺ β and xα ∈ Xα. Then

lim
−→
α∈M

Xα :=
⊕
α∈M

Xα

/
Q.

These are finite sums of elements in Xα, considered equal if they are eventually
mapped to the same.

• An inverse system over (M,≺) consists of Xα together with R-linear maps παβ :
Xβ → Xα ∀α ≺ β such that παα = id, παγ = παβπβγ ∀α ≺ β ≺ γ. Then define

lim
←−
α∈M

Xα :=
{

(xα)
∣∣∣ παβ(xβ) = xα∀α ≺ β

}
⊂
∏
α∈M

Xα.
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• Facts: lim
−→

is an exact functor, while lim
←−

is only left exact, but exact when applied

to finite dimensional vector spaces.

4 Action filtration

• SH has a qualitative and a quantitative aspect. This far, we considered only the
quantitative feature.

• Assume that [ω]π2(V ) = 0 or that ω = dλ. Then we have a well-defined action on
the loop space L (V ) by

AH(x) =

∫
D2

x̄∗ω −
∫ 1

0

Ht(x(t))dt,

where x̄ : D2 → V is such that x̄|S1 = x. Moreover, the Floer equation (∗) is the
negative gradient equation of AH . It follows that the action increases from −∞
to +∞ along Floer cylinders ⇒ ∂F decreases action.

• Define for b 6∈ spec(Σ, α) the subcomplex FC<b(H) ⊂ FC(H) as generated by
orbits x with AH(x) < b and FC(a,b)(H) = FC<b(H)

/
FC<a(H). As ∂F decreases

action, it induces boundary operators on FC<b(H) and FC(a,b)(H) ⇒ FH<b(H)
and FH(a,b)(H).

• Let H be an everywhere monotone decreasing homotopy between H± and x± 1-
periodic orbits of H±. Then

AH+(x+)−AH−(x−) =

∫ ∞
−∞

∂sAHs(u(s))ds

=

∫ ∞
−∞
||∇AHs||2ds−

∫ ∞
−∞

∫ 1

0

(
∂sH

)
(u(s))dtds > 0.

So for globally decreasing homotopies the connecting homomorphism restricts to
maps

FH<b(H+)→ FH<b(H−) and FH(a,b)(H+)→ FH(a,b)(H−).

• Now call H filtration admissible, H ∈ Ad0(Σ, α), if H ∈ Ad(Σ, α) and H|V ≤ 0.
Define a partial order ≤ on Ad0(Σ, α) by H+ ≤ H− iff H+ ≤ H− globally as
functions. Then define

SH<b(V ) = lim
−→

H∈Ad0(Σ,α)

FH<b(H) and SH(a,b)(V ) = lim
−→

H∈Ad0(Σ,α)

FH(a,b)(H).
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• Inclusions FC(a,b)(H) ⊂ FC(a,b′)(H) and projections FC(a′,b)(H) ⊂ FC(a,b)(H) for
a′ ≤ a ≤ b ≤ b′ induce maps in SH which give the groups SH(a,b) the structure of
a bidirect system over R× R. Fact:

lim
−→
b→∞

lim
←−

a→−∞

SH(a,b)(V ) ∼= SH(V ). (with previous definition)

This holds as SH(a,b)(V ) = SH(a′,b) for a, a′ < 0 (consider cofinal sequence of
Hamiltonians that are C2-small inside V and cylindrical sharply increasing near Σ
to final slope.) Hence suffices to show lim

−→
SH(−∞,b)(V ) = lim

−→
SH<b(V ) = SH(V ).

This is straight forward.

5 Variant

• By P. Seidel, one can take also one Hamiltonian H of the form H(y, r) = h(er)
with limr→∞ h

′(er) =∞. Then FH(H) ∼= SH(V ).

• Has huge advantages when calculating SH (compare simplicial and singular ho-
mology).

• However, this does not recover action filtration and invariance follows only from
the isomorphism with SH(V ). Moreover, we have cheated in the definition (see
next chapter)

6 Morse-Bott

• In pratice, working only with non-degenerate orbits has a draw-back:

– naturally, if H is autonomous, its orbits come in S1-families, e.g. in areas
where H is cylindrical, H(y, r) = h(er), this is the case.

• Can we use this symmetry? Answer: Yes. Assumes that the 1-periodic orbits
N := x(S1) of XH are isolated circles which are transversely non-degenerate, i.e.
ker
(
Dpφ

1
H − Id

)
= TpN . Now, there are two possibilities:

• Solution 1 (formal):
perturb H with the help of a Morse-function f on N ∼= S1 such that H̃ = H+δ ·f
has for δ small enough and each N two new constant 1-periodic orbits of degree
µCZ(x) + 1

2

(
1± signh′′(r)

)
corresponding to the maximum and minimum of f .

• Solution 2 (flow lines with cascades):
Chain complex is generated by critical points of f and differential counts flow lines
with cascades, i.e. alternating sequences of whole Floer cylinders between different
N and parts of Morse flow lines on N (see [3], appendix for precise definition)
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7 Connection with topology

• Consider Hamiltonians as described previously - C2-small Morse function on V and
cylindrical sharply increasing near Σ (see image). So morally speaking SH(V ) is
generated by critical points of H and two generators for each closed Reeb orbit (of
arbitrary length).

• Explicitly FH
(−∞,ε)
∗ (H) ∼= H∗+n(V, ∂V ), as critical points of H have action close to

zero and Floer trajectories are in one-to-one correspondence with Morse gradient
trajectories of H. As the latter flow out of V along Σ, we get the relative homology.

• Moreover, FH
(−∞,ε)
∗ (H)→ SH

(−∞,ε)
∗ (V )→ SH∗(V ) by the natural map in direct

limits and this gives a map c : H∗+n(V, ∂V )→ SH∗(V ).

8 The transfer map

• The map above is in fact natural and fits into a bigger frame: Let (W,∂W ) be
a 0-codimensional symplectic submanifold of (V, ∂V ) and assume that V \W is
an exact symplectic manifold. Then there exists a natural homomorphims i! such
that the following diagram commutes

SH∗(V ) i! // SH∗(W )

H∗+n(V, ∂V )

c

OO

i∗ // H∗+n(W,∂W )

c

OO
.

Construction idea: Consider Hamiltonians H of the shape

zW = 1 zW = A zV = 2A + P

B

slope k

slope 1
4k

Fig. 1: Shape of H for transfer map

Then Gromov- Monotonicity assures that Floer trajectories insideW cannot escape
and hence SH≥0(V ) ∼= SH(W ). (see [1] and [2] for details)

7



9 Calculations

• Consider the unit ball B1(0) ⊂ Cn and the standard symplectic structure ω :=
i
2
dz∧dz̄. Take the standard Liouville form λ = i

4
(zdz̄− z̄dz) with Liouville vector

field Y (z) = 1
2
z∂z, which generates the flow ϕt(z) = e1/2t · z. Note that (Cn, ω) is

the completion of (B1(0), ω).

• Consider Hamiltonians Hα(z) = α · |z|2 = α · zz̄, which are cylindrical, as for
z0 ∈ S2n−1, we have H(ϕt(z0)) = et. Their Hamiltonian vector fields are XH(z) =
2iαz · ∂z with Hamiltonian flow ϕtXH (z) = e2iαt · z. ⇒ for α 6∈ πZ is 0 the only
1-periodic orbit of XH .

• The Conley-Zehnder index of the constant orbit γ0 is

µCZ(γ0) = n ·
(⌈α
π

⌉
+
⌊α
π

⌋)
α→∞−→ ∞.

Hence FHk(Hα) = 0 for α large enough ⇒ SHk(B1(0)) = 0.

• Handle attachment
Let V = W ∪∂W H2n

k with k < n. Then

Theorem (Cieliebak,[1]). SH∗(V ) ∼= SH∗(W )

Proof: Idea: Consider the transfer map SH∗(V )→ SH∗(W ) = SH≥0(V ), which
fits in the long exact sequence

SH<0
∗ (V )→ SH∗(V )→ SH≥0

∗ (V )→ SH<0
∗−1(V ).

Then show that SH<0
∗ (V ) = 0. This follows as one can construct Hamiltonians

on V which have 1-periodic orbits below a certain action only in W or on the
handle and on the handle a similar argument as for the ball shows that they do
not count.

Corollary. Let V be a subcritical Stein manifold, i.e. let V be obtained from the
balll B1(0) by inductively adding a finite number of subcritical handles H2n

k . Then
SH∗(V ) = 0.

• Viterbo’s Theorem
Let M be any orientable smooth manifold. Consider the cotangent bundle T ∗M .
Points in T ∗M are denoted (q, p) with q ∈ M, p ∈ T ∗qM . T ∗M has a canonical
Liouville form θ = pdq, i.e. ω = dθ = dp ∧ dq is symplectic. The choice of a
Riemannian metric defines the unit disc bundle D∗M :=

{
(q, p) ∈ T ∗M | ||p|| ≤ 1

}
.

Let LM denote the free loop space of M .

Theorem (Viterbo). SH∗(D
∗M,dθ) = H∗(LM)

• The pair of pants product from Hamiltonian Floer homology carries over to sym-
plectic homology. However, it does not restrict to the filtered version
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10 Wrapped Floer homology or Lagrangian symplectic
homology

• Let (V, λ be a Liouville domain. Let L ⊂ V be an exact Lagrangian which intersects
∂V transversely in a Legendrian submanifold ∂L = L ∩ ∂V , i.e. λ|L is an exact
1-form which vanishes on ∂L.

• After applying a Hamiltonian isotopy, we may additionally assume that L is in-
variant under the flow of Y near ∂V , i.e. in a collar neighbourhood ∂V × (−ε, 0]
L is identified with ∂ × (−ε, 0].

• Take H ∈ Ad(∂V, α). FC(L) is generated by 1-periodic Hamiltonian chords (start-
ing and ending on L), i.e. trajectories x of XH with x(0), x(1) ∈ L. A chord x is
non-degenerate if

– 1 is not an eigenvalue of the linearized flow for constant chords

– the image of TL under the linearized time 1 flow is transversal to TL, i.e.
Dx(0)ϕ

1
XH

(
Tx(0)L

)
t Tx(1)L.

• ∂F counts solutions u : R × [0, 1] → V to (∗) such that u(R × {0, 1}) ⊂ L.
Otherwise, we construction of the homology is completely analogue to SH.
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