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5.4. A Weitzenböck formula for Cauchy-Riemann operators 130
5.5. Large antilinear perturbations and energy concentration 133

iii



iv Chris Wendl

5.6. Two Cauchy-Riemann type problems on the plane 135
5.7. A linear gluing argument 137
5.8. Antilinear deformations of asymptotic operators 141

Lecture 6. Symplectic cobordisms and moduli spaces 145
6.1. Stable Hamiltonian structures 146
6.2. Almost complex manifolds with cylindrical ends 154
6.3. Examples of stable Hamiltonian structures 160
6.4. Moduli spaces of asymptotically cylindrical curves 162
6.5. Asymptotic regularity 166
6.6. Simple curves and multiple covers revisited 167
6.7. Possible generalizations 169

Lecture 7. Smoothness of the moduli space 175
7.1. The main result on regular curves 176
7.2. Functional-analytic setup 178
7.3. Moduli of complex structures 183
7.4. Fredholm regularity and the implicit function theorem 194
7.5. Evaluation and forgetful maps 201

Lecture 8. Transversality 207
8.1. A paradigm for genericity arguments 207
8.2. Generic transversality in cobordisms 211
8.3. Generic transversality in symplectizations 222

Lecture 9. Asymptotics and compactness 233
9.1. Removal of singularities 234
9.2. Finite energy and asymptotics 240
9.3. Degenerations of holomorphic curves 255
9.4. The SFT compactness theorem 267

Lecture 10. Cylindrical contact homology and the tight 3-tori 275
10.1. Contact structures on T3 and Giroux torsion 275
10.2. Definition of cylindrical contact homology 278
10.3. Computing HC˚pT3, ξkq 292

Lecture 11. Coherent orientations 309
11.1. Gluing maps and coherence 309
11.2. Permutations of punctures and bad orbits 315
11.3. Orienting moduli spaces in general 318
11.4. The determinant line bundle 320
11.5. Determinant bundles of moduli spaces 324
11.6. An algorithm for coherent orientations 325
11.7. Permutations and bad orbits revisited 328

Lecture 12. The generating function of SFT 329
12.1. Some important caveats on transversality 329
12.2. Auxiliary data, grading and supercommutativity 330



Lectures on Symplectic Field Theory v

12.3. The definition of H and commutators 333
12.4. Interlude: Orbifolds and branched manifolds 338
12.5. Cylindrical contact homology revisited 348
12.6. Combinatorics of gluing 351
12.7. Some remarks on torsion, coefficients, and conventions 355

Lecture 13. Contact invariants 361
13.1. The Eliashberg-Givental-Hofer package 362
13.2. SFT generating functions for cobordisms 372
13.3. Full SFT as a BV8-algebra 384

Lecture 14. Transversality and counting singularities in dimension four 391
14.1. Automatic transversality 392
14.2. Curves in symplectizations of 3-manifolds 405
14.3. Implict function theorems for local foliations 408
14.4. Consequences for coherent orientations 414

Lecture 15. Intersection theory for punctured holomorphic curves 419
15.1. Prologue 419
15.2. Homotopy-invariant intersection numbers 422
15.3. The adjunction formula 428
15.4. Local foliations: the general case 432

Lecture 16. Torsion computations and applications 433
16.1. Some J-holomorphic foliations 433
16.2. Contact homology of overtwisted contact manifolds 454
16.3. Examples with higher-order algebraic torsion 454
16.4. Rigorous obstructions to fillings and cobordisms 454

Appendix A. Sobolev spaces 455
A.1. Approximation, extension and embedding theorems 455
A.2. Products, compositions, and rescaling 460
A.3. Difference quotients 467
A.4. Spaces of sections of vector bundles 470
A.5. Some remarks on domains with cylindrical ends 475

Appendix B. The Floer Cǫ space 477

Appendix C. Genericity in the space of asymptotic operators 481

Bibliography 487





LECTURE 1

Introduction
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Symplectic field theory is a general framework for defining invariants of contact
manifolds and symplectic cobordisms between them via counts of “asymptotically
cylindrical” pseudoholomorphic curves. In this first lecture, we’ll summarize some
of the historical background of the subject, and then sketch the basic algebraic
formalism of SFT.

1.1. In the beginning, Gromov wrote a paper

Pseudoholomorphic curves first appeared in symplectic geometry in a 1985 paper
of Gromov [Gro85]. The development was revolutionary for the field of symplectic
topology, but it was not unprecedented: a few years before this, Donaldson had
demonstrated the power of using elliptic PDEs in geometric contexts to define in-
variants of smooth 4-manifolds (see [DK90]). The PDE that Gromov used was a
slight generalization of one that was already familiar from complex geometry.

Recall that if M is a smooth 2n-dimensional manifold, an almost complex
structure onM is a smooth linear bundle map J : TM Ñ TM such that J2 “ ´1.
This makes the tangent spaces ofM into complex vector spaces and thus induces an
orientation on M ; the pair pM,Jq is called an almost complex manifold. In this
context, a Riemann surface is an almost complex manifold of real dimension 2
(hence complex dimension 1), and a pseudoholomorphic curve (also called J-
holomorphic) is a smooth map

u : Σ Ñ M

satisfying the nonlinear Cauchy-Riemann equation

(1.1) Tu ˝ j “ J ˝ Tu,
1
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where pΣ, jq is a Riemann surface and pM,Jq is an almost complex manifold (of
arbitrary dimension). The almost complex structure J is called integrable if M
admits the structure of a complex manifold such that J is multiplication by i in
holomorphic coordinate charts. By a basic theorem due to Gauss, every almost
complex structure in real dimension two is integrable, hence one can always find
local coordinates ps, tq on neighorhoods in Σ such that

jBs “ Bt, jBt “ ´Bs.
In these coordinates, (1.1) takes the form

Bsu ` JpuqBtu “ 0.

The fundamental insight of [Gro85] was that solutions to the equation (1.1)
capture information about symplectic structures onM whenever they are related to
J in the following way.

Definition 1.1. Suppose pM,ωq is a symplectic manifold. An almost complex
structure J on M is said to be tamed by ω if

ωpX, JXq ą 0 for all X P TM with X ‰ 0.

Additionally, J is compatible with ω if the pairing

gpX, Y q :“ ωpX, JY q
defines a Riemannian metric on M .

Exercise 1.2. Show that an almost complex structure J is compatible with a
symplectic form ω if and only if it is tame and ω is J-invariant.

We shall denote by J pMq the space of all smooth almost complex structures on
M , with the C8

loc-topology, and if ω is a symplectic form on M , let

JτpM,ωq,J pM,ωq Ă J pMq
denote the subsets consisting of almost complex structures that are tamed by or
compatible with ω respectively. Notice that JτpM,ωq is an open subset of J pMq,
but J pM,ωq is not. Proofs of the following may be found in [MS17, §2.5] or
[Wend, §2.2], among other places.

Proposition 1.3. On any symplectic manifold pM,ωq, the spaces JτpM,ωq and
J pM,ωq are each nonempty and contractible. �

Tameness implies that the energy of a J-holomorphic curve u : Σ Ñ M ,

Epuq :“
ż

Σ

u˚ω,

is always nonnegative, and it is strictly positive unless u is constant. Notice moreover
that if the domain Σ is closed, then Epuq depends only on the cohomology class
rωs P H2

dRpMq and the homology class

rus :“ u˚rΣs P H2pMq,
so in particular, any family of J-holomorphic curves in a fixed homology class sat-
isfies a uniform energy bound. This basic observation is one of the key facts behind
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Gromov’s compactness theorem, which states that moduli spaces of closed curves in
a fixed homology class are compact up to “nodal” degenerations.

The most famous application of pseudoholomorphic curves presented in [Gro85]
is Gromov’s nonsqueezing theorem, which was the first known example of an obstruc-
tion for embedding symplectic domains that is subtler than the obvious obstruction
defined by volume. The technology introduced in [Gro85] also led directly to the
development of the Gromov-Witten invariants (see [MS12,RT95,RT97]), which
follow the same pattern as Donaldson’s earlier smooth 4-manifold invariants: they
use counts of J-holomorphic curves to define invariants of symplectic manifolds up
to symplectic deformation equivalence.

Here is another sample application from [Gro85]. We denote by

A ¨B P Z

the intersection number between two homology classes A,B P H2pMq in a closed
oriented 4-manifold M .

Theorem 1.4. Suppose pM,ωq is a closed and connected symplectic 4-manifold
with the following properties:

(i) pM,ωq does not contain any symplectic submanifold S Ă M that is diffeo-
morphic to S2 and satisfies rSs ¨ rSs “ ´1.

(ii) pM,ωq contains two symplectic submanifolds S1, S2 Ă M which are both
diffeomorphic to S2, satisfy

rS1s ¨ rS1s “ rS2s ¨ rS2s “ 0,

and have exactly one intersection point with each other, which is transverse
and positive.

Then pM,ωq is symplectomorphic to pS2 ˆ S2, σ1 ‘ σ2q, where for i “ 1, 2, the σi
are area forms on S2 satisfying ż

S2

σi “ xrωs, rSisy.

Sketch of the proof. Since S1 and S2 are both symplectic submanifolds,
one can choose a compatible almost complex structure J on M for which both of
them are the images of embedded J-holomorphic curves. One then considers the
moduli spaces M1pJq and M2pJq of equivalence classes of J-holomorphic spheres
homologous to S1 and S2 respectively, where any two such curves are considered
equivalent if one is a reparametrization of the other (in the present setting this just
means they have the same image). These spaces are both manifestly nonempty,
and one can argue via Gromov’s compactness theorem for J-holomorphic curves
that both are compact. Moreover, an infinte-dimensional version of the implicit
function theorem implies that both are smooth 2-dimensional manifolds, carrying
canonical orientations, hence both are diffeomorphic to closed surfaces. Finally, one
uses positivity of intersections to show that every curve in M1pJq intersects every
curve in M2pJq exactly once, and this intersection is always transverse and positive;
moreover, any two curves in the same space M1pJq or M2pJq are either identical
or disjoint. It follows that both moduli spaces are diffeomorphic to S2, and both
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consist of smooth families of J-holomorphic spheres that foliate M , hence defining
a diffeomorphism

M1pJq ˆ M2pJq Ñ M

that sends pu1, u2q to the unique point in the intersection im u1Xim u2. This identifies
M with S2 ˆ S2 such that each of the submanifolds S2 ˆ t˚u and t˚u ˆ S2 are
symplectic. The latter observation can be used to determine the symplectic form
up to deformation, so that by the Moser stability theorem, ω is determined up to
isotopy by its cohomology class rωs P H2

dRpS2 ˆ S2q, which depends only on the
evaluation of ω on rS2 ˆ t˚us and rt˚u ˆ S2s P H2pS2 ˆ S2q. �

For a detailed exposition of the above proof of Theorem 1.4, see [Wen18, The-
orem E].

1.2. Hamiltonian Floer homology

Throughout the following, we write

S1 :“ R{Z,
so maps on S1 are the same as 1-periodic maps on R. One popular version of the
Arnol′d conjecture on symplectic fixed points can be stated as follows. Suppose
pM,ωq is a closed symplectic manifold and H : S1 ˆ M Ñ R is a smooth func-
tion. Writing Ht :“ Hpt, ¨q : M Ñ R, H determines a 1-periodic time-dependent
Hamiltonian vector field Xt via the relation1

(1.2) ωpXt, ¨q “ ´dHt.

Conjecture 1.5 (Arnol′d conjecture). If all 1-periodic orbits of Xt are nonde-
generate, then the number of these orbits is at least the sum of the Betti numbers
of M .

Here a 1-periodic orbit γ : S1 Ñ M of Xt is called nondegenerate if, denoting
the flow of Xt by ϕ

t, the linearized time 1 flow

dϕ1pγp0qq : Tγp0qM Ñ Tγp0qM

does not have 1 as an eigenvalue. This can be thought of as a Morse condition for
an action functional on the loop space whose critical points are periodic orbits; like
Morse critical points, nondegenerate periodic orbits occur in isolation. To simplify
our lives, let’s restrict attention to contractible orbits and also assume that pM,ωq
is symplectically aspherical, which means

rωs|π2pMq “ 0, i.e. xrωs, rusy “ 0 for all continuous maps u : S2 Ñ M.

Then if C8
contrpS1,Mq denotes the space of all smoothly contractible smooth loops

in M , the symplectic action functional can be defined by

AH : C8
contrpS1,Mq Ñ R : γ ÞÑ ´

ż

D

γ̄˚ω `
ż

S1

Htpγptqq dt,

1Elsewhere in the literature, you will sometimes see (1.2) without the minus sign on the right
hand side. If you want to know why I strongly believe that the minus sign belongs there, see
[Wenc], but to some extent this is just a personal opinion.
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where γ̄ : D Ñ M is any smooth map on the closed unit disk D Ă C satisfying

γ̄pe2πitq “ γptq,
and the symplectic asphericity condition guarantees that AHpγq does not depend
on the choice of γ̄.

Exercise 1.6. Regarding C8
contrpS1,Mq as a Fréchet manifold with tangent

spaces TγC
8
contrpS1,Mq “ Γpγ˚TMq, show that the first variation of the action func-

tional AH is

dAHpγqη “
ż

S1

rωp 9γ, ηq ` dHtpηqs dt “
ż

S1

ωp 9γ ´ Xtpγq, ηq dt

for η P Γpγ˚TMq. In particular, the critical points of AH are precisely the con-
tractible 1-periodic orbits of Xt.

A few years after Gromov’s introduction of pseudoholomorphic curves, Floer
proved the most important cases of the Arnol′d conjecture by developing a novel
version of infinite-dimensional Morse theory for the functional AH. This approach
mimicked the homological approach to Morse theory which has since been popular-
ized in books such as [AD14,Sch93], but was apparently only known to experts at
the time. In Morse homology, one considers a smooth Riemannian manifold pM, gq
with a Morse function f : M Ñ R, and defines a chain complex whose generators
are the critical points of f , graded according to their Morse index. If we denote the
generator corresponding to a given critical point x P Critpfq by xxy, the boundary
map on this complex is defined by

Bxxy “
ÿ

indpyq“indpxq´1

#
`
Mpx, yq

L
R
˘

xyy,

where Mpx, yq denotes the moduli space of negative gradient flow lines u : R Ñ M ,
satisfying Bsu “ ´∇fpupsqq, limsÑ´8 upsq “ x and limsÑ`8 upsq “ y. This space
admits a natural R-action by shifting the variable in the domain, and one can show
that for generic choices of f and the metric g, Mpx, yq{R is a finite set whenever
indpxq ´ indpyq “ 1. The real magic however is contained in the following statement
about the case indpxq ´ indpyq “ 2:

Proposition 1.7. For generic choices of f and g and any two critical points
x, y P Critpfq with indpxq ´ indpyq “ 2, Mpx, yq{R is homeomorphic to a finite
collection of circles and open intervals whose end points are canonically identified
with the finite set

BMpx, yq :“
ď

indpzq“indpxq´1

Mpx, zq ˆ Mpz, yq.

We say that Mpx, yq has a natural compatification Mpx, yq, which has the
topology of a compact 1-manifold with boundary, and its boundary is the set of
all broken flow lines from x to y, cf. Figure 1.1. This set of broken flow lines
is precisely what is counted if one computes the xyy coefficient of B2xxy, hence we
deduce

B2 “ 0
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Figure 1.1. One-parameter families of gradient flow lines on a
Riemannian manifold degenerate to broken flow lines.

as a consequence of the fact that compact 1-manifolds always have zero boundary
points when counted with appropriate signs.2 The homology of the resulting chain
complex can be denoted by HM˚pM ; g, fq and is called the Morse homology
of M . The well-known Morse inequalities can then be deduced from a fundamen-
tal theorem stating that HM˚pM ; g, fq is, for generic f and g, isomorphic to the
singular homology of M .

With the above notion of Morse homology understood, Floer’s approach to the
Arnol′d conjecture can now be summarized as follows:

Step 1: Under suitable technical assumptions, construct a homology theory

HF˚pM,ω ; H, tJtuq,
depending a priori on the choices of a Hamiltonian H : S1 ˆ M Ñ R with
all 1-periodic orbits nondegenerate, and a generic S1-parametrized family
of ω-compatible almost complex structures tJtutPS1 . The generators of the
chain complex are the critical points of the symplectic action functional
AH , i.e. 1-periodic orbits of the Hamiltonian flow, and the boundary map
is defined by counting a suitable notion of gradient flow lines connecting
pairs of orbits (more on this below).

Step 2: Prove that HF˚pM,ωq :“ HF˚pM,ω ; H, tJtuq is a symplectic invariant,
i.e. it depends on ω, but not on the auxiliary choices H and tJtu.

Step 3: Show that if H and tJtu are chosen to be time-independent and H is
also C2-small, then the chain complex for HF˚pM,ω ; H, tJtuq is isomor-
phic (with a suitable grading shift) to the chain complex for Morse ho-
mology HM˚pM ; g,Hq with g :“ ωp¨, Jt¨q. The isomorphism between
HM˚pM ; g,Hq and singular homology thus implies that the Floer com-
plex must have at least as many generators (i.e. periodic orbits) as there
are generators of H˚pMq, proving the Arnol′d conjecture.

2Counting with signs presumes that we have chosen suitable orientations for the moduli spaces
Mpx, yq, and this can always be done. Alternatively, one can avoid this issue by counting modulo 2
and thus define a homology theory with Z2 coefficients.
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The implementation of Floer’s idea required a different type of analysis than
what is needed for Morse homology. The moduli space Mpx, yq in Morse homol-
ogy is simple to understand as the (generically transverse) intersection between the
unstable manifold of x and the stable manifold of y with respect to the negative
gradient flow. Conveniently, both of those are finite-dimensional manifolds, with
their dimensions determined by the Morse indices of x and y. We will see in Lec-
ture 3 that no such thing is true for the symplectic action functional: to the extent
that AH can be thought of as a Morse function on an infinite-dimensional manifold,
its Morse index and its Morse “co-index” at every critical point are both infinite,
hence the stable and unstable manifolds are not nearly as nice as finite-dimensional
manifolds, providing no reason to expect that their intersection should be. There
are additional problems since C8

contrpS1,Mq does not have a Banach space topology:
in order to view the negative gradient flow of AH as an ODE and make use of the
usual local existence/uniqueness theorems (as in [Lan99, Chapter IV]), one would
have to extend AH to a smooth function on a suitable Hilbert manifold with a Rie-
mannian metric. There is a very limited range of situations in which one can do
this and obtain a reasonable formula for ∇AH , e.g. [HZ94, §6.2] explains the case
M “ T2n, in which AH can be defined on the Sobolev space H1{2pS1,R2nq and then
studied using Fourier series. This approach is very dependent on the fact that the
torus T2n is a quotient of R2n. For general symplectic manifolds pM,ωq, one cannot
even define H1{2pS1,Mq since functions of class H1{2 on S1 need not be continuous
(H1{2 is a “Sobolev borderline case” in dimension one).

One of the novelties in Floer’s approach was to refrain from viewing the gradient
flow as an ODE in a Banach space setting, but instead to write down a formal
version of the gradient flow equation and regard it as an elliptic PDE. To this end,
let us regard C8

contrpS1,Mq formally as a manifold with tangent spaces

TγC
8
contrpS1,Mq :“ Γpγ˚TMq,

choose a formal Riemannian metric on this manifold (i.e. a smoothly varying family
of L2-inner products on the spaces Γpγ˚TMq) and write down the resulting equation
for the negative gradient flow. A suitable Riemannian metric can be defined by
choosing a smooth S1-parametrized family of compatible almost complex structures

tJt P J pM,ωqutPS1 ,

abbreviated in the following as tJtu, and setting

xξ, ηyL2 :“
ż

S1

ωpξptq, Jtηptqq dt

for ξ, η P Γpγ˚TMq. Exercise 1.6 then yields the formula

dAHpγqη “ xJtp 9γ ´ Xtpγqq, ηyL2,

so that it seems reasonable to define the so-called unregularized gradient of AH by

(1.3) ∇AHpγq :“ Jtp 9γ ´ Xtpγqq P Γpγ˚TMq.
Let us also think of a path u : R Ñ C8

contrpS1,Mq as a map u : RˆS1 Ñ M , writing
ups, tq :“ upsqptq. The negative gradient flow equation Bsu ` ∇AHpupsqq “ 0 then



8 Chris Wendl

Figure 1.2. A family of smooth Floer trajectories can degenerate
into a broken Floer trajectory.

becomes the elliptic PDE

(1.4) Bsu ` Jtpuq pBtu ´ Xtpuqq “ 0.

This is called the Floer equation, and its solutions are often called Floer tra-
jectories. The relevance of Floer homology to our previous discussion of pseudo-
holomorphic curves should now be obvious. Indeed, the resemblance of the Floer
equation to the nonlinear Cauchy-Riemann equation is not merely superficial—we
will see in Lecture 6 that the former can always be viewed as a special case of the
latter. In any case, one can use the same set of analytical techniques for both: el-
liptic regularity theory implies that Floer trajectories are always smooth, Fredholm
theory and the implicit function theorem imply that (under appropriate assump-
tions) they form smooth finite-dimensional moduli spaces. Most importantly, the
same “bubbling off” analysis that underlies Gromov’s compactness theorem can be
used to prove that spaces of Floer trajectories are compact up to “breaking”, just as
in Morse homology (see Figure 1.2)—this is the main reason for the relation B2 “ 0
in Floer homology.

We should mention one complication that does not arise either in the study of
closed holomorphic curves or in finite-dimensional Morse theory. Since the gradient
flow in Morse homology takes place on a closed manifold, it is obvious that every
gradient flow line asymptotically approaches critical points at both ´8 and `8.
The following example shows that in the infinite-dimensional setting of Floer theory,
this is no longer true.

Example 1.8. Consider the Floer equation onM :“ S2 “ CY t8u with H :“ 0
and Jt defined as the standard complex structure i for every t. Then the orbits of
Xt are all constant, and a map u : R ˆ S1 Ñ S2 satisfies the Floer equation if and
only if it is holomorphic. Identifying RˆS1 with C˚ :“ Czt0u via the biholomorphic
map ps, tq ÞÑ e2πps`itq, a solution u approaches periodic orbits as s Ñ ˘8 if and
only if the corresponding holomorphic map C˚ Ñ S2 extends continuously (and
therefore holomorphically) over 0 and 8. But this is not true for every holomorphic
map C˚ Ñ S2, e.g. take any entire function C Ñ C that has an essential singularity
at 8.
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Exercise 1.9. Show that in the above example with an essential singularity
at 8, the symplectic action AHpups, ¨qq is unbounded as s Ñ 8.

Exercise 1.10. Suppose u : R ˆ S1 Ñ M is a solution to the Floer equation
with limsÑ˘8 ups, ¨q “ γ˘ uniformly for a pair of 1-periodic orbits γ˘ P CritpAHq.
Show that
(1.5)

Apγ´q ´ Apγ`q “
ż

RˆS1

ωpBsu, Btu ´ Xtpuqq ds dt “
ż

RˆS1

ωpBsu, JtpuqBsuq ds dt.

The right hand side of (1.5) is manifestly nonnegative since Jt is compatible
with ω, and it is strictly positive unless γ´ “ γ`. It is therefore sensible to call
this expression the energy Epuq of a Floer trajectory. The following converse of
Exercise 1.10 plays a crucial role in the compactness theory for Floer trajectories, as
it guarantees that all the “levels” in a broken Floer trajectory are asymptotically well
behaved. We will prove a variant of this result in the SFT context (see Prop. 1.24
below) in Lecture 9.

Proposition 1.11. If u : RˆS1 Ñ M is a Floer trajectory with Epuq ă 8 and
all 1-periodic orbits of Xt are nonegenerate, then there exist orbits γ´, γ` P CritpAHq
such that limsÑ˘8 ups, ¨q “ γ˘ uniformly.

Remark 1.12. It should be emphasized again that we have assumed rωs|π2pMq “
0 throughout this discussion. Floer homology can also be defined under more general
assumptions, but several details become more complicated.

For nice comprehensive treatments of Hamiltonian Floer homology—unfortunately
not always with the same sign conventions as used here—see [Sal99,AD14]. Note
that this is only one of a few “Floer homologies” that were introduced by Floer in the
late 80’s: the others include Lagrangian intersection Floer homology [Flo88a] (which
has since evolved into the Fukaya category, see [Sei08,FOOO09]), and instanton
homology [Flo88c], an extension of Donaldson’s gauge-theoretic smooth 4-manifold
invariants to dimension three. The development of new Floer-type theories has since
become a major industry; see [AS] for a survey.

1.3. Contact manifolds and the Weinstein conjecture

A Hamiltonian system on a symplectic manifold pW,ωq is called autonomous if
the Hamiltonian H : W Ñ R does not depend on time. In this case, the Hamiltonian
vector field XH defined by

ωpXH, ¨q “ ´dH
is time-independent and its orbits are confined to level sets of H . The images of
these orbits on a given regular level set H´1pcq depend on the geometry of H´1pcq
but not on H itself, as they are the integral curves (also known as characteristics)
of the characteristic line field on H´1pcq, defined as the unique direction spanned
by a vector X such that ωpX, Y q “ 0 for all Y tangent to H´1pcq. In 1978, Weinstein
[Wei78] and Rabinowitz [Rab78] proved that certain kinds of regular level sets in
symplectic manifolds are guaranteed to admit closed characteristics, hence implying
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Figure 1.3. A star-shaped hypersurface in Euclidean space

the existence of periodic Hamiltonian orbits. In particular, this is true whenever
H´1pcq is a star-shaped hypersurface in the standard symplectic R2n (see Figure 1.3).

The following symplectic interpretation of the star-shaped condition provides
both an intuitive reason to believe Rabinowitz’s existence result and motivation for
the more general conjecture of Weinstein. In any symplectic manifold pW,ωq, a
Liouville vector field is a smooth vector field V that satisfies

LV ω “ ω.

By Cartan’s formula for the Lie derivative, the dual 1-form λ defined by λ :“ ωpV, ¨q
satisfies dλ “ ω if and only if V is a Liouville vector field; moreover, λ then also
satisfies LV λ “ λ, and it is referred to as a Liouville form. A hypersurface
M Ă pW,ωq is said to be of contact type if it is transverse to a Liouville vector
field defined on a neighborhood of M .

Example 1.13. Using coordinates pq1, p1, . . . , qn, pnq on R2n, the standard sym-
plectic form is written as

ωstd :“
nÿ

j“1

dpj ^ dqj,
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and the Liouville form λstd :“ 1
2

řn

j“1ppj dqj ´ qj dpjq is dual to the radial Liouville
vector field

Vstd :“ 1

2

nÿ

j“1

ˆ
pj

B
Bpj

` qj
B

Bqj

˙
.

Any star-shaped hypersurface is therefore of contact type.

Exercise 1.14. Suppose pW,ωq is a symplectic manifold of dimension 2n, M Ă
W is a smoothly embedded and oriented hypersurface, V is a Liouville vector field
defined near M and λ :“ ωpV, ¨q is the dual Liouville form. Define a 1-form on M
by α :“ λ|TM .

(a) Show that V is positively transverse to M if and only if α satisfies

(1.6) α^ pdαqn´1 ą 0.

(b) If V is positively transverse to M , choose ǫ ą 0 sufficiently small and
consider the embedding

Φ : p´ǫ, ǫq ˆ M ãÑ W : pr, xq ÞÑ ϕrV pxq,
where ϕtV denotes the time t flow of V . Show that

Φ˚λ “ erα,

hence Φ˚ω “ dperαq.
The above exercise presents any contact-type hypersurface M Ă pW,ωq as

one member of a smooth 1-parameter family of contact-type hypersurfaces Mr :“
ϕrV pMq Ă W , each canonically identified with M such that ω|TMr “ er dα. In
particular, the characteristic line fields on Mr are the same for all r, thus the ex-
istence of a closed characteristic on any of these implies that there also exists one
on M . This observation has sometimes been used to prove such existence theorems,
e.g. it is used in [HZ94, Chapter 4] to reduce Rabinowitz’s result to an “almost
existence” theorem based on symplectic capacities. This discussion hopefully makes
the following conjecture seem believable.

Conjecture 1.15 (Weinstein conjecture, symplectic version). Any closed contact-
type hypersurface in a symplectic manifold admits a closed characteristic.

Weinstein’s conjecture admits a natural rephrasing in the language of contact
geometry. A 1-form α on an oriented p2n ´ 1q-dimensional manifold M is called a
(positive) contact form if it satisfies (1.6), and the resulting co-oriented hyperplane
field

ξ :“ kerα Ă TM

is then called a (positive and co-oriented) contact structure.3 We call the pair
pM, ξq a contact manifold, and refer to a diffeomorphism ϕ : M Ñ M 1 as a

3The adjective “positive” refers to the fact that the orientation of M agrees with the one deter-
mined by the volume form α^ pdαqn´1; we call α a negative contact form if these two orientations
disagree. It is also possible in general to define contact structures without co-orientations, but con-
tact structures of this type will never appear in these notes; for our purposes, the co-orientation is
always considered to be part of the data of a contact structure.
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contactomorphism from pM, ξq to pM 1, ξ1q if ϕ˚ maps ξ to ξ1 and also preserves
the respective co-orientations. Equivalently, if ξ and ξ1 are defined via contact forms
α and α1 respectively, this means

ϕ˚α1 “ fα for some f P C8pM, p0,8qq.
Contact topology studies the category of contact manifolds pM, ξq up to con-

tactomorphism. The following basic result provides one good reason to regard ξ

rather than α as the geometrically meaningful data, as the result holds for contact
structures, but not for contact forms.

Theorem 1.16 (Gray’s stability theorem). IfM is a closed p2n´1q-dimensional
manifold and tξtutPr0,1s is a smooth 1-parameter family of contact structures on M ,
then there exists a smooth 1-parameter family of diffeomorphisms tϕtutPr0,1s such that
ϕ0 “ Id and pϕtq˚ξ0 “ ξt.

Proof. See [Gei08, §2.2] or [Wend, Theorem 1.6.12]. �

A corollary is that while the contact form α induced on a contact-type hyper-
surface M Ă pW,ωq via Exercise 1.14 is not unique, its induced contact structure is
unique up to isotopy. Indeed, the space of all Liouville vector fields transverse to M
is very large (e.g. one can add to V any sufficiently small Hamiltonian vector field),
but it is convex, hence any two choices of the induced contact form α on M are
connected by a smooth 1-parameter family of contact forms, implying an isotopy of
contact structures via Gray’s theorem.

Exercise 1.17. If α is a nowhere zero 1-form on M and ξ “ kerα, show that α
is contact if and only if dα|ξ defines a symplectic vector bundle structure on ξ Ñ M .
Moreover, the orientation of ξ determined by this symplectic bundle structure is
compatible with the co-orientation determined by α and the orientation of M for
which α ^ pdαqn´1 ą 0.

The following definition is based on the fact that since dα|ξ is nondegenerate
when α is contact, ker dα Ă TM is always 1-dimensional and transverse to ξ.

Definition 1.18. Given a contact form α on M , the Reeb vector field is the
unique vector field Rα that satisfies

dαpRα, ¨q ” 0, and αpRαq ” 1.

Exercise 1.19. Show that the flow of any Reeb vector field Rα preserves both
ξ “ kerα and the symplectic vector bundle structure dα|ξ.

Conjecture 1.20 (Weinstein conjecture, contact version). On any closed con-
tact manifold pM, ξq with contact form α, the Reeb vector field Rα admits a periodic
orbit.

To see that this is equivalent to the symplectic version of the conjecture, ob-
serve that any contact manifold pM, ξ “ kerαq can be viewed as the contact-type
hypersurface t0u ˆ M in the open symplectic manifold

pR ˆ M, dperαqq ,
called the symplectization of pM, ξq.
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Exercise 1.21. Recall that for any smooth manifold M , the cotangent bundle
T ˚M carries a tautological 1-form λ P Ω1pT ˚Mq that locally takes the form λ “řn
j“1 pj dqj in any choice of local coordinates pq1, . . . , qnq on a neighbood U Ă M ,

with pp1, . . . , pnq denoting the induced coordinates on the cotangent fibers over U .
This is a Liouville form, with dλ defining the canonical symplectic structure of T ˚M .
Now if ξ Ă TM is a co-oriented hyperplane field on M , consider the submanifold

SξM :“
 
p P T ˚M

ˇ̌
ker p “ ξ and ppXq ą 0@X P TM pos. transverse to ξ

(
.

Show that ξ is contact if and only if SξM is a symplectic submanifold of pT ˚M, dλq,
and the Liouville vector field on T ˚M dual to λ is tangent to SξM . Moreover, if ξ is
contact, then any choice of contact form for ξ determines a diffeomorphism of SξM
to R ˆ M identifying the Liouville form λ along SξM with erα.

Remark 1.22. Exercise 1.21 shows that up to symplectomorphism, our defi-
nition of the symplectization of pM, ξq above actually depends only on ξ and not
on α.

In 1993, Hofer [Hof93] introduced a new approach to the Weinstein conjecture
that was based in part on ideas of Gromov and Floer. Fix a contact manifold pM, ξq
with contact form α, and let

J pαq Ă J pR ˆ Mq
denote the nonempty and contractible space of all almost complex structures J on
R ˆ M satisfying the following conditions:

(1) The natural translation action on R ˆ M preserves J ;
(2) JBr “ Rα and JRα “ ´Br, where r denotes the canonical coordinate on the

R-factor in R ˆ M ;
(3) Jξ “ ξ and dαp¨, J ¨q|ξ defines a bundle metric on ξ.

It is easy to check that any J P J pαq is compatible with the symplectic structure
dperαq on R ˆ M . Moreover, if γ : R Ñ M is any periodic orbit of Rα with period
T ą 0, then for any J P J pαq, the so-called trivial cylinder

u : R ˆ S1 Ñ R ˆ M : ps, tq ÞÑ pTs, γpT tqq
is a J-holomorphic curve. Following Floer, one version of Hofer’s idea would be to
look for J-holomorphic cylinders that satisfy a finite energy condition as in Prop. 1.11
forcing them to approach trivial cylinders asymptotically—the existence of such a
cylinder would then imply the existence of a closed Reeb orbit and thus prove the
Weinstein conjecture. The first hindrance is that the “obvious” definition of energy
in this context, ż

RˆS1

u˚dperαq,

is not very useful: this integral is infinite if u is a trivial cylinder. To circumvent
this, notice that every J P J pαq is also compatible with any symplectic structure of
the form

ωϕ :“ dpeϕprqαq,
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where ϕ is a function chosen freely from the set

(1.7) T :“
 
ϕ P C8pR, p´1, 1qq

ˇ̌
ϕ1 ą 0

(
.

Essentially, choosing ωϕ means identifying R ˆ M with a subset of the bounded
region p´1, 1q ˆ M , in which trivial cylinders have finite symplectic area. Since
there is no preferred choice for the function ϕ, we define the Hofer energy4 of a
J-holomorphic curve u : Σ Ñ R ˆ M by

(1.8) Epuq :“ sup
ϕPT

ż

Σ

u˚ωϕ.

This has the desired property of being finite for trivial cylinders, and it is also
nonnegative, with strict positivity whenever u is not constant.

Another useful observation from [Hof93] was that if the goal is to find periodic
orbits, then we need not restrict our attention to J-holomorphic cylinders in par-
ticular. One can more generally consider curves defined on an arbitrary punctured
Riemann surface

9Σ :“ ΣzΓ,
where pΣ, jq is a closed connected Riemann surface and Γ Ă Σ is a finite set of
punctures. For any ζ P Γ, one can find coordinates identifying some punctured
neighborhood of ζ biholomorphically with the closed punctured disk

9D :“ Dzt0u Ă C,

and then identify this with either the positive or negative half-cylinder

Z` :“ r0,8q ˆ S1, Z´ :“ p´8, 0s ˆ S1

via the biholomorphic maps

Z` Ñ 9D : ps, tq ÞÑ e´2πps`itq, Z´ Ñ 9D : ps, tq ÞÑ e2πps`itq.

We will refer to such a choice as a (positive or negative) holomorphic cylindrical

coordinate system near ζ , and in this way, we can present p 9Σ, jq as a Riemann
surface with cylindrical ends, i.e. the union of some compact Riemann surface with
boundary with a finite collection of half-cylinders Z˘ on which j takes the standard
form jBs “ Bt. Note that the standard cylinder Rˆ S1 is a special case of this, as it
can be identified biholomorphically with S2zt0,8u. Another important special case
is the plane, C “ S2zt8u.

If u : p 9Σ, jq Ñ pR ˆ M,Jq is a J-holomorphic curve and ζ P Γ is one of its
punctures, we will say that u is positively/negatively asymptotic to a T -periodic
Reeb orbit γ : R Ñ M at ζ if one can choose holomorphic cylindrical coordinates
ps, tq P Z˘ near ζ such that

ups, tq “ exppTs,γpTtqq hps, tq for |s| sufficiently large,

where hps, tq is a vector field along the trivial cylinder satisfying hps, ¨q Ñ 0 uniformly
as |s| Ñ 8, and the exponential map is defined with respect to any R-invariant

4Strictly speaking, the energy defined in (1.8) is not identical to the notion introduced in
[Hof93] and used in many of Hofer’s papers, but it is equivalent to it in the sense that uniform
bounds on either notion of energy imply uniform bounds on the other.
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9Σ

u

t8u ˆ M

t´8u ˆ M

Figure 1.4. An asymptotically cylindrical holomorphic curve in a
symplectization, with genus 1, one positive puncture and two negative
punctures.

choice of Riemannian metric on R ˆ M . We say that u : p 9Σ, jq Ñ pR ˆ M,Jq is
asymptotically cylindrical if it is (positively or negatively) asymptotic to some
closed Reeb orbit at each of its punctures. Note that this partitions the finite set of
punctures Γ Ă Σ into two subsets,

Γ “ Γ` Y Γ´,

the positive and negative punctures respectively, see Figure 1.4.

Exercise 1.23. Suppose u : p 9Σ, jq Ñ pRˆM,Jq is an asymptotically cylindrical
J-holomorphic curve, with the asymptotic orbit at each puncture ζ P Γ˘ denoted
by γζ, having period Tζ ą 0. Show that

ÿ

ζPΓ`

Tζ ´
ÿ

ζPΓ´

Tζ “
ż

9Σ

u˚dα ě 0,

with equality if and only if the image of u is contained in that of a trivial cylinder.
In particular, u must have at least one positive puncture unless it is constant. Show
also that Epuq is finite and satisfies an upper bound determined only by the periods
of the positive asymptotic orbits.

The following analogue of Prop. 1.11 will be proved in Lecture 9. For simplicity,
we shall state a weakened version of what Hofer proved in [Hof93], which did not
require any nondegeneracy assumption. A T -periodic Reeb orbit γ : R Ñ M is
called nondegenerate if the Reeb flow ϕtα has the property that its linearization
along the contact bundle (cf. Exercise 1.19),

dϕTαpγp0qq|ξγp0q : ξγp0q Ñ ξγp0q

does not have 1 as an eigenvalue. Note that since Rα is not time-dependent, closed
Reeb orbits are never completely isolated—they always exist in S1-parametrized
families—but these families are isolated in the nondegenerate case. A nondegen-
erate contact form is one for which every closed Reeb orbit is nondegenerate—one
can show that this condition is generic, meaning for instance that on any closed man-
ifold, the nondegenerate contact forms constitute a C8-dense subset of the space
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of all contact forms (see Remark 1.25 below). The following result is the contact
analogue of Proposition 1.11.

Proposition 1.24. Suppose pM, ξq is a closed contact manifold with a nonde-

generate contact form α. If u : p 9Σ, jq Ñ pR ˆ M,Jq is a J-holomorphic curve with
Epuq ă 8 on a punctured Riemann surface such that none of the punctures are
removable, then u is asymptotically cylindrical.

The main results in [Hof93] state that under certain assumptions on a closed
contact 3-manifold pM, ξq, namely if either ξ is overtwisted (as defined in [Eli89])
or π2pMq ‰ 0, one can find for any contact form α on pM, ξq and any J P J pαq a
finite-energy J-holomorphic plane. By Proposition 1.24, this implies the existence
of a contractible periodic Reeb orbit and thus proves the Weinstein conjecture in
these settings.

Remark 1.25. The standard genericity result mentioned above for nondegen-
erate contact forms can be proved in various ways, e.g. it follows from a slightly
more general result about generic regular level sets in Hamiltonian systems proved
in [Rob70]. A more direct proof via the Sard-Smale theorem that is similar in
spirit to the transversality arguments in Lecture 8 may be found in the appendix of
[ABW10].

1.4. Symplectic cobordisms and their completions

After the developments described in the previous three sections, it seemed nat-
ural that one might define invariants of contact manifolds via a Floer-type theory
generated by closed Reeb orbits and counting asymptotically cylindrical holomor-
phic curves in symplectizations. This theory is what is now called SFT, and its basic
structure was outlined in a paper by Eliashberg, Givental and Hofer [EGH00] in
2000, though some of its analytical foundations remain unfinished as of 2020. The
term “field theory” is an allusion to “topological quantum field theories,” which
associate vector spaces to certain geometric objects and morphisms to cobordisms
between those objects. Thus in order to place SFT in its proper setting, we need to
introduce symplectic cobordisms between contact manifolds.

Recall that if M` and M´ are smooth oriented closed manifolds of the same
dimension, an oriented cobordism from M´ to M` is a compact smooth oriented
manifold W with oriented boundary

BW – ´M´
ž

M`,

where the symbol “–” in this setting means orientation-preserving diffeomorphism,
and ´M´ denotes M´ with its orientation reversed. Given positive contact struc-
tures ξ˘ on M˘, we say that a symplectic manifold pW,ωq is a symplectic cobor-
dism from pM´, ξ´q to pM`, ξ`q if W is an oriented cobordism5 from M´ to M`
such that both components of BW are contact-type hypersurfaces with induced con-
tact structures isotopic to ξ˘. Note that our chosen orientation conventions imply
in this case that the Liouville vector field chosen near BW must point outward at

5We assume of course that W is assigned the orientation determined by its symplectic form.
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pp´ǫ, 0s ˆ M`, dperα`qq

pr0, ǫq ˆ M´, dperα´qq

pW,ωq

Figure 1.5. A symplectic cobordism with concave boundary
pM´, ξ´q and convex boundary pM`, ξ`q, with symplectic collar neigh-
borhoods defined by flowing along Liouville vector fields near the
boundary.

M` and inward at M´; we say in this case that M` is a symplectically convex
boundary component, while M´ is symplectically concave. As important special
cases, pW,ωq is a symplectic filling of pM`, ξ`q ifM´ “ H, and it is a symplectic
cap of pM´, ξ´q if M` “ H. In the literature, fillings and caps are sometimes also
referred to as convex fillings or concave fillings respectively.

The contact-type condition implies the existence of a Liouville form λ near BW
with dλ “ ω, such that by Exercise 1.14, neighborhoods of M` and M´ in W can
be identified with the collars (see Figure 1.5)

p´ǫ, 0s ˆ M` or r0, ǫq ˆ M´

respectively for sufficiently small ǫ ą 0, with λ taking the form

λ “ erα˘,

where α˘ :“ λ|TM˘ are contact forms for ξ˘, and r as usual denotes the canonical
coordinate on the first factor in R ˆM . The symplectic completion of pW,ωq is

the noncompact symplectic manifold pxW, pωq defined by attaching cylindrical ends
to these collar neighborhoods (Figure 1.6):

pxW, pωq “ pp´8, 0s ˆ M´, dperα´qq YM´ pW,ωq
YM` pr0,8q ˆ M`, dperα`qq .

(1.9)

In this context, the symplectization pR ˆ M, dperαqq is symplectomorphic to the
completion of the trivial symplectic cobordism pr0, 1sˆM, dperαqq from pM, ξ “
kerαq to itself. More generally, the object in the following easy exercise can also
sensibly be called a trivial symplectic cobordism:

Exercise 1.26. Suppose pM, ξq is a closed contact manifold with contact form
α, and f˘ : M Ñ R is a pair of functions with f´ ă f` everywhere. Show that the
domain  

pr, xq P R ˆ M
ˇ̌
f´pxq ď r ď f`pxq

(
Ă R ˆ M
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pp´
pr

pW,ωq

pp´ǫ, 0s ˆ M`, dperα`qq

pr0, ǫq ˆ M´, dperα´qq

pr0,8q ˆ M`, dperα`qq

pp´8, 0s ˆ M´, dperα´qq

Figure 1.6. The completion of a symplectic cobordism

defines a symplectic cobordism from pM, ξq to itself, with a global Liouville form
λ “ erα inducing contact forms ef´α and ef`α on its concave and convex boundaries
respectively.

We say that pW,ωq is an exact symplectic cobordism or Liouville cobor-
dism if the Liouville form λ can be extended from a neighborhood of BW to define
a global primitive of ω on W . Equivalently, this means that ω admits a global Li-
ouville vector field that points inward at M´ and outward at M`. An exact filling
of pM`, ξ`q is an exact cobordism whose concave boundary is empty. Observe that

if pW,ωq is exact, then its completion pxW, pωq also inherits a global Liouville form.

Exercise 1.27. Use Stokes’ theorem to show that there is no such thing as an
exact symplectic cap.

The above exercise hints at an important difference between cobordisms in the
symplectic as opposed to the oriented smooth category: symplectic cobordisms are
not generally reversible. If W is an oriented cobordism from M´ to M`, then
reversing the orientation of W produces an oriented cobordism from M` to M´.
But one cannot simply reverse orientations in the symplectic category, since the
orientation is determined by the symplectic form. For example, many obstructions
to the existence of symplectic fillings of given contact manifolds are known—some
of them defined in terms of SFT—but there are no obstructions at all to symplectic
caps, in fact it is known that all closed contact manifolds admit them (see [EH02,
CE,Laz]).
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9Σ

u xW

p
dp

Figure 1.7. An asymptotically cylindrical holomorphic curve in a
completed symplectic cobordism, with genus 2, one positive puncture
and two negative punctures.

The definitions for holomorphic curves in symplectizations in the previous sec-
tion generalize to completions of symplectic cobordisms in a fairly straightforward
way since these completions look exactly like symplectizations outside of a compact
subset. Define

J pW,ω, α`, α´q Ă J pxW q
as the space of all almost complex structures J on xW such that

J |W P J pW,ωq, J |r0,8qˆM` P J pα`q and J |p´8,0sˆM´ P J pα´q.
Occasionally it is useful to relax the compatibility condition on W to tameness,6

i.e. J |W P Jτ pW,ωq, producing a space that we shall denote by

Jτ pW,ω, α`, α´q Ă J pxW q.
As in Prop. 1.3, both of these spaces are nonempty and contractible. We can then
consider asymptotically cylindrical J-holomorphic curves

u : p 9Σ “ ΣzpΓ` Y Γ´q, jq Ñ pxW,Jq,
which are proper maps asymptotic to closed orbits of Rα˘ inM˘ at punctures in Γ˘,
see Figure 1.7.

One must again tinker with the symplectic form on xW in order to define a notion
of energy that is finite when we need it to be. We generalize (1.7) as

T :“
 
ϕ P C8pR, p´1, 1qq

ˇ̌
ϕ1 ą 0 and ϕprq “ r near r “ 0

(
,

6It seems natural to wonder whether one could not also relax the conditions on the cylindrical
ends and require J |ξ˘

to be tamed by dα˘|ξ˘
instead of compatible with it. I do not currently

know whether this works, but in later lectures we will see some reasons to worry that it might not
(see §6.7.2).
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and associate to each ϕ P T a symplectic form pωϕ on xW defined by

pωϕ :“

$
’&
’%

dpeϕprqα`q on r0,8q ˆ M`,

ω on W,

dpeϕprqα´q on p´8, 0s ˆ M´.

One can again check that every J P J pW,ω, α`, α´q or JτpW,ω, α`, α´q is com-
patible with or, respectively, tamed by pωϕ for every ϕ P T . Thus it makes sense to

define the energy of u : p 9Σ, jq Ñ pxW,Jq by

Epuq :“ sup
ϕPT

ż

9Σ

u˚pωϕ.

It will be a straightforward matter to generalize Proposition 1.24 and show that
finite energy implies asymptotically cylindrical behavior in completed cobordisms.

Exercise 1.28. Show that if pW,ωq is an exact cobordism, then every asymp-

totically cylindrical J-holomorphic curve in xW has at least one positive puncture.

1.5. Contact homology and SFT

We can now sketch the algebraic structure of SFT. We shall ignore or suppress
several pesky details that are best dealt with later, some of them algebraic, others
analytical. Due to analytical problems, some of the “theorems” that we shall (often
imprecisely) state in this section are not yet provable at the current level of tech-
nology, though we expect that they will be soon. We shall use quotation marks to
indicate this caveat wherever appropriate.

The standard versions of SFT all define homology theories with varying levels of
algebraic structure which are meant to be invariants of a contact manifold pM, ξq.
The chain complexes always depend on certain auxiliary choices, including a nonde-
generate contact form α and a generic J P J pαq. The generators consist of formal
variables qγ , one for each7 closed Reeb orbit γ. In the most straightforward gen-
eralization of Hamiltonian Floer homology, the chain complex is simply a graded
Q-vector space generated by the variables qγ, and the boundary map is defined by

BCCHqγ “
ÿ

γ1

#
`
Mpγ, γ1q

L
R
˘
qγ1,

where Mpγ, γ1q is the moduli space of J-holomorphic cylinders in R ˆ M with a
positive puncture asymptotic to γ and a negative puncture asymptotic to γ1, and the
sum ranges over all orbits γ1 for which this moduli space is 1-dimensional. The count
# pMpγ, γ1q{Rq is rational, as it includes rational weighting factors that depend on
combinatorial information and are best not discussed right now.8

7Actually I should be making a distinction here between “good” and “bad” Reeb orbits, but
let’s discuss that later; see Lecture 11.

8Similar combinatorial factors are hidden behind the symbol “#” in our definitions of BCH

and H, and will be discussed in earnest in Lecture 12.
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“Theorem” 1.29. If α admits no contractible Reeb orbits, then B2
CCH “ 0, and

the resulting homology is independent of the choices of α with this property and
generic J P J pαq.

The invariant arising from this result is known as cylindrical contact homol-
ogy, and it is sometimes quite easy to work with when it is well defined, though it
has the disadvantage of not always being defined. Namely, the relation B2

CCH “ 0
can fail if α admits contractible Reeb orbits, because unlike in Floer homology, the
compactification of the space of cylinders Mpγ, γ1q generally includes objects that
are not broken cylinders. In fact, the objects arising in the “SFT compactification”
of moduli spaces of finite-energy curves in completed cobordisms can be quite elab-
orate, see Figure 1.8. The combinatorics of the situation are not so bad however
if the cobordism is exact, as is the case for a symplectization: Exercise 1.28 then
prevents curves without positive ends from appearing. The only possible degen-
erations for cylinders then consist of broken configurations whose levels each have
exactly one positive puncture and arbitrary negative punctures; moreover, all but
one of the negative punctures must eventually be capped off by planes, which is why
“Theorem” 1.29 holds in the absence of planes.

If planes do exist, then one can account for them by defining the chain complex
as an algebra rather than a vector space, producing the theory known as contact
homology. For this, the chain complex is taken to be a graded unital algebra over
Q, and we define

BCHqγ “
ÿ

pγ1,...,γmq
#
`
Mpγ; γ1, . . . , γmq

L
R
˘
qγ1 . . . qγm ,

withMpγ; γ1, . . . , γmq denoting the moduli space of punctured J-holomorphic spheres
in R ˆ M with a positive puncture at γ and m negative punctures at the orbits
γ1, . . . , γm, and the sum ranges over all integers m ě 0 and all m-tuples of orbits for
which the moduli space is 1-dimensional. The action of BCH is then extended to the
whole algebra via a graded Leibniz rule

BCHpqγqγ1q :“ pBCHqγq qγ1 ` p´1q|γ|qγ pBCHqγ1q .
The general compactness and gluing theory for genus zero curves with one positive
puncture now implies:

“Theorem” 1.30. B2
CH “ 0, and the resulting homology is (as a graded unital

Q-algebra) independent of the choices α and J .

Maybe you’ve noticed the pattern: in order to accommodate more general classes
of holomorphic curves, we need to add more algebraic structure. The full SFT
algebra counts all rigid holomorphic curves in RˆM , including all combinations of
positive and negative punctures and all genera. Here is a brief picture of what it
looks like. Counting all the 1-dimensional moduli spaces of J-holomorphic curves
modulo R-translation in R ˆ M produces a formal power series

H :“
ÿ

#
´
Mgpγ`

1 , . . . , γ
`
m` ; γ´

1 , . . . , γ
´
m´q

M
R

¯
qγ´

1
. . . qγ´

m´
pγ`

1
. . . pγ`

m`
~g´1,
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xW xWuk

pM`, ξ`q

pM´, ξ´q

v`
1

v0

v´
1

v´
2

v´
3

R ˆ M`

R ˆ M´

R ˆ M´

R ˆ M´

Figure 1.8. Degeneration of a sequence uk of finite energy punc-
tured holomorphic curves with genus 2, one positive puncture and two
negative punctures in a symplectic cobordism. The limiting holomor-
phic building pv`

1 , v0, v
´
1 , v

´
2 , v

´
3 q in this example has one upper level

living in the symplectization R ˆ M`, a main level living in xW , and
three lower levels, each of which is a (possibly disconnected) finite-
energy punctured nodal holomorphic curve in R ˆ M´. The building
has arithmetic genus 2 and the same numbers of positive and negative
punctures as uk.

where the sum ranges over all integers g,m`, m´ ě 0 and tuples of orbits, ~ and pγ
(one for each orbit γ) are additional formal variables, and

Mgpγ`
1 , . . . , γ

`
m` ; γ´

1 , . . . , γ
´
m´q

denotes the moduli space of J-holomorphic curves in R ˆ M with genus g, m`
positive punctures at the orbits γ`

1 , . . . , γ
`
m` , and m´ negative punctures at the

orbits γ´
1 , . . . , γ

`
m´ . We can regard H as an operator on a graded algebra W of

formal power series in the variables tpγu, tqγu and ~, equipped with a graded bracket
operation that satisfies the quantum mechanical commutation relation

rpγ, qγs “ κγ~,

where κγ is a combinatorial factor that is best ignored for now. Note that due to the
signs that accompany the grading, odd elements F P W need not satisfy rF,Fs “ 0,
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and H itself is an odd element, thus the following statement is nontrivial; in fact,
it is the algebraic manifestation of the general compactness and gluing theory for
punctured holomorphic curves in symplectizations.

“Theorem” 1.31. rH,Hs “ 0, hence by the graded Jacobi identity, H deter-
mines an operator

DSFT : W Ñ W : F ÞÑ rH,Fs
satisfying D2

SFT “ 0. The resulting homology depends on pM, ξq but not on the
auxiliary choices α and J .

It takes some time to understand how pictures such as Figure 1.8 translate
into algebraic relations like rH,Hs “ 0, but this is a subject we’ll come back to.
There is also an intermediate theory between contact homology and full SFT, called
rational SFT, which counts only genus zero curves with arbitrary positive and
negative punctures. Algebraically, it is obtained from the full SFT algebra as a
“semiclassical approximation” by discarding higher-order factors of ~ so that the
commutation bracket in W becomes a graded Poisson bracket. We will discuss all
of this in Lecture 12.

1.6. Two applications

We briefly mention two applications that we will be able to establish rigorously
using the methods developed in this book. Since SFT itself is not yet well defined
in full generality, this sometimes means using SFT for inspiration while proving
corollaries via more direct methods.

1.6.1. Tight contact structures on T3. The 3-torus T3 “ S1 ˆS1 ˆS1 with
coordinates pt, θ, φq admits a sequence of contact structures

ξk :“ ker pcosp2πktq dθ ` sinp2πktq dφq ,
one for each k P N. These cannot be distinguished from each other by any classical
invariants, e.g. they all have the same Euler class, in fact they are all homotopic as
co-oriented 2-plane fields. Nonetheless:

Theorem 1.32. For k ‰ ℓ, pT3, ξkq and pT3, ξℓq are not contactomorphic.

We will be able to prove this in Lecture 10 by rigorously defining and computing
cylindrical contact homology for a suitable choice of contact forms on pT3, ξkq.

1.6.2. Filling and cobordism obstructions. Consider a closed connected
and oriented surface Σ presented as Σ` YΓ Σ´, where Σ˘ Ă Σ are each (not neces-
sarily connected) compact surfaces with a common boundary Γ. By an old result of
Lutz [Lut77], the 3-manifold S1 ˆ Σ admits a unique isotopy class of S1-invariant
contact structures ξΓ such that the loops S1ˆtzu are positively/negatively transverse

to ξΓ for z P Σ̊˘ and tangent to ξΓ for z P Γ. Now for each k P N, define

pVk, ξkq :“ pS1 ˆ Σ, ξΓq
where Σ “ Σ` YΓ Σ´ is chosen such that Γ has k connected components, Σ´ is
connected with genus zero, and Σ` is connected with positive genus (see Figure 1.9).
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´

S1ˆ

S1ˆ

pW, dλq

pV2, ξ2q

pV3, ξ3q

Figure 1.9. This exact symplectic cobordism does not exist.

Theorem 1.33. The contact manifolds pVk, ξkq do not admit any symplectic
fillings. Moreover, if k ą ℓ, then there exists no exact symplectic cobordism from
pVk, ξkq to pVℓ, ξℓq.

For these examples, one can use explicit constructions from [Wen13b,Avd] to
show that non-exact cobordisms from pVk, ξkq to pVℓ, ξℓq do exist, and so do exact
cobordisms from pVℓ, ξℓq to pVk, ξkq, thus both the directionality of the cobordism
relation and the distinction between exact and non-exact are crucial. The proof
of the theorem, due to the author with Latschev and Hutchings [LW11], uses a
numerical contact invariant based on the full SFT algebra—in particular, the curves
that cause this phenomenon have multiple positive ends and are thus not seen by
contact homology. We will introduce the relevant numerical invariant in Lecture 13
and compute it for these examples in Lecture 16.
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In this lecture we begin studying the analysis of J-holomorphic curves. The
coverage will necessarily be a bit sparse in some places, but more detailed proofs of
everything in this lecture can be found in [Wend].

2.1. Linearized Cauchy-Riemann operators

In order to motivate the study of linear Cauchy-Riemann type operators, we
begin with a formal discussion of the nonlinear Cauchy-Riemann equation and its
linearization.

Fix a Riemann surface pΣ, jq and almost complex manifold pW,Jq. The nonlinear
Cauchy-Riemann equation for maps u : Σ Ñ W then takes the form

Tu ˝ j “ J ˝ Tu,
which in any choice of local holomorphic coordinates ps, tq on suitably small neigh-
borhoods in Σ is equivalent to

Bsu ` JpuqBtu “ 0,

where we’ve explicitly written the dependence of J : TupzqW Ñ TupzqW on upzq
at each point z P Σ in order to emphasize the nonlinearity of the equation. The
linearized equation at a given solution u : Σ Ñ W is obtained by considering a
smooth 1-parameter family of solutions uρ : Σ Ñ W for ρ P p´ǫ, ǫq, with u0 “ u.
Writing Bρuρ|ρ“0 “ η P Γpu˚TW q, choosing a connection ∇ on W and taking the
covariant derivative of the nonlinear equation with respect to the parameter gives

0 “ ∇ρ rBsuρ ` JpuρqBtuρs|ρ“0
“ ∇ρBsuρ

ˇ̌
ρ“0

` Jpuq∇ρBtuρ
ˇ̌
ρ“0

` p∇ηJqBtu.
Note that since Bsu ` JpuqBtu “ 0, the expression on the right does not depend on
the choice of connection. In particular, if we choose ∇ to be symmetric, then we

25
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can replace ∇ρBs and ∇ρBt with ∇sBρ and ∇tBρ respectively, so that the linearized
equation takes the more appealing form

∇sη ` Jpuq∇tη ` p∇ηJqBtu “ 0,

or in coordinate-free terms,

∇η ` Jpuq∇η ˝ j ` p∇ηJq ˝ Tu ˝ j “ 0.

This is a globally well-defined linear first-order PDE for sections η P Γpu˚TMq.
We will often abbreviate it in the form Duη “ 0, defining the so-called linearized
Cauchy-Riemann operator at u by

Du : Γpu˚TW q Ñ Ω0,1pΣ, u˚TW q
η ÞÑ ∇η ` Jpuq∇η ˝ j ` p∇ηJq ˝ Tu ˝ j.(2.1)

Here we have used a bit of standard notation from complex geometry: Ω0,1pΣ, u˚TMq
denotes the space of u˚TW -valued p0, 1q-forms on Σ, where “p0, 1q” means 1-forms
that are complex-antilinear.1 Equivalently, elements of Ω0,1pΣ, u˚TMq are smooth
sections of HomCpTΣ, u˚TW q “ T 0,1ΣbCu

˚TW , where T 0,1Σ denotes the p0, 1q-part
of the complexified cotangent bundle.2

The linearized Cauchy-Riemann operator arises in the following application.
Suppose we wish to understand the structure of some space of the form

(2.2) tu : Σ Ñ W | Tu ˝ j “ J ˝ Tu plus further conditionsu ,
where the “further conditions” (which we will for now leave unspecified) may impose
constraints on e.g. the regularity of u, as well as its boundary and/or asymptotic
behavior. The standard approach in global analysis can be summarized as follows:

Step 1: Construct a smooth Banach manifold B of maps u : Σ Ñ W such that all
the solutions we’re interested in will be elements of B. The tangent spaces
TuB are then Banach spaces of sections of u˚TW .

Step 2: Construct a smooth Banach space bundle E Ñ B such that for each u P B,
the fiber Eu is a Banach space of sections of the vector bundle

HomCpTΣ, u˚TW q Ñ Σ

of complex-antilinear bundle maps pTΣ, jq Ñ pu˚TW, Jq. Since our purpose
is to study a first-order PDE, we need the sections in Eu to be “one step
less regular” than the maps in B, e.g. if B consists of maps of Sobolev class
W k,p, then the sections in Eu should be of class W k´1,p.

Step 3: Show that

B̄J : B Ñ E : u ÞÑ du` Jpuq ˝ du ˝ j
defines a smooth section of E Ñ B, whose zero set is precisely the space of
solutions (2.2).

1Complex-linear 1-forms are similarly called p1, 0q-forms.
2In more straightforward terms, T 0,1Σ Ñ Σ is a complex line bundle whose fiber at any given

point z P Σ is the space of complex-antilinear maps TzΣ Ñ C. Similarly, fibers of T 1,0Σ Ñ
Σ are spaces of complex-linear maps TzΣ Ñ C. The direct sum of these two bundles is the
complexification of T ˚Σ, whose fiber at z P Σ consists of all real -linear maps TzΣ Ñ C.
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Step 4: Show that under suitable assumptions (e.g. on regularity and asymptotic
behavior), one can arrange such that for every u P B̄´1

J p0q, the linearization
of B̄J ,3

DB̄Jpuq : TuB Ñ Eu

is a Fredholm operator and is generically surjective. (In geometric terms,
this would mean that B̄J is transverse to the zero section.)

Step 5: Using the implicit function theorem in Banach spaces (see [Lan93]), the
surjectivity and Fredholm property ofDB̄Jpuq imply that B̄´1

J p0q is a smooth
finite-dimensional manifold, with its tangent space at each u P B̄´1

J p0q
canonically identified with kerDB̄Jpuq, hence the dimension of B̄´1

J p0q near u
equals the Fredholm index of DB̄Jpuq.

In this context, the linearization of the section B̄J at a point u P B̄´1
J p0q will be

given by the natural extension of Du : Γpu˚TW q Ñ Ω0,1pΣ, u˚TW q to a suitable
Banach space setting, e.g. if B consists of maps Σ Ñ W of Sobolev class W k,p, then
Du will be extended to a map from theW k,p-sections of u˚TW to theW k´1,p-sections
of HomCpTΣ, u˚TW q.

Definition 2.1. Fix a complex vector bundle E over a Riemann surface pΣ, jq.
A (real) linear Cauchy-Riemann type operator on E is a real-linear first-order
differential operator

D : ΓpEq Ñ Ω0,1pΣ, Eq
such that for every f P C8pΣ,Rq and η P ΓpEq,
(2.3) Dpfηq “ pB̄fqη ` fDη,

where B̄f denotes the complex-valued p0, 1q-form df ` i df ˝ j.
Observe that D is complex linear if and only if the Leibniz rule (2.3) also holds

for all smooth complex-valued functions f , not just real-valued. It is a standard
result in complex geometry that choosing a complex-linear Cauchy-Riemann type
operator D on E is equivalent to endowing it with the structure of a holomorphic
vector bundle, where local sections η are defined to be holomorphic if and only
if Dη “ 0. Indeed, every holomorphic bundle comes with a canonical Cauchy-
Riemann operator that is expressed as B̄ in holomorphic trivializations, and in the
other direction, the equivalence follows from a local existence result for solutions to
the equation Dη “ 0, proved in §2.5 below.4

Exercise 2.2. If D is a linear Cauchy-Riemann type operator on E, prove that
every other such operator is of the form D ` A where A : E Ñ HomCpTΣ, Eq is

3The linearization of a section s : B Ñ E of a smooth vector bundle E Ñ B at a point x P
s´1p0q Ă B is a linear map Dspxq : TxB Ñ Ex that can be computed by choosing any connection
∇ on E and setting Dspxqv :“ ∇vs. The result is independent of the choice of connection since
spxq “ 0. Equivalently, one could choose a local chart and trivialization near x, compute the
differential of the section at x in coordinates, and argue in the same way that the resulting map
TxB Ñ Ex is independent of choices.

4This statement about the existence of holomorphic vector bundle structures is true when
the base is a Riemann surface, but not if it is a higher-dimensional complex manifold. In higher
dimensions there are obstructions, see e.g. [Kob87].
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a smooth linear bundle map. Using this, show that in suitable local trivializations
over a subset U Ă Σ identified biholomorphically with an open set in C, every
Cauchy-Riemann type operator D takes the form

D “ B̄ ` A : C8pU ,Cmq Ñ C8pU ,Cmq,
where B̄ “ Bs ` iBt in complex coordinates z “ s ` it and A P C8pU ,EndRpCmqq.

Exercise 2.3. Verify that the linearized operator Du of (2.1) is a real-linear
Cauchy-Riemann type operator.

2.2. Some useful Sobolev inequalities

In this section, we review a few general properties of Sobolev spaces that are
essential for applications in nonlinear analysis. The results stated here are explained
in more detail in Appendix A.

Throughout this section we consider functions with values in C unless otherwise
specified, and defined on an open domain U in either Rn or a quotient of Rn on
which the Lebesgue measure is well defined. Certain regularity assumptions must
generally be placed on the boundary of U in order for all the results stated below
to hold; we will ignore this detail except to mention that the necessary assumptions
are satisfied for the two classes of domains that we are most interested in, which are

U “ D̊ Ă C,

U “ p0, Lq ˆ S1 Ă C{iZ, 0 ă L ď 8.

Here D denotes the closed unit disk, D̊ is its interior, and the identification of p0, Lqˆ
S1 “ p0, Lq ˆ pR{Zq with a subset of C{iZ arises from the obvious identification of
R2 with C. Certain results will be specified to hold only for bounded domains, which
means in practice that they hold on D̊ and p0, Lq ˆ S1 for any L ą 0, but not on
p0,8q ˆ S1.

Recall that for p P r1,8q we define the Lp norm of a measurable function f :
U Ñ Rm to be

}f}Lp “
ˆż

U

|f |p
˙1{p

.

For the space L8 we define the norm to be the essential supremum of f over U .
Denote by

C8
0 pUq Ă C8pUq

the space of smooth functions with compact support in U . We say a function f has
a weak j-th partial derivative g if the integration by parts formula holds for all
so-called test functions ϕ P C8

0 pUq:
ż

U

gϕ “ ´
ż

U

f Bjϕ.

Equivalently, this means that g is a partial derivative of f in the sense of distribu-
tions (see e.g. [LL01]). Higher order weak partial derivatives are defined similarly:
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recall that for a multiindex α “ pi1, ...inq we denote

Bαf “ B|α|f

Bxi11 . . . Bxinn
,

where |α| :“ ř
j ij . We then write Bαf “ g if for all ϕ P C8

0 pUq,
ż

U

gϕ “ p´1q|α|
ż

U

f Bαϕ.

Now we may define W k,ppUq to be the set of functions on U with weak partial
derivatives up to order k lying in Lp, and define the norm of such a function by

}f}W k,p “
ÿ

|α|ďk
}Bαf}Lp.

This definition gives W 0,ppUq “ LppUq, and in general W k,ppUq can be identified
with a closed subset of a product of finitely many copies of LppUq, one for each
multiindex of order at most k. This identification shows that is a Banach space;
moreover, it can be shown to be reflexive and separable for 1 ă p ă 8.

While the Sobolev spaces W k,ppUq are generally defined on open domains, we of-
ten consider the closure U as the domain for spaces of differentiable functions CkpUq
and C8pUq. For instance, CkpUq is the Banach space of k-times differentiable func-
tions on U whose derivatives up to order k are bounded and uniformly continuous
on U ; note that uniform continuity implies the existence of continuous extensions
to the closure U . Given suitable regularity assumptions for the boundary of U , one
can show (with some effort) that CkpUq is precisely the set of functions which admit
k-times differentiable extensions to some open set containing U .

The following result is an amalgamation of frequently used special cases of the
Sobolev embedding theorem and the Rellich-Kondrachov compactness theorem. See
Theorems A.6 and A.10 in Appendix A for the more general versions, proofs of which
may be found e.g. in [AF03].

Proposition 2.4 (embedding/compactness). Assume 1 ď p ă 8 and k P N.

(1) If kp ą n, then for every integer d ě 0, there exists a continuous inclusion

W k`d,ppUq ãÑ CdpUq,
which is compact if U is bounded.

(2) If 1 ď q ă 8 and m ě 0 is another integer such that k ě m, p ď q and
k ´ n

p
ě m´ n

q
, then there exists a continuous inclusion

W k,ppUq ãÑ Wm,qpUq,
which is compact if U is bounded and the inequality k´ n

p
ě m´ n

q
is strict.

�

The most important case of the second inclusion isW k`1,ppUq ãÑ W k,ppUq, whose
continuity is obvious, and the compactness in the case of bounded U can be regarded
as a natural analogue of the fact (arising from the Arzelà-Ascoli theorem) that the
inclusions Ck`1pUq ãÑ CkpUq are compact when U is compact. A useful way to
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remember the hypotheses in Proposition 2.4 is by thinking of W k,ppUq as a space of
functions that have “k ´ n

p
continuous derivatives”.

Exercise 2.5. Show that the compactness of the inclusions in Proposition 2.4
fails in general for unbounded domains, e.g. for R.

The next three results for the case kp ą n are proved in §A.2 as corollaries of
the Sobolev embedding theorem. The first is a Sobolev analogue of the fact that
the product of a Cm-function with a Ck-function for k ě m is also of class Cm.

Proposition 2.6 (Banach algebra property). Suppose 1 ď p, q ă 8, kp ą n,
k ě m and k´ n

p
ě m´ n

q
. Then the product pairing pf, gq ÞÑ fg defines a continuous

bilinear map

W k,ppUq ˆ Wm,qpUq Ñ Wm,qpUq.
In particular this applies when m “ k and q “ p, hence W k,ppUq is a Banach
algebra. �

The continuity statements above translate into inequalities between the norms in
the respective spaces. For example, continuous inclusions W k`d,p ãÑ Cd or W k,p ãÑ
Wm,q respectively imply that

}f}Cd ď c}f}W k`d,p or }f}Wm,q ď c}f}W k,p

for some constants c ą 0 which may depend on d, k, p, m, q or U , but not f .
Similarly, the Banach algebra property means there is an inequality

}fg}W k,p ď c}f}W k,p}g}W k,p

whenever kp ą n, where again the constant c is independent of g and f .
We state the next result only for the case of bounded domains; it does have

an extension to unbounded domains, but the statement becomes more complicated
(cf. Theorem A.18). Given an open set Ω Ă Rn, we denote

W k,ppU ,Ωq :“
!
u P W k,ppU ,Rnq

ˇ̌
ˇ upUq Ă Ω

)
.

Note that this is an open subset if kp ą n, due to the Sobolev embedding theorem.

Proposition 2.7 (Ck-continuity property). Assume 1 ď p ă 8, kp ą n, U is
bounded and Ω Ă Rn is an open set. Then the map

CkpΩ,RNq ˆ W k,ppU ,Ωq Ñ W k,ppU ,RNq : pf, uq ÞÑ f ˝ u
is well defined and continuous. �

Remark 2.8. In the settings of Propositions 2.6 and 2.7, it is also often impor-
tant to know that the classical formulas for computing derivatives of fg or f ˝ u via
the product or chain rules remain valid for computing weak derivatives of functions
that are not necessarily classically differentiable. This is not true in general, but
does hold in these specific settings due to the fact that Sobolev spaces contain dense
subspaces of smooth functions. For details, see Proposition A.16 and Theorem A.18
in Appendix A.
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Remark 2.9. Though we will not yet use it in this lecture, Propositions 2.4,
2.6 and 2.7 are the essential conditions needed in order to define smooth Banach
manifold structures on spaces of W k,p-smooth maps from one manifold to another,
cf. [El̆ı67,Pal68]. This only works under the condition kp ą n, as the smooth
category is not well equipped to deal with discontinuous maps!

The following rescaling result will be needed for nonlinear regularity arguments;
see Theorem A.21 in Appendix A for a proof.

Proposition 2.10. Assume p P r1,8q and k P N satisfy kp ą n, let D̊n denote

the open unit ball in Rn, x0 P D̊n a fixed point, and for each f P W k,ppD̊nq and ǫ ą 0

sufficiently small define fǫ P W k,ppD̊nq by

fǫpxq :“ fpx0 ` ǫxq.
Then for any α P p0, 1q satisfying α ď k ´ n{p, there exists a constant C ą 0 such

that for every f P W k,ppD̊nq and all ǫ ą 0 smaller than the distance from x0 to BDn,

}fǫ ´ fǫp0q}W k,ppD̊nq ď Cǫα}f ´ fpx0q}W k,ppD̊nq.

�

Exercise 2.11. Working on a 2-dimensional domain with kp ą 2, prove directly
that for any multiindex α of positive order k,

}Bαfǫ}LppD̊q ď ǫk´2{p}Bαf}LppD̊q

for f P W k,ppD̊q. Find examples (e.g. in W 1,2pD̊q) to show that no estimate of the
form

}Bαfǫ}LppD̊q ď Cǫ}f ´ fpx0q}W k,ppD̊q

with limǫÑ0` Cǫ “ 0 is possible when kp ď 2.

2.3. The fundamental elliptic estimate

We will make considerable use of the fact that the linear first-order differential
operator

B̄ :“ Bs ` iBt : C8pC,Cq Ñ C8pC,Cq
is elliptic. There is no need to discuss here precisely what ellipticity means in full
generality (see [Wend, §2.B] if you’re curious about this); in practice, the main
consequence is the following pair of analytical results.

Theorem 2.12. If 1 ă p ă 8, then B̄ : W 1,ppD̊q Ñ LppD̊q admits a bounded

right inverse T : LppD̊q Ñ W 1,ppD̊q.

Theorem 2.13. If 1 ă p ă 8 and k P N, then there exists a constant c ą 0 such
that for all f P W k,p

0 pD̊q,
}f}W k,p ď c}B̄f}W k´1,p.
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Here W k,p
0 pD̊q denotes the W k,p-closure of the space C8

0 pD̊q of smooth functions

with compact support in D̊.
The complete proofs of the two theorems above are rather lengthy, and we shall

refer to [Wend, §2.6 and 2.A] for the details, but we can at least explain why
they hold in the case p “ 2. First, it is straightforward to show that the function
K P L1

locpCq defined by

Kpzq “ 1

2πz

is a fundamental solution for the equation B̄u “ f , meaning it satisfies

B̄K “ δ

in the sense of distributions, where δ denotes the Dirac δ-function. Hence for any
f P C8

0 pCq, one finds a smooth solution u : C Ñ C to the equation B̄u “ f as the
convolution

upzq “ pK ˚ fqpzq :“
ż

C

Kpz ´ ζqfpζq dµpζq,

where dµpζq denotes the Lebesgue measure with respect to the variable ζ P C. It
is not hard to show from this formula that whenever f P C8

0 , K ˚ f has decaying
behavior at infinity (see [Wend, Lemma 2.6.13]). Thus if u P C8

0 and B̄u “ f , it
follows that u´K ˚ f is a holomorphic function on C that decays at infinity, hence
u ” K ˚ f . Since C8

0 pD̊q is dense in LppD̊q for all p ă 8, Theorem 2.12 now follows

from the claim that for all f P C8
0 pD̊q, there exist estimates of the form

(2.4) }K ˚ f}LppD̊q ď c}f}LppD̊q, }BjpK ˚ fq}LppD̊q ď c}f}LppD̊q,

with Bj “ Bs or Bt for j “ 1, 2 respectively, and the constant c ą 0 independent of f .

Exercise 2.14. Use Theorem 2.12 and the remarks above to prove Theorem 2.13
for the case k “ 1 with f P C8

0 pD̊q, then extend it to f P W
1,p
0 pD̊q by a density

argument. Then extend it to the general case by differentiating both f and B̄f .
The first estimate in (2.4) is not too hard if you remember your introductory

measure theory class: it follows from a general “potential inequality” for convolu-
tion operators (see [Wend, Lemma 2.6.10]), similar to Young’s inequality, the key

points being that K is locally of class L1 and D̊ has finite measure. For the second
inequality, observe that B̄pK ˚ fq “ f , and the rest of the first derivative of K ˚ f is
determined by BpK ˚ fq, where

B :“ Bs ´ iBt.
Differentiating K in the sense of distributions provides a formula for BpK ˚ fq as a
principal value integral, namely

BpK ˚ fqpzq “ ´ 1

π
lim
ǫÑ0`

ż

|ζ´z|ěǫ

fpζq
pz ´ ζq2 dµpζq.

This is a so-called singular integral operator: it is similar to our previous con-
volution operator, but more difficult to handle because the kernel 1

z2
is not of class
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L1
loc on C. The proof of the estimate

(2.5) }BpK ˚ fq}Lp ď c}f}Lp for all f P C8
0 pD̊q

follows from a rather difficult general estimate on singular integral operators, known
as the Calderón-Zygmund inequality, cf. [Wend, §2.A] and the references therein.
The good news however is that the first step in that proof is not hard: that is the
case p “ 2.

As is the case for all elliptic operators with constant coefficients, the L2-estimate
on the fundamental solution of B̄ admits an easy proof using Fourier transforms. In
general, a sufficiently nice function u : Rn Ñ C is related to its Fourier transform
û : Rn Ñ C by

upxq “
ż

Rn

ûppqe2πipx¨pq dµppq,

where x ¨ p denotes the standard Euclidean inner product on Rn. It thus satisfies
the identity

(2.6) xBjuppq “ 2πipjûppq.
It follows more generally that for any differential operator D of order k P N with
constant coefficients acting on complex-valued functions on Rn, there is a unique
polynomial PD : Rn Ñ C of degree k such that

xDuppq “ PDppqûppq
for reasonable functions u : Rn Ñ C. We call D an elliptic operator if PDppq “
PD
k ppq ` Op|p|k´1q and the homogeneous kth-order part PD

k satisfies5

PD
k ppq ‰ 0 for all p ‰ 0.

Since PD
k is homogeneous with degree k, this condition implies that PD satisfies an

estimate of the form

|PDppq| ě c|p|k for all p P Rn outside of some compact subset.

Now if α is any multiindex of order |α| ď k, (2.6) implies yBαuppq “ p2πipqαûppq
with |p2πipqα| ď c|p||α| ď c1|PDppq| for all |p| " 0 and some constant c1 ą 0. Since
p2πipqα{PDppq is now a bounded function outside of some compact subset K Ă Rn,
one therefore obtains via Plancherel’s theorem a bound of the form

}Bαu}L2pRnq “ }yBαu}L2pRnq “ }p2πipqαû}L2pRnq

“ }p2πipqαû}L2pKq ` }p2πipqαû}L2pRnzKq

ď c}û}L2pKq ` c}PDppqû}L2pRnzKq ď c}u}L2pRnq ` c}Du}L2pRnq.

In the case of D :“ B̄ and Bα :“ B on R2 “ C, this story becomes especially
simple since

(2.7) x̄uBpζq “ 2πiζûpζq, xBupζq “ 2πiζûpζq,
5In the more general setting of a differential operator sending sections of one vector bundle to

sections of another, the polynomial PD in this discussion would take values in a space of linear
maps from one finite-dimensional vector space to another. One then calls D elliptic if and only if
the linear transformation PDppq is invertible for all p ‰ 0
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i.e. both B̄ and B are first-order elliptic operators.

Proposition 2.15. For all f P C8
0 pCq, we have }BpK ˚ fq}L2 “ }f}L2.

Proof. We write u “ K ˚ f , so B̄u “ f , and combining (2.7) with Plancherel’s
theorem gives

}BpK ˚ fq}L2 “ }Bu}L2 “ }xBu}L2 “ }2πiζû}L2

“
››››
ζ

ζ
2πiζû

››››
L2

“ }2πiζû}L2 “ }f̂}L2 “ }f}L2.

�

Corollary 2.16. The estimate (2.5) holds in the case p “ 2. �

2.4. Regularity

We will now use the estimate }u}W k,p ď c}B̄u}W k´1,p from the previous section to
prove three types of results about solutions to Cauchy-Riemann type equations:

(1) All solutions of reasonable Sobolev-type regularity are smooth.
(2) Every sequence of solutions satisfying uniform bounds in certain Sobolev

norms has a C8
loc-convergent subsequence.

(3) All reasonable Sobolev-type topologies on spaces of solutions are (locally)
equivalent to the C8-topology.

In the following,

Dr Ă C

denotes the closed disk of radius r ą 0, and D̊r denotes its interior. Note that func-
tions of class C8pDrq are assumed to be smooth up to the boundary (or equivalently,

on some open neighborhood of Dr in C), not just on D̊r.

2.4.1. The linear case. Recall from Exercise 2.2 that every linear Cauchy-
Riemann type operator on a vector bundle of complex rank n locally takes the form
B̄ ` A, where B̄ “ Bs ` iBt, and A is a smooth function with values in EndRpCnq.
Using the Sobolev embedding theorem, the following result implies by induction
that weak solutions of class Lploc for 1 ă p ă 8 to linear Cauchy-Riemann type
equations are always smooth. The associated local estimate will also play a major
role in our proof of the Fredholm property in Lecture 4.

Theorem 2.17 (Linear regularity). Assume 1 ă p ă 8, m and k are integers

with m ě k ě 0, A : D Ñ EndRpCnq is a Cm-smooth function, f P Wm,ppD̊,Cnq and

u P W k,ppD̊,Cnq is a weak solution to the equation

pB̄ ` Aqu “ f.

Then:

(1) u is of class Wm`1,p on every compact subset of D̊.
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(2) For every r P p0, 1q, there exists a constant c ą 0 dependent on the Sobolev
parameters k,m, p, the radius r and the zeroth-order term A, but not on u
or f , such that

}u}Wm`1pD̊rq ď c}u}W k,ppD̊q ` c}f}Wm,ppD̊q.

Proof (excludng the case k “ 0 of (1)). We begin with a proof of state-
ment (2), assuming that statement (1) is already known. It will suffice to prove
the estimate for the case m “ k, because if m ą k, one can then repeat the
same argument m ´ k ` 1 times, shrinking to a slightly smaller compact subset
of D̊ each time. With this understood, let us fix an integer k ě 0 and consider a
weak solution u P W k,ppD̊q to the equation pB̄ ` Aqu “ f with f P W k,ppD̊q and
A P CkpD,EndRpCnqq. For any r P p0, 1q, statement (1) in the theorem implies

u P W k`1,ppD̊rq, and our objective is to bound }u}W k`1,ppD̊Rq in terms of }u}W k,ppD̊q
and }f}W k,ppD̊q.

In order to apply the fundamental elliptic estimate, we need to work with func-
tions with compact support in the interior of D, thus we choose a smooth bump
function

β P C8
0 pD̊, r0, 1sq

that satisfies β|Dr ” 1. Using this choice, we now give two slightly different proofs
of the required estimate. The first is based on the observation that since u is locally
of class W k`1,p on D̊, βu P W k`1,p

0 pD̊q, so Theorem 2.13 can be applied to βu, giving

}u}W k`1,ppD̊rq ď }βu}W k`1,ppD̊q ď c}B̄pβuq}W k,p ď c}pB̄βqu}W k,p ` c}βpf ´ Auq}W k,p

ď c1}u}W k,p ` c1}f}W k,p,

where the use of the Leibniz rule to compute B̄pβuq is unproblematic since β is
smooth, and we have absorbed the Ck-norms of β, B̄β and A into the constant c1 ą 0.

The following alternative proof of this estimate is valid only if k ě 1 and is
slightly less direct, but contains useful ideas that we will need to recycle in the proof
of statement 1. By assumption, we already have a bound on }u}W k,ppD̊rq, so the

required W k`1,p-bound will follow if we can also find W k,p-bounds over D̊r for the
weak partial derivatives Bju, j “ 1, 2. These functions are (according to statement 1)

of class W k,p
loc , and since k ě 1 and β Bju P W k,p

0 pD̊q, we can now apply Theorem 2.13
to β Bju, giving

}Bju}W k,ppD̊rq ď }β Bju}W k,ppD̊q ď c
››B̄ pβ Bjuq

››
W k´1,ppD̊q

ď c}pB̄βqpBjuq}W k´1,p ` c}β B̄pBjuq}W k´1,p.
(2.8)

The first term on the right hand side is bounded by c1}u}W k,p for some constant c1 ą 0
that depends on the Ck´1-norm of B̄β. To control the second term, we differentiate
the equation B̄u “ ´Au` f , giving

B̄pBjuq “ ´pBjAqu ´ A Bju ` Bjf,
where the Leibniz rule has been used to compute BjpAuq in light of Remark A.17 and
the continuous product pairing Ck ˆW k,p Ñ W k,p. The W k´1,p-norm of β B̄pBjuq is
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now bounded by a constant times }u}W k´1,p ` }Bju}W k´1,p ` }Bjf}W k´1,p ď 2}u}W k,p `
}f}W k,p, where the constant in question depends only on }β}Ck´1 and }A}Ck .

We now prove statement (1) in the case k ě 1; the case k “ 0 requires a different
argument and will be dealt with as an addendum at the end of this subsection. For
k ě 1, we can use an adaptation of the second proof of statement 2 above, where
instead of proving bounds on partial derivatives Bju, we consider the corresponding
difference quotients

Dh
j upzq :“ upz ` hejq ´ upzq

h
, j “ 1, 2.

Here e1 :“ Bs, e2 :“ Bt, and the domain of Dh
j u can be taken to be Dr for any

r P p0, 1q if h P Rzt0u is sufficiently close to 0. It suffices again to consider only

the case m “ k, so let us suppose u, f P W k,ppD̊q and A P CkpDq. The difference

quotients Dh
j u are then also of class W k,p

loc on their domains, so for the smooth cutoff

function β P C8
0 pD̊q with β|Dr ” 1, we can assume for all |h| ą 0 sufficiently small

that βDh
j u is in W k,p

0 pD̊q. The analogue of (2.8) in this context is then

}Dh
j u}W k,ppD̊rq ď }βDh

j u}W k,ppD̊q ď c
››B̄

`
β Dh

j u
˘››
W k´1,ppD̊q

ď c}pB̄βqpDh
j uq}W k´1,p ` c}β B̄pDh

j uq}W k´1,p.

The first term is bounded independently of h since Bju P W k´1,ppD̊q, implying a
uniform W k´1,p-bound on Dh

j u as h Ñ 0; cf. Appendix A.3. To control the second

term, we can apply the operator Dh
j to the equation B̄u “ ´Au` f , giving

B̄pDh
j uq “ Dh

j pB̄uq “ ´pDh
jAqu´ ADh

j u` Dh
j f.

Since A P CkpDq, Dh
jA is uniformly Ck´1-bounded as h Ñ 0, and Bju, Bjf P

W k´1,ppD̊q similarly implies uniform W k´1,p-bounds on Dh
j u and Dh

j f , thus the

whole expression is uniformly W k´1,p-bounded on some open disk containing the
support of β, implying

}Dh
j u}W k,ppD̊rq ď c

for some constant c ą 0 that does not change as h Ñ 0. This implies u P W k`1,ppD̊rq
via a standard application of the Banach-Alaoglu theorem. Indeed, the latter implies
that if there is a uniform bound on }Dh

j u}Lp as h Ñ 0, then any decaying sequence

hν Ñ 0 has a subsequence for which Dhν
j u is weakly Lp-convergent. The limit of this

subsequence belongs to LppD̊rq, and it is straightforward to show using the definition
of weak derivatives that this limit is Bju. One finds a similar result in the presence
of uniform W k,p-bounds for any k P N by applying this argument to higher-order
derivatives of Bju; for details, see Theorem A.22 in Appendix A.3. �

Exercise 2.18. Deduce from Theorem 2.17 the following corollaries for a se-
quence of weak solutions uν P W k,ppD̊q to pB̄ ` Aνquν “ fν , assuming fν P Wm,ppD̊q
and Aν P CmpD̊q for all ν P N, with m ě k ě 0 and 1 ă p ă 8.

(a) If }uν}W k,ppD̊q, }fν}Wm,ppD̊q and }Aν}CmpDq are uniformly bounded, then uν is

also uniformly W k`1,p-bounded on compact subsets of D̊.
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(b) If uν is W k,p-convergent, fν is Wm,p-convergent and Aν is Cm-convergent

on D, then uν is also Wm`1,p
loc -convergent on D̊.

Remark 2.19. Combining the Sobolev embedding theorem with the Arzelà-
Ascoli theorem, the result of Exercise 2.18(a) proves that if the fν and Aν are C8-
bounded on D, then the solutions uν have a C8

loc-convergent subsequence. Part (b)
implies moreover that for every k ě 0 and p P p1,8q, the W k,p-topology on spaces
of solutions to linear Cauchy-Riemann type equations is locally equivalent to the
C8-topology.

Exercise 2.20. Use Theorem 2.17 to generalize Theorem 2.12 to the existence
of a bounded right inverse for

B̄ :W k,ppD̊q Ñ W k´1,ppD̊q.
for every k P N and 1 ă p ă 8. Hint: For any R ą 1, there exists a bounded linear
extension operator E : W k,ppD̊q Ñ W k,ppD̊Rq with the property pEfq|D̊ “ f for all

f P W k,ppD̊q; see Theorem A.4 and Corollary A.5.

It remains to prove the case k “ 0 of Theorem 2.17(1). As preparation for this,
we start with a classical result about “weakly holomorphic” functions:

Lemma 2.21. If u P L1pD̊q satisfies B̄u “ 0 in the sense of distributions, then u

is smooth and holomorphic on the open disk D̊.

Proof. Taking real and imaginary parts, it suffices to prove that the same
statement holds for the Laplace equation. By mollification, any weakly harmonic
function can be approximated in L1 with smooth harmonic functions. The lat-
ter satisfy the mean value property, which behaves well under L1-convergence, so
the result follows from the mean value characterization of harmonic functions; see
[Wend, Lemma 2.6.26] for more details. �

Lemma 2.22. Suppose 1 ă p ă 8 and u P L1pD̊q is a weak solution to B̄u “ f

for some f P LppD̊q. Then u is of class W 1,p on every compact subset of D̊.

Proof. Let T : LppD̊q Ñ W 1,ppD̊q denote the bounded right inverse of B̄ :

W 1,ppD̊q Ñ LppD̊q provided by Theorem 2.12. Then u ´ Tf P L1pD̊q is a weak
solution to B̄pu´Tfq “ 0 and is thus smooth by Lemma 2.21. In particular, u´Tf

restricts to D̊r for every r ă 1 as a function of class W 1,p, implying that u also has
a restriction in W 1,ppD̊rq. �

Proof of Theorem 2.17(1) for k “ 0. Suppose pB̄ ` Aqu “ f , where A is

continuous on D and u, f P LppD̊q. Then B̄u “ ´Au ` f P LppD̊q, so Lemma 2.22

implies u P W 1,p
loc pD̊q. If m ě 1, one can now shrink the disk slightly and plug in the

case k “ 1 of the theorem to conclude u P Wm`1,p
loc pD̊q. �

Corollary 2.23. If A : D Ñ EndRpCnq is of class Cm for 0 ď m ď 8, then

every weak solution u : D̊ Ñ Cn to pB̄ `Aqu “ 0 of class Lploc for a given p P p1,8q is
also in W k,q

loc pD̊q for every k ď m` 1 and q P p1,8q. In particular, u is of class Cm.
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Proof. Assume for simplicity m ă 8, as the case m “ 8 will then immediately
follow. Theorem 2.17(1) implies u P Wm`1,ppD̊rq for any r ă 1. If p ą 2, this
implies via the Sobolev embedding theorem that u P CmpDrq. In particular, u is

then continuous and bounded on the closed disk Dr, so it is in LqpD̊rq for every
q P p1,8q, and feeding it into Theorem 2.17(1) again gives the desired result on Dr.

Since r ă 1 was arbitrary, the result is therefore true on any compact subset of D̊.
To finish, it will now suffice to show that if u P LppD̊q for some p ď 2, then u is

also in LqlocpD̊q for some q ą 2. Here Theorem 2.17(1) again implies u P W 1,ppD̊rq for
any r ă 1, and according to the Sobolev embedding theorem, there is a continuous
inclusion W 1,p ãÑ Lq whenever p ď q ă p˚, where p˚ P pp,8s is determined by
1
p˚ “ 1

p
´ 1

2
; see Theorem A.6. Since p ą 1, this implies 1

p˚ ă 1
2
and thus p˚ ą 2, so

we can choose any q P p2, p˚q and conclude u P LqpD̊rq. �

2.4.2. The nonlinear case. Locally, every J-holomorphic curve can be re-
garded as a map u : D̊ Ñ Cn satisfying Bsupzq ` JpupzqqBtupzq “ 0 in coordinates
z “ s ` it P D Ă C, where J is an almost complex structure on Cn, or equivalently,
a function6

J : Cn Ñ J pCnq :“
 
K P EndRpCnq

ˇ̌
K2 “ ´1

(
.

Since it is useful for certain applications and does not make the proofs any harder, we
will in this section consider solutions u : D̊ Ñ Cn to a more general inhomogeneous
nonlinear Cauchy-Riemann equation

Bsupzq ` Jpz, upzqqBtupzq “ fpzq, or for short: Bsu ` Jpz, uqBtu “ f,

where f : D̊ Ñ Cn is a given function and J : D̊ ˆ Cn Ñ J pCnq is now allowed

to depend on points both in the target Cn and in the domain D̊. The nonlinear
analogue of Theorem 2.17 is then the following.

Theorem 2.24 (Nonlinear regularity). Assume 1 ă p ă 8, and m and k are
integers with m ě k and kp ą 2.

(1) If J : D̊ ˆ Cn Ñ J pCnq is of class Cm and u P W k,ppD̊,Cnq is a weak
solution to the equation

Bsu` Jpz, uqBtu “ f

for some f P Wm,ppD̊,Cnq, then u is of class Wm`1,p on every compact

subset of D̊.

6Here the reader should beware of a minor ambiguity in notation: while we used J pMq in
Lecture 1 to mean the space of smooth almost complex structures on a manifold M , one can
just as sensibly define J pV q for each real 2n–dimensional vector space V to be the space of linear
complex structures on V , topologized as a subset of the finite-dimensional vector space EndRpV q –
R2nˆ2n. It is not hard to show that J pV q is then a smooth submanifold of EndRpV q; in fact, the
ability to choose J-complex bases for each J P J pV q gives J pV q a natural identification with the
homogeneous space AutRpV q{AutCpV, Jq – GLp2n,Rq{GLpn,Cq. In the present discussion, the
notation J pCnq views Cn as a real 2n-dimensional vector space rather than as a manifold.
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(2) Consider a Cm
loc-convergent sequence Jν Ñ J of Cm-smooth maps D̊ˆCn Ñ

J pCnq, together with sequences fν P Wm,ppD̊,Cnq and uν P W k,ppD̊,Cnq
such that for each ν P N, uν is a weak solution to the equation

Bsuν ` Jνpz, uνqBtuν “ fν .

(a) If the norms }fν}Wm,p and }uν}W k,p on D̊ are uniformly bounded as
ν Ñ 8, then uν is also uniformly Wm`1,p-bounded on every compact
subset of D̊.

(b) If fν is Wm,p-convergent and uν is W k,p-convergent on D̊, then uν is

also Wm`1,p-convergent on every compact subset of D̊.

Combining this result with the Sobolev embedding theorem and the Arzelà-
Ascoli theorem yields:

Corollary 2.25. If J is a smooth almost complex structure on Cn, then every
J-holomorphic map u : D̊ Ñ Cn that is of class W k,p for some k P N and p P p1,8q
with kp ą 2 is smooth. Moreover, if Jν Ñ J is a C8

loc-convergent sequence of

almost complex structures on Cn and uν : D̊ Ñ Cn is a sequence of Jν-holomorphic
maps, then for any k P N and p P p1,8q with kp ą 2, uniform W k,p-bounds for uν
imply C8

loc-convergence of a subsequence of uν, and similarly, W k,p-convergence of
uν implies C8

loc-convergence. �

Exercise 2.26. Use Theorem 2.24 to show that on a symplectic manifold pM,ωq
endowed with smooth families of almost complex structures tJt P J pM,ωqutPS1 and
Hamiltonians tHt P C8pM,RqutPS1 , weak solutions to the Floer equation (1.4) that
are locally of class W k,p with kp ą 2 are also smooth.

Remark 2.27. We will take pains to avoid dealing with non-smooth almost
complex structures in this book, but in some applications they are unavoidable for
technical reasons. In such cases, one gets the most mileage out of Theorem 2.24 by
choosing p ą 2, as the Sobolev embedding theorem then implies that J-holomorphic
curves of class W 1,p have at least as many continuous derivatives as J does. If one
instead starts with a curve u of class W k,p

loc for some p ď 2 but kp ą 2, then since
k ě 2, one can use the Sobolev embedding theorem to argue (cf. Corollary 2.23)
that u is therefore also of class W 1,q

loc for some q ą 2, which leads to the same result.

To summarize: if J is of class Cm, then any J-holomorphic curve of class W k,p
loc for

some k, p with kp ą 2 is also of class Wm`1,q
loc for every q P p1,8q, and in particular

it is of class Cm.

Our proof of Theorem 2.24 will follow a similar outline to the proof of Theo-
rem 2.17, which can be interpreted as the special case where Jν ” i for all ν. The
reason it works more generally is that if we zoom in on a sufficiently small neigh-
borhood of one point in Cn, then J can be viewed as a Cm-small perturbation of i.
To make this precise, we shall use the following rescaling trick.

Associate to any Cm-smooth map J : D̊ ˆ Cn Ñ J pCnq the function

Q :“ i ´ J P CmpD̊ ˆ Cn,EndRpCnqq.
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In terms of Q, the equation Bsu ` Jpz, uqBtu “ f then becomes

(2.9) B̄u ´ Qpz, uqBtu “ f.

For any given point z0 P D̊, we can assume without loss of generality after an
affine change of coordinates on Cn that upz0q “ 0 and Jpz0, 0q “ i, so in particular
Qpz0, 0q “ 0. For any ǫ P p0, distpz0, BDqq and a fixed constant α P p0, 1q to be
specified further below, we now associate to J , u and f the functions

pJ : D ˆ Cn Ñ J pCnq, pJpz, xq :“ Jpz0 ` ǫz, ǫαxq,
pQ : D ˆ Cn Ñ EndRpCnq, pQpz, xq :“ Qpz0 ` ǫz, ǫαxq “ i ´ pJpz, xq,

û : D̊ Ñ Cn, ûpzq :“ 1

ǫα
upz0 ` ǫzq,

f̂ : D̊ Ñ Cn, f̂pzq :“ ǫ1´αfpz0 ` ǫzq.

(2.10)

Then u satisfies (2.9) if and only if û satisfies

(2.11) B̄û´ pQpz, ûqBtû “ f̂ .

The rescaled almost complex structure has the convenient feature that since Jpz0, 0q
is the standard complex structure i, choosing ǫ ą 0 small makes pJ arbitrarily Cm-

close to i on the compact set7 D ˆ D2n Ă C ˆ Cn, which means } pQ}CmpDˆD2nq can
be made arbitrarily small. By Proposition 2.10, }û}W k,ppD̊q will likewise stay under

control for ǫ Ñ 0 if we choose α P p0, 1q such that α ď k´ 2{p, and in fact, choosing
α to be slightly smaller then ensures that we can make }û}W k,p an arbitrarily small
multiple of }u}W k,p by choosing ǫ ą 0 small. Since kp ą 2, this will also make }û}C0

arbitrarily small, and we can therefore assume that the map z ÞÑ pz, ûpzqq for z P D

has image in D ˆ D2n. By the assumption m ě k and the continuity of the map

Ck ˆW k,p Ñ W k,p in Proposition 2.7, the function D Ñ EndRpCnq : z ÞÑ pQpz, ûpzqq
can then likewise be assumed to be arbitrarily W k,p-small by choosing ǫ ą 0 small.
The effect is that (2.11) can now be viewed as a W k,p-close approximation of the

linear equation B̄û “ f̂ .
The price we pay for this rescaling is that if we are able to prove e.g. a uniform

bound on the norms }ûν}W k`1,ppD̊rq for some sequence uν P W k,ppD̊q and r P p0, 1q,
then the resulting W k`1,p-bound for uν will be valid only on the ǫ-disk around the
point z0. But this point was chosen arbitrarily in D̊, so the result is then a uniform
bound over some neighborhood of every interior point of D, and since a compact
subset of D̊ can be covered by finitely many such neighborhoods, that is enough to
achieve uniform bounds over compact subsets.

Remark 2.28. The rescaling trick described above is one of several reasons why
the condition kp ą 2 is needed in Theorem 2.24, while it was irrelevant in the linear
case. We will see when we study compactness in Lecture 9 that the result is false in
general without this assumption.

7Here D2n denotes the closed unit ball in Cn “ R2n.
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Proof of Theorem 2.24. We will prove statement (2a) assuming that state-
ment (1) is already known, and leave the rest as exercises.

Since m ě k, it suffices to prove the statement for the case k “ m, as otherwise
the argument can always be repeated on slightly smaller disks at each step to increase
k until it reaches m. We therefore assume that a Ck

loc-convergent sequence Jν Ñ J

of functions D̊ˆCn Ñ J pCnq and sequences uν , fν P W k,ppD̊,Cnq satisfying uniform
bounds

}uν}W k,p ď M, }fν}W k,p ď M

are given such that Bsuν ` Jνpz, uνqBtuν “ fν , and we need to establish that uν is
also uniformly W k`1,p-bounded over compact subsets. (Note that we can assume

due to statement 1 in the theorem that each uν is of class W k`1,p
loc .) It suffices in

fact to prove that every subsequence of uν has a further subsequence for which such
uniform bounds hold; indeed, if the bound for the whole sequence did not exist,
then we would be able to find a subsequence with norms blowing up to infinity over
some compact subset, and no further subsequence of this subsequence could satisfy
a uniform bound. With this understood, we can appeal to the compactness of the
inclusion W k,ppD̊q ãÑ C0pDq for kp ą 2 (see Proposition 2.4), and replace uν with
a subsequence (still denoted by uν) that is C

0-convergent on D to some continuous
map u : D Ñ Cn.

For any given point z0 P D̊, we can now apply a converging sequence of affine
transformations to Cn in order to assume without loss of generality

uνpz0q “ 0 for all ν, and Jpz0, 0q “ i.

We then choose

(2.12) α P p0, 1q with α ă k ´ 2

p
,

and apply the rescaling trick outlined above to replace uν , fν and Jν with the

corresponding rescalings ûν , f̂ν and pJν as defined in (2.10), defining also the related

functions pQν “ i ´ pJν . We then have the equation B̄ûν ´ pQνpz, ûνqBtûν “ f̂ν , with

Ck-convergence pQν Ñ pQ over D ˆ D2n, where pQ may be assumed arbitrarily Ck-
small on this set by choosing ǫ ą 0 small. Since ûνp0q “ uνpz0q “ 0 for all ν, we
can choose some β ą α that also satisfies the conditions in (2.12) and then apply
Propostion 2.10 to obtain a bound

(2.13) }ûν}W k,p ď Cǫβ´α}uν}W k,p ď Cǫβ´αM

for some constant C ą 0 that is independent of ν and ǫ. We can therefore impose an
arbitrarily small uniform W k,p-bound (and therefore a similarly small C0-bound) on
ûν by choosing ǫ ą 0 small enough. For fν , it will suffice to know that the uniform
bound }fν}W k,p ď M implies a similar uniform bound

}f̂ν}W k,p ď Mǫ

for some constant Mǫ ą 0 which may depend on ǫ, but not on ν. Our goal is now
to prove that for some fixed choice of the rescaling parameter ǫ ą 0, }Bjûν}W k,ppD̊rq
is uniformly bounded for j “ 1, 2 and some r P p0, 1q.
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The argument begins exactly the same as in the linear case: choose a smooth
bump function

β P C8
0 pD̊, r0, 1sq

that satisfies β|Dr ” 1. We then have β Bjûν P W k,p
0 pD̊q, so by Theorem 2.13,

(2.14) }Bjûν}W k,ppD̊rq ď }β Bjûν}W k,ppD̊q ď c
››B̄ pβ Bj ûνq

››
W k´1,ppD̊q .

If this were still the proof of Theorem 2.17, we would now apply the Leibniz rule
to write B̄pβ Bjûνq as a sum of two terms, but the nonlinear case requires some-
thing slightly cleverer at this step. Let us instead derive a PDE satisfied by β Bj ûν.
Differentiating the equation B̄ûν “ pQνpz, ûνqBtûν ` f̂ν gives

B̄pBj ûνq “ BjpB̄ûνq
“ pQνpz, ûνqBtBjûν ` Bj pQνpz, ûνqBtûν ` D2

pQνpz, ûνq pBjûν , Btûνq ` Bj f̂ν ,

where Bj pQν means a partial derivative of pQνps ` it, xq with respect to s or t, and

D2
pQν is its partial differential with respect to x P Cn. In this calculation we have

assumed that the product and chain rules are universally valid, but this requires
some care since we are dealing with weak rather than classical derivatives: in fact,

the chain rule can be used for differentiating pQνpz, ûνq according to Theorem A.18

since ûν is of classW
k,p with kp ą 2 and pQν is of class C

k, and Proposition A.16 then

justifies the product rule for pQνpz, ûνqBtûν since pQνpz, ûνq P W k,p, Btûν P W k´1,p,
and the product pairing W k,p ˆ W k´1,p Ñ W k´1,p is continuous. Returning to the
formula itself, we now have

B̄pβ Bjûνq “ β pQνpz, ûνqBtBjûν ` βBj pQνpz, ûνqBtûν ` βD2
pQνpz, ûνq pBjûν , Btûνq

` β Bj f̂ν ` pB̄βqBjûν
“ pQνpz, ûνqBtpβ Bjûνq ` D2

pQνpz, ûνq pβ Bjûν , Btûνq ` βBj pQνpz, ûνqBtûν
` β Bj f̂ν ` pB̄βqBjûν ´ pQνpz, ûνqpBtβqBjûν ,

so that β Bj ûν satisfies

B̄pβ Bj ûνq ´ pQνpz, ûνqBtpβ Bjûνq “ D2
pQνpz, ûνqpβ Bjûν , Btûνq

`
´

B̄β ´ pQνpz, ûνqBtβ
¯

Bj ûν ` β
´

Bj pQνpz, ûνqBtûν ` Bj f̂ν
¯
.

Combining this with (2.14) gives

(2.15)

}β Bjûν}W k,p ď c
›› pQνpz, ûνqBtpβ Bjûνq

››
W k´1,p ` c

››D2
pQνpz, ûνqpβ Bjûν , Btûνq

››
W k´1,p

` c
›››
´

B̄β ´ pQνpz, ûνqBtβ
¯

Bjûν ` β
´

Bj pQνpz, ûνqBtûν ` Bj f̂ν
¯›››

W k´1,p
.

It is important to note that the constant c ą 0 in this expression comes from the
elliptic estimate }g}W k,p ď c}B̄g}W k´1,p, so it is the same constant regardless of our
choice of the scaling parameter ǫ. Let’s look at each of the three terms on the right
hand side separately.
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Step 1: The third term.
We claim that the term on the second line of (2.15) satisfies a uniform bound. For

the terms in this expression that only involve products of Bjûν or Bj f̂ν with smooth

functions, this follows immediately from the uniformW k,p-bounds on ûν and f̂ν . For

the term involving pQνpz, ûνq we observe that since pQν Ñ pQ in Ck on DˆD2n and ûν
can be assumed to lie in aW k,p-small neighborhood of 0 for every ν, Proposition 2.7

places pQνpz, ûνq into a W k,p-small neighborhood of the function z ÞÑ pQpz, 0q for
ν sufficiently large, meaning this term is uniformly W k,p-bounded. Its product
with Bjûν is then uniformly W k´1,p-bounded due to the continuous product pairing
W k,p ˆ W k´1,p Ñ W k´1,p from Prop. 2.6.

It remains to find a uniform W k´1,p-bound for Bj pQνpz, ûνqBtûν. For this, slightly
different arguments are in order depending on whether p ą 2 or p ď 2. If p ą 2, then
W k,p has a continuous inclusion into Ck´1, thus ûν for every ν lies in a Ck´1-small

neighborhood of 0 while Bj pQν converges in Ck´1 to Bj pQ, implying that Bj pQνpz, ûνq
is uniformly Ck´1-bounded. A W k´1,p-bound on Bj pQνpz, ûνqBtûν then comes from
the (obviously) continuous product pairing Ck´1 ˆ W k´1,p Ñ W k´1,p. If on the
other hand p ď 2, then we necessarily have k ě 2 since kp ą 2, and we can instead
make use of a Sobolev embedding of the form W k,p ãÑ W k´1,q. Indeed, choose any
q P rp,8q such that the condition

0 ă k ´ 1 ´ 2

q
ď k ´ 2

p

is satisfied; this is clearly possible since k´1´ 2
p

ă k´ 2
p
and k´1´ 2

8 “ k´1 ě k´ 2
p

for p ď 2. Proposition 2.4 now provides a continuous inclusion W k,p ãÑ W k´1,q, and
since pk ´ 1qq ą 2, there is also a continuous pairing Ck´1 ˆ W k´1,q Ñ W k´1,q

from Proposition 2.7, implying that Bj pQνpz, ûνq is uniformlyW k´1,q-bounded. Since
pk ´ 1qq ą 2 and k ´ 1 ´ 2

q
ě k ´ 1 ´ 2

p
, Proposition 2.6 now gives a continuous

product pairing W k´1,q ˆ W k´1,p Ñ W k´1,p, which provides the desired W k´1,p-

bound on Bj pQνpz, ûνqBtûν .
Step 2: The first term.

The tricky aspect of the first term in (2.15) is that it involves kth derivatives of
β Bj ûν, which are actually what we were trying to bound in the first place. What

saves the situation is the smallness of pQνpz, ûνq: indeed, we have seen above that this
term can be assumed arbitrarily W k,p-small as ν Ñ 8 if ǫ ą 0 is chosen sufficiently
small. The continuous product pairing W k,p ˆ W k´1,p Ñ W k´1,p gives a bound

c
›› pQνpz, ûνqBtpβ Bj ûνq

››
W k´1,p ď c1›› pQνpz, ûνq

››
W k,p ¨ }Btpβ Bj ûνq}W k´1,p

ď c1›› pQνpz, ûνq
››
W k,p ¨ }β Bjûν}W k,p,

where c1 ą 0 is yet another constant that does not depend on ǫ. With this in mind,
let us now choose ǫ ą 0 small enough to ensure

›› pQνpz, ûνq
››
W k,p ă 1

3c1 .
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Step 3: The second term.

We observe first that since D2
pQν Ñ D2

pQ in Ck´1, the same trick that was used to
bound Bj pQνpz, ûνq in step 1 furnishes D2

pQνpz, ûνq with a uniform Ck´1-bound if p ą
2, and a uniform W k´1,q-bound for some q ě p with pk ´ 1qq ą 2 if p ď 2, where in
both cases the bounds can be assumed independent of the scaling parameter ǫ. Since
both Ck´1 and W k´1,q admit continuous product pairings with W k´1,p, combining
this with the product pairing W k,p ˆW k´1,p Ñ W k´1,p then leads to a bound of the
form

c
››D2

pQνpz, ûνqpβ Bjûν , Btûνq
››
W k´1,p ď c1}β Bjûν}W k,p ¨ }Btûν}W k´1,p

for a constant c1 ą 0 that is independent of ν and ǫ. By (2.13), we can now choose
ǫ ą 0 small enough so that

}Btûν}W k´1,p ď }ûν}W k,p ă 1

3c1

for all ν.
Conclusion.

Combining the three estimates above for the terms on the right hand side of (2.15)
now gives an inequality of the form

}β Bjûν}W k,p ď c2 ` 2

3
}β Bjûν}W k,p,

where c2 ą 0 is the bound obtained in step 1. We conclude }β Bjûν}W k,p ď 3c2, and
have thus found a uniform bound for }ûν}W k`1,ppD̊rq. �

Exercise 2.29. Use an analogous argument via difference quotients to prove
statement (1) in Theorem 2.24. Hint: If you’re anything like me, you might get
stuck trying to estimate the difference quotient analogues of the terms in (2.15)

that involve derivatives of pQν . The difficulty is that this expression was derived
using the chain rule for derivatives, and there is no similarly simple chain rule for
difference quotients. The trick is to remember that difference quotients only differ
from the corresponding derivatives by a remainder term. The remainder will produce
extra terms in the difference quotient version of (2.15), but the extra terms can be
bounded.

2.5. Linear local existence and applications

The following lemma can be applied in the case A P C8pD,EndCpCnqq to prove
the aforementioned standard fact that complex-linear Cauchy-Riemann type oper-
ators induce holomorphic structures on vector bundles. The version with weakened
regularity will be applied below to prove a useful “unique continuation” result about
solutions to pB̄ ` Aqf “ 0 in the real-linear case.

Lemma 2.30. Assume 2 ă p ă 8 and A P LppD̊,EndRpCnqq. Then for suffi-
ciently small ǫ ą 0, the problem

B̄u ` Au “ 0

up0q “ u0

has a solution u P W 1,ppD̊ǫ,C
nq.
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Remark 2.31. Note that u : D̊ǫ Ñ Cn in the above statement is only a weak
solution to B̄u ` Au “ 0, as it is not necessarily differentiable, but by the Sobolev
embedding theorem, it is at least continuous.

Proof of Lemma 2.30. The main idea is that if we take ǫ ą 0 sufficiently
small, then the restriction of B̄ ` A to D̊ǫ can be regarded as a small perturbation
of B̄ in the space of bounded linear operators W 1,p Ñ Lp. Since the latter has a
bounded right inverse by Theorem 2.12, the same will be true for the perturbation.

Since p ą 2, the Sobolev embedding theorem implies that functions u P W 1,p

are also continuous and bounded by }u}W 1,p, thus we can define a bounded linear
operator

Φ : W 1,ppD̊q Ñ LppD̊q ˆ Cn : u ÞÑ pB̄u, up0qq.
Theorem 2.12 implies that this operator is also surjective and has a bounded right
inverse, namely

LppD̊q ˆ Cn Ñ W 1,ppD̊q : pf, u0q ÞÑ Tf ´ Tfp0q ` u0,

where T : LppD̊q Ñ W 1,ppD̊q is a right inverse of B̄. Thus any operator sufficiently
close to Φ in the norm topology also has a right inverse. Now define χǫ : D Ñ R to
be the function that equals 1 on Dǫ and 0 outside of it, and let

Φǫ : W
1,ppD̊q Ñ LppD̊q ˆ Cn : u ÞÑ ppB̄ ` χǫAqu, up0qq.

To see that this is a bounded operator, it suffices to check that W 1,p Ñ Lp : u ÞÑ Au

is bounded if A P Lp; indeed,
}Au}Lp ď }A}Lp}u}C0 ď c}A}Lp}u}W 1,p,

again using the Sobolev embedding theorem. Now by this same trick, we find

}Φǫu´ Φu} “ }χǫAu}LppD̊q ď c}A}LppD̊ǫq}u}W 1,ppD̊q,

thus }Φǫ ´ Φ} is small if ǫ is small, and it follows that in this case Φǫ is surjective.

Our desired solution is therefore the restriction of any u P Φ´1
ǫ p0, u0q to D̊ǫ. �

Here is a corollary, which says that every solution to a real-linear Cauchy-
Riemann type equation looks locally like a holomorphic function in some continuous
local trivialization.

Theorem 2.32 (Similarity principle). Suppose A : D Ñ EndRpCnq is smooth

and u : D̊ Ñ Cn satisfies the equation B̄u ` Au “ 0 with up0q “ 0. Then for

sufficiently small ǫ ą 0, there exist maps Φ P C0pDǫ,EndCpCnqq and f P C8pD̊ǫ,C
nq

such that
upzq “ Φpzqfpzq, B̄f “ 0, and Φp0q “ 1.

Proof. After shrinking the domain if necessary, we may assume without loss
of generality that the smooth solution u : D̊ Ñ Cn is bounded. Choose a map
C : D Ñ EndCpCnq satisfying Cpzqupzq “ Apzqupzq and |Cpzq| ď |Apzq| for almost

every z P D. Then C P L8pD̊,EndCpCnqq and u is a weak solution to pB̄ ` Cqu “ 0.
Note that since we do not know anything about the zero set of u, we cannot assume
C is continuous, but we have no trouble assuming C P LppD̊q for every p ą 2.
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Since B̄`C is now complex linear, we can use Lemma 2.30 to find a complex basis
ofW 1,p-smooth weak solutions to pB̄`Cqv “ 0 on D̊ǫ that define the standard basis of
Cn at 0, and these solutions are continuous by the Sobolev embedding theorem. This
gives rise to a map Φ P W 1,ppD̊ǫ,EndCpCnqq that satisfies pB̄ `CqΦ “ 0 in the sense
of distributions and Φp0q “ 1. Since Φ is continuous, we can assume without loss of

generality that Φpzq is invertible everywhere on D̊ǫ. Setting f :“ Φ´1u : D̊ǫ Ñ Cn,
the Leibniz rule then implies

0 “ pB̄ ` Cqu “ pB̄ ` CqpΦfq “
“
pB̄ ` CqΦ

‰
f ` ΦpB̄fq “ ΦpB̄fq.

Note that the use of the Leibniz rule in this situation is justified by Proposition A.16
in light of the continuous product pairing W 1,p ˆ W 1,p Ñ W 1,p. It follows that
B̄f “ 0, and f is smooth by Lemma 2.21. �

Corollary 2.33 (Unique continuation). SupposeD is a linear Cauchy-Riemann
type operator on a vector bundle E over a connected Riemann surface, and η P ΓpEq
satisfies Dη “ 0. Then either η is identically zero or its zeroes are isolated. �

The similarity principle also has many nice applications for the nonlinear Cauchy-
Riemann equation. Here is another “unique continuation” type result for the non-
linear case.

Proposition 2.34. Suppose J is a smooth almost complex structure on Cn and
u, v : D̊ Ñ Cn are smooth J-holomorphic curves such that up0q “ vp0q “ 0 and u and
v have matching partial derivatives of all orders at 0. Then u ” v on a neighborhood
of 0.

Proof. Let h “ v ´ u : D̊ Ñ Cn. We have

(2.16) Bsu` JpupzqqBtu “ 0

and

Bsv ` JpupzqqBtv “ Bsv ` JpvpzqqBtv ` rJpupzqq ´ Jpvpzqqs Btv
“ ´ rJpupzq ` hpzqq ´ Jpupzqqs Btv

“ ´
ˆż 1

0

d

dτ
Jpupzq ` τhpzqq dτ

˙
Btv

“ ´
ˆż 1

0

dJpupzq ` τhpzqq ¨ hpzq dτ
˙

Btv “: ´Apzqhpzq,

(2.17)

where the last step defines a smooth family of linear maps Apzq P EndRpCnq. Sub-
tracting (2.16) from (2.17) gives the linear equation

Bshpzq ` J̄pzqBthpzq ` Apzqhpzq “ 0,

where J̄pzq :“ Jpupzqq. This is a linear Cauchy-Riemann type equation on a trivial

complex vector bundle over D̊ with complex structure J̄pzq on the fiber at z. The
similarity principle thus implies hpzq “ Φpzqfpzq near 0 for some holomorphic func-
tion fpzq P Cn and some continuous map Φpzq P GLp2n,Rq representing a change of
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trivialization. Now if h has vanishing derivatives of all orders at 0, Taylor’s formula
implies

lim
zÑ0

|Φpzqfpzq|
|z|k “ 0

for all k P N, so f must also have a zero of infinite order and thus f ” 0. �

2.6. Simple curves and multiple covers

We now prove a global result about the structure of closed J-holomorphic curves.
In Lecture 6 we will be able to generalize it in a straightforward way for punctured
holomorphic curves with asymptotically cylindrical behavior.

Theorem 2.35. Assume pΣ, jq is a closed connected Riemann surface, pW,Jq
is a smooth almost complex manifold and u : pΣ, jq Ñ pW,Jq is a nonconstant
pseudoholomorphic curve. Then there exists a factorization u “ v ˝ ϕ, where

‚ ϕ : pΣ, jq Ñ pΣ1, j1q is a holomorphic map of positive degree to another
closed and connected Riemann surface pΣ1, j1q;

‚ v : pΣ1, j1q Ñ pW,Jq is a pseudoholomorphic curve which is embedded except
at a finite set of self-intersections and non-immersed points.8

Note that holomorphic maps pΣ, jq Ñ pΣ1, j1q of degree 1 are always diffeomor-
phisms, so the factorization u “ v ˝ϕ in this case is just a reparametrization, and u
is then called a simple curve. In all other cases, k :“ degpϕq ě 2 and ϕ is in general
a branched cover; we then call u a k-fold branched cover of the simple curve v.

The main idea in the proof is to construct Σ1 (minus some punctures) explicitly
as the image of u after removing finitely many singular points, so that we can take
v to be the inclusion Σ1 ãÑ W . The map ϕ : Σ Ñ Σ1 is then uniquely determined.
In order to carry out this program, we need some information on what the image
of u can look like near each of its singularities. These come in two types, each type
corresponding to one of the lemmas below, both of which should seem immediately
plausible if your intuition comes from complex analysis.

Lemma 2.36 (Intersections). Suppose u : pΣ, jq Ñ pW,Jq and v : pΣ1, j1q Ñ
pW,Jq are two nonconstant pseudoholomorphic curves with an intersection upzq “
vpz1q. Then there exist neighborhoods z P U Ă Σ and z1 P U 1 Ă Σ1 such that

either upUq “ vpU 1q or upUztzuq X vpU 1q “ upUq X vpU 1ztz1uq “ H.

�

Proof in the special case dupzq ‰ 0. While the proof of this lemma in full
generality is somewhat involved, it becomes a simple application of the similarity
principle (Theorem 2.32) if we additionally asume that either dupzq or dvpz1q is

8It follows from the Cauchy-Riemann equation that if u : pΣ, jq Ñ pW,Jq is J-holomorphic,
then at each point z P Σ, its first derivative dupzq : TzΣ Ñ TupzqW is either injective or trivial. We
are referring to points with dupzq “ 0 as non-immersed points of u. The term “critical points”
is also commonly used for this condition, but is slightly at odds with the usual definition of that
term when dimW ě 4 since, strictly speaking, every point is critical in the sense that dupzq can
never be surjective.
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nonzero. We can choose holomorphic local coordinates near z P Σ and z1 P Σ1

and smooth coordinates near upzq “ vpz1q P W so that without loss of generality,
pΣ, jq “ pΣ1, j1q “ pD, iq with z “ z1 “ 0, W “ Cn and up0q “ vp0q “ 0. If
dup0q ‰ 0, then we can also arrange these coordinates so that

upzq “ pz, 0q and Jpz, 0q “ i;

indeed, this is a simple matter of restricting u to a smaller disk on which it is
an embedding, rescaling to replace the smaller disk with D, then extending the
resulting embedding to an embedding D ˆ D2n´2

ǫ ãÑ Cn with its derivatives in the
normal direction along Dˆ t0u specified to be complex linear. In these coordinates,
for each pz, wq P C ˆ Cn´1 we have

Jpz, wq ´ i “
ż 1

0

d

dτ
Jpz, τwq dτ “

ż 1

0

D2Jpz, τwqw dτ “
ˆż 1

0

D2Jpz, τwq dτ
˙
w

“: Bpz, wqw,
defining a smooth map B : Cn Ñ HomRpCn´1,EndRpCnqq.

Now writing vpzq “ pϕpzq, fpzqq P C ˆ Cn´1, the nonlinear Cauchy-Riemann
equation for v gives

0 “ Bsv ` JpvqBtv “ Bsv ` i Btv ` rBpϕ, fqf sBtv,
and applying the projection π : C ˆ Cn´1 Ñ Cn´1 to this equation produces

0 “ B̄f ` Af,

where A : D Ñ EndRpCn´1q is a smooth map defined by

Apzqw :“ πrBpϕpzq, fpzqqwsBtvpzq.
The similarity principle therefore implies that either f vanishes identically near 0 or
its zero at the origin is isolated. �

Lemma 2.37 (Branching). Suppose u : pΣ, jq Ñ pW,Jq is a nonconstant pseudo-
holomorphic curve and z0 P Σ is a non-immersed point of u. Then a neighborhood
U Ă Σ of z0 can be biholomorphically identified with the unit disk D Ă C such that

upzq “ vpzkq for z P D “ U ,

where k P N, and v : D Ñ W is an injective J-holomorphic map with no non-
immersed points except possibly at the origin. �

These two local results follow from a well-known formula of Micallef and White
[MW95] describing the local behavior of J-holomorphic curves near non-immersed
points and their intersections. The proof of that theorem is analytically quite in-
volved, but one can also use an easier “approximate” version, which is proved in
[Wen20, Appendix B.2]. Since both are closely related to the phenomenon of unique
continuation, you will not be surprised to learn that even beyond the “easy” case
of Lemma 2.36 treated above, the similarity principle plays a role in the proof: the
main idea is again to exploit the fact that locally J is always a small perturbation
of i, hence the local behavior of J-holomorphic curves is also similar to the integrable
case.
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Proof of Theorem 2.35. Let Critpuq “ tz P Σ | dupzq “ 0u denote the set
of non-immersed points, and define ∆ Ă Σ to be the set of all points z P Σ such that
there exists z1 P Σ and neighborhoods z P U Ă Σ and z1 P U 1 Ă Σ with upzq “ upz1q
but upUztzuq X upU 1ztz1uq “ H.

The lemmas quoted above imply that both of these sets are discrete. Both
are therefore finite, and the set 9Σ1 “ upΣzpCritpuq Y ∆qq Ă W is then a smooth
submanifold of W with J-invariant tangent spaces, so it inherits a natural complex
structure j1 for which the inclusion p 9Σ1, j1q ãÑ pW,Jq is pseudoholomorphic. We

shall now construct a new Riemann surface pΣ1, j1q from which p 9Σ1, j1q is obtained

by removing a finite set of points. Let p∆ “ pCritpuq Y ∆q{ „, where two points
in Critpuq Y ∆ are defined to be equivalent whenever they have neighborhoods in

Σ with identical images under u. Then for each rzs P p∆, the branching lemma
provides an injective J-holomorphic map urzs from the unit disk D onto the image
of a neighborhood of z under u. We define pΣ1, j1q by

Σ1 “ 9Σ1 YΦ

¨
˝ ž

rzsPp∆

D

˛
‚,

where the gluing map Φ is the disjoint union of the maps urzs : Dzt0u Ñ 9Σ1 for

each rzs P p∆; since this map is holomorphic, the complex structure j1 extends from
9Σ1 to Σ1. Combining the maps urzs : D Ñ W with the inclusion 9Σ1 ãÑ W now

defines a pseudoholomorphic map v : pΣ1, j1q Ñ pW,Jq which restricts to 9Σ1 as an
embedding and otherwise has at most finitely many non-immersed points and double
points. Moreover, the restriction of u to ΣzpCritpuqY∆q defines a holomorphic map

to p 9Σ1, j1q which extends by removal of singularities to a proper holomorphic map
ϕ : pΣ, jq Ñ pΣ1, j1q such that u “ v ˝ ϕ. Its holomorphicity implies that it has
positive degree. �
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We now begin with the analysis of the particular class of J-holomorphic curves
that are important in SFT. The next three lectures will focus on the linearized
problem, the goal being to prove that this linearization is Fredholm and to compute
its index. Using this along with the implicit function theorem and the Sard-Smale
theorem (on genericity of smooth nonlinear Fredholm maps), we will later be able
to show that moduli spaces of asymptotically cylindrical J-holomorphic curves are
smooth finite-dimensional manifolds under suitable genericity assumptions.

3.1. The linearization in Morse homology

Since Morse homology is the prototype for all Floer-type theories, we can gain
useful intuition by recalling how the analysis works for the linearization of the gradi-
ent flow problem in Morse theory. The basic features of the problem were discussed
already in §1.2.

Assume pM, gq is a closed n-dimensional Riemannian manifold, f : M Ñ R is a
smooth function, and for two critical points x`, x´ P Critpfq, consider the moduli
space of parametrized gradient flow lines

Mpx´, x`q :“
"
u P C8pR,Mq

ˇ̌
ˇ 9u ` ∇fpuq “ 0, lim

sÑ˘8
upsq “ x˘

*
.

The map Mpx´, x`q Ñ M : u ÞÑ up0q gives a natural identification of Mpx´, x`q
with the intersection between the unstable manifold of x´ and the stable manifold
of x` for the negative gradient flow. We say the pair pg, fq is Morse-Smale if f
is Morse and all such intersections between stable and unstable manifolds of two

51
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critical points are transverse. In this case Mpx´, x`q is a smooth manifold with

(3.1) dimMpx´, x`q “ indpx´q ´ indpx`q,
because the unstable manifold of x´ has dimension indpx´q and the stable manifold
of x` has codimension indpx`q. All of this can be proved using finite-dimensional dif-
ferential topology, but we will see that the dimension computation as just described
cannot generalize to the study of Floer trajectories or holomorphic curves in sym-
plectizations, because the right hand side of (3.1) in those cases becomes 8´8. Let
us therefore discuss how (3.1) can be proved using a nonlinear functional-analytic
approach that does generalize. For more details on the following discussion, see
[Sch93].

Following the strategy laid out in §2.1, Mpx´, x`q can be identified with the
zero set of a smooth section

σ : B Ñ E : u ÞÑ 9u ` ∇fpuq,
where B is a Banach manifold of maps u : R Ñ M satisfying limsÑ˘8 upsq “ x˘,
and E Ñ B is a smooth Banach space bundle whose fibers Eu contain Γpu˚TMq.
The linearization Dσpuq : TuB Ñ Eu of this section at a zero u P σ

´1p0q defines a
first-order linear differential operator

Du : Γpu˚TMq Ñ Γpu˚TMq
which takes the form

Duη “ ∇sη ` ∇η∇f

for any choice of symmetric connection ∇ on M . Taking suitable Sobolev comple-
tions of Γpu˚TMq, we are therefore led to consider bounded linear operators1 of the
form

(3.2) Du “ ∇s ` ∇∇f :W k,ppu˚TMq Ñ W k´1,ppu˚TMq
for k P N and 1 ă p ă 8, and the first task is to prove that whenever x` and
x´ satisfy the Morse condition, this is a Fredholm operator of index indDu “
indpx´q ´ indpx`q.

Choose coordinates near x` in which g looks like the standard Euclidean inner
product at x`. This induces a trivialization of u˚TM over rT,8q for T ą 0 suf-
ficiently large, and we are free to assume that the connection ∇ is the standard
one determined by these coordinates on rT,8q. Using the trivialization to identify
sections η P Γpu˚TMq over rT,8q with functions η : rT,8q Ñ Rn, Du now acts on
η as

(3.3) pDuηqpsq “ Bsηpsq ` Apsqηpsq,
where Apsq P Rnˆn is the matrix of the linear transformation dXpsq : Rn Ñ Rn, with
Xpsq P Rn being the coordinate representation of ∇fpupsqq P TupsqM . As s Ñ 8,

1We are ignoring an analytical subtlety: since u˚TM Ñ R has no canonical trivialization and R

is noncompact, it is not completely obvious what the definition of the Sobolev space W k,ppu˚TMq
should be. We will return to this issue in a more general context in the next lecture.
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the zeroth-order term in this expression converges to a symmetric matrix

A` :“ lim
sÑ8

Apsq,

which is the coordinate representation of the Hessian ∇2fpx`q. Any choice of coordi-
nates near x´ produces a similar formula for Du over p´8,´T s, Apsq converging as
s Ñ ´8 to another symmetric matrix A´ representing ∇2fpx´q. Both the Morse
condition and the dimension indpx´q ´ indpx`q can now be expressed entirely in
terms of these two matrices: x˘ is Morse if and only if A˘ is invertible, and the
Fredholm index of Du will then be

indpx´q ´ indpx`q “ dimE´pA´q ´ dimE´pA`q,

where for any symmetric matrix A we denote by E´pAq the direct sum of all its
eigenspaces with negative eigenvalue. The main linear functional-analytic result
underlying Morse homology can now be stated as follows (cf. [Sch93]):

Proposition 3.1. Assume k P N and 1 ă p ă 8. Suppose E Ñ R is a
smooth vector bundle with trivializations fixed in neighborhoods of ´8 and `8, and
D :W k,ppEq Ñ W k´1,ppEq is a first-order differential operator which asymptotically
takes the form (3.3) near ˘8 with respect to the chosen trivializations, where Apsq
is a smooth family of n-by-n matrices with well-defined asymptotic limits A˘ :“
limsÑ˘8Apsq which are symmetric. If A` and A´ are also invertible, then D is
Fredholm and

(3.4) indpDq “ dimE´pA´q ´ dimE´pA`q.

�

Remark 3.2. The hypothesis that A˘ is invertible in Prop. 3.1 cannot be lifted:
indeed, suppose D is Fredholm but e.g. A` has 0 in its spectrum. Then one can
easily perturb Apsq and hence A` in two distinct ways producing two distinct values
of dimE´pA`q, pushing the zero eigenvalue either up or down. This produces two
perturbed Fredholm operators that have different indices according to (3.4), but
they also belong to a continuous family of Fredholm operators, and must therefore
have the same index, giving a contradiction.

The formula (3.4) makes sense of course because E´pA˘q are both finite-dimen-
sional vector spaces, but in Floer-type theories we typically encounter critical points
with infinite Morse index. With this in mind, it is useful to note that (3.4) can
be rewritten without explicitly referencing E´pA`q or E´pA´q. Indeed, choose
a continuous path of symmetric matrices tBtutPr´1,1s connecting Bp´1q :“ A´ to
Bp1q :“ A`. The spectrum of Bt varies continuously with t in the following sense:
one can choose a family of continuous functions

tλj : r´1, 1s Ñ RujPI

for the index set I “ t1, . . . , nu such that for every t P r´1, 1s, the set of eigenvalues
of Bt counted with multiplicity is tλjptqujPI . The spectral flow from A´ to A` is
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then defined as a signed count of the number of paths of eigenvalues that cross from
one side of zero to the other, namely (cf. Theorem 3.19)

µspecpA´, A`q :“ #
 
j P I

ˇ̌
λjp´1q ă 0 ă λjp1q

(
´ #

 
j P I

ˇ̌
λjp´1q ą 0 ą λjp1q

(
.

The index formula (3.4) now becomes

indpDq “ µspecpA´, A`q.

This description of the index has the advantage that it could potentially make
sense and give a well-defined integer even if A˘ were symmetric operators on an
infinite-dimensional Hilbert space: they might both have infinitely many positive
and negative eigenvalues, but only finitely many that change sign along a path from
A´ to A`. We will make this discussion precise in the next section.

3.2. The Hessian of the contact action functional

We will view SFT as an infinite-dimensional analogue of Morse homology in
which closed nondegenerate Reeb orbits take the place of Morse critical points. The
role of the Hessian is then played by a certain self-adjoint differential operator on
the contact bundle along each closed orbit.

Before explaining this, let’s quickly revisit the Floer homology for a time-dependent
Hamiltonian tHt : M Ñ RutPS1 on a symplectic manifold pM,ωq. In Lecture 1, we
introduced the symplectic action functional AH : C8

contrpS1,Mq Ñ R and wrote
down the formula

∇AHpγq “ Jtpγq p 9γ ´ Xtpγqq P Γpγ˚TMq “: TγC
8
contrpS1,Mq

for the “unregularized” gradient of AH at a contractible loop γ P C8
contrpS1,Mq.

Here Xt denotes the Hamiltonian vector field and Jt is a time-dependent family of
compatible almost complex structures, which determines the L2-product

xη1, η2yL2 “
ż

S1

ωpη1ptq, Jtη2ptqq dt.

The critical points of AH are the loops γ such that ∇AHpγq “ 0. Formally, the
Hessian of AH at γ P CritpAHq is the “linearization of ∇AH at γ,” which gives a
linear operator

Aγ :“ ∇2AHpγq : Γpγ˚TMq Ñ Γpγ˚TMq.
To write it down, one can choose any connection ∇ on M , and choose for η P
Γpγ˚TMq a smooth family tγρ : S1 Ñ MuρPp´ǫ,ǫq with γ0 “ γ and Bργρ|ρ“0 “ η, and
then compute

Aγη :“ ∇ρ r∇AHpγρqs|
ρ“0

.

The result is independent of the choice of connection since ∇AHpγq “ 0.

Exercise 3.3. Show that if the connection ∇ on M is chosen to be symmetric,
then Aγη “ Jtp∇tη ´ ∇ηXtq.
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To adapt this discussion for SFT, fix a p2n ´ 1q-dimensional contact manifold
pM, ξq with contact form α, induced Reeb vector field Rα, and a complex structure
J : ξ Ñ ξ compatible with the symplectic structure dα|ξ. Let

πξ : TM Ñ ξ

denote the projection along Rα. The contact action functional is defined by

Aα : C8pS1,Mq Ñ R : γ ÞÑ
ż

S1

γ˚α.

The first variation of this functional for γ P C8pS1,Mq and η P Γpγ˚TMq is

dAαpγqη “
ż

S1

dαpη, 9γq dt “ ´
ż

S1

dαpπξ 9γ, ηq dt.

The functional has a built-in degeneracy since it is parametrization-invariant; in
particular, dAαpγqη “ 0 whenever η points in the direction of the Reeb vector field,
a symptom of the fact that closed Reeb orbits always come in families related to
each other by reparametrization. A loop γ : S1 Ñ M is critical for Aα if and
only if 9γ is everywhere tangent to Rα, allowing for an infinite-dimensional family
of distinct perturbations—however, there exist preferred parametrizations, namely
those for which 9γ is a constant multiple of Rα, meaning

(3.5) 9γ “ T ¨ Rαpγq, T :“ Aαpγq.
Such a loop corresponds to a T -periodic solution x : R Ñ M to 9x “ Rαpxq, where
γptq “ xpT tq.

The discussion above indicates that we cannot derive a “Hessian” of Aα in the
same straightforward way as in Floer homology, as the resulting operator will always
have nontrivial kernel due to the degeneracy in the Rα direction. To avoid this, we
shall consider only preferred parametrizations γ : S1 Ñ M of the form (3.5), and
perturbations in directions tangent to ξ, which is transverse to every Reeb orbit.
For η P Γpγ˚ξq, we then have

dAαpγqη “
ż

S1

dαp´Jπξ 9γ, Jηq dt “ x´Jπξ 9γ, ηyL2,

where we define an L2-product for sections of γ˚ξ by

(3.6) xη, η1yL2 :“
ż

S1

dαpη, Jη1q dt.

It therefore seems sensible to write

∇Aαpγq :“ ´Jπξ 9γ P Γpγ˚ξq,
and we shall define the Hessian at a critical point γ as the linearization of ∇Aα in
ξ directions, that is,

∇2Aαpγq : Γpγ˚ξq Ñ Γpγ˚ξq.
Given η P Γpγ˚ξq, choose a smooth family tγρ : S1 Ñ MuρPp´ǫ,ǫq with γ0 “ γ

and Bργρ|ρ“0 “ η, and fix a symmetric connection ∇ on M . Let us first use this
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connection to differentiate the family of sections πξ 9γρ P Γpγ˚
ρ ξq with respect to the

parameter:

∇ρ pπξ 9γρq
ˇ̌
ρ“0

“ ∇ρ rBtγρ ´ αpBtγρqRαpγρqs
ˇ̌
ρ“0

“ ∇tη ´ αp 9γq∇ηRα ´ Bρ rαpBtγρqs
ˇ̌
ρ“0

¨Rαpγq.

The latter expression is a priori an element of Γpγ˚TMq, but since πξ 9γρ belongs
to the subspace Γpγ˚

ρ ξq Ă Γpγ˚
ρTMq for every ρ and πξ 9γ vanishes, this derivative

is independent of the choice of connection and also takes its value in the subspace
Γpγ˚ξq. Moreover, it can be simplified in light of the relation

0 “ T ¨dαpη, Rαpγqq “ dαpBργρ, Btγρq
ˇ̌
ρ“0

“ Bρ rαp 9γρqs
ˇ̌
ρ“0

´Bt rαpηqs “ Bρ rαp 9γρqs
ˇ̌
ρ“0

,

implying

∇ρ pπξ 9γρq
ˇ̌
ρ“0

“ ∇tη ´ T∇ηRα P Γpγ˚ξq,
and thus

∇ρ p´Jπξ 9γρq|
ρ“0

“ ´J p∇tη ´ T∇ηRαq P Γpγ˚ξq.
This calculation motivates the following definition.

Definition 3.4. Given a loop γ : S1 Ñ M parametrizing a closed Reeb orbit
in pM, ξ “ kerαq with period T ” αp 9γq, the asymptotic operator associated to
γ is the first-order differential operator on γ˚ξ defined by

Aγ : Γpγ˚ξq Ñ Γpγ˚ξq : η ÞÑ ´Jp∇tη ´ T∇ηRαq

Exercise 3.5. Show that Aγ is symmetric with respect to the L2 inner product
(3.6) on Γpγ˚ξq. Moreover, γ is nondegenerate (see §1.3) if and only if kerAγ is
trivial. Hint for nondegeneracy: Consider the pullback of γ˚ξ via the cover R Ñ
S1 “ R{Z, and show that solutions to ∇tη ´ T∇ηRα “ 0 on the pullback are given
by operating on ξγp0q with the linearized Reeb flow. To see this, try differentiating
families of solutions to the equation 9x “ TRαpxq.

Remark 3.6. The Reeb vector field Rα of a contact form α satisfies

LRαα “ dιRαα` ιRαdα “ dp1q ` dαpRα, ¨q ” 0, and

LRαdα “ dιRαdα` ιRαd
2α “ d

`
dαpRα, ¨q

˘
” 0,

thus its flow preserves ξ “ kerα along with its symplectic vector bundle structure
dα|ξ. Another way of phrasing the hint in the the above exercise is then as follows:

Aγ can also be written as ´J p∇t, where p∇t is the unique symplectic connection on
pγ˚ξ, dαq for which parallel transport is given by the linearized Reeb flow.

Remark 3.7 (sign conventions). You might be slightly concerned about the
sign difference between the formulas for asymptotic operators in Exercise 3.3 and
Definition 3.4. The former comes from Floer homology and the latter from SFT, two
subfields of symplectic topology in which slightly different conventions are considered
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standard.2 The discrepancy seems to originate from the fact that while our account
of Floer homology has referred always to the negative gradient flow of AH , SFT is
actually defined via the positive gradient flow of Aα. The words “gradient flow” in
SFT must in any case be interpreted very loosely. If

u : r0,8q ˆ S1 Ñ R ˆ M

is the cylindrical end of a finite-energy J-holomorphic curve for some J P J pαq as
we described in Lecture 1, then ups, tq does not satisfy anything so straightforward
as Bs ´ ∇Aαpups, ¨qq “ 0, but it does satisfy

πξBsu` JπξBtu “ 0,

which can be interpreted as the projection of a positive gradient flow equation to the
contact bundle. This observation is a local symptom of a more important global fact
that follows from Stokes’ theorem: any asymptotically cylindrical J-holomorphic
curve u : 9Σ Ñ RˆM with positive and negative punctures Γ˘ asymptotic to orbits
tγzuzPΓ˘ satisfies

ÿ

zPΓ`

Aαpγq ´
ÿ

zPΓ´

Aαpγq “
ż

9Σ

u˚dα ě 0.

This generalizes the basic fact in Floer homology that flow lines decrease action and,
conversely, have their energy controlled by the action.

We would now like to develop some of the general properties of asymptotic
operators. Recall that on any symplectic vector bundle pE, ωq, a compatible complex
structure J determines a Hermitian inner product

xv, wy “ ωpv, Jwq ` iωpv, wq,
and conversely, any Hermitian inner product on a complex vector bundle determines
a symplectic structure via the same relation. For this reason, we shall refer to any
vector bundle E with a compatible pair pJ, ωq of complex and symplectic structures
as a Hermitian vector bundle. A unitary trivialization of such a bundle is
a trivialization that identifies fibers with R2n “ Cn such that J and ω become
the standard complex structure J0 :“ i and symplectic structure ω0 :“ g0pJ0¨, ¨q
respectively; here g0 denotes the standard Euclidean inner product.

Definition 3.8. Fix a Hermitian vector bundle pE, J, ωq over S1. A smooth
asymptotic operator on pE, J, ωq is any real-linear differential operator of the
form ´J∇t : ΓpEq Ñ ΓpEq, where ∇ is a symplectic connection on E.

Remark 3.6 shows that the asymptotic operator Aγ for a closed Reeb orbit γ is
also a smooth asymptotic operator on pγ˚ξ, J, dαq in the sense of Definition 3.8.

2The literature on embedded contact homology (ECH) is a special case: while ECH is defined
within the same analytical framework as SFT, papers such as [Hut14,HT07] omit the initial minus
sign in their definitions of asymptotic operators. Some of the results in §3.5 relating eigenvalues of
asymptotic operators to winding numbers therefore work out differently in the ECH context.
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Exercise 3.9. Show that any smooth asymptotic operator on a Hermitian vector
bundle pE, J, ωq over S1 is symmetric with respect to the real L2 bundle metric

xη1, η2yL2 :“
ż

S1

ωpη1ptq, Jη2ptqq dt.

Exercise 3.10. Show that Hermitian vector bundles pE, J, ωq over S1 are always
globally trivializable, and a choice of global unitary trivialization identifies each
smooth asymptotic operator on pE, J, ωq with an operator of the form

A : C8pS1,R2nq Ñ C8pS1,R2nq : η ÞÑ ´J0Btη ´ Sptqη
for some smooth loop S : S1 Ñ Endsym

R pR2nq, where we denote

Endsym
R pR2nq :“

 
B P EndpR2nq “ R2nˆ2n

ˇ̌
BT “ B

(
.

Hint: Use the fact that the difference between two connections is a bundle map, and
deduce the symmetry of Sptq from Exercise 3.9.

For functional-analytic purposes, we shall regard asymptotic operators on Her-
mitian bundles pE, J, ωq as bounded real-linear operators

A : H1pEq Ñ L2pEq,
where H1 is an abbreviation for the Sobolev class W 1,2. (For details on Sobolev
norms for spaces of sections of vector bundles over a closed manifold, see §A.4.)
Note that since the difference between any two smooth asymptotic operators is
tensorial, that difference extends to a bounded linear operator on L2pEq; as an
operator H1pEq Ñ L2pEq, it is therefore the composition of a bounded operator
with the compact inclusion H1pEq ãÑ L2pEq, implying that it is compact. This
property will play an essential role when we study the spectrum of asymptotic
operators in §3.3.

For technical reasons, we will sometimes need to consider a larger class of asym-
totic operators whose zeroth-order terms are not necessarily smooth, nor even con-
tinuous. The weakest regularity condition we can impose without invalidating the
discussion in the previous paragraph is the following:

Definition 3.11. An asymptotic operator (of class L8q on a Hermitian vec-
tor bundle pE, J, ωq over S1 is a bounded linear operator A : H1pEq Ñ L2pEq that
is identified under any choice of global unitary trivialization with an operator of the
form

H1pS1,R2nq Ñ L2pS1,R2nq : η ÞÑ ´J0Btη ´ Sptqη
for some function S P L8pS1,Endsym

R pR2nqq. The space

ApEq Ă L pH1pEq, L2pEqq
of all asymptotic operators onE is thus an affine space over the space L8pEndsym

R pEqq
of symmetric real-linear bundle maps E Ñ E of class L8, and we assign to it the
corresponding L8-topology. We also denote

A˚pEq :“
 
A P ApEq

ˇ̌
kerA “ t0u

(
,

and call the operators in this subset nondegenerate.
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We will assume henceforward that all asymptotic operators we consider are of
class L8 unless otherwise noted, though most examples that arise in geometric
settings (e.g. the operator corresponding to a closed Reeb orbit) will be smooth.

Exercise 3.12. Generalize Exercise 3.9 to prove that asymptotic operators of
class L8 are also L2-symmetric.

Lemma 3.13. All asymptotic operators A P ApEq are Fredholm with index 0.

Proof. Choosing a global unitary trivialization, it suffices to consider an op-
erator of the form ´J0Bt ´ S : H1pS1,R2nq Ñ L2pS1,R2nq for some S : S1 Ñ
Endsym

R pR2nq of class L8, and since the operator H1pS1,R2nq Ñ L2pS1,R2nq : η ÞÑ
Sη is compact, we can regard the zeroth-order term as a compact perturbation and
thus restrict attention to the operator ´J0 Bt : H1pS1,R2nq Ñ L2pS1,R2nq. Since
J0 defines an isomorphism, it suffices actually to show that the ordinary differential
operator

Bt : H1pS1,R2nq Ñ L2pS1,R2nq
is Fredholm with index 0. The kernel of this operator is the space of constant
functions S1 Ñ R2n, which has dimension 2n. To compute the dimension of the
cokernel, we observe that if f “ BtF for some F P H1pS1,R2nq, then Proposi-
tion A.11 implies that F is absolutely continuous and has classical derivative equal
to f almost everywhere, so that by periodicity and the fundamental theorem of
calculus,

ş
S1 fptq dt “ 0. Conversely, if

ş
S1 fptq dt “ 0 with f P L2pS1,R2nq, then

the function F psq :“
şs
0
fptq dt is periodic in s and (by Corollary A.12) defines an

element of H1pS1,R2nq satisfying BtF “ f . Hence the image of Bt is exactly the set

impBtq “
"
f P L2pS1,R2nq

ˇ̌
ˇ̌
ż

S1

fptq dt “ 0

*
,

which has codimension 2n. �

Corollary 3.14. An asymptotic operator A P ApEq is nondegenerate if and
only if it defines an isomorphism H1pEq Ñ L2pEq. �

Observe that for the L8-topology on ApEq specified in Definition 3.11, the in-
clusion of ApEq into the space of bounded linear operators H1pEq Ñ L2pEq is
continuous, so the fact that invertibility is an open condition implies:

Corollary 3.15. The subset A˚pEq Ă ApEq is open. �

Since smooth asymptotic operators on a bundle pE, ω, Jq are defined in terms
of symplectic connections, they also determine (and are determined by) symplectic
parallel transport maps. This notion can be extended to asymptotic operators of
class L8, but since the differential equation p´J0Bt´SptqqΨptq “ 0 may in this case
have discontinuous coefficients, it requires a slight generalization of the standard
existence/uniqueness theorem for ODEs.

Exercise 3.16. In this exercise we consider linear ordinary differential equations
with coefficients of class L1

loc.
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(a) Suppose I Ă R is a compact interval, P Ă L1pI,EndpRnqq is a subset
such that M :“ sup

 
}A}L1

ˇ̌
A P P

(
ă 1, and for R ą 0, XR denotes the

complete metric space

XR :“
 
ϕ P C0pP ˆ I,Rnq

ˇ̌
}ϕ}C0 ď R

(
.

Show that for any x0 P Rn and any R ě |x0|
1´M , the formula

pTϕqpA, tq :“ x0 `
ż t

t0

ApsqϕpA, sq ds

defines a contraction map T : XR Ñ XR and therefore has a unique fixed
point.

(b) Deduce from the contraction in part (a) that for any open interval U Ă R

and constants t0 P U , x0 P Rn, there exists a continuous map

L1
locpU ,EndpRnqq ˆ U Ñ Rn : pA, tq ÞÑ xAptq

such that for each A P L1
locpU ,EndpRnqq, xA : U Ñ Rn satisfies the initial

value problem

(3.7) 9xptq “ Aptqxptq for almost all t, xpt0q “ x0,

and is the unique solution to this problem that is absolutely continuous on
compact subsets.

(c) Show that ifA : U Ñ EndpRnq is assumed to be of class Lploc with 1 ď p ď 8,

then the solution x : U Ñ Rn to (3.7) is of class W 1,p
loc . Hint: For a useful

characterization of W 1,p
loc pRq, see Corollary A.12.

Proposition 3.17. On any Hermitian vector bundle pE, ω, Jq over S1 “ R{Z,
there is a natural bijective correspondence between the following objects:

‚ Asymptotic operators A of class L8;
‚ Continuous families tΨptqutPR of Sobolev classW 1,8

loc consisting of symplectic
linear maps Ψptq : Er0s Ñ Erts such that Ψp0q “ 1 and Ψpt` 1q “ ΨptqΨp1q
for every t P R.3

The correspondence between A and Ψ is determined by the property that for every
v0 P E0, the function vptq :“ Ψptqv0 P Et satisfies the differential equation Av “ 0
almost everywhere.

Proof. After choosing a global unitary trivialization, an asymptotic operator
A “ ´J0Bt ´Sptq determines according to Exercise 3.16 a unique function Ψ : R Ñ
EndpR2nq that is absolutely continuous on compact subsets and satisfies the initial
value problem

BtΨptq “ J0SptqΨptq, Ψp0q “ 1,

where the differential equation is equivalent to AΨ “ 0 and is assumed to hold
almost everywhere. Since the function R Ñ EndpR2nq : t ÞÑ J0Sptq is of class L8

and 1-periodic, Ψ is of class W 1,8
loc , and periodicity implies the relation Ψpt ` 1q “

3Saying that the family tΨptqutPR is of class W
1,8
loc

means in this context that any choice of

smooth trivialization identifies tΨptqutPR with a function R Ñ EndpR2nq that is of class W 1,8
loc

.
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ΨptqΨp1q due to uniqueness of solutions. It remains to show that for all t, Ψptq
belongs to the linear symplectic group

Spp2nq :“
 
B P GLp2n,Rq

ˇ̌
ω0pBv,Bwq “ ω0pv, wq for all v, w P R2n

(
.

Writing ω0 in terms of the standard Euclidean inner product g0 as ω0pv, wq “
g0pJ0v, wq, one finds that a matrix B P GLp2n,Rq belongs to Spp2nq if and only
if the relation BTJ0B “ J0 holds. To prove Ψptq P Spp2nq, one can thus use the
differential equation to show that

(3.8)
d

dt
ΨTJ0Ψ “ ΨTpST ´ SqΨ

holds almost everywhere; since the right hand side vanishes and ΨTJ0Ψ is an abso-
lutely continuous function of t equal to J0 at t “ 0, it follows that ΨptqTJ0Ψptq “ J0
for all t.

Conversely, suppose Ψ P W
1,8
loc pR,EndpR2nqq satisfies Ψp0q “ 1, Ψpt ` 1q “

ΨptqΨp1q and Ψptq P Spp2nq for all t. Then by Corollary A.12, Ψ is absolutely
continuous on compact subsets and thus differentiable almost everywhere, so there
is a unique S : R Ñ EndpR2nq of class L8

loc determined almost everywhere by

setting Sptq :“ ´J0 9ΨptqΨptq´1. The relation Ψpt ` 1q “ ΨptqΨp1q now implies
9Ψpt` 1q “ 9ΨptqΨp1q and thus

Spt` 1q “ ´J0 9Ψpt` 1qΨpt` 1q´1 “ ´J0 9ΨptqΨp1qΨp1q´1Ψptq´1 “ Sptq,
so S is periodic, and the equation BtΨ “ J0SΨ is satisfied almost everywhere by con-
struction. The condition Ψptq P Spp2nq then implies ST ´ S “ 0 almost everywhere
due to (3.8), hence A “ ´J0Bt ´ S is an asymptotic operator. �

We shall refer to the family of symplectic linear maps tΨptqutPR induced by an
asymptotic operator A P ApEq as the parallel transport map of A.

Remark 3.18. The choice to allow discontinuous asymptotic operators in this
discussion has the following advantage: every family tΨptqutPr0,1s of class W

1,8 con-
sisting of symplectic linear maps Ψptq : E0 Ñ Et has a unique extension to a family
tΨptqutPR of class W 1,8

loc that satisfies the condition Ψpt` 1q “ ΨptqΨp1q, thus every
such family arises as the parallel transport of some asymptotic operator. This is
true in particular for every smooth family tΨptqutPr0,1s, with no need to worry about
whether the extension over R is differentiable at the integers.

3.3. Spectral flow

The goal of this section is to define a notion of spectral flow for asymptotic
operators on Hermitian vector bundles over S1. After fixing a global unitary trivial-
ization, we can restrict our attention to operators A that act on the space of loops
η : S1 Ñ R2n by

(3.9) pAηqptq :“ ´J0 Btηptq ´ Sptqηptq,
where S : S1 Ñ Endsym

R pR2nq is a function of class L8. We will sometimes refer to
operators in this form as trivialized asymptotic operators. Regarding A as an
unbounded linear operator on L2pS1,R2nq with dense domain H1pS1,R2nq, we will
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see that its spectrum consists of isolated real eigenvalues with finite multiplicity. We
shall prove:

Theorem 3.19. Assume r´1, 1s Ñ L8pS1,Endsym
R pR2nqq : s ÞÑ Ss is a smooth

path, and consider the corresponding 1-parameter family of unbounded linear opera-
tors

As “ ´J0Bt ´ Ssptq : L2pS1,R2nq Ą H1pS1,R2nq Ñ L2pS1,R2nq.
Then there exists a set of continuous functions

tλj : r´1, 1s Ñ RujPZ

such that for every s P r´1, 1s, the spectrum of As consists of the numbers tλjpsqujPZ,
each of which is an eigenvalue with finite multiplicity equal to the number of times
it is repeated as j varies in Z.

Moreover, if additionally A´ :“ A´1 and A` :“ A1 both have trivial kernel,
then the number µspecpA´,A`q P Z defined by

#
 
j P Z

ˇ̌
λjp´1q ă 0 ă λjp1q

(
´ #

 
j P Z

ˇ̌
λjp´1q ą 0 ą λjp1q

(

depends only on A´ and A`.

Remark 3.20. Differentiability of the path r´1, 1s Ñ L8pS1,Endsym
R pR2nqq :

s ÞÑ Ss means what you think it means: for every s P r´1, 1s, the functions
Ss`h´Ss

h

are L8-convergent as h Ñ 0. In practice, we will only need to consider two general
classes of smooth paths in Theorem 3.19: first, if S´, S` P L8pS1,Endsym

R pR2nqq are
given, then the linear interpolation

Ss :“
1

2
p1 ´ sqS´ ` 1

2
p1 ` sqS`

has a constant derivative 1
2
pS` ´ S´q P L8pS1,Endsym

R pR2nqq with respect to s and
is thus smooth. This example shows that every pair of asymptotic operators can
be connected by a path that is smooth in the sense of Theorem 3.19. The sec-
ond class of examples will be especially useful for defining generic perturbations of
paths of asymptotic operators: it arises from smooth functions S : r´1, 1s ˆ r0, 1s Ñ
Endsym

R pR2nq, where for each s P r´1, 1s, Ss :“ Sps, ¨q need not be periodic but is
equal almost everywhere to a uniquely determined element of L8pS1,Endsym

R pR2nqq.
To see that s ÞÑ Ss is a smooth map r´1, 1s Ñ L8pS1,Endsym

R pR2nqq, we observe
first that it is continuous since Sps, tq is uniformly continuous on the compact do-
main r´1, 1s ˆ r0, 1s, implying that Ss`h Ñ Ss uniformly as h Ñ 0. To prove
differentiability at a given point s P r´1, 1s, one can use the fundamental theorem

of calculus to write
Ss`hptq´Ssptq

h
“

ş1
0

BsSps ` τh, tq dτ and appeal again to uniform
continuity to show that this converges uniformly in t to BsSps, tq as h Ñ 0. Since
BsS : r´1, 1s ˆ r0, 1s Ñ Endsym

R pR2nq is also a uniformly continuous function, it
follows that s ÞÑ Ss is of class C

1, and smoothness then follows by induction.

Remark 3.21. There is a natural continuous linear inclusion of L8pS1,EndpR2nqq
as a closed subspace of the space of bounded linear operators on L2pS1,R2nq, identi-
fying each function S P L8pS1,EndpR2nqq with the multiplication operator η ÞÑ Sη.
The smoothness of s ÞÑ Ss in Theorem 3.19 thus makes As a smooth path in the
Banach space of bounded linear operators from H1pS1,R2nq to L2pS1,R2nq.
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We will start by giving a more abstract definition of spectral flow as an inter-
section number between a path of symmetric index 0 Fredholm operators and the
subvariety of noninvertible operators. This relies on the general fact that spaces
of operators with kernel and cokernel of fixed finite dimensions form smooth finite-
codimensional submanifolds in the Banach space of all bounded linear operators.
We explain this fact in §3.3.1, and then specialize to the case of symmetric index 0
operators to define the abstract version of spectral flow in §3.3.2. In §3.3.3, we show
that the spectra of such operators vary continuously under small perturbations, and
in §3.3.4 we specialize further to operators of the form (3.9) and explain how to
interpret the abstract definition of spectral flow in terms of eigenvalues crossing the
origin in R, leading to a proof of Theorem 3.19.

Spectral flow can be defined more generally for certain classes of self-adjoint
elliptic partial differential operators (see e.g. [APS76,RS95]), and standard proofs
of its existence typically rely on perturbation results as in [Kat95] for the spectra of
self-adjoint operators. In the following presentation, we have chosen to avoid making
explicit use of self-adjointness and instead focus on the Fredholm property; in this
way the discussion is mostly self-contained and, in particular, does not require any
results from [Kat95].

3.3.1. Geometry in the space of Fredholm operators. Fix a field

F :“ R or C.

Given Banach spaces X and Y over F, denote by LFpX, Y q the Banach space of
bounded F-linear maps from X to Y , with LFpXq :“ LFpX,Xq, and let

FredFpX, Y q Ă LFpX, Y q
denote the open subset consisting of Fredholm operators. Recall that an operator
T P LFpX, Y q is Fredholm if its image is closed,4 and its kernel and cokernel
(i.e. the quotient cokerT :“ Y { imT) are both finite dimensional. Its index is
defined as

indFpTq :“ dimF kerT ´ dimF cokerT P Z.

The index defines a continuous and thus locally constant function FredFpX, Y q Ñ Z,
and for each i P Z, we shall denote

FrediFpX, Y q :“
 
T P FredFpX, Y q

ˇ̌
indpTq “ i

(
.

We will often have occasion to use the following general construction. Given
T0 P FredFpX, Y q, one can choose splittings into closed linear subspaces

X “ V ‘ K, Y “ W ‘ C

such that K “ kerT0, W “ imT0, the quotient projection πC : Y Ñ cokerT0

restricts to C Ă Y as an isomorphism, and T0|V defines an isomorphism from V

4It is not strictly necessary to require that imT Ă Y be closed, as this follows from the
finite-dimensionality of the kernel and cokernel, cf. [AA02, Cor. 2.17].
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to W . Using these splittings, any other T P FredFpX, Y q can be written in block
form as

T “
ˆ
A B
C D

˙
,

with T0 itself written in this way as

ˆ
A0 0
0 0

˙
for some Banach space isomorphism

A0 : V Ñ W . Let O Ă FredFpX, Y q denote the open neighborhood of T0 for which
the block A is invertible, and define a map

(3.10) Φ : O Ñ HomFpkerT0, cokerT0q : T ÞÑ D ´ CA´1B.

Lemma 3.22. The map Φ in (3.10) is smooth, and holomorphic in the case F “
C, and its derivative at T0 defines a surjective bounded linear operator LFpX, Y q Ñ
HomFpkerT0, cokerT0q of the form

dΦpT0qH “ πCH|kerT0
P HomFpkerT0, cokerT0q,

where πC denotes the quotient projection Y Ñ cokerT0. Moreover, there exists a
smooth (and holomorphic if F “ C) function Ψ : O Ñ LFpXq such that for every
T P O, ΨpTq : X Ñ X maps ker ΦpTq Ă kerT0 isomorphically to kerT.

Proof. Smoothness, holomorphicity5 and the formula for the derivative are
easily verified from the given formula for Φ; in particular, since the blocks B and C
both vanish for T “ T0, we have

dΦpT0q : LFpX, Y q Ñ HomFpK,Cq
ˆ
A1 B1

C1 D1

˙
ÞÑ D1.

The map Ψ : O Ñ LFpXq is defined in terms of the splitting X “ V ‘ K by

ΨpTq “
ˆ
1 ´A´1B
0 1

˙
.

This is an isomorphism for each T, with inverse given by

ΨpTq´1 “
ˆ
1 A´1B
0 1

˙
.

Then TΨpTq “
ˆ
A 0
C ΦpTq

˙
, and since A is invertible, kerTΨpTq “ t0u‘ker ΦpTq.

�

Proposition 3.23. For each i P Z and each nonnegative integer k ě i, the
subset

Fredi,kF pX, Y q :“
 
T P FrediFpX, Y q

ˇ̌
dimF kerT “ k and dimF cokerT “ k ´ i

(

5Holomorphicity in this infinite-dimensional setting means the same thing as usual: LCpX,Y q
and HomCpkerT0, cokerT0q both have natural complex structures if T0 P FredCpX,Y q, and we
require dΦpTq to commute with them for all T P O.
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admits the structure of a smooth (and complex-analytic if F “ C) finite-codimensional
Banach submanifold of LFpX, Y q, with

codimF Fred
i,k
F pX, Y q “ kpk ´ iq.

Moreover, the set

X i,k :“
!

pT, xq P Fredi,kF pX, Y q ˆ X
ˇ̌
ˇ x P kerT

)

is a smooth (and holomorphic if F “ C) subbundle of the trivial vector bundle

Fredi,kF pX, Y q ˆ X Ñ Fredi,kF pX, Y q.
Proof. Applying the implicit function theorem to the map Φ from Lemma 3.22

endows a neighborhood of T0 in Φ´1p0q Ă FredFpX, Y q with the structure of a
smooth Banach submanifold with

codimFΦ
´1p0q “ dimF HomFpkerT0, cokerT0q “ kpk ´ iq.

If F “ C, then Φ is also holomorphic and Φ´1p0q is thus a complex-analytic sub-
manifold near T0. Now observe that for every T P O,

dimF kerT “ dimF ker ΦpTq ď dimF kerT0 “ k,

with equality if and only if ΦpTq “ 0, hence, since the index is locally constant, we

get Φ´1p0q “ Fredi,kF pX, Y q in a neighborhood of T0.
The vector bundle structure of X i,k can be understood using the smooth (and

holomorphic if F “ C) function Ψ : O Ñ LFpXq from Lemma 3.22. This can
be interpreted as a smooth (or holomorphic) bundle isomorphism on the trivial X-
bundle over O, whose restriction to O X Fredi,kpX, Y q sends the trivial subbundle
with fiber kerT0 Ă X isomorphically to V i,k, i.e. this restriction is the inverse of a
local trivialization of V i,k. �

For real-linear operators of index 0, one can use Prop. 3.23 to define the following
“relative” invariant. Suppose tTpsq P Fred0

RpX, Y qusPr´1,1s is a continuous path in
the space of Fredholm operators such that T˘ :“ Tp˘1q : X Ñ Y are both Banach
space isomorphisms. We can then define

µ
spec
Z2

ptTpsquq P Z2

as the parity of the number of times that a generic smooth perturbation of the path
s ÞÑ Tpsq passes through operators with nontrivial kernel. This depends only on the
homotopy class (with fixed end points) of the path—indeed, observe first that generic

paths tTpsq P Fred0
RpX, Y qusPr´1,1s are transverse to Fred0,k

R pX, Y q for every k P N,
which implies via the codimension formula in Prop. 3.23 that they never intersect
Fred0,k

R pX, Y q for k ě 2, and their intersections with Fred0,1
R pX, Y q are transverse

and thus isolated. Second, transversality also holds for generic homotopies

r0, 1s ˆ r´1, 1s Ñ Fred0
RpX, Y q : pτ, sq ÞÑ Tτ psq

with fixed end points between any pair of generic paths T0psq and T1psq, so that the

set of intersections with Fred0,k
R pX, Y q is again empty for k ě 2 and forms a smooth

1-dimensional submanifold in r0, 1sˆr´1, 1s for k “ 1. This submanifold, moreover,
is disjoint from r0, 1s ˆ t´1, 1u since Tτ p˘1q “ T˘, and it is also compact since
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the set of T P Fred0
RpX, Y q with nontrivial kernel is a closed subset. We therefore

obtain a compact 1-dimensional cobordism between the intersection sets of T0 and
T1 respectively with Fred0,1

R pX, Y q, implying that the count of intersections modulo 2
does not depend on the choice of generic path within a given homotopy class.

Exercise 3.24. Convince yourself that the standard results (as in e.g. [Hir94,
§3.2] about generic transversality of intersections between smooth maps f :M Ñ N

and submanifolds A Ă N continue to hold—with minimal modifications to the
proofs—when N is an infinite-dimensional Banach manifold and A Ă N has finite
codimension.

Exercise 3.25. In the finite-dimensional case, all operators are Fredholm and
there is only one homotopy class of paths of Fredholm operators tApsqusPr´1,1s be-
tween two given isomorphisms A˘ P GLpn,Rq, so we can abbreviate the invariant
defined above as µspec

Z2
pA´, A`q :“ µspecptApsquq P Z2. Show that µspec

Z2
pA´, A`q “ 0

if and only if detA` and detA´ have the same sign.

3.3.2. Symmetric operators of index zero. We now add the following as-
sumptions to the setup from the previous subsection:

‚ Y is a Hilbert space H over F, with inner product denoted by x , yH;
‚ X is a dense F-linear subspace D Ă H, carrying a Banach space structure
for which the inclusion D ãÑ H is a compact linear operator.

The notation D “ X is motivated by the fact that if T P LFpD,Hq, then we can
also regard T as an unbounded operator on H with domain D and thus consider
the spectrum of T, see §3.3.3 below.

Since H is a Hilbert space, the space LFpHq of bounded linear operators from
H to itself contains a distinguished closed linear subspace

L
sym
F pHq Ă LFpHq,

consisting of self-adjoint operators. For operators that are bounded from D to H
but not necessarily defined or bounded on H, there is also the space of symmetric
operators

L
sym
F pD,Hq :“

 
T P LFpD,Hq

ˇ̌
xx,TyyH “ xTx, yyH for all x, y P D

(
.

Important examples of symmetric operators are those which are self-adjoint (see
Remark 3.29 below), though for our purposes, it will suffice to restrict attention to
symmetric operators that are also Fredholm with index 0. It turns out that the space
of symmetric operators in Fred0,1

F pD,Hq is a canonically co-oriented hypersurface in
L

sym
F pD,Hq, so that the invariant µspec

Z2
ptTpsquq defined above has a natural integer-

valued lift when T˘ are symmetric. We will need a slightly more specialized version
of this statement in order to give a general definition of spectral flow.

In the following, we let

Fredsym
F pD,Hq :“ Fred0

FpD,Hq X L
sym
F pD,Hq

denote the space of symmetric Fredholm operators with index 0, and for k P N,

Fredsym,k
F pD,Hq :“ Fredsym

F pD,Hq X Fred0,k
F pD,Hq.
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Given Tref P Fredsym
F pD,Hq, consider the space

Fredsym
F pD,H,Trefq :“

 
Tref ` K : D Ñ H

ˇ̌
K P L

sym
F pHq

(
.

Note that the restriction of each K P LFpHq to D is a compact operator D Ñ
H, thus every operator in Fredsym

F pD,H,Trefq is a compact perturbation of Tref ,
giving rise to a natural inclusion Fredsym

F pD,H,Trefq ãÑ Fredsym
R pD,Hq. The space

Fredsym
F pD,H,Trefq is also affine over L

sym
F pHq, and can thus be regarded naturally

as a smooth Banach manifold locally modeled on L
sym
F pHq; in particular, its tangent

spaces are

TT pFredsym
F pD,H,Trefqq “ L

sym
F pHq.

A remark about the case F “ C is in order: L
sym
C pD,Hq is a real -linear and not a

complex subspace of LCpD,Hq, thus Fredsym
C pD,H,Trefq is a real Banach manifold

but does not carry a natural complex structure.

Lemma 3.26. For any T P L
sym
F pD,Hq that is Fredholm with index 0, kerT

is the orthogonal complement of imT in H, hence there exist splittings into closed
linear subspaces

D “ V ‘ K, H “ W ‘ C

where K “ C “ kerT, W “ imT and V “ W X D.

Proof. If x P K :“ kerT, then symmetry implies xx,TyyH “ xTx, yyH “ 0
for all y P D, hence K Ă WK, where W :“ imT. But since indT “ 0, the
dimension of kerT equals the codimension of imT, implying that K already has the
largest possible dimension for a subspace that intersects W trivially, and therefore
W ‘K “ H. Since K is also a subspace of D and the latter is a subspace of H, any
x P D can be written uniquely as x “ v` k where k P K and v P W XD “: V . The
continuous inclusion of D into H and the fact that W is closed in H imply that V
is a closed subspace of D. �

We now have the following modification of Prop. 3.23.

Proposition 3.27. For each integer k ě 0, the subset

Fredsym,k
F pD,H,Trefq :“

 
T P Fredsym

F pD,H,Trefq
ˇ̌
dimF kerT “ k

(

is a smooth finite-codimensional Banach submanifold of Fredsym
F pD,H,Trefq, with

codimR Fred
sym,k
F pD,H,Trefq “

#
kpk ` 1q{2 if F “ R,

k2 if F “ C,

and

Dsym,k :“
!

pT, xq P Fredsym,k
F pD,H,Trefq ˆ D

ˇ̌
ˇ x P kerT

)

is a smooth subbundle of the trivial vector bundle Fredsym,k
F pD,H,Trefq ˆ D Ñ

Fredsym,k
F pD,H,Trefq. Moreover, the smooth submanifold Fredsym,1

F pD,H,Trefq Ă
Fredsym

F pD,H,Trefq with codimension one carries a canonical co-orientation.
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Proof. Given T0 P Fredsym,k
F pD,H,Trefq, fix the splittings D “ V ‘ K and

H “ W ‘ K as in Lemma 3.26. Using these in the construction of the map Φ
from (3.10) produces a neighborhood O Ă Fred0

FpD,H,Trefq of T0 such that, by
Lemma 3.22, tT P O | dimF kerT “ ku “ Φ´1p0q, where

Φ : O Ñ EndFpKq :
ˆ
A B
C D

˙
ÞÑ D ´ CA´1B.

Since the splittings are orthogonal, an element T “
ˆ
A B
C D

˙
P O is symmetric if

and only if

xx,AyyH “ xAx, yyH for all x, y P V ,
xx,DyyH “ xDx, yyH for all x, y P K,
xx,ByyH “ xCx, yyH for all x P V , y P K,
xx,CyyH “ xBx, yyH for all x P K, y P V ,

and it follows then that ΦpTq P Endsym
F pKq, where Endsym

F pKq Ă EndFpKq is the real
vector space of symmetric (or Hermitian when F “ C) linear maps on pK, x , yHq.
We thus have OXFredsym,k

F pD,H,Trefq “ Φ´1p0q with Φ regarded as a smooth map
O X Fredsym

F pD,H,Trefq Ñ Endsym
F pKq. The derivative at T0 again takes the form

dΦpT0q : L
sym
F pHq Ñ Endsym

F pKq :
ˆ
A1 B1

C1 D1

˙
ÞÑ D1,

where now the block matrix represents an element of L
sym
F pHq with respect to the

splitting H “ W ‘ K. This operator is evidently surjective, hence by the implicit
function theorem, Φ´1p0q is a smooth Banach submanifold with codimension equal
to dimR End

sym
F pKq. The vector bundle structure of Dsym,k can be defined using the

map Ψ from Lemma 3.22 just as in the non-symmetric case.
Finally, we observe that in the case k “ 1, the above identifies Fredsym,1

F pD,H,Trefq
locally with the zero set of a submersion to Endsym

F pKq, which is a real 1-dimensional
vector space since K is a 1-dimensional vector space over F. The canonical isomor-
phism

R Ñ Endsym
F pKq : a ÞÑ a1

thus determines a co-orientation on Fredsym,1
F pD,H,Trefq. �

The canonical co-orientation of Fredsym,1
F pD,H,Trefq makes it natural to define

signed intersection numbers between Fredsym,1
F pD,H,Trefq and smooth paths in the

ambient space Fredsym
F pD,H,Trefq. The codimensions of Fredsym,k

F pD,H,Trefq for
each k ě 2 are still at least 3, hence large enough to ensure that generic paths or
homotopies of paths will never intersect them. The following notion is therefore
independent of choices.

Definition 3.28. Suppose T`,T´ P Fredsym
F pD,H,Trefq are both Banach space

isomorphisms D Ñ H. The spectral flow

µspecpT´,T`q P Z
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from T´ to T` is then defined as the signed count of intersections of T : r´1, 1s Ñ
Fredsym

F pD,H,Trefq with Fredsym,1
F pD,H,Trefq, where the latter is assumed to carry

the co-orientation given by Prop. 3.27, and T : r´1, 1s Ñ Fredsym
F pD,H,Trefq is any

smooth path that is transverse to Fredsym,k
F pD,H,Trefq for every k ě 1 and satisfies

Tp˘1q “ T˘.

Note that since Fredsym
F pD,H,Trefq is an affine space over L

sym
F pHq, all paths in

Fredsym
F pD,H,Trefq from T´ to T` are homotopic, so one can argue as we did for

µ
spec
Z2

at the end of §3.3.1 that µspecpT´,T`q is independent of the choice of path.

3.3.3. Perturbation of eigenvalues. Continuing in the setting of the previous
subsection, we shall now regard each T P Fredsym

F pD,H,Trefq as an unbounded
operator on H with domain D, see e.g. [RS80, Chapter VIII]. Notice that for each
scalar λ P F, the operator T´λ also belongs to Fredsym

F pD,H,Trefq. The spectrum
σpTq Ă F

of T is defined as the set of all λ P F for which T ´ λ : D Ñ H does not ad-
mit a bounded inverse. In particular, λ P σpTq is an eigenvalue of T whenever
T ´ λ : D Ñ H has nontrivial kernel, and the dimension of this kernel is called the
multiplicity of the eigenvalue. We call λ a simple eigenvalue if it has multiplic-
ity 1. By a standard argument familiar to both mathematicians and physicists, the
eigenvalues of a symmetric complex-linear operator are always real.

Remark 3.29. The adjoint of T is defined as an unbounded operator T˚ with
domain D˚ satisfying

xx,TyyH “ xT˚x, yyH for all x P D˚, y P D,

where D˚ is the set of all x P H such that there exists z P H satisfying xx,TyyH “
xz, yyH for all y P D. One says that T is self-adjoint if T “ T˚, which means
both that T is symmetric and D “ D˚. In many applications (e.g. in Exercise 3.41),
the latter amounts to a condition on “regularity of weak solutions”. This condition
implies that the inclusion kerT ãÑ pimTqK—valid for all symmetric operators—is
also surjective, so if T : D Ñ H is Fredholm, it is then automatic that indpTq “ 0.

Proposition 3.30. Assume T0 P Fredsym
F pD,H,Trefq. Then:

(1) Every λ P σpT0q is an eigenvalue with finite multiplicity.
(2) The spectrum σpT0q is a discrete subset of R.
(3) Suppose λ0 P σpT0q is an eigenvalue with multiplicity m P N and ǫ ą 0 is

chosen such that no other eigenvalues lie in rλ0 ´ ǫ, λ0 ` ǫs. Then T0 has
a neighorhood O Ă Fredsym

F pD,H,Trefq such that for all T P O,
ÿ

λPσpTqXrλ0´ǫ,λ0`ǫs
mpλq “ m,

where mpλq P N denotes the multiplicity of λ P σpTq.
Proof. For every λ P F, T0 ´ λ is a Fredholm operator with index 0, so it is

a Banach space isomorphism D Ñ H and thus has a bounded inverse if and only
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if its kernel is trivial. The Fredholm property also implies that the kernel is finite
dimensional whenever it is nontrivial, so this proves (1).

For (2) and (3), let us assume F “ C, as the case F “ R will follow by taking
complexifications of real vector spaces. We claim therefore that σpT0q is a discrete
subset of C. To see this, suppose λ0 P R is an eigenvalue of T0 with multiplicity m,
so

T0 ´ λ0 P Fredsym,m
C pD,Hq.

By Lemma 3.26, there are splittings D “ V ‘ K and H “ W ‘ K with K “
kerpT0 ´ λ0q, W “ impT0 ´ λ0q and V “ W X D. Any scalar λ P C appears in

block-diagonal form

ˆ
λ 0
0 λ

˙
with respect to these splittings, and the block form for

T0 is thus

T0 “
ˆ
A0 ` λ0 0

0 λ0

˙

for some Banach space isomorphism A0 : V Ñ W . Writing nearby operators T P
FredCpD,Hq as

ˆ
A B
C D

˙
, we can imitate the construction in (3.10) to produce

neighborhoods OpT0q Ă FredCpD,Hq of T0 and Dǫpλ0q Ă C of λ0, admitting a
holomorphic map

Φ : OpT0q ˆ Dǫpλ0q Ñ EndCpKq : pT, λq ÞÑ pD ´ λq ´ C pA ´ λq´1B

such that kerpT´λq – ker ΦpT, λq. The set of eigenvalues of T0 near λ0 is then the
zero set of the holomorphic function

(3.11) Dǫpλ0q Ñ C : λ ÞÑ det ΦpT0, λq.
This function cannot be identically zero since there are no eigenvalues outside of R,
thus the zero at λ0 is isolated, proving (2).

To prove (3), note finally that if the neighborhood OpT0q Ă FredCpD,Hq of T0

is sufficiently small, then for every T P OpT0q, the holomorphic function

fT : Dǫpλ0q Ñ C : λ ÞÑ det ΦpT, λq
has the same algebraic count of zeroes in Dǫpλ0q, all of which lie in rλ0 ´ ǫ, λ0 ` ǫs
if T is symmetric. Observe moreover that since

BλΦpT0, λ0q “ ´1 P EndCpKq,
we are free to assume after possibly shrinking ǫ and OpT0q that BλΦpT, λq is always
a nonsingular transformation in EndCpKq. Since ΦpT, λq is in Endsym

C pKq and thus
diagonalizable whenever T is symmetric and λ P R, it follows via Exercise 3.31
below that the order of any zero fTpλq “ 0 is precisely the multiplicity of λ as an
eigenvalue of T. �

Exercise 3.31. Suppose U Ă C is an open subset, A : U Ñ Cnˆn is a holomor-
phic map and z0 P U is a point at which Apz0q is noninvertible but diagonalizable,
and A1pz0q P GLpn,Cq. Show that dimC kerApz0q is the order of the zero of the
holomorphic function detA : U Ñ C at z0.
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The next result implies that for a generic path of symmetric index 0 operators
as appears in our definition of µspecpT´,T`q, the spectral flow is indeed a signed
count of eigenvalues crossing 0.

Proposition 3.32. Suppose tTs P Fredsym
F pD,H,Trefqu

sPp´1,1q is a smooth path

and λ0 P R is a simple eigenvalue of T0. Then:

(1) For sufficiently small ǫ ą 0, there exists a unique smooth function λ :
p´ǫ, ǫq Ñ R such that λp0q “ λ0 and λpsq is a simple eigenvalue of Ts for
each s P p´ǫ, ǫq.

(2) The derivative λ1p0q is nonzero if and only if the intersection of the path
tTs ´ λ0 P Fredsym

F pD,H,Trefqu
sPp´1,1q with Fredsym,1

F pD,H,Trefq at s “ 0

is transverse, and the sign of λ1p0q is then the sign of the intersection.

Proof. Using the same construction as in the proof of Proposition 3.30, we can
find small numbers ǫ ą 0 and δ ą 0 such that

 
ps, λq P p´ǫ, ǫq ˆ pλ0 ´ δ, λ0 ` δq

ˇ̌
λ P σpTsq

(
“ Φ´1p0q,

where

Φ : p´ǫ, ǫq ˆ pλ0 ´ δ, λ0 ` δq Ñ Endsym
F pKq : ps, λq ÞÑ pDs ´ λq ´ Cs pAs ´ λq´1Bs,

and we write Ts “
ˆ
As Bs

Cs Ds

˙
with respect to splittings D “ V ‘K andH “ W‘K

with K “ kerpT0 ´ λ0q, W “ impT0 ´ λ0q and V “ W X D. In saying this, we’ve
implicitly used the assumption that λ0 is a simple eigenvalue, as it follows that
dimF kerpT ´ λq cannot be larger than 1 for any T near T0 and λ near λ0, so that
Φ´1p0q catches all nearby eigenvalues. Simplicity also means that Endsym

F pKq is real
1-dimensional, and we have

BsΦp0, λ0q “ BsDs|s“0, BλΦp0, λ0q “ ´1.

The implicit function theorem thus gives Φ´1p0q near p0, λ0q the structure of a
smooth 1-manifold with tangent space at p0, λ0q spanned by the vector

Bs ` pBsDs|s“0q Bλ,
where we are identifying BsDs|s“0 P Endsym

F pKq with a real number via the natural
isomorphism Endsym

F pKq “ R. Therefore Φ´1p0q can be written as the graph of a
uniquely determined smooth function λ, whose derivative at zero is a multiple of
BsDs|s“0. This proves both statements in the proposition, since by the proof of
Proposition 3.27, the intersection of tTsusPp´1,1q with Fredsym,1

F pD,H,Trefq is trans-
verse if and only if BsDs|s“0 ‰ 0, and its sign is then the sign of BsDs|s“0. �

The purpose of the next lemma is to prevent eigenvalues from escaping to ˘8
under smooth families of operators in Fredsym

F pD,H,Trefq.
Lemma 3.33. Suppose tKs P L

sym
F pHqu

sPpa,bq is a smooth path of symmetric

bounded linear operators, and λ : pa, bq Ñ R is a smooth function such that for every
s P pa, bq, λpsq is a simple eigenvalue of Ts :“ Tref `Ks P Fredsym

F pD,H,Trefq. Then
| 9λpsq| ď }BsKs}L pHq for all s P pa, bq.
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Proof. The operators tTs ´ λpsqusPpa,bq form a smooth path in the manifold

Fredsym,1
F pD,H,Trefq, so Proposition 3.27 implies that the family of 1-dimensional

eigenspaces kerpTs ´ λpsqq Ă D forms a smooth vector bundle over pa, bq. We can
therefore pick a smooth family of eigenvectors xpsq P kerpTs ´ λpsqq for s P pa, bq
and normalize them so that }xpsq}H “ 1 for all s. Then 0 “ Bsxxpsq, xpsqyH “
x 9xpsq, xpsqyH ` xxpsq, 9xpsqyH and λpsq “ xxpsq,TsxpsqyH, so writing 9Ks :“ BsKs “
BsTs, we have

9λpsq “ Bsxxpsq,TsxpsqyH “ xxpsq, 9KsxpsqyH ` x 9xpsq,TsxpsqyH ` xxpsq,Ts 9xpsqyH
“ xxpsq, 9KsxpsqyH,

as the last two terms in the first line become λpsq rx 9xpsq, xpsqyH ` xxpsq, 9xpsqyHs “ 0
since Ts is symmetric and Tsxpsq “ λpsqxpsq. We obtain

| 9λpsq| ď }xpsq}H} 9Ks}L pHq}xpsq}H “ } 9Ks}L pHq.

�

3.3.4. Homotopies of eigenvalues. Specializing further, we now set H and
D equal to the specific real Hilbert spaces

H :“ L2pS1,R2nq, D :“ H1pS1,R2nq
and consider paths of asymptotic operators As : H

1pS1,R2nq Ñ L2pS1,R2nq. Con-
cretely, this means setting Tref :“ ´J0 Bt and restricting to compact perturbations
K P L

sym
R pHq of the form Kη :“ ´Sη for S : S1 Ñ Endsym

R pR2nq of class L8. The
resulting operators A “ ´J0 Bt´Sptq belong to Fredsym

R pD,H,Trefq by Lemma 3.13,
and by Remark 3.21, any smooth path s ÞÑ Ss in L

8pEndsym
R pR2nqq gives rise to a

smooth path of operators As “ ´J0Bt ´ Ss in Fredsym
R pD,H,Trefq.

Remark 3.34. We defined the topology of Fredsym
R pD,H,Trefq in §3.3.2 by re-

garding it as an affine space over L
sym
R pHq, which means in practice that a family

of trivialized asymptotic operators s ÞÑ As is considered continuous if and only if
As “ ´J0Bt´Ss for zeroth-order terms Ss that define a continuous family of bounded
linear operators on L2pS1,R2nq. Since the natural inclusion L8pS1,EndpR2nqq ãÑ
L pL2pS1,R2nqq has closed image (cf. Remark 3.21), this is equivalent to the con-
tinuity of the map s ÞÑ Ss into L

8, which means continuity in the topology of the
space of asymptotic operators as specified in Definition 3.11.

The proof of Theorem 3.19 requires only one more technical ingredient, whose
proof is given in Appendix C and should probably be skipped on first reading unless
you have already read Lecture 8 or seen similar applications of the Sard-Smale
theorem elsewhere. You might however find the result plausible in accordance with
the notion that maps from 2-dimensional domains, such as a map of the form

p´1, 1q ˆ R Ñ Fredsym
R pD,H,Trefq : ps, λq ÞÑ Ts ´ λ

should generically not intersect submanifolds that have codimension 3 or more, such
as Fredsym,k

R pD,H,Trefq when k ě 2.
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Lemma 3.35 (see Appendix C). Fix a smooth path r´1, 1s Ñ L8pEndsym
R pR2nqq :

s ÞÑ Ss and consider the 1-parameter family of symmetric index 0 Fredholm operators

As :“ ´J0 Bt ´ Ss : H
1pS1,R2nq Ñ L2pS1,R2nq

for s P r´1, 1s, assuming A˘1 are isomorphisms. Then after replacing Ss by a

family of the form rSsptq :“ Ssptq ` Bps, tq for some smooth function B : r´1, 1s Ñ
Endsym

R pR2nq that vanishes for s “ ˘1 and may be assumed arbitrarily C8-small,
one can arrange that the following conditions hold:

(1) For each s P p´1, 1q, all eigenvalues of As are simple.
(2) All intersections of the smooth path

p´1, 1q Ñ Fredsym
R pD,H,Trefq : s ÞÑ As

with Fredsym,1
R pD,H,Trefq are transverse.

�

Proof of Theorem 3.19. Given a family tAsusPr´1,1s as specified in the the-
orem, use Lemma 3.35 to obtain a C8-small zeroth-order perturbation making all
eigenvalues simple for s P p´1, 1q and all intersections with Fredsym,1

R pD,Hq trans-
verse. Proposition 3.32 then implies that the eigenvalues depend smoothly on s, and
Lemma 3.33 imposes a uniform bound on their derivatives with respect to s so that
each one varies only in a bounded subset of R for s P p´1, 1q. The smooth families
of eigenvalues for s P p´1, 1q therefore extend to continuous families for s P r´1, 1s
since the space of noninvertible Fredholm operators with index 0 is closed. Propo-
sition 3.30 ensures moreover that these continuous families hit every eigenvalue
with the correct multiplicity at s “ ˘1, and by Proposition 3.32, the formula for
µspecpA´,A`q stated in the theorem is correct for the perturbed family with sim-
ple eigenvalues and transverse crossings. To obtain the same result for the original
family, suppose we have a sequence of perturbations tAν

s “ As ` Bνps, ¨qusPr´1,1s
such that Bν : r´1, 1s ˆ S1 Ñ Endsym

R pR2nq is C8-convergent to 0 as ν Ñ 8.
Lemma 3.33 then provides a uniform C1-bound for each sequence of smooth fami-
lies of eigenvalues, so they have C0-convergent subsequences as ν Ñ 8, giving rise
to the continuous families in the statement of the theorem. �

Remark 3.36. It is important to understand that the definition of spectral flow
depends on the particular co-orientation of Fredsym,1

F pD,H,Trefq that arose in the
proof of Prop. 3.27. We saw in Prop. 3.32 that this is indeed the right co-orientation
to use if we want to interpret signed intersections with Fredsym,1

F pD,H,Trefq as
signed crossing numbers of eigenvalues. In the non-symmetric setting of §3.3.1,
one can show that Fred0,1

R pX, Y q is also co-orientable—this is obvious in the finite-

dimensional case since Fred0,1
R pRn,Rnq is then a regular level set of the determinant

function. Moreover, Fred0,1
R pRn,Rnq is connected (see Exercise 3.37 below), so the

co-orientation is unique up to a sign. One can therefore lift the Z2-valued spectral
flow of §3.3.1 to Z, but as in Exercise 3.25, the result will be a different and much
less interesting invariant than µspecpA´, A`q, as its value will always be either 0 (if
detA´ and detA` have the same sign) or ˘1 (if they don’t). The reason for the
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discrepancy is that the canonical co-orientation of Fredsym,1
R pD,H,Trefq must gen-

erally differ on some connected components from any possible co-orientation of the
larger hypersurface Fred0,1

R pD,Hq Ă Fred0
RpD,Hq.

Exercise 3.37. Show that the space Fred0,1
R pR2,R2q of rank 1 matrices in R2ˆ2 is

connected, but the space Fredsym,1
R pR2,R2q of symmetric rank 1 matrices is not, and

that the canonical co-orientation of Fredsym,1
R pR2,R2q coming from Prop. 3.27 differs

on some components from any possible co-orientation of Fred0,1
R pR2,R2q Ă R2ˆ2.

Hint: A non-symmetric 2-by-2matrix may have rank 1 even if both of its eigenvalues
are 0. For symmetric matrices this cannot happen.

Exercise 3.38. Find a smooth path A : r´1, 1s Ñ R2ˆ2 of symmetric matrices
such that A˘ :“ Ap˘1q are both invertible and µspecpA´, A`q “ 2, but A` and A´
can also be connected by a smooth path of (not necessarily symmetric) invertible
matrices in R2ˆ2.

Definition 3.39. The spectral flow between two asymptotic operators A˘
with trivial kernel on a Hermitian vector bundle pE, J, ωq over S1 is defined by
choosing a unitary trivialization to identify both with operators of the form A0

˘ “
´J0Bt ´ S˘ptq, and then setting µspecpA´,A`q :“ µspecpA0

´,A
0
`q, with the latter

defined via Theorem 3.19.

You should take a moment to convince yourself that the definition of µspecpA´,A`q
does not depend on the choice of unitary trivialization.

We can now clarify what is meant when we say that critical points of the action
functional in SFT or Floer homology have “infinite Morse index” and “infinite Morse
co-index”:

Proposition 3.40. Every asymptotic operator has infinitely many eigenvalues
of both signs.

Proof. For A0 :“ ´J0Bt : H1pS1,R2nq Ñ L2pS1,R2nq, the eigenvalues can be
computed explicitly (see the proof of Theorem 3.54 below), so one verifies easily
that there are infinitely many of both signs. It is therefore also true for A0 ` ǫ

for any ǫ P R, and this operator has trivial kernel whenever ǫ R 2πZ. For any
other trivialized asymptotic operator A with 0 R σpAq, the result then follows from
Theorem 3.19 since µspecpA0 ` ǫ,Aq is finite, and this is precisely the signed count
of eigenvalues which change sign. The condition 0 R σpAq can then be lifted by
replacing A with A ` ǫ. �

Exercise 3.41. Prove:

(a) Asymptotic operators are self-adjoint (as unbounded operators on L2 with
domain H1) in the sense of Remark 3.29.

(b) For any asymptotic operator A on a bundle E, L2pEq admits an orthonor-
mal basis of eigenfunctions of A. Hint: Choose λ P RzσpAq and notice that
the resolvent pλ ´ Aq´1 defines a compact operator from L2pEq to itself.
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3.4. The Conley-Zehnder index

We are now in a position to define a suitable replacement for the Morse index
in the context of SFT. It will take the form of a locally constant function

µτCZ : A˚pEq Ñ Z

associated to each Hermitian vector bundle pE, ω, Jq over S1 with symplectic triv-
ialization τ , and will have the important property that its values fully classify the
connected components of the space of nondegenerate asymptotic operators. Recall
from §3.2 that the space ApEq of asymptotic operators is an affine space over the
Banach space of symmetric bundle endomorphisms of class L8, and the nondegen-
erate operators form an open subset A˚pEq Ă ApEq characterized by the condition
kerA “ t0u. Since the spectrum σpAq Ă R consists entirely of eigenvalues, nonde-
generacy of A P ApEq is equivalent to the condition

0 R σpAq.
The following general class of nondegenerate asymptotic operators will be used for
normalization purposes.

Example 3.42. Suppose S P Endsym
R pR2q is a constant 2-by-2 symmetric matrix

with negative determinant. Then the trivialized asymptotic operator A “ ´J0Bt ´
S : H1pS1,R2q Ñ L2pS1,R2q is nondegenerate. To see this, observe that since R2

is spanned by an orthogonal pair of eigenvectors, one can assume after a suitable

change of basis that J0 “
ˆ
0 ´1
1 0

˙
and S “

ˆ
a 0
0 ´b

˙
for some a, b ą 0. The

matrix appearing in the equation 9η “ J0Sη is then J0S “
ˆ
0 b

a 0

˙
, which has the

real nonzero eigenvalues ˘
?
ab. It follows that the two eigenvalues of eJ0S lie in

p0, 1q and p1,8q, so there can be no 1-periodic solutions of the equation 9η “ J0Sη,
and thus no nontrivial solutions η P H1pS1,R2q to Aη “ 0.

In higher dimensions, the same result holds for A “ ´J0Bt ´ S : H1pS1,R2nq Ñ
L2pS1,R2nq whenever the constant matrix S P Endsym

R pR2nq is unitarily equivalent to
a diagonal matrix with n positive and n negative eigenvalues (counting multiplicity).
Indeed, this condition is equivalent to saying that R2n “ Cn can be decomposed into
orthogonal complex 1-dimensional subspaces such that S restricts to an orientation-
reversing isomorphism on each. The solutions to the equation 9η “ J0Sη are then
linear combinations of solutions for the n “ 1 case described in the previous para-
graph.

Choosing the identification R2n “ Cn so that J0 “
ˆ
0 ´1

1 0

˙
, the canonical

example of a matrix with the properties described above is S “
ˆ
1 0
0 ´1

˙
.

Exercise 3.43. Show that the space of matrices on Endsym
R pR2nq unitarily equiv-

alent to a diagonal matrix with n positive and n negative eigenvalues (counting
multiplicity) is connected.
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Definition 3.44. The Conley-Zehnder index associates to every trivialized
nondegenerate asymptotic operator A “ ´J0Bt ´ Sptq : H1pS1,R2nq Ñ L2pS1,R2nq
an integer

µCZpAq P Z

determined uniquely by the following properties:

(1) µCZpAq :“ 0 for any operator of the form A “ ´J0Bt ´ S where S P
Endsym

R pR2nq is a constant matrix unitarily equivalent to one that is diagonal
with n positive and n negative eigenvalues (counting multiplicity).

(2) For any two nondegenerate operators A˘,

µCZpA´q ´ µCZpA`q :“ µspecpA´,A`q.
Example 3.42 and Exercise 3.43 show that this definition does not depend on

the choice of a constant matrix S P Endsym
R pR2nq with n positive and n negative

eigenvalues, as any two asymptotic operators constructed in this way are homotopic
through a family of nondegenerate asymptotic operators, and therefore have zero
spectral flow between them.

Definition 3.45. Given a nondegenerate asymptotic operator A P A˚pEq on
a Hermitian bundle pE, J, ωq over S1 and a choice of symplectic trivialization τ for
pE, Jq, the Conley-Zehnder index of A with respect to τ is the integer

µτCZpAq P Z

defined by choosing any unitary trivialization homotopic to τ to write A as an
operator H1pS1,R2nq Ñ L2pS1,R2nq and then plugging in Definition 3.44.

If γ is a nondegenerate Reeb orbit γ in a p2n´ 1q-dimensional contact manifold
pM, ξ “ kerαq, then for any symplectic trivialization τ of γ˚ξ Ñ S1, the Conley-
Zehnder index of γ relative to τ is defined as

µτCZpγq :“ µτCZpAγq.
It is clear from the definition that any two trivialized asymptotic operators that

are homotopic through a family of nondegenerate operators have the same Conley-
Zehnder index, as the existence of such a homotopy implies that the spectral flow
between them is zero. For this reason, the definition above for µτCZpAq depends on
the trivialization τ only up to homotopy: any homotopy of trivializations gives rise
to a homotopy of trivialized asymptotic operators that are all nondegenerate.

It is customary elsewhere in the literature (see e.g. [CZ84,SZ92]) to adopt a
somewhat different perspective on the Conley-Zehnder index, in which it defines an
integer-valued invariant of connected components of the space of nondegenerate
symplectic arcs

 
Ψ P C0pr0, 1s, Spp2nqq

ˇ̌
Ψp0q “ 1 and 1 R σpΨp1qq

(
,

where Spp2nq Ă GLp2n,Rq denotes the group of linear transformations that preserve
the standard symplectic form on R2n. The connection between this notion and our
definitions above arises from the parallel transport map of an asymptotic operator
(see Proposition 3.17), and is elucidated in Definition 3.49 below.
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Exercise 3.46. For an asymptotic operator A P ApEq with parallel transport
map tΨptqutPR, show that A is nondegenerate if and only if 1 R σpΨp1qq.

Exercise 3.47. Show that if r0, 1s Ñ ApEq : s ÞÑ As is a continuous family of
asymptotic operators with parallel transport maps tΨsptqutPR, then Ψsptq depends
continuously on ps, tq P r0, 1s ˆR. Hint: Exercise 3.16 contains a useful result about
the continuous dependence of solutions to ODEs on parameters in the equation.

Exercise 3.48. Show that any smooth family tΨsptqups,tqPr0,1s2 of symplectic lin-
ear maps Ψsptq : E0 Ñ Et on a Hermitian bundle pE, ω, Jq over S1 uniquely deter-
mines a continuous family of asymptotic operators tAs P ApEqusPr0,1s whose parallel
transport maps over the interval r0, 1s are tΨsptqutPr0,1s. Hint: See Remarks 3.18
and 3.20 for a few useful observations.

Definition 3.49. The Conley-Zehnder index µCZpΨq P Z of a nondegenerate
symlectic arc Ψ : r0, 1s Ñ Spp2nq is defined as µCZpAq for any choice of trivialized
asymptotic operator A whose parallel transport restricted to the interval r0, 1s is
homotopic to Ψ through a family of nondegenerate symplectic arcs.

If you are wondering why Definition 3.49 does not simply choose A to be an
asymptotic operator whose parallel transport is Ψ, the answer is that such an oper-
ator might not exist since we only assumed Ψ to be of class C0 and not W 1,8. But
by Proposition 3.17 and Remark 3.18, such an operator will always exist after per-
turbing Ψ : r0, 1s Ñ Spp2nq on p0, 1q to make it smooth. That the resulting index is
independent of this choice of perturbation then follows from Exercises 3.46 and 3.48,
supplemented by the fact that a continuous homotopy between two smooth paths
always admits a C0-small perturbation to a smooth homotopy.

Remark 3.50. For the asymptotic operator Aγ of a Reeb orbit γ, the corre-
sponding symplectic parallel transport map is given by the linearized Reeb flow
along γ, restricted to ξ (cf. Exercise 3.5 and Remark 3.6). Thus if one prefers as
in [SZ92] to speak in terms of nondegenerate symplectic arcs instead of asymptotic
operators, µτCZpγq is equivalently the Conley-Zehnder index of the linearized Reeb
flow along γ, expressed via a choice of symplectic trivialization as a nondegenerate
arc in Spp2n´ 2q.

Exercise 3.51. Show that ifA1 andA2 are nondegenerate asymptotic operators
on Hermitian bundles E1 and E2 respectively, then A1 ‘A2 defines a nondegenerate
asymptotic operator on E1 ‘ E2, and given trivializations τj for j “ 1, 2,

µτ1‘τ2
CZ pA1 ‘ A2q “ µτ1CZpA1q ` µτ2CZpA2q.

Remark 3.52. Contact geometry in dimension one is not very interesting, but
we will nonetheless occasionally need to allow n “ 1 in the above discussion. On S1

with its standard orientation, any 1-form that is everywhere positive is contact, so
the induced contact structure is a rank 0 bundle, it has a unique trivialization, and
closed Reeb orbits γ are just covers of S1. The asymptotic operators Aγ for these
orbits are thus trivial operators on a 0-dimensional vector space, and in light of the
direct sum formula in Exercise 3.51, the only reasonable convention is to set

µCZpγq “ µCZpAγq “ 0.
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R M

As As ` c1psq As ` c2psq
s “ ´1

s “ 1
λ “ 0 λ “ 0 λ “ 0

  

Figure 3.1. Modifying a path of asymptotic operators tAsusPr´1,1s
with zero spectral flow to produce a path of nondegenerate operators.

This will lead to the correct Fredholm index formula for punctured holomorphic
curves in 2-dimensional symplectic cobordisms, which is just a fancy way of talking
about holomorphic branched covers between punctured Riemann surfaces (cf. Propo-
sition 14.36).

Here is the main result about Conley-Zehnder indices.

Theorem 3.53. On any Hermitian bundle pE, J, ωq Ñ S1 with symplectic triv-
ialization τ , two nondegenerate asymptotic operators A˘ P A˚pEq lie in the same
connected component of A˚pEq if and only if µτ

CZ
pA`q “ µτ

CZ
pA´q.

Similarly, two nondegenerate symplectic arcs Ψ˘ : r0, 1s Ñ Spp2nq are homotopic
through a family of nondegenerate symplectic arcs if and only if µCZpΨ`q “ µCZpΨ´q.

Proof. In one direction, both statements are immediate from the definitions.
For the other direction of the first statement, we trivialize the bundle and aim to
show that if A˘ “ ´J0Bt´S˘ptq satisfy µspecpA´,A`q “ 0, then they are connected
by a path of trivialized asymptotic operators for which no eigenvalues cross 0. To
see this, we can first choose any path tAsusPr´1,1s of asymptotic operators with
A˘1 “ A˘ such that (after perturbing it via Lemma 3.35) all eigenvalues of As

for ´1 ă s ă 1 are simple and their crossings with 0 are transverse with respect
to the parameter s. Any consecutive pair of crossings with opposite signs can then
be eliminated (see Figure 3.1) by changing tAsusPr´1,1s to tAs ` cpsqusPr´1,1s for a
suitable choice of smooth function c : r´1, 1s Ñ R. Since the spectral flow is zero,
one can repeat this modification until one obtains a path with no crossings.

The statement about symplectic arcs follows from the statement about asymp-
totic operators via Exercise 3.47. �

3.5. Winding numbers of eigenfunctions

To compute Conley-Zehnder indices, Exercise 3.51 shows that it suffices if we
know how to compute them for operators on Hermitian line bundles. The next two
theorems provide a useful tool for this.

Theorem 3.54. Let A “ ´J0Bt ´ Sptq : H1pS1,R2q Ñ L2pS1,R2q, where S P
L8pS1,Endsym

R pR2nqq. For each λ P σpAq, denote the corresponding eigenspace by
Eλ Ă H1pS1,R2q.
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(1) Every nontrivial eigenfunction eλ P Eλ is a continuous nowhere-zero loop
in R2 and thus has a well-defined winding number windpeλq P Z.

(2) Any two nontrivial eigenfunctions in the same eigenspace Eλ have the same
winding number.

(3) If λ, µ P σpAq satisfy λ ă µ, then any two nontrivial eigenfunctions eλ P Eλ
and eµ P Eµ satisfy windpeλq ď windpeµq.

(4) For every k P Z, A has exactly two eigenvalues (counting multiplicity) for
which the corresponding eigenfunctions have winding number equal to k.

Proof. We follow the proof given in [HWZ95a].
Statement (1) follows from the generalized existence/uniqueness result of Exer-

cise 3.16 for solutions to the (possibly discontinuous) linear ODE Btη “ J0pS ` λqη.
In particular, any solution that equals zero at a point must be identically zero, since
the trivial function is also a solution.

To prove (2), let η0 and η1 be nontrivial eigenfunctions for the same eigenvalue λ.
If their winding numbers are different, then there exists t0 P S1 at which η1pt0q is a
nonzero real multiple of η0pt0q, so after rescaling, we can assume η0pt0q “ η1pt0q. But
η0 and η1 are both solutions to the same linear ODE, so this implies η0ptq “ η1ptq
for all t and thus contradicts the assumption on the winding numbers.

We prove the rest first for the case S “ 0 and the operator A0 “ ´J0Bt. Let us
identify R2 with C so that J0 becomes i, and the equation A0η “ λη becomes

´i Btη “ λη, hence ηptq “ ηp0qeiλt.
This is a well-defined function S1 Ñ C if and only if λ P 2πZ, thus σpA0q “ 2πZ,
and the winding number of an eigenfunction with eigenvalue 2πk is k. Statements
(2) and (3) for the operatorA0 are now obvious, and (4) follows from the observation
that for each λ “ 2πk, the eigenspace Eλ has complex dimension one and thus real
dimension two, so in this case each eigenvalue is to be counted with multiplicity two.

For the case of an arbitrary trivialized asymptotic operator A, observe first that
each eigenspace Eλ Ă H1pS1,R2q is at most 2-dimensional, as the uniqueness of
solutions in Exercise 3.16 gives a linear injection

Eλ ãÑ R2 : η ÞÑ ηp0q.
Now choose a smooth path of asymptotic operators tAsusPr0,1s from A0 “ ´J0Bt
to A1 “ A, and perturb it as in Lemma 3.35 so that all eigenvalues of As for
s P p0, 1q are simple. The same argument as in the proof of Theorem 3.19 (combining
Propositions 3.30 and 3.32 and Lemma 3.33) produces a discrete set of continuous
functions tλj : r0, 1s Ñ RujPZ whose values at each s P r0, 1s are the eigenvalues of
As (counted with multiplicity), and since eigenvalues for s P p0, 1q are simple, on
the open interval these functions are all smooth and no two of them ever coincide
(see Figure 3.2). It follows that the λj can be ordered to ensure λjpsq ď λkpsq
for j ă k and all s P r0, 1s, with strict inequality λjpsq ă λkpsq when s P p0, 1q.
Proposition 3.27 now implies that the 1-dimensional eigenspaces corresponding to
the eigenvalues λjpsq for s P p0, 1q also vary smoothly inH1pS1,R2q with s, so in light
of the continuous inclusion H1pS1q ãÑ C0pS1q from the Sobolev embedding theorem,
one can span these eigenspaces with continuous families of nontrivial eigenfunctions
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. . . . . .

λ´4 λ´3 λ´2 λ´1 λ0 λ1

λ2 “ λ3
λ4 λ5

0 2π 4π´2π´4π
s “ 0

s “ 1

Figure 3.2. Generic deformation of eigenvalues from A0 “ ´J0Bt
to an arbitrary asymptotic operator A in the proof of Theorem 3.54.

ηjpsq P H1pS1,R2q. If we normalize them so that }ηjpsq}L2 “ 1 for all j and s, then
they also extend continuously to s “ 0 and s “ 1 as nontrivial eigenfunctions of
A0 and A1 respectively, and continuity implies that windpηjpsqq P Z is independent
of s. Finally, we observe that pairs of the functions λj : r0, 1s Ñ R may coincide at
s “ 1 since eigenvalues of A1 need not be simple (this occurs once in Figure 3.2),
but the bound dimEλ ď 2 implies that no more than two of these functions can ever
have the same value. At s “ 0, our computation of the spectrum of A0 shows that
exactly two of them attain each value in 2πZ. It follows that for every s P r0, 1s,
including s “ 1, the function Z Ñ Z : j ÞÑ windpηjpsqq is monotone increasing and
attains every value exactly twice. �

The theorem implies the existence of a well-defined and nondecreasing function

σpAq Ñ Z : λ ÞÑ windpλq,

where windpλq is defined as windpeλq for any nontrivial eλ P Eλ, and this function
attains every value exactly twice (counting multiplicity of eigenvalues). Since eigen-
values of A are isolated, we can therefore associate to any asymptotic operator A
on the trivial Hermitian line bundle the integers

α`pAq “ min
λPσpAqXp0,8q

windpλq P Z,

α´pAq “ max
λPσpAqXp´8,0q

windpλq P Z,

ppAq “ α`pAq ´ α´pAq ě 0.

(3.12)

We refer to α˘pAq as the (positive and negative) extremal winding numbers
of A. If A is nondegenerate, then Theorem 3.54 implies that ppAq is either 0
or 1, and it is in this case called the parity of A; the following result justifies this
terminology.

Theorem 3.55. If A is a nondegenerate asymptotic operator on the trivial Her-
mitian line bundle S1 ˆ R2 Ñ S1, then

µCZpAq “ 2α´pAq ` ppAq “ 2α`pAq ´ ppAq.
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Proof. The operator A0 “ ´J0Bt ´
ˆ
1 0
0 ´1

˙
satisfies µCZpA0q “ 0 by defi-

nition, and it has two constant eigenfunctions with eigenvalues of opposite signs,
hence

α´pA0q “ α`pA0q “ 0,

consistent with the stated formula. The general case then follows by choosing a
generic (in the sense of Lemma 3.35) path from A0 to A and observing that all
three expressions in the stated formula change in the same way whenever a simple
eigenvalue crosses zero. �

For any Hermitian line bundle pE, J, ωq over S1 with an asymptotic operator
A, we can similarly choose a symplectic trivialization τ to define ατ˘pAq P Z and
ppAq “ ατ`pAq ´ ατ´pAq ě 0; note that the dependence on τ cancels out in the last
formula, so that ppAq is independent of choices. We then can associate to any Reeb
orbit γ in a contact 3-manifold pM, ξ “ kerαq with a trivialization τ of γ˚ξ the
integers ατ˘pγq and ppγq, such that if γ is nondegenerate, then ppγq P t0, 1u and

µτCZpγq “ 2ατ´pγq ` ppγq “ 2ατ`pγq ´ ppγq.
Exercise 3.56. Given a Hermitian vector bundle pE, J, ωq Ñ S1 with two uni-

tary trivializations τj : E Ñ S1 ˆ R2n for j “ 1, 2, denote by

degpτ1 ˝ τ´1
2 q P Z

the winding number of det g : S1 Ñ Up1q Ă Czt0u, where g : S1 Ñ Upnq is the
transition map appearing in the formula τ1 ˝ τ´1

2 pt, vq “ pt, gptqvq. Show that for
any nondegenerate asymptotic operator A on pE, J, ωq,

µτ2CZpAq “ µτ1CZpAq ` 2 degpτ2 ˝ τ´1
1 q.

Exercise 3.56 provides the useful formula

µτ2CZpγq “ µτ1CZpγq ` 2 degpτ2 ˝ τ´1
1 q

for any two symplectic trivializations τ1, τ2 of ξ along a nondegenerate Reeb orbit γ,
where degpτ2 ˝ τ´1

1 q can be defined in this case after homotopies of τ1 and τ2 to
unitary trivializations. In particular, this shows that the parity

µZ2

CZpγq :“ rµτCZpγqs P Z2

of the orbit does not depend on a choice of trivialization. We sometimes refer to
even orbits and odd orbits accordingly.

To any closed Reeb orbit of period T ą 0 parametrized by a loop γ : S1 Ñ M

with 9γ “ T ¨ Rαpγq, one can associate a Reeb orbit of period kT for each k P N,
parametrized by

γk : S1 Ñ M : t ÞÑ γpktq.
We say γk is the k-fold cover of γ, and it is multiply covered if k ě 2. We say γ
is simply covered if it is not the k-fold cover of another Reeb orbit for any k ě 2.
Notice that sections η P Γpγ˚ξq also have k-fold covers ηk P Γppγkq˚ξq, defined by
ηkptq “ ηpktq.
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If Aγ has parallel transport map tΨγptqutPR, then the parallel transport map of
Aγk for each k P N is given by

Ψγkptq “ Ψγpktq.
If Aγ is given in some choice of unitary trivialization of γ˚ξ by ´J0Bt ´ Sptq, then
using the pullback of the same trivialization on pγkq˚ξ, one now deduces via Propo-
sition 3.17 that Aγk is given by

Aγk “ ´J0Bt ´ kSpktq.
This implies:

Proposition 3.57. Given a Reeb orbit γ and k P N, the k-fold cover of each
eigenfunction eλ of Aγ with Aγeλ “ λeλ is an eigenfunction of Aγk satisfying
Aγke

k
λ “ kλekλ. �

Exercise 3.58. Assume dimM “ 3.

(a) If γ is a closed Reeb orbit inM and τ is the pullback under S1 Ñ S1 : t ÞÑ kt

of a trivialization of γ˚ξ Ñ S1, deduce from Theorem 3.54 that a nontrivial
eigenfunction eλ of Aγk is a k-fold cover if and only if windτ peλq is divisible
by k.

(b) Under the same assumptions, show that for any nontrivial eigenfunction eλ
of Aγk ,

covpeλq :“ maxtm P N | eλ is an m-fold coveru “ gcdpk,windτ peλqq.
(c) Show that if γ is a nondegenerate Reeb orbit with even Conley-Zehnder

index, then so are all of its multiple covers.

3.6. Elliptic and hyperbolic orbits

In this section we develop a few more techniques for the computation of Conley-
Zehnder indices, focusing mainly (but not exclusively) on the low-dimensional case.
We will need to use the following notation for the “floor” and “ceiling” of a real
number θ P R,

Z Q tθu ď θ ď rθs P Z for θ P R,

where by definition rθs “ tθu ` 1 whenever θ R Z, and rθs “ tθu for θ P Z.

Definition 3.59. Assume pM, ξ “ kerαq is a 3-dimensional contact manifold,
γ : S1 Ñ M parametrizes a nondegenerate Reeb orbit of period T ” αp 9γq ą 0, and
ϕT˚ : ξγp0q Ñ ξγp0q denotes the restriction of the linearized time-T Reeb flow to ξγp0q.
Let λ1, λ2 P C denote the two eigenvalues of ϕT˚ , which satisfy λ1λ2 “ 1 since ϕT˚ is
symplectic, and λ1 ‰ 1 ‰ λ2 since γ is nondegenerate. Then γ is called

(1) positive hyperbolic if λ1, λ2 ą 0;
(2) negative hyperbolic if λ1, λ2 ă 0;
(3) elliptic if λ1, λ2 R R.

Similarly, a nondegenerate symplectic arc Ψ : r0, 1s Ñ Spp2q or a nondegenerate
asymptotic operator A on a Hermitian line bundle pE, ω, Jq Ñ S1 with parallel
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transport map tΨptqutPR can be called positive/negative hyperbolic or elliptic6

according to the properties of the eigenvalues λ1, λ2 P σpΨp1qq.
Observe that every nondegenerate orbit must satisfy exactly one of the three

conditions in Definition 3.59, each of which encodes qualitative aspects of the dy-
namics in the neighborhood of that orbit. This is a large subject, which we will not
get into here except to make some observations about the invariance of these prop-
erties under deformations. In the elliptic case, the two eigenvalues λ1, λ2 necessarily
form a conjugate pair on the unit circle Up1q Ă C, and in both other cases, they
must both lie on the same side of 0 in Rzt0u. Since Up1q X p´8, 0q and p0,8qzt1u
are each open and closed subsets of pRzt0, 1uq Y Up1q Ă C (see Figure 3.3), it fol-
lows that under any smooth deformation of contact forms tαsusPr0,1s for which γ is
a nondegenerate Reeb orbit for every αs, it cannot deform from positive hyperbolic
to either of the other two categories, i.e. if it is positive hyperbolic at s “ 0, then it
remains so at s “ 1. Indeed, since eigenvalues of the linearized flow deform contin-
uously as functions of s, they could not pass from the positive real line to the circle
or negative real line without crossing 1, which would mean degeneracy. We will
see in Theorem 3.63 below that this invariance property is related to the odd/even
parity of the Conley-Zehnder index. It’s worth looking first at a couple of concrete
examples.

Example 3.60. On the trivial Hermitian line bundle over S1, consider an as-
ymptotic operator of the form

A “ ´J0Bt ´ ǫ

for ǫ P R. The spectrum and eigenfunctions of this operator were computed for
ǫ “ 0 in the proof of Theorem 3.54; for general ǫ P R, the eigenfunctions are the
same, but the spectrum is shifted to 2πZ ´ ǫ, implying that A is degenerate if and
only if ǫ P 2πZ. If ǫ R 2πZ, then inspecting the winding of the eigenfunctions and
applying Theorem 3.55 gives

µCZpAq “ 2tǫ{2πu ` 1.

The parallel transport map Ψ : R Ñ Spp2q for this operator is given by

Ψptq “ eǫtJ0 “
ˆ
cospǫtq ´ sinpǫtq
sinpǫtq cospǫtq

˙
,

so σpΨp1qq “ teiǫ, e´iǫu, and A is therefore elliptic whenever ǫ R πZ, and negative
hyperbolic for ǫ P πZz2πZ.

Exercise 3.61. Show that the asymptotic operators of Example 3.60 arise in the
following concrete example of a closed Reeb orbit: γ : S1 Ñ S1 ˆR2 : t ÞÑ pt, 0q with
positive contact form α “ fpρq dθ`gpρq dφ written in positively-oriented coordinates
pθ, pρ, φqq P S1 ˆ R2, where pρ, φq are the standard polar coordinates on R2 and
f, g : r0,8q Ñ R are suitably chosen functions. Assuming fp0q ą 0 and gp0q “ 0,
find an explicit formula for the offset ǫ P R in terms of the ratio f 2p0q{g2p0q.

6Caution: the use of the word “elliptic” in this context is unrelated to its meaning in the theory
of partial differential operators (which will be relevant from Lecture 4 onwards). Every asymptotic
operator is elliptic in the latter sense, but not in the dynamical sense under consideration here.
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s
, ǫq

C

R1

Up1q

Figure 3.3. Every symplectic linear map in dimension two has
spectrum contained in pRzt0uq Y Up1q Ă C, but eigenvalues cannot
move between p0,8q and p´8, 0q Y Up1q without crossing 1.

Example 3.62. The asymptotic operator

A “ ´J0Bt ´
ˆ
ǫ 0
0 ´ǫ

˙

for ǫ ą 0 has parallel transport map Ψptq “
ˆ
coshpǫtq sinhpǫtq
sinhpǫtq coshpǫtq

˙
and thus σpΨp1qq “

teǫt, e´ǫtu, so it is positive hyperbolic. It also satisfies µCZpAq “ 0 by the definition
of the Conley-Zehnder index.

Observe that by changing global trivializations as in Exercise 3.56, one can
produce from this example a positive hyperbolic asymptotic operator with arbi-
trary even Conley-Zehnder index; indeed, changing trivializations alters the path
Ψ : r0, 1s Ñ Spp2q, but does not change Ψp1q.

We can now establish a useful topological criterion for computing the Conley-
Zehnder index of a nondegenerate symplectic arc Ψ : r0, 1s Ñ Spp2q. Given v P
R2zt0u, use the canonical identification R2 “ C to write Ψptqv “ rvptqeiθvptq for
some continuous functions rvptq ą 0 and θvptq P R. The winding interval of Ψ is
defined as the set

∆pΨq :“
"
θvp1q ´ θvp0q

2π

ˇ̌
ˇ̌ v P R2zt0u

*
Ă R.
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Notice that θvp1q´θvp0q depends only on the normalized vector v{|v| Ă S1 Ă R2, and
this dependence is continuous, thus ∆pΨq Ă R is indeed a connected and compact
set, i.e. a closed bounded interval.

Theorem 3.63. Given a nondegenerate symplectic arc Ψ : r0, 1s Ñ Spp2q, ex-
actly one of the following holds:

‚ Ψ is elliptic or negative hyperbolic and there exists an integer k P Z with

µCZpΨq “ 2k ` 1 and ∆pΨq Ă pk, k ` 1q.
‚ Ψ is positive hyperbolic and there exists an integer k P Z with

µCZpΨq “ 2k and ∆pΨq X Z “ tku.
Proof. Observe first that by explicit calculation, the stated formula relating

µCZpΨq and the winding interval ∆pΨq is correct for each of the models in Exam-
ples 3.60 and 3.62, which cover all possible values of the Conley-Zehnder index.

Next, if Ψ : r0, 1s Ñ Spp2q is an arbitrary continuous map with Ψp0q “ 1, then
the condition ∆pΨq X Z ‰ H is equivalent to the existence of a vector v P R2zt0u
for which Ψp1qv is a positive multiple of v, meaning Ψp1q has a positive eigenvalue.
This is true if and only if Ψ is either degenerate or positive hyperbolic.

Now suppose Ψ is an arbitrary nondegenerate symplectic arc. If µCZpΨq is odd,
then Theorem 3.53 provides a homotopy tΨs : r0, 1s Ñ Spp2qusPr0,1s through non-
degenerate symplectic arcs with Ψ1 “ Ψ so that Ψ0 is the parallel transport of one
of the elliptic models in Example 3.60. Since σpΨ0p1qq Ă Up1qzt1u and σpΨsp1qq
cannot contain 1 for any s P r0, 1s, it follows that σpΨp1qq is also contained in either
the unit circle or the negative real line, so Ψ is elliptic or negative hyperbolic. If in-
stead µCZpΨq is even, then a similar argument using the positive hyperbolic models
of Example 3.62 implies that Ψ is positive hyperbolic.

Returning to the case µCZpΨq R 2Z, we now know that the nondegenerate sym-
plectic arcs Ψs in the homotopy of the previous paragraph are never positive hyper-
bolic, thus ∆pΨsq X Z “ H for every s. Since the winding intervals ∆pΨsq depend
continuously on s, it follows that ∆pΨq is contained within the same open unit in-
terval pk, k ` 1q as ∆pΨ0q, so the stated formula for µCZpΨq now follows from the
fact that it holds for the models in Example 3.60.

Finally, if µCZpΨq P 2Z, then all Ψs in the homotopy are positive hyperbolic,
implying that Ψsp1q for each s has two simple eigenvalues λ´

s P p0, 1q and λ`
s P p1,8q,

whose corresponding eigenvectors v˘
s span R2. Since the eigenvalues are simple, all

of this data varies continuously with s, and one therefore obtains two homotopies
of paths tv˘

s ptq :“ Ψsptqv˘
s P R2zt0uusPr0,1s, such that v`

s ptq and v´
s ptq are linearly

independent for all s and t, and the normalized paths t ÞÑ v˘
s ptq{|v˘

s ptq| are loops.
This implies that their total winding is the same for all s P r0, 1s and for both signs,
thus ∆pΨq contains only one integer, and it is the same integer that ∆pΨ0q contains.
Once again, the stated formula for µCZpΨq now follows from the fact that it holds
for the model in Example 3.62. �

Using the direct sum property in Exercise 3.51, one derives from Theorem 3.63
the following alternative characterization of the Conley-Zehnder index in higher
dimensions (cf. [FH93, Proposition 5] or [Sch95, Theorem 3.3.7]):
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Corollary 3.64. Using the canonical identification R2 “ C, consider the paths
in EndRpCnq defined by

αptq :“

¨
˝
eπit ¨ ¨ ¨ 0
...

. . .
...

0 ¨ ¨ ¨ eπit

˛
‚, βptq :“

¨
˚̊
˚̊
˝

ˆ
et 0
0 e´t

˙
0 ¨ ¨ ¨ 0

0 eπit ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ eπit

˛
‹‹‹‹‚
,

and the loop

σptq :“

¨
˚̊
˝

e2πit 0 ¨ ¨ ¨ 0
0 1 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ 1

˛
‹‹‚.

Defining the standard symplectic form on Cn by ω0 “ Rexi¨, ¨y and identifying R2n

with Cn makes all of these into paths in Spp2nq. Then every nondegenerate sym-
plectic arc Ψ : r0, 1s Ñ Spp2nq is homotopic through nondegenerate symplectic arcs
to exactly one of the arcs Φkptq :“ σptqkαptq or Ψkptq :“ σptqkβptq for some k P Z,
which satisfy

µCZpΦkq “ 2k ` n, µCZpΨkq “ 2k ` n´ 1.

�

In many applications, it is important to understand how the Conley-Zehnder
index scales when an orbit γ is replaced by its multiple covers γk for k P N. A first
guess would be µCZpγkq “ kµCZpγq, which turns out to be true in the hyperbolic
cases, but the behavior of elliptic orbits is more complicated. Let us frame the
discussion in terms of asymptotic operators, and associate to each k P N and each
operator A P ApEq on a Hermitian vector bundle pE, ω, Jq Ñ S1 its k-fold cover

Ak P Apπ˚
kEq, where πk : S

1 Ñ S1 : t ÞÑ kt,

defined via the condition that if A has parallel transport map tΨptqutPR, then the
parallel transport map of Ak is tΨkptqutPR with Ψkptq :“ Ψpktq. In particular, if
A “ Aγ for a Reeb orbit γ, then Ak “ Aγk . If we choose a unitary trivialization of
E to write A “ ´J0Bt ´ Sptq : H1pS1,R2q Ñ L2pS1,R2q, then using the pullback of
this trivialization on π˚

kE identifies Ak with

Ak “ ´J0Bt ´ kSpktq : H1pS1,R2q Ñ L2pS1,R2q.
Lemma 3.65. For every k P N and every trivialized asymptotic operator A :

H1pS1,R2q Ñ L2pS1,R2q, α´pAkq ě kα´pAq and α`pAkq ď kα`pAq.
Proof. By definition, α´pAq is the winding number of some eigenfunction eλ

of A with eigenvalue λ ă 0. By Proposition 3.57, the k-fold cover ekλ is likewise an
eigenfunction of Ak with eigenvalue kλ ă 0, so its winding windpekλq “ kwindpeλq “
kα´pAq provides a lower bound for α´pAkq. A similar argument shows that kα`pAq
is an upper bound for α`pAkq. �
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Lemma 3.66. Suppose pE, ω, Jq is a Hermitian line bundle over S1 and A P
ApEq is nondegenerate.

(1) If A is positive hyperbolic, then Ak is also positive hyperbolic for every
k P N.

(2) If A is negative hyperbolic, then its covers Ak for k P N odd are also
negative hyperbolic, but its double cover A2 is either positive hyperbolic or
degenerate.

(3) If A is elliptic, then either Ak is also elliptic for every k P N or it is elliptic
for all k outside of a subgroup mZ Ă Z for some integer m ě 2, and one of
the following is true:
(i) m is odd and Akm is degenerate for all k P N;
(ii) Akm is negative hyperbolic for all k odd and degenerate for all k even.

Proof. All three statements follow easily from properties of the spectrum of
the parallel transport map Ψp1q : E0 Ñ E0 and the fact that Ψpkq “ Ψp1qk for
every k P N. In the elliptic case in particular, if σpΨp1qq “ te2πiθ, e´2πiθu, then
σpΨpkqq “ te2πkiθ, e´2πikθu contains no real numbers for any k P N if θ is irrational,
and otherwise there is degeneracy or negative hyperbolicity only for k P mZ where
m P N is the smallest natural number such that mθ P 1

2
Z. If mθ P Z, then m is

necessarily odd and we have degeneracy for all k P mZ. The remaining possibility
is that mθ is a half-integer but not an integer, in which case σpΨpkmqq is t´1u for
all odd k and t1u for all even k. �

Theorem 3.67. Let E denote the trivial Hermitian line bundle S1 ˆ R2 Ñ S1.
There exists a unique function

θ : ApEq Ñ R,

called the monodromy angle, such that

α´pAq ď θpAq ď α`pAq and θpAkq “ kθpAq
for all A P ApEq and k P N. Moreover, θ has the following properties:

(1) θ is continuous with respect to the L8-topology on ApEq (see Definition 3.11);
(2) A P ApEq is elliptic if and only if θpAq R 1

2
Z;

(3) A P ApEq is negative hyperbolic if and only if θpAq P 1
2
ZzZ;

(4) A P ApEq is either degenerate or positive hyperbolic if and only if θpAq P Z.

Proof. We proceed in seven steps.
Step 1: Existence and uniqueness.

We claim that for each trivialized asymptotic operator A, there is a unique θ P R

such that
α´pAkq ď kθ ď α`pAkq

for every k P N. Indeed, this condition means θ P Ş
kPNrα´pAkq{k, α`pAkq{ks.

Choose any strictly increasing sequence kj P N such that kj`1 is divisible by kj for
all j; then writing kj`1{kj “: m P N for a given j, Lemma 3.65 implies
(3.13)

α´pAkjq
kj

“ mα´pAkjq
kj`1

ď α´pAkj`1q
kj`1

ď α`pAkj`1q
kj`1

ď mα`pAkjq
kj`1

“ α´pAkjq
kj

,
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so
”
α´pAkj`1 q

kj`1
,
α`pAkj`1 q

kj`1

ı
Ă

”
α´pAkj q

kj
,
α`pAkj q

kj

ı
for all j, meaning that the intervals”

α´pAkj q
kj

,
α`pAkj q

kj

ı
form a nested sequence. Since every asymptotic operator A has

either trivial kernel or a unique winding number associated to nontrivial eigenfunc-
tions with eigenvalue 0, α`pAq ´α´pAq can never be greater than 2, implying that
the lengths of the intervals in our nested sequence tend to 0 as j Ñ 8. It follows
that there is a unique real number

θ P
8č

j“1

„
α´pAkjq

kj
,
α`pAkjq

kj


.

Now if there exists a k P N such that θ R rα´pAkq{k, α`pAkq{ks, then the intervals
rα´pAkq{k, α`pAkq{ks and rα´pAkjq{kj, α`pAkjq{kjs must also be disjoint for all j

sufficiently large. But the latter is impossible since by (3.13),
”
α´pAN q

N
,
α`pAN q

N

ı
must

be contained in both of these intervals whenever N P N is divisible by both k and kj,
so this proves the claim. Defining θpAq :“ θ, the resulting function θ : ApEq Ñ R

now manifestly has both of the properties α´pAq ď θ ď α`pAq and θpAkq “ kθpAq,
and it is the only function that does so.

Step 2: Continuity.
To see that θ is continuous, fix A0 P ApEq and, for a given ǫ ą 0, choose k P N

sufficiently large so that
α`pAk

0q´α´pAk
0 q

k
ă ǫ. Write α˘pAk

0q “ windpeλ˘
0

q, where eλ˘
0

are specific eigenfunctions of Ak
0 with eigenvalues λ`

0 ą 0 and λ´
0 ă 0. Then for

any A P ApEq sufficiently close to A0, we can also assume Ak is close to Ak
0, so

Proposition 3.30 implies that Ak also has eigenvalues λ` ą 0 and λ´ ă 0 close
to λ`

0 and λ´
0 respectively, whose corresponding eigenfunctions eλ˘ are close to eλ˘

0

in the H1-topology and therefore also in C0, implying they have the same winding
numbers. This proves

α´pAk
0q ď α´pAkq ď α`pAkq ď α`pAk

0q,
so the condition θpAq P rα´pAkq{k, α`pAkq{ks implies that θpAq and θpA0q both
belong to rα´pAk

0q{k, α`pAk
0q{ks, and thus |θpAq ´ θpA0q| ă ǫ.

Step 3: Positive hyperbolic implies θ P Z.
By Theorems 3.55 and 3.63, A is positive hyperbolic if and only if it is nondegenerate
with ppAq :“ α`pAq ´ α´pAq “ 0, so θpAq P rα´pAq, α`pAqs must be an integer.

Step 4: Degenerate implies θ P Z.
We claim that if A P ApEq is degenerate, then it lies in the closure of the set of
positive hyperbolic operators in ApEq, in which case steps 2 and 3 imply that θpAq
is an integer. Thinking in terms of parallel transport maps, the claim follows easily
from the fact that any 2-by-2 symplectic matrix with spectrum t1u is equivalent

after a change of basis to one of the form

ˆ
1 a

0 1

˙
for some a P R, which can be

perturbed within Spp2q to

ˆ
eǫ a

0 e´ǫ

˙
for ǫ ą 0 small, and the latter can then be

realized using Proposition 3.17 as the end point of the parallel transport of a nearby
positive hyperbolic asymptotic operator.
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Step 5: Odd index implies θ R Z.
Suppose A P ApEq is nondegenerate with µCZpAq odd, so Theorem 3.55 implies
that rα´pAq, α`pAqs is a unit interval, and we claim that θpAq lies in the interior
of this interval. Suppose to the contrary that θpAq “ α´pAq. One can use a change
of trivialization to shift the winding numbers of α˘pAq by any desired integer, in
which case θpAq gets adjusted by the same shift, and µCZpAq is shifted by twice the
same integer (cf. Exercise 3.56), so we can use this trick to assume without loss of
generality that rα´pAq, α`pAs “ r0, 1s, µCZpAq “ 1 and θpAq “ 0. Then for every
k P N, Lemma 3.65 implies

0 “ kθpAq “ kα´pAq ď α´pAkq ď θpAkq “ kθpAq “ 0,

thus α´pAkq “ 0 as well. Now let Ψ : R Ñ Spp2q denote the parallel trans-
port map of A, which by Theorem 3.63 satisfies either σpΨp1qq Ă p´8, 0q or
σpΨp1qq Ă Up1qzt1,´1u. Since Ψpkq “ Ψp1qk for every k P N, in either case
there exist arbitrarily large values of k for which σpΨpkqq is also contained in ei-
ther p´8, 0q or Up1qzt1,´1u, which means there are arbitrarily large nondegen-
erate covers Ak for which µCZpAkq is also odd, implying in this situation that
µCZpAkq “ 2α´pAkq ` 1 “ 1. But if Ψk denotes the parallel transport of Ak, Theo-
rem 3.63 then implies that the winding interval ∆pΨkq is a compact subinterval of
p0, 1q for arbitrarily large values of k P N, which is impossible since ∆pΨq “ ra, bs
for 0 ă a ď b ă 1 implies ∆pΨkq Ă rka, kbs for all k, and the latter can no longer be
contained in p0, 1q when k ą 1{a.

If we instead assume θpAq “ α`pAq, then after a different change of trivialization
we can assume without loss of generality that rα´pAq, α`pAqs “ r´1, 0s and θpAq “
0, so in this case µCZpAkq “ ´1 for arbitrarily large values of k, and one obtains a
similar contradiction by looking at the winding intervals ∆pΨkq Ă p´1, 0q.

Step 6: Negative hyperbolic is equivalent to θ P 1
2
ZzZ.

If A P ApEq is negative hyperbolic, then A2 is either degenerate or positive hyper-
bolic by Lemma 3.66. By the results of steps 3 and 4, it follows that θpAq P 1

2
Z.

But since µCZpAq is odd by Theorem 3.63, step 5 implies θpAq R Z.
Step 7: Elliptic implies θ R 1

2
Z.

If A P ApEq is elliptic, then Lemma 3.66 implies that A2 is either elliptic or negative
hyperbolic, so step 5 and Theorem 3.63 imply θpA2q “ 2θpAq R Z and thus θpAq R
1
2
Z. �

Since rα´pAq, α`pAs is always either a single point or a unit interval when A is
nondegenerate, Theorem 3.67 gives rise to the formulas

(3.14) α´pAq “ tθpAqu, α`pAq “ rθpAqs, if kerA “ t0u.
Recall that a contact form α is called nondegenerate if all of its closed Reeb orbits are
nondegenerate, and this condition holds for generic contact forms (see Remark 1.25).
In this situation, Lemma 3.66 implies that all covers of an elliptic orbit are also
elliptic, so one deduces from Theorem 3.67 that the corresponding monodromy angle
must be irrational. Combining these observations with the relation between µCZpAq
and α˘pAq in Theorem 3.54, one now obtains the following result for multiply
covered Reeb orbits:
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Corollary 3.68. Suppose γ is a nondegenerate Reeb orbit in a contact 3-
manifold pM, ξ “ kerαq such that the multiple covers γk are also nondegenerate
for every k P N. Choose a symplectic trivialization τ of ξ along γ, and use the same
notation to denote the trivializations along γk defined by pulling back τ along the
covering map S1 Ñ S1 : t ÞÑ kt.

‚ If γ is (positive or negative) hyperbolic, then

µτ
CZ

pγkq “ kµτ
CZ

pγq
for every k P N.

‚ If γ is elliptic, then there exists an irrational number θ P RzQ such that

µτCZpγkq “ 2tkθu ` 1 “ 2rkθs ´ 1

for every k P N.

�

Remark 3.69 (sign conventions). Our definition of the Conley-Zehnder index
for nondegenerate symplectic arcs agrees with definitions given in most other sources
(such as [FH93,Sch95,Sal99]), but one should be aware of occasional discrepancies.
The index µτ in [SZ92] differs from our µCZ by a sign: the reason (as helpfully
pointed out by [Sch95, p. 84]) is that Salamon and Zehnder define the standard

complex structure on R2n as

ˆ
0 1

´1 0

˙
instead of

ˆ
0 ´1

1 0

˙
, thus reversing its

symplectic structure and, in particular, changing the orientation of R2, so that
all winding numbers reverse sign. From the perspective of Floer homology, for
which µτ was developed, the result is sensible: as mentioned in Remark 3.7, the
asymptotic operator in Floer homology has a different sign than in SFT, so reversing
the sign of the Conley-Zehnder index is the right thing to do if you want to regard
it as a relative Morse index for the action functional. It is inconvenient however
in other respects, e.g. when trying to compute µCZ in terms of winding numbers,
thus later papers on Floer homology have often used definitions of µCZpΨq that are
equivalent to ours, but introduced modified indices for orbits in order to absorb the
sign difference, e.g. [Sal99] defines µHpγq :“ n ´ µCZpΨq for the linearized flow Ψ
along an orbit γ. For the reasons why the latter is a natural convention in that
context, see Theorem 10.30 and Remark 10.31.
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In this lecture we will study the class of linear Cauchy-Riemann type operators
that arise by linearizing the nonlinear equation for moduli spaces in SFT. We saw
in the previous lecture that linearizing certain PDEs over noncompact domains
naturally leads one to consider a class of symmetric asymptotic operators (e.g. the
Hessian of a Morse function at its critical points), which have trivial kernel if and
only if a nondegeneracy (i.e. Morse) condition is satisfied. Our goal in this lecture
is to show that the linear Cauchy-Riemann type operators in SFT are Fredholm if
their asymptotic operators are nondegenerate.

4.1. Cauchy-Riemann operators with punctures

The setup throughout this lecture will be as follows.
Assume pΣ, jq is a closed connected Riemann surface of genus g ě 0, Γ Ă Σ is a

finite set partitioned into two subsets

Γ “ Γ` Y Γ´,

and 9Σ :“ ΣzΓ denotes the resulting punctured Riemann surface. We shall fix a choice
of holomorphic cylindrical coordinate near each puncture z P Γ˘, meaning the
following. Given R ě 0, let pZR

˘ , iq denote the half-cylinders

ZR
` :“ rR,8q ˆ S1, ZR

´ :“ p´8,´Rs ˆ S1, Z˘ :“ Z0
˘,

with complex structure iBs “ Bt, iBt “ ´Bs in coordinates ps, tq P R ˆ S1. The
standard half-cylinders Z˘ are each biholomorphically equivalent to the punctured
disk 9D :“ Dzt0u via the maps

ψ˘ : Z˘ Ñ 9D : ps, tq ÞÑ e¯2πps`itq.

91
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–

Γ`

Γ´

9Uz1
9Uz3

9Uz4

Uz1 Uz3

Uz4

Figure 4.1. A Riemann surface with genus 1 and five punctures,
depicted at the right as three positive and two negative cylindrical
ends.

For z P Γ˘, we choose a closed neighborhood Uz Ă Σ of z with a biholomorphic map

ϕz : p 9Uz, jq Ñ pZ˘, iq,

where 9Uz :“ Uzztzu, such that ψ˘ ˝ ϕz : 9Uz Ñ 9D extends holomorphically to Uz Ñ
D with z ÞÑ 0. One can always find such coordinates by choosing holomorphic
coordinates near z. We can thus view the punctured neighborhoods 9Uz Ă 9Σ as
cylindrical ends Z˘; see Figure 4.1.

Suppose pE, Jq is a complex vector bundle of rank n over p 9Σ, jq. An asymp-
totically Hermitian structure on pE, Jq is a choice of Hermitian vector bundles
pEz, Jz, ωzq of rank n associated to each puncture z P Γ˘, together with choices of
complex bundle isomorphisms

E| 9Uz
Ñ pr˚

2 Ez

covering ϕz : 9Uz Ñ Z˘, where pr2 : Z˘ Ñ S1 denotes the natural projection to the
S1 factor. This isomorphism induces from any unitary trivialization τ of pEz, Jz, ωzq
a trivialization

(4.1) τ : E| 9Uz
Ñ Z˘ ˆ R2n

identifying J with J0 “
ˆ
0 ´1

1 0

˙
over the cylindrical end. We will call this trivial-

ization of E over 9Uz an asymptotic trivialization near z. The bundle pEz, Jz, ωzq
will be referred to as the asymptotic bundle associated to pE, Jq near z.

Fixing asymptotic trivializations near every puncture, we can now define Sobolev
spaces of sections of E by

W k,ppEq :“
!
η P W k,p

loc pEq
ˇ̌
ˇ ηz P W k,ppZ̊˘,R

2nq for every z P Γ˘
)
,
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where ηz : Z˘ Ñ R2n denotes the expression of η| 9Uz
in terms of the asymptotic

trivialization, and we use the standard area form ds ^ dt on Z˘ in defining the
norm on W k,ppZ̊˘,R

2nq. Since S1 is compact, the definition of this space does not
depend on the choice of asymptotic trivialization, and moreover, one can pick a finite
collection of charts and local trivializations covering 9Σ away from the punctures,
supplemented by an asymptotic trivialization near each puncture, to define a norm
on W k,ppEq that is (up to equivalence) independent of choices and makes W k,ppEq
a Banach space. (For details on the construction of Sobolev norms for spaces of
sections of vector bundles, see Appendices A.4 and A.5.) One must still be a bit
careful with the noncompact ends, however:

Exercise 4.1. Convince yourself that different choices of asymptotically Her-
mitian structure on E Ñ 9Σ can give rise to inequivalent definitions of the space
W k,ppEq.

Any linear Cauchy-Riemann type operator on E has as its target the complex
vector bundle

F :“ HomCpT 9Σ, Eq,
so sections of F are the same thing as E-valued p0, 1q-forms. An asymptotic trivi-
alization τ as in (4.1) then also induces a trivialization

F | 9Uz
Ñ Z˘ ˆ R2n : λ ÞÑ τpλpBsqq,

where Bs is the coordinate vector field on 9Uz arising from its identification with Z˘.
This trivialization yields a corresponding definition for the Sobolev spaces W k,ppF q,
which depend on the asymptotically Hermitian structure of E but not on the choices
of asymptotic trivializations. Having made these choices, a Cauchy-Riemann type
operator D : ΓpEq Ñ ΓpF q always appears over 9Uz as a linear map on C8pZ˘,R

2nq
of the form

(4.2) Dηps, tq “ B̄ηps, tq ` Sps, tqηps, tq,
where B̄ :“ Bs ` J0Bt and S P C8pZ˘,EndpR2nqq.

Since it is occasionally useful for technical reasons, we will in this lecture permit
the bundle E Ñ 9Σ to be of class Cm`1 for m ă 8, meaning it can be covered by
local trivializations such that all transition maps are of class Cm`1, but possibly
not smooth.1 On such a bundle, the spaces CkpEq and W k,ppEq are well defined
for each k ď m ` 1 due to the continuous product pairings Cm`1 ˆ Ck Ñ Ck and
Cm`1 ˆ W k,p Ñ W k,p.

Definition 4.2. Suppose E Ñ 9Σ is of class Cm`1 for some m P t0, 1, 2, . . . ,8u.
A linear Cauchy-Riemann type operator of class Cm on E is then a first-order
differential operator D : Cm`1pEq Ñ CmpF q that takes the form D “ B̄ `S in local
trivializations with zeroth-order terms S of class Cm.

1This situation arises if one considers J-holomorphic curves u : pΣ, jq Ñ pM,Jq with respect to
an almost complex structure J that is of class Cm`1 but not smooth. According to Theorem 2.24
and the Sobolev embedding theorem, u is then a Cm`1-smooth map, so the pullback bundle
u˚TM Ñ 9Σ is of class Cm`1, and since a derivative of J appears in the formula for the linearized
operator Du, the latter is a Cauchy-Riemann type operator of class Cm.
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Exercise 4.3. Check that if the zeroth-order term of a Cauchy-Riemann type
operator is of class Cm in a given trivialization, then this remains true after trans-
forming it by a transition map of class Cm`1, though it does not remain true in
general if the transition map is only of class Cm.

Definition 4.4. Suppose E Ñ 9Σ is an asymptotically Hermitian vector bun-
dle of class Cm`1 for some m P t0, 1, 2, . . . ,8u, Az is an asymptotic operator on
pEz, Jz, ωzq and D is a linear Cauchy-Riemann type operator of class Cm on E.
We say that D is Cm-asymptotic to Az at z if D appears in the form (4.2) with
respect to an asymptotic trivialization near z, with

}S ´ S8}CkpZR
˘ q Ñ 0 as R Ñ 8

for all k ď m, where S8ps, tq :“ S8ptq is a Cm-smooth loop of symmetric matrices
such that Az appears in the corresponding unitary trivialization of pEz, Jz, ωzq as
´J0Bt ´ S8.

Recall that an asymptotic operator is called nondegenerate if 0 is not in its
spectrum, which means it defines an isomorphism H1pS1q Ñ L2pS1q. We will some-
times omit the prefix “Cm-” in the term “Cm-asymptotic”; when this happens, the
case m “ 8 is meant. The objective of this lecture is to prove the following:

Theorem 4.5. Suppose m P N Y t8u, pE, Jq is an asymptotically Hermitian

vector bundle of class Cm`1 over p 9Σ, jq, Az is a nondegenerate asymptotic operator
on the associated asymptotic bundle pEz, Jz, ωzq for each z P Γ, and D is a linear
Cauchy-Riemann type operator of class Cm that is Cm-asymptotic to Az at each
puncture z. Then for every k P t1, . . . , m` 1u and p P p1,8q,

D : W k,ppEq Ñ W k´1,ppF q
is Fredholm. Moreover, indD and kerD are each independent of k and p, the
latter being a space of Cm-smooth sections whose derivatives up to order m decay
exponentially fast to 0 on the cylindrical ends.

Remark 4.6. We assume m ě 1 in Theorem 4.5 for safety’s sake, but most
steps in the proof will also work for m “ 0, the only exception being the exponential
decay estimate carried out in §4.6. Even without this, our proof that D is Fredholm
remains valid for m “ 0 if p ě 2 (see Remark 4.31). In any case, the applications in
this book will only require the case m “ 8.

The index of D is determined by a generalization of the Riemann-Roch formula
involving the Conley-Zehnder indices µτCZpAzq that were introduced in the previous
lecture. We will postpone serious discussion of the index formula until Lecture 5,
but here is the statement:

Theorem 4.7. In the setting of Theorem 4.5,

indD “ nχp 9Σq ` 2cτ1pEq `
ÿ

zPΓ`

µτ
CZ

pAzq ´
ÿ

zPΓ´

µτ
CZ

pAzq,

where τ is an arbitrary choice of asymptotic trivializations, cτ1pEq P Z is the relative
first Chern number of E with respect to τ , and the sum is independent of this choice.
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Remark 4.8. The index formula reveals that the nondegeneracy condition on
the asymptotic operators in Theorem 4.5 cannot be relaxed. Indeed, if D were Fred-
holm but had a degenerate asymptotic operator Az at some puncture z P Γ, then
D could be perturbed to make Az nondegenerate with at least two distinct possi-
ble values of its Conley-Zehnder index. This would produce two arbitrarily small
perturbations of D that have different Fredholm indices according to Theorem 4.7,
in which case D itself cannot be Fredholm. This is a marked contrast with the
theory of linearized Cauchy-Riemann operators on closed Riemann surfaces: in the
closed case, all Cauchy-Riemann type operators on the same bundle E are Fred-
holm and have the same index, because the difference between any two of them is
a zeroth-order operator, which is compact due to the compactness of the inclusions
W k,ppEq ãÑ W k´1,ppEq. The difference in the punctured case is that since 9Σ is not
compact, neither is the inclusion W k,ppEq ãÑ W k´1,ppEq, hence zeroth-order terms
can affect both the Fredholm property and the index.

Standing assumptions.
For the entirety of this lecture, 9Σ “ ΣzpΓ` YΓ´q is a punctured Riemann surface as
described above with fixed choices of holomorphic cylindrical coordinates near each
puncture, E Ñ 9Σ is an asymptotically Hermitian vector bundle of complex rank
n P N and of class Cm`1 for some m P t0, 1, 2, . . . ,8u, and D is a linear Cauchy-
Riemann type operator of class Cm on E which is Cm-asymptotic at each puncture
z P Γ to an asymptotic operator Az. We will not always need to assume that the
Az are nondegenerate or that m ą 0, so these conditions will be specified whenever
they are relevant. The Sobolev parameters k and p will always lie in the ranges
1 ď k ď m ` 1 and 1 ă p ă 8 unless otherwise indicated.

For subdomains Σ0 Ă 9Σ, we will sometimes denote the W k,p-norm on sections
of E restricted to Σ0 by

}η}W k,ppΣ0q :“ }η}W k,ppE|Σ0
q,

and we will use the same notation for sections of other bundles such as F “
HomCpT 9Σ, Eq over this domain when there is no danger of confusion. The space

W
k,p
0 pΣ0q Ă W k,ppEq

is defined in this case as the W k,p-closure of the space of smooth sections of E with
compact support in Σ0.

4.2. A lemma on semi-Fredholm operators

The standard approach for proving that elliptic operators are Fredholm begins
by proving that they are semi-Fredholm, meaning dim kerD ă 8 and imD is
closed. We saw in §2.4 that all Cauchy-Riemann type operators satisfy a local
estimate of the form }η}W k,p ď c}Dη}W k´1,p `c}η}W k´1,p, and we will see later in this
lecture that a global version of this estimate also holds if the asymptotic operators
at all punctures are nondegenerate. Recalling that the inclusion W k,p ãÑ W k´1,p is
compact for functions on a bounded domain, such estimates can be used to establish
the hypotheses of the following abstract functional-analytic result.
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Lemma 4.9. Suppose X, Y and Z are Banach spaces, T P L pX, Y q, K P
L pX,Zq is a compact operator, and there is a constant c ą 0 such that for all
x P X,

(4.3) }x}X ď c}Tx}Y ` c}Kx}Z .
Then kerT is finite dimensional and imT is closed.

Proof. A vector space is finite dimensional if and only if the closed unit ball
in that space is a compact set, so we begin by proving the latter holds for kerT.
Suppose xk P kerT is a bounded sequence. Then since K is a compact operator,
Kxk has a convergent subsequence in Z, which is therefore Cauchy. But (4.3) then
implies that the corresponding subsequence of xk in X is also Cauchy, and thus
converges.

Since we now know kerT is finite dimensional, we also know there is a closed
complement V Ă X with kerT ‘ V “ X . Then the restriction T|V has the same
image as T, thus if y P imT, there is a sequence xk P V such that Txk Ñ y.
We claim that xk is bounded. If not, then Tpxk{}xk}Xq Ñ 0 and Kpxk{}xk}Xq
has a convergent subsequence, so (4.3) implies that a subsequence of xk{}xk}X also
converges to some x8 P V with }x8} “ 1 and Tx8 “ 0, a contradiction since
T|V : V Ñ Y is injective. But now since xk is bounded, Kxk also has a convergent
subsequence and Txk converges by assumption, thus (4.3) yields also a convergent
subsequence of xk, whose limit x satisfies Tx “ y. This completes the proof that
imT is closed. �

4.3. Some global regularity estimates

The following lemma is an immediate consequence of the local elliptic regularity
result of Theorem 2.17, after covering a compact subset with finitely many local
holomorphic coordinate charts and trivializations.

Lemma 4.10. Suppose D is of class Cm with 0 ď m ď 8, 1 ď k ď m ` 1,
1 ă p ă 8, and Σ0 Ă Σ1 Ă 9Σ are open subsets with compact closure such that
sΣ0 Ă Σ1. Then there exists a constant c ą 0 such that for every η P W k,ppEq,

}η}W k,ppΣ0q ď c}Dη}W k´1,ppΣ1q ` c}η}W k´1,ppΣ1q.

�

If Γ “ H, then Lemma 4.10 suffices already for proving that D is semi-Fredholm,
as one can then set Σ0 “ Σ1 :“ Σ, observe that the inclusion W k,ppΣq ãÑ W k´1,ppΣq
is a compact operator, and plug the estimate into Lemma 4.9. The estimate is
insufficient however if there are punctures, because one has to chop off the cylindrical
ends of 9Σ in order to obtain a domain with compact closure. Our next task is
therefore to prove a truly global estimate that pays attention to neighborhoods of the
punctures. Recall that in §2.4.1, we proved that weak solutions of class η P Lploc for
a given p P p1,8q to a linear Cauchy-Riemann type equation Dη “ ξ with ξ P Wm,p

loc

are always of class Wm`1,p
loc . This local statement does not imply η P Wm`1,p in

general since it says nothing about any decay conditions at infinity that would be
needed to produce finite Lp-norms. That is the purpose of the next result:



Lectures on Symplectic Field Theory 97

Lemma 4.11. Suppose D is of class Cm with 0 ď m ď 8, 1 ă p ă 8 and
1 ď k ď m` 1. If η P LppEq is a weak solution to Dη “ ξ with ξ P W k´1,ppF q, then
η P W k,ppEq.

Proof. By induction, it suffices to show that if η P W k´1,p andDη “ ξ P W k´1,p

then η P W k,p. Theorem 2.17 implies that this is true locally, so the task is to bound
the W k,p-norm of η on the cylindrical ends. Pick an asymptotic trivialization and
write D on one of the ends Z˘ – 9Uz as B̄ ` Sps, tq. Let us assume for concreteness
that the puncture is a positive one, and now consider the norms of η on the bounded
sets

ZN :“ pN,N ` 1q ˆ S1 and Z 1
N :“ pN ´ 1, N ` 2q ˆ S1.

Since ZN has closure in Z 1
N , Lemma 4.10 gives

}η}W k,ppZN q ď c}B̄η}W k´1,ppZ 1
N q ` c}η}W k´1,ppZ 1

N q

“ c}ξ ´ Sη}W k´1,ppZ 1
N q ` c}η}W k´1,ppZ 1

N q

ď c}ξ}W k´1,ppZ 1
N q ` c1}η}W k´1,ppZ 1

N q,

where in the last line we’ve incorporated }S}Ck´1pZ 1
N

q into the constant c1 ą 0.
An important detail here is that the constants in these estimates can be assumed
independent of N : indeed, the Ck´1-norm of S on rN ´ 1, N ` 2s ˆ S1 is bounded
uniformly in N since Sps, tq is asymptotically Ck´1-convergent to some S8ptq, and
the constant that arises by applying Lemma 4.10 with D :“ B̄ does not care if the
domain is shifted by a translation. We can therefore take the sum of this estimate
for all N P N and relabel the constants, producing

(4.4) }η}W k,ppZ̊1
`q ď c}ξ}W k´1,ppZ̊`q ` c}η}W k´1,ppZ̊`q.

�

Corollary 4.12. If D is of class Cm with 0 ď m ď 8 and 1 ă p ă 8, every
weak solution η P LppEq of Dη “ 0 is in

Ş
kďm`1

Ş
pďqă8 W

k,qpEq; in particular, η
is of class Cm, and its derivatives up to order m decay to zero at infinity.

Proof. This is essentially a global version of Corollary 2.23 and is proved via
a very similar argument. For simplicity we assume m ă 8, as the case m “ 8 will
then follow. If p ą 2, then the Sobolev embedding theorem (Theorem A.6 and its
adaptation for bundles sketched in §A.5) gives continuous inclusions Wm`1,ppEq ãÑ
CmpEq and Wm`1,ppEq ãÑ Wm,qpEq for all q P rp,8s. The latter can be fed back
into Lemma 4.11 to conclude η P Wm`1,qpEq for every q P rp,8q, and the derivatives
up to order m decay at infinity since the constant c ą 0 in the Sobolev inequality

}η}CmpZR
˘ q ď c}η}Wm`1,ppZR

˘ q

does not depend on R, while the finiteness of }η}Wm`1,ppZ˘q implies that the right
hand side converges to 0 as R Ñ 8.

If p ď 2, then since η P W 1,ppEq, the Sobolev embedding theorem gives η P LqpEq
for every q P rp, p˚q where 1

p˚ “ 1
p

´ 1
2
, and Lemma 4.11 then gives η P Wm`1,qpEq

for all q in this range. Since p ą 1, 1
p˚ ă 1

2
, thus some of the q in this interval satisfy



98 Chris Wendl

q ą 2, and one can then repeat the argument of the previous paragraph to establish
the result for all q ě p, as well as the Cm-decay. �

Remark 4.13. Corollary 4.12 is valid without any nondegeneracy assumption
on asymptotic operators, but it is also not as strong a result as one would like. It
will imply that the kernel of D :W k,ppEq Ñ W k´1,ppF q is independent of k, but we
do not yet have enough knowledge of the asymptotic decay of sections η P kerD to
determine whether they are also in LqpEq for 1 ă q ă p, and for this reason, it is
not yet clear whether kerD depends on p. (This problem did not arise in our earlier
local results, e.g. in Corollary 2.23, because we were working on domains with finite
measure in local coordinates.) The latter will be deduced in §4.6 from an exponential
decay estimate that makes explicit use of the nondegeneracy assumption.

One can now supplement Lemma 4.10 with (4.4) to produce a global estimate
of the form

}η}W k,ppEq ď c}Dη}W k´1,ppEq ` c}η}W k´1,ppEq

for all η P W k,ppEq, but this is also not quite what we need. The trouble is that since
9Σ is generally noncompact, the inclusion W k,ppEq ãÑ W k´1,ppEq is not a compact
operator. To prove the semi-Fredholm property, we will need to replace the W k´1,p-
norm of η in this estimate with the norm of its restriction to a compact subset of 9Σ,
and this will be where the nondegeneracy assumption becomes essential.

4.4. Translation-invariant operators on the cylinder

In this section, we establish a special case of Theorem 4.5 that serves as the
asymptotic analogue of the fundamental elliptic estimates from Lecture 2. Beyond
those local estimates, this is the main analytical ingredient that makes all Floer-type
theories in symplectic geometry work.

Theorem 4.14. Suppose A “ ´J0Bt´Sptq is a nondegenerate asymptotic opera-
tor on the trivial Hermitian vector bundle S1ˆR2n Ñ S1, with S : S1 Ñ Endsym

R pR2nq
of class Cm, 0 ď m ď 8. Then the operator

Bs ´ A “ Bs ` J0Bt ` Sptq :W k,ppR ˆ S1,R2nq Ñ W k´1,ppR ˆ S1,R2nq
is an isomorphism if 1 ď k ď m ` 1 and 1 ă p ă 8.

Remark 4.15. The same reasoning as in Remark 4.8 concludes via the index
formula of the next lecture that the converse of Theorem 4.14 also holds: if A is
degenerate, then Bs ´ A : W k,ppR ˆ S1q Ñ W k´1,ppR ˆ S1q is not an isomorphism,
in fact it is not even Fredholm.

Thanks to Lemma 4.11, it suffices to prove the case k “ 1 of Theorem 4.14, as
the rest will then follow via regularity. A detailed general proof for k “ 1 can be
found in [Sal99, Lemma 2.4]. We give below a different proof for the case k “ 1
and p “ 2, using a trick suggested by Sam Lisi. The case p ‰ 2 can be deduced
from this in conjunction with the basic local Lp-estimate from Lecture 2 (namely
Theorem 2.13).

The trick behind the proof below is to take the Fourier transform of both sides
of the equation pBs ´Aqu “ f with respect to the R-coordinate only. Concretely, let
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S pR ˆ S1q denote the space of smooth functions u : R ˆ S1 Ñ CN for some N P N

whose derivatives of all orders have rapid decay at infinity, meaning the function
ps, tq ÞÑ |s|kBαups, tq is bounded on R ˆ S1 for all k P N and all multiindices α. A
minor variation on the usual argument for the Fourier transform then shows that
the complex-linear transformations u ÞÑ Fu “ û and v ÞÑ F ˚v “ v̌ defined by

ûpσ, tq :“
ż 8

´8
ups, tqe´2πisσ ds, v̌ps, tq :“

ż 8

´8
vpσ, tqe2πisσ dσ

are bijections S pR ˆ S1q Ñ S pR ˆ S1q and are inverse to each other.

Proposition 4.16. Let x , yL2 denote the standard complex L2-product for func-
tions R ˆ S1 Ñ CN : ps, tq ÞÑ ups, tq, defined in terms of the standard Hermitian
inner product on CN and the measure ds dt. The operator F then has the following
properties:

(1) xû, v̂yL2 “ xu, vyL2 for all u, v P S pR ˆ S1q;
(2) xBsupσ, tq “ 2πiσûpσ, tq for all u P S pR ˆ S1q;
(3) xBtupσ, tq “ Btûpσ, tq for all u P S pR ˆ S1q;
(4) For any continuous function Φ : S1 Ñ EndCpCNq and every u P S pRˆS1q,

xΦu “ Φû, where we denote pΦuqps, tq :“ Φptqups, tq.
�

Since S pRˆS1q contains C8
0 pRˆS1q and is thus dense in L2pRˆS1q, the first

property in Proposition 4.16 implies in particular that F and F ˚ extend uniquely
to isometries on L2pR ˆ S1q. Adding the second and third properties gives a useful
new characterization of the Sobolev space H1pR ˆ S1q :“ W 1,2pR ˆ S1q:

Exercise 4.17. Show that a function u P L2pR ˆ S1q is in H1pR ˆ S1q if and
only if its Fourier transform û with respect to the R-factor has both of the following
properties:

‚ The function pσ, tq ÞÑ |σ|ûpσ, tq is also in L2pR ˆ S1q;
‚ The function ûpσ, tq has a weak partial derivative Btû in L2pR ˆ S1q.

Show moreover that the usual W 1,2-norm is then equivalent to

}u}H1 :“ }û}L2 `
››|σ| ¨ û

››
L2 ` }Btû}L2,

and that the second and third properties in Proposition 4.16 also hold (in the sense
of weak derivatives) for all u P H1pR ˆ S1q. Hint: C8

0 pR ˆ S1q is also dense in
H1pR ˆ S1q; see Theorem A.38.

Proof of Theorem 4.14 for k “ 1 and p “ 2. Since A “ ´J0Bt ´ Sptq is
not generally a complex-linear operator, we start by complifying it, i.e. we consider
the natural extension of Bs ` J0Bt ` S : H1pR ˆ S1,R2nq Ñ L2pR ˆ S1,R2nq to a
complex-linear operator

Bs ´ A “ Bs ` J0Bt ` S : H1pR ˆ S1,C2nq Ñ L2pR ˆ S1,C2nq.
Observe that pBs ´ Aqū “ pBs ´ Aqu for all u P H1pR ˆ S1,C2nq, thus it will suffice
to prove that this complexification is an isomorphism, as this will imply the same
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result for the underlying real-linear operator. With this in mind, all functions for
the remainder of this proof will be assumed to take values in C2n.

Since A “ ´J0Bt ´ Sptq only involves a derivative with respect to t and a (com-
plexified) zeroth-order term, it commutes with the Fourier transform operator F ,
so that applying F to both sides of pBs ´ Aqu “ f and applying Proposition 4.16
and Exercise 4.17 transforms it into the equation

(4.5) p2πiσ ` J0Bt ` Sqû “ f̂ almost everywhere.

We need to show that for every f̂ P L2pR ˆ S1q, this equation has an almost every-
where unique solution û : R ˆ S1 Ñ C2n such that the norms }û}L2 ,

››|σ| ¨ û
››
L2 and

}Btû}L2 are all finite and satisfy bounds in terms of }f̂}L2.
It will be convenient to abbreviate

ûσ :“ ûpσ, ¨q : S1 Ñ C2n

for functions û : R ˆ S1 Ñ C2n and σ P R. The equation (4.5) then becomes

(4.6) p2πiσ ´ Aqûσ “ p2πiσ ` J0Bt ` Sqûσ “ f̂σ

for each individual σ P R. Note that for f̂ P L2pR ˆ S1q, Fubini’s theorem implies

f̂σ P L2pS1q for almost every σ P R. For these particular values of σ, (4.6) does have a
unique solution ûσ P H1pS1q: indeed, A is nondegenerate by assumption, thus it has
no imaginary eigenvalues, implying that the operator p2πiσ´Aq : H1pS1q Ñ L2pS1q
has a bounded inverse for every σ P R, which we shall denote by

Rσ “ p2πiσ ´ Aq´1 : L2pS1q Ñ H1pS1q.
It follows that there exists an almost everywhere unique function û : R ˆ S1 Ñ
C2n such that for almost every σ P R, ûσ “ Rσf̂σ P H1pS1q satisfies (4.6). It is
not immediately obvious whether this implies that û also satisfies (4.5), but before
addessing this, let us check that û satisfies all the required bounds.

As preparation, observe first that since A is symmetric, for every λ P R and
η P H1pS1q we have

}piλ ´ Aqη}2L2 “ xpiλ ´ Aqη, piλ´ AqηyL2 “ λ2}η}2L2 ` }Aη}2L2

´ iλ pxη,AηyL2 ´ xAη, ηyL2q “ λ2}η}2L2 ` }Aη}2L2,

giving rise to two estimates,

}piλ´ Aqη}L2 ě |λ| ¨ }η}L2 and }piλ ´ Aqη}L2 ě }Aη}L2,

valid for all η P H1pS1q. The first of these is equivalent to

(4.7) }Rση}L2 ď 1

2π|σ|}η}L2 for all η P L2pS1q,

and combining the second estimate with the inequality }Aη}L2 ě c}η}H1 arising
from the fact that A is invertible, we obtain }p2πiσ ´ Aqη}L2 ě c}η}H1, and thus
(after renaming the constant),

(4.8) }Rση}H1 ď c}η}L2 for all η P L2pS1q,
where the constant c ą 0 is independent of σ P R.
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Feeding (4.8) into Fubini’s theorem now yields
ż 8

´8
}ûσ}2L2pS1q dσ `

ż 8

´8
}Btûσ}2L2pS1q dσ “

ż 8

´8
}ûσ}2H1pS1q dσ

“
ż 8

´8
}Rσf̂σ}2H1pS1q dσ ď c2

ż 8

´8
}f̂σ}2L2pS1q dσ “ c2}f̂}2L2pRˆS1q,

where the first integral on the left hand side is simply }û}2L2pRˆS1q. The second

integral on the left hand side tells us moreover that the function pσ, tq ÞÑ Btûσptq
on R ˆ S1 (defined for almost every σ) has L2-norm bounded by c}f̂}L2, thus it is
locally integrable on R ˆ S1. It is now another straightforward exercise in Fubini’s
theorem to show that this function is in fact the weak partial derivative Btû, so that
(4.5) then follows from the fact that (4.6) is satisfied for almost all σ. Finally, (4.7)
implies

››|σ| ¨ û
››2
L2pRˆS1q “

ż 8

´8
|σ|2 ¨ }ûσ}2L2pS1q dσ “

ż 8

´8
|σ|2 ¨ }Rσf̂σ}2L2pS1q dσ

ď 1

p2πq2
ż 8

´8
}f̂σ}2L2pS1q dσ “ 1

p2πq2 }f̂}2L2pRˆS1q,

which completes the proof that f ÞÑ u is a bounded linear map L2pR ˆ S1q Ñ
H1pR ˆ S1q. �

4.5. Proof of the semi-Fredholm property

The following consequence of Theorem 4.14 is more obviously an asymptotic
variant of the fundamental elliptic estimate from Lecture 2. Its key feature for our
purposes is that, in contrast e.g. to Lemma 4.10, it does not mention the W k´1,p-
norm of η. Recall that W k,p

0 pZ̊R
˘q denotes the W k,p-closure of C8

0 pZ̊R
˘q, so such

functions remain in W k,p if they are extended as zero to larger domains containing
Z̊R

˘ . Note that functions of class W
k,p
0 on Z̊R

˘ need not vanish near infinity—in fact,
C8

0 is dense in W k,ppR ˆ S1q, see Theorem A.38.

Lemma 4.18. Assume D is of class Cm with 0 ď m ď 8, 1 ď k ď m ` 1,
1 ă p ă 8, and z P Γ˘ is a puncture such that the asymptotic operator Az is
nondegenerate. Then in holomorphic cylindrical coordinates on ZR

˘ Ă 9Uz for every
R ě 0 sufficiently large, there exists a constant c ą 0 such that

}η}W k,ppZ̊R
˘ q ď c}Dη}W k´1,ppZ̊R

˘ q for all η P W k,p
0 pZ̊R

˘q.

Proof. WriteD “ Bs`J0Bt`Sps, tq andD0 “ Bs`J0Bt`S8ptq in an asymptotic

trivialization on 9Uz “ Z˘, where the nondegenerate asymptotic operator is A “
´J0Bt ´ S8ptq and we assume

}S ´ S8}Ck´1pZR
˘ q Ñ 0 as R Ñ 8.

For η P W k,p
0 pZ̊R

˘q, there is a canonical extension η P W k,ppR ˆ S1q that equals zero
outside ZR

˘ , so Theorem 4.14 implies an estimate

}η}W k,ppZ̊R
˘ q “ }η}W k,ppRˆS1q ď c}D0η}W k´1,ppRˆS1q “ c}D0η}W k´1,ppZ̊R

˘ q
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–
Σ0

Σ1

ΣR´1
0

ΣR1

ΣR1

ZR
´

ZR
`

Figure 4.2. A punctured Riemann surface with subsets Σ0 Ă sΣ0 Ă
Σ1 Ă Σ and their truncations ΣR´1

0 Ă ΣR´1
0 Ă ΣR1 Ă 9Σ as in

Lemma 4.19.

for some constant c ą 0. Rewriting this in terms of D gives

}η}W k,ppZ̊R
˘ q ď c}Dη}W k´1,ppZ̊R

˘ q ` c}pS8 ´ Sqη}W k´1,ppZ̊R
˘ q

ď c}Dη}W k´1,ppZ̊R
˘ q ` c1}S8 ´ S}Ck´1pZR

˘ q ¨ }η}W k,ppZ̊R
˘ q,

where we’ve used the continuity of the product pairing Ck´1 ˆ W k´1,p Ñ W k´1,p

and the inclusion W k,p ãÑ W k´1,p. Importantly, the constant c1 ą 0 in this estimate
does not depend on R, thus we are free to choose R ą 0 large enough so that
}S8 ´S}Ck´1pZR

˘ q ď 1
2c1 , in which case }η}W k,ppZ̊R

˘ q can be pulled over to the left hand

side, giving
1

2
}η}W k,ppZ̊R

˘ q ď c}Dη}W k´1,ppZ̊R
˘ q.

�

We can now prove a global estimate suitable for feeding into Lemma 4.9. Let

ΣR Ă 9Σ

denote the truncated open subset obtained by deleting the ends ZR
˘ Ă 9Uz from 9Σ

for all z P Γ. For any given subset Σ1 Ă Σ, we also define corresponding punctured
and truncated subsets respectively by

9Σ1 :“ Σ1 X 9Σ, ΣR1 :“ Σ1 X ΣR,

so ΣR1 has compact closure in 9Σ for each R ě 0 (see Figure 4.2). On first reading,
you may prefer to assume Σ0 “ Σ1 :“ Σ in the following lemma, as this is the case
we will use for proving the semi-Fredholm property. We are stating it somewhat
more generally for the sake of other applications.

Lemma 4.19. Assume D is of class Cm, 1 ď k ď m`1, 1 ă p ă 8, Σ0 Ă Σ1 Ă Σ
are open subsets such that

sΣ0 Ă Σ1, psΣ0zΣ0q X Γ “ H, and psΣ1zΣ1q X Γ “ H,
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and the asymptotic operators Az are nondegenerate for all z P ΓXΣ0. Then for any
R ą 0 sufficiently large, there exists a constant c ą 0 such that

}η}W k,pp 9Σ0q ď c}Dη}W k´1,pp 9Σ1q ` c}η}W k´1,ppΣR
1

q

for all η P W k,pp 9Σ1q.
Proof. Fix R ą 1 large enough so that the end ZR´1

˘ Ă 9Uz is disjoint from both
sΣ0zΣ0 and sΣ1zΣ1 for every z P Γ` Y Γ´, and so that Lemma 4.18 is valid on ZR´1

˘
whenever z P Γ Y Σ0. The closure of ΣR´1

0 is then contained in ΣR1 (see Figure 4.2),
so we can choose another open set V with

ΣR´1
0 Ă V Ă V Ă ΣR1

and a smooth cutoff function β P C8
0 pVq such that β ” 1 on a neighborhood of

ΣR´1
0 . Letting

9UR´1
Γ Ă 9Σ

denote the union of all the ends Z̊R´1
˘ Ă 9Uz for z P Γ X Σ0, we can now write any

η P W k,pp 9Σ1q as βη`p1´βqη, where βη vanishes outside of V while p1´βqη vanishes
outside of 9UR´1

Γ and belongs to W k,p
0 p 9UR´1

Γ q. Lemma 4.10 then gives

}βη}W k,pp 9Σ0q “ }βη}W k,ppVq ď c}Dpβηq}W k´1,ppΣR
1

q ` c}βη}W k´1,ppΣR
1

q

ď c1}Dη}W k´1,ppΣR
1

q ` c1}η}W k´1,ppΣR
1

q,

where the Ck-norm of β has been absorbed into the constant c1 ą 0. Similarly,
Lemma 4.18 gives

}p1 ´ βqη}W k,pp 9Σ0q “ }p1 ´ βqη}W k,pp 9UR´1

Γ
q ď c}Drp1 ´ βqηs}W k´1,pp 9UR´1

Γ
q

ď c1}Dη}W k´1,pp 9UR´1

Γ
q ` c1}η}W k´1,ppΣR

1
q,

where the constant c1 ą 0 now contains information about the Ck´1-norms of 1 ´ β

and B̄β over 9UR´1
Γ , with the important detail that the latter is only nonzero in the

annuli pR ´ 1, Rq ˆ S1 Ă 9UR´1 and thus vanishes outside of ΣR1 . Putting these
estimates together and relabeling the constants, we obtain

}η}W k,pp 9Σ0q “ }βη ` p1 ´ βqη}W k,pp 9Σ0q ď }βη}W k,pp 9Σ0q ` }p1 ´ βq}W k,pp 9Σ0q

ď c}Dη}W k´1,pp 9Σ1q ` c}η}W k´1,ppΣR
1

q.

�

Corollary 4.20. Under the assumptions of Theorem 4.5, the operator D :
W k,ppEq Ñ W k´1,ppF q has finite-dimensional kernel and closed image.

Proof. Choosing Σ0 “ Σ1 :“ Σ in Lemma 4.19 gives an estimate

}η}W k,pp 9Σq ď c}Dη}W k´1,pp 9Σq ` c}η}W k´1,ppΣRq

for every R " 1 sufficiently large. The closure of the truncated surface ΣR is a com-
pact manifold with smooth boundary, thus the inclusion W k,ppΣRq ãÑ W k´1,ppΣRq
compact, and so therefore is the map

W k,pp 9Σq Ñ W k´1,ppΣRq : η ÞÑ η|ΣR.



104 Chris Wendl

We have thus established the hypotheses of Lemma 4.9. �

4.6. Exponential decay

We would now like to show that the kernel of D : W k,ppEq Ñ W k´1,ppF q is
the same finite-dimensional vector space for every choice of the Sobolev parameters
k P t1, . . . , m ` 1u and p P p1,8q. We know already from Corollary 2.23 that
this is true locally: if η is annihilated by D and belongs to W k,ppEq for any given
k P t1, . . . , m ` 1u and p P p1,8q, then η P W

m`1,q
loc for every q P p1,8q. We also

know from Corollary 4.12 that η P Wm`1,qpEq for every q P rp,8q, but there is some
uncertainty as to whether η must also decay fast enough at infinity to belong to
Wm`1,qpEq for 1 ă q ă p. We shall prove in this section that if m ě 1, then this is
true at any end for which the asymptotic operator is nondegenerate. It will follow
from the fact that nondegeneracy forces bounded solutions to decay exponentially
fast.

To see what nondegeneracy has to do with exponential decay conditions, let’s
consider for a moment the analogy with Morse homology that was discussed in §3.1.
The linearized operator for the gradient flow equation acts on sections of γ˚TM for
a gradient flow line γ : R Ñ M , and after choosing a global trivialization of γ˚TM ,
it takes the form

D : C8pR,Rnq Ñ C8pR,Rnq : η ÞÑ Bsη ` Apsqη
for some function A : R Ñ Rnˆn that has a symmetric and invertible limit A` :“
limsÑ8Apsq. Let us choose a new trivialization in which A` is diagonal, and consider
only s " 1 for which Apsq is an arbitrarily good approximation of A`. In this regime,
the linearized equation becomes

Bsη « ´

¨
˝
λ1 ¨ ¨ ¨ 0
...

. . .
...

0 ¨ ¨ ¨ λn

˛
‚η.

If this were the precise equation, then we could make some immediate pronounce-
ments about the qualitative behavior of solutions as s becomes large: they are linear
combinations of exponential functions, some growing and some decaying. Note that
since 0 R σpA`q, there is no middle ground between growth and decay: no nontrivial
solutions can have a finite but nonzero limit as s Ñ 8. We are not interested in the
solutions that grow exponentially at infinity, as these do not have geometric meaning
or belong to any reasonable Banach space of solutions we’d like to consider. Those
that do belong to such spaces have exponential decay

|ηpsq| ď Ce´λs

for some constant C ą 0, where for the decay rate λ ą 0 one can choose any number
less than the smallest positive eigenvalue of A`.

It is not so straightforward to make this heuristic argument precise, because as
long as Apsq is not exactly but only approximately equal to A`, it will not respect
the splitting of Rn into positive and negative eigenspaces of A`, i.e. there will be
cross terms. One can therefore expect a decaying solution ηpsq to have a nontrivial
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but decaying component spanned by eigenvectors with negative eigenvalue, for which
the tendency toward exponential growth is balanced by the cross terms, and it is
not easy to say how fast this component decays.

One solution to this problem is to differentiate the equation one more time and
produce a second-order differential inequality, which has the effect of erasing the
distinction between positive and negative eigenvalues. Concretely, let us consider
the function

αpsq :“ 1

2
|ηpsq|2 “ 1

2
xηpsq, ηpsqy,

where x , y is the Euclidean inner product on Rn. Since 9η “ ´Aη, its first derivative
is given by

9α “ ´xη, Aηy.
Recalling that A is not symmetric but converges as s Ñ 8 to something symmetric,
we can then write its second derivative as

:α “ xAη,Aηy ´ xη, 9Aηy ` xη, ApAηqy “ 2|Aη|2 ` xpAT ´ Aqη, Aηy ´ xη, 9Aηy.
Now consider what happens in the region s ě R for some R " 1. For any λ ą 0
such that σpA`q X r´λ, λs “ H, we have |A`v| ě λ|v| for all v P Rn, and since
Apsq Ñ A` as s Ñ 8, we can assume (after a slight adjustment to λ) if R ą 0 is
chosen large enough that

|Apsqv| ě λ|v| for all v P Rn, s ě R

also holds, implying |Apsqηpsq|2 ě λ2|ηpsq|2 “ 2λ2αpsq. If we also assume that A

is “C1-asymptotic” to A`, meaning }A ´ A`}C1prR,8qq Ñ 0 as R Ñ 8, then } 9Apsq}
can be assumed arbitrarily small for all s ě R, and similarly, the symmetry of A`
means that }ATpsq ´Apsq} can be assumed arbitrarily small. The result is that for
arbitrarily small values ǫ ą 0, one can choose R " 1 large enough so that α satisfies
the differential inequality

:α ě p4λ2 ´ ǫqα.
If we now replace the original interval r´λ, λs with a slightly larger one that still
does not contain any eigenvalues of A`, we can repeat the argument and replace
4λ2 ´ ǫ in this expression with 4λ2, establishing the relation

:αpsq ě 4λ2αpsq for all s ě R.

This inequality says that the function αpsq should be “at least as convex” as an
actual solution to the differential equation

(4.9) :βpsq “ 4λ2βpsq.
Solutions to the latter are exponential functions, either growing or decaying, but
in principle we can ignore the growing solutions since we want to assume η has
reasonable behavior at `8. Let us therefore compare the function α with the
unique decaying solution to (4.9) that has the same value as α at an initial point,
namely

βpsq :“ αpRqe´2λps´Rq.
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The function fpsq :“ αpsq ´ βpsq then satisfies

(4.10) :fpsq ě 4λ2fpsq for all s ě R, and fpRq “ 0.

Exercise 4.21. Show that every C2-function f : rR,8q Ñ R satisfying both
conditions in (4.10) also satisfies either limsÑ8 fpsq “ 8 or f ď 0. Hint: Remember
the mean value theorem?

If limsÑ8 fpsq “ 8 in this situation, then |ηpsq|2 must also blow up as s Ñ 8,
so that our solution η cannot be of class Lp or L8 or any other class of functions
we are likely to want to consider. According to Exercise 4.21, the only alternative
is then that αpsq ď βpsq holds for all s ě R, meaning

|ηpsq| ď |ηpRq|e´λps´Rq.

It’s worth noting that the constant R in this result does not depend on η; it is
determined by our choice of λ ą 0 and the rate at which Apsq approaches A` in the
original differential equation. In other words, this argument does not just deliver an
exponential decay result for a single solution—it provides a uniform bound for all
solutions.

You should now find the following result plausible, and the proof will seem
familiar, though several details are technically trickier than in the Morse homology
setting. Note that since the proof requires differentiating the zeroth-order term
of the operator near a puncture, we have to require m ě 1 instead of the usual
assumption 0 ď m ď 8. This is the only step in our proof of the Fredholm property
at which the case m “ 0 must be excluded.

Lemma 4.22. Assume D is of class Cm with 1 ď m ď 8, z P Γ˘ is a puncture
for which the asymptotic operator Az is nondegenerate, and λ ą 0 is a constant
such that

σpAzq X r´λ, λs “ H.

Then in holomorphic cylindrical coordinates on Z˘ – 9Uz, there exists a constant
R ą 0 such that every weak solution η P L8pE| 9Uz

q to Dη “ 0 satisfies

}ηp˘s, ¨q}L2pS1q ď }ηp˘R, ¨q}L2pS1q ¨ e´λps´Rq for all s ě R.

Proof. To simplify the notation, let us assume the puncture z P Γ is positive,
as the proof in the negative case will be completely analogous. After fixing an
asymptotic trivialization, we write D “ B̄ ` Sps, tq and A :“ Az “ ´J0Bt ´ S8ptq,
with }S´S8}CmpZR

` q Ñ 0 as R Ñ 8. Let us also write the L2-product for functions

Z̊` Ñ R2n as

xu, vyL2pZ̊`q :“
ż

r0,8qˆS1

xups, tq, vps, tqy ds dt,

where x , y with no subscript denotes Euclidean inner product on R2n. For a given
constant λ ą 0 with σpAq X r´λ, λs “ H, choose two slightly larger constants

λ2 ą λ1 ą λ satisfying σpAq X r´λ2, λ2s “ H.

Then A satisfies the estimate

}Aη}L2pS1q ě λ2}η}L2pS1q for all η P H1pS1,R2nq.
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Indeed, according to Exercise 3.41(b), L2pS1,R2nq is spanned by an orthonormal
basis of eigenfunctions tej P H1pS1qujPZ satisfying Aej “ µjej for µj P σpAq, so for
every η P H1pS1q Ă L2pS1q, we have η “ ř

jPZ cjej for cj :“ xej, ηyL2 and thus

xAη,AηyL2 “
ÿ

jPZ
c2jµ

2
j ě λ22

ÿ

jPZ
c2j “ λ22}η}2L2.

This estimate for A says that the composition of A´1 : L2pS1q Ñ H1pS1q with the
inclusion i : H1pS1q ãÑ L2pS1q has }i ˝ A´1}L pL2q ď 1

λ2
for the operator norm on

L pL2pS1qq. For s ě 0, let

As :“ ´J0Bt ´ Sps, ¨q : H1pS1,R2nq Ñ L2pS1,R2nq,
and observe that since Sps, ¨q Ñ S8 uniformly as s Ñ 8,

}pA ´ Asqη}L2 “ }pS8 ´ Sps, ¨qqη}L2 ď }S8 ´ Sps, ¨q}C0 ¨ }η}L2

ď }S8 ´ Sps, ¨q}C0 ¨ }η}H1

implies limsÑ8 As “ A, with convergence in the operator norm on L pH1pS1q, L2pS1qq.
It follows that for s ą 0 sufficiently large, As is also invertible and limsÑ8 A´1

s “
A´1 in L pL2pS1q, H1pS1qq, in which case the norms }i ˝A´1

s }L pL2q also converge to
}i ˝ A´1}L pL2q. This argument proves that we can also assume

(4.11) }Asη}L2pS1q ě λ1}η}L2pS1q for all η P H1pS1,R2nq and s ě R

if R ą 0 is sufficiently large.
We will impose two further conditions requiring R to be large. The first is

motivated by the fact that Sps, tq is not generally symmetric but S8ptq is. In light
of the asymptotic convergence of Sps, tq, we can for any ǫ ą 0 assume after making
R ą 0 large enough that

(4.12) }S ´ ST}C0pZR
` q ă ǫ.

Since m ě 1, we can also assume }S ´ S8}C1pZR
` q is arbitrarily small, implying in

particular that if R is large enough, then

(4.13) }BsS}C0pZR
` q ă ǫ.

In the following we shall exploit the freedom to make R larger in order to make ǫ
smaller as needed.

Now suppose u P L8pZ̊`,R
2nq satisfies pB̄ ` Squ “ 0. Then u is also locally

of class Lp for every p P p1,8q, so by Corollary 2.23, u is in W
m`1,p
loc pZ̊`q and is

Cm-smooth, implying in particular that u is locally of class W 2,p and continuously
differentiable. Abbreviate us :“ ups, ¨q and consider the function α : r0,8q Ñ R

defined by

αpsq :“ 1

2
}us}2L2pS1q.

Writing the equation B̄u ` Su “ 0 as Bsups, ¨q “ Asus, differentiating under the
integral sign gives

(4.14) 9αpsq “ xus,AsusyL2pS1q “
ż

S1

xups, tq,´J0Btups, tq ´ Sps, tqups, tqy dt.
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We have to be a bit more careful in computing :αpsq, as the term ´J0Btu on the right

hand side of (4.14) might not be differentiable, though since u P W
2,p
loc pZ̊`q, there

is a well-defined weak derivative BsBtu P L
p
locpZ̊`q. Since 2-dimensional domains

admit continuous product pairings W 2,p ˆ W 1,p Ñ W 1,p and C1 ˆ W 1,p Ñ W 1,p,
Proposition A.16 (and Remark A.16) permit the computation of the weak derivative
of the integrand via the Leibniz rule,

B
Bsxu,´J0Btu ´ Suy “ xBsu,´J0Btu´ Suy ` xu,´J0BsBtu ´ pBsSqu ´ SpBsuqy,

and the resulting function is in LplocpZ̊`q, hence locally integrable. It is an easy exer-
cise in Fubini’s theorem (see Exericse 4.23(a) below) to check that in this situation,
weak differentiation under the integral sign is also allowed, so we obtain a weak
second derivative of α,

:αpsq “
ż

S1

´
xBsups, tq,´J0Btups, tq ´ Sps, tqups, tqy

` xups, tq,´J0BsBtups, tq ´ BsSps, tqups, tq ´ Sps, tqBsups, tqy
¯
dt.

We would like to apply integration by parts to remove the second derivative of u from
this expression, but again we must be careful about regularity since BsBtu may be
only a weak derivative. Observe first that since u P W 2,p

loc pZ̊`q, Bsu P W 1,p
loc pZ̊`q and

the product pairing W 2,p ˆW 1,p Ñ W 1,p over 2-dimensional domains is continuous,
the function Btxu,´J0Bsuy is in LplocpZ̊`q and equal to xBtu,´J0Bsuy ` xu,´J0BsBtuy
by Proposition A.16. Fubini’s theorem then implies that for almost every s ě 0,
both xups, ¨q,´J0Bsups, ¨qy and Btxups, ¨q,´J0Bsups, ¨qy are in LppS1q, and according
to Exercise 4.23(b), the latter is the weak derivative of the former as functions on S1.
It follows via Proposition A.11 that for these values of s, xups, ¨q,´J0Bsups, ¨qy :
S1 Ñ R is equal almost everywhere to an absolutely continuous function whose
derivative almost everywhere is equal to its weak derivative, and the integral of its
weak derivative over S1 therefore vanishes. This justifies the use of integration by
parts to write

ż

S1

xups, tq,´J0BsBtups, tqy dt “
ż

S1

xBtups, tq, J0Bsups, tqy dt

“
ż

S1

x´J0Btups, tq, Bsups, tqy dt “ xpAs ` Sps, ¨qqus,AsusyL2pS1q

for almost every s. For these values of s, our formula for :αpsq now becomes

:αpsq “ xAsus,AsusyL2 ` xpAs ` Sps, ¨qqus,AsusyL2 ´ xus, BsSps, ¨qus ` Sps, ¨qAsusyL2

“ 2}Asus}2L2 `
@

rSps, ¨q ´ Sps, ¨qTsus,Asus
D
L2 ´ xus, BsSps, ¨qusyL2 ,

where the L2-products here are all for functions on S1. Conveniently, the right hand
side of this expression is a continuous function of s, implying that 9α is a C1-function
and this continuous expression for 9α is its classical derivative.
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Using the conditions (4.11), (4.12) and (4.13), we can now conclude that α :
p0,8q Ñ R is a C2-function which for s ě R satisfies

:αpsq ě 2}Asus}2L2 ´ ǫ}us}L2 ¨ }Asus}L2 ´ ǫ}us}2L2

“ }Asus}L2 ¨ p2}Asus}L2 ´ ǫ}us}L2q ´ ǫ}us}2L2

ě λ1}us}L2 ¨ p2λ1}us}L2 ´ ǫ}us}L2q ´ ǫ}us}2L2

“
`
2λ21 ´ ǫλ1 ´ ǫ

˘
¨ }us}2L2 “ 4

ˆ
λ21 ´ ǫλ1

2
´ ǫ

2

˙
αpsq.

Let us now increase R in order to shrink ǫ so that without loss of generality,

λ21 ´ ǫλ1

2
´ ǫ

2
ě λ2,

noting that this choice depends only on the function Sps, tq and not on the solution u.
The last inequality then becomes

:αpsq ě 4λ2αpsq for all s ě R.

Recall now that u : Z̊` Ñ R2n was assumed to be globally of class L8, so the
function αpsq is bounded as s Ñ 8. Plugging fpsq :“ αpsq ´ αpRqe´2λps´Rq into
Exercise 4.21 then gives

1

2
}us}2L2 “ αpsq ď αpRqe´2λps´Rq “ 1

2
}uR}2L2e

´2λps´Rq,

or equivalently,

}us}L2 ď }uR}L2e´λps´Rq for all s ě R.

�

Exercise 4.23. Consider a locally integrable function f : Z̊` Ñ R on the half-
cylinder Z̊` “ p0,8q ˆ S1. Show:

(a) If f has a locally integrable weak partial derivative Bsf : Z̊` Ñ R and we
define F : p0,8q Ñ R almost everywhere by F psq :“

ş
S1 fps, tq dt, then F

has weak derivative F 1psq :“
ş
S1 Bsfps, tq dt.

(b) If f has a locally integrable weak partial derivative Btf : Z̊` Ñ R, then
for almost every s ą 0, the function fps, ¨q : S1 Ñ R has locally integrable
weak derivative Btfps, ¨q : S1 Ñ R. Hint: Consider test functions on Z` of
the form βpsqϕptq for β P C8

0 pp0,8qq and ϕ P C8pS1q.
Exercise 4.24. Show that the constant R ą 0 in Lemma 4.22 can be chosen so

that the result remains true with the same value of R after adjusting the functions
S and S8 by a sufficiently C1-small perturbation.

Corollary 4.25. In the setting of Theorem 4.5,

kerD Ă
č

ℓďm`1

č

1ăqă8
W ℓ,qpEq,

hence kerD is the same finite-dimensional vector space for all choices of k and p.
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Proof. We can assume m ă 8 without loss of generality. Every η P W k,ppEq
annihilated byD is then locally of classWm`1,q for every q P p1,8q by Corollary 2.23,
and Corollary 4.12 implies that it is also in Wm`1,qpEq for all q P rp,8q, so it is also
in CmpEq and thus bounded. It therefore suffices to prove that the restriction of η

to each cylindrical end ZR
˘ Ă 9Uz is in LqpZ̊R

˘q for q ą 1 arbitrarily close to 1 and
R ą 0 sufficiently large. Let us consider for concreteness a positive end ZR

` and fix
q P p1, 2s. Since S1 has finite measure and q ď 2, there is a constant c ą 0 such that
}f}LqpS1q ď c}f}L2pS1q for all measurable functions f on S1. Choosing λ ą 0 such that
the corresponding asymptotic operator has no eigenvalues in r´λ, λs, Lemma 4.22
implies

}η}q
LqpZ̊R

` q “
ż 8

R

}ηps, ¨q}q
LqpS1q ds ď cq

ż 8

R

}ηps, ¨q}q
L2pS1q ds

ď cq}ηpR, ¨q}q
L2pS1q

ż 8

R

e´qλps´Rq ds ă 8.

�

We can now say more precisely what is meant by the statement in Theorem 4.5
that elements of kerD have exponentially decaying derivatives up to order m. This
is best explained in the language of exponentially weighted Sobolev spaces, which will
also become important later when we study the corresponding nonlinear problem.
For k ě 0, 1 ď p ď 8 and λ P R, define

W k,p,λpZ̊R
˘ ,R

2nq :“
!
f : Z̊R

˘ Ñ R2n
ˇ̌
ˇ f “ e¯λsg for some g P W k,ppZ̊R

˘ ,R
2nq

)
,

with the case k “ 0 abbreviated by Lp,λ :“ W 0,p,λ. This is a Banach space with
respect to the norm

}f}W k,p,λpZ̊R
˘ q :“ }e˘λsf}W k,ppZ̊R

˘ q,

and in fact there is an obvious isometry W k,ppZ̊˘q Ñ W k,p,λpZ̊˘q : f ÞÑ e¯λsf . We

typically consider W k,p,λpZ̊˘q for λ ą 0, which forces functions in this space to decay
exponentially at infinity. Concretely, if p ą 2, then the inclusion Wm`1,p ãÑ Cm

implies that functions f P Wm`1,p,λpZ̊R
˘q take the form e¯λsg where g is of class Cm

with a global Cm-bound. It follows that every derivative Bαf of order |α| ď m is
the product of e¯λs with a globally bounded function, producing an estimate of the
form

|Bαfps, tq| ď Ce¯λs for all |α| ď m.

The statement about decaying derivatives in Theorem 4.5 is therefore a consequence
of the following:

Proposition 4.26. Under the same assumptions as in Lemma 4.22, for every
k ď m`1, q P p1,8q and every R ą 0 sufficiently large, weak solutions η P L8pE| 9Uz

q
to Dη “ 0 near a positive puncture z P Γ` satisfy an estimate of the form

}η}W k,q,λpZ̊1
`q ď c}η}L8pr0,RsˆS1q,

where the constant c ą 0 depends on k, q, R and λ but not on η. A similar result
holds for negative punctures.
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Proof. We again assume for concreteness that the puncture is positive, and
choose an asymptotic trivialization to express sections η of E| 9Uz

as functions u :
Z` Ñ R2n. On any domain U Ă Z` with compact closure in the interior of Z`,
repeated application of Lemma 4.10 gives bounds on }u}W k,qpUq for k ď m ` 1 in
terms of the Lq-norm of u on any strictly larger domain with compact closure, and
the latter is bounded in turn by the L8-norm on the same domain. It therefore
suffices to find a bound on }u}W k,q,λpZ̊r

`q, where r ą 1 can be chosen to be as large

as is needed.
For the case k “ 0 and q ď 2, we derive a bound on }u}Lq,λpZ̊r

`q using Lemma 4.22

as follows. Choose λ1 ą λ so that the condition σpAq X r´λ1, λ1s “ H still holds,
and then choose r ą 1 large enough for the exponential bound in Lemma 4.22 to
hold on Zr

` with decay rate λ1. Using the continuous inclusion L2pS1q ãÑ LqpS1q,
we then have

}u}q
Lq,λpZ̊r

`q “
ż

Zr
`

eqλs|ups, tq|q ds dt “
ż 8

r

eqλs}ups, ¨q}q
LqpS1q ds

ď c

ż 8

r

eqλs}ups, ¨q}q
L2pS1q ds ď c}upr, ¨q}q

L2pS1q ¨
ż 8

r

eqλse´qλ1ps´rq ds

ď ceqλ1r}u}q
L8pr0,rsˆS1q ¨

ż 8

r

e´qpλ1´λqs ds

“ ceqλ1r

qpλ1 ´ λqe
´qpλ1´λqr ¨ }u}q

L8pr0,rsˆS1q.

To improve this to a W k,q,λ-bound for k ě 1, we observe that the function eλsu,
which is now known to be in LqpZ̊`q, also satisfies a Cauchy-Riemann type equation,
namely

Dλpeλsuq :“ pB̄ ` Sλqpeλsuq “ 0, where Sλps, tq :“ Sps, tq ´ λ,

which is Cm-asymptotic to the shifted asymptotic operator Aλ :“ A ` λ. Since no
eigenvalues of A lie in r´λ, λs, the operator Aλ is also nondegenerate. Repeated ap-
plication of Lemma 4.19 therefore provides aW k,q-bound on eλsu for every k ď m`1
in terms of its Lq-bound on a sufficiently large truncation, which is also bounded by
the truncated L8-norm of u. Finally, one can apply the Sobolev embedding theorem
as in Corollary 4.12 and repeat the application of Lemma 4.19 as needed to produce
a W k,p-bound on eλsu for every p P rq,8q and k ď m ` 1. �

The bound in Proposition 4.26 tells us that we have considerable freedom in our
choice of topology for the space of solutions to the equation Dη “ 0: any sequence of
(not necessarily uniformly) bounded solutions that converge uniformly on compact
subsets must also converge in the much stronger topology of the W k,p,λ-norm for
every k ď m ` 1, p P p1,8q and λ ą 0 smaller than the absolute value of every
eigenvalue of every asymptotic operator. We will see this phenomenon again in the
nonlinear case, where it will imply that the geometrically “natural” topology on a
moduli space of punctured J-holomorphic curves is equivalent to the more technical
weighted Sobolev topologies that are needed for carrying out the analysis.
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Exercise 4.27. Suppose D and Dν “ D ` Sν for ν P N are Cauchy-Riemann
type operators of class Cm with 1 ď m ď 8, all of them Cm-asymptotic to asymp-
totic operators, such that the asymptotic operators for D are all nondegenerate and
limνÑ8 }Sν}Cm “ 0. Show that if 1 ă p ă 8 and ην is a uniformly Lp-bounded
sequence of weak solutions to Dνην “ 0 that is uniformly convergent on compact
subsets, then for every k ď m ` 1, q P p1,8q and λ ą 0 sufficiently small, ην
converges in W k,qpEq and in the W k,q,λ-norm on the cylindrical ends to a solution
η of Dη “ 0. Hint: Exercise 4.24 should help you prove a uniform Lp-bound for
e˘λsην on the cylindrical ends 9Uz – Z˘. Once you have that, you can eliminate the
exponential weights from the picture by adding constants to D and Dν .

4.7. Formal adjoints and proof of the Fredholm property

In order to show that cokerD is also finite dimensional, we will apply the above
arguments to the formal adjoint of D, an operator whose kernel is naturally isomor-
phic to the cokernel of D. Let us choose Hermitian bundle metrics x , yE on E and

x , yF on F , and fix an area form d vol on 9Σ that takes the form d vol “ ds ^ dt

on the cylindrical ends. The formal adjoint of D is then defined as the unique
first-order linear differential operator

D˚ : Cm`1pF q Ñ CmpEq

that satisfies the relation

xλ,DηyL2pF q “ xD˚λ, ηyL2pEq for all η P Cm`1
0 pEq, λ P Cm`1

0 pF q,

where Ck
0 indicates the space of Ck-smooth sections with compact support, and we

use the real-valued L2-pairings

xη, ξyL2pEq :“ Re

ż

9Σ

xη, ξyE d vol, for η, ξ P ΓpEq,

xα, λyL2pF q :“ Re

ż

9Σ

xα, λyF d vol, for α, λ P ΓpF q.

The word “formal” refers to the fact that we are not viewing D˚ as the adjoint of
an unbounded operator on a Hilbert space (cf. [RS80]); that would be a stronger
condition.

Exercise 4.28. Show thatD˚ is well defined and, for suitable choices of complex
local trivializations of E and F and holomorphic coordinates on open subsets U Ă 9Σ,
can be written locally as

D˚ “ ´B ` A : Cm`1pU ,R2nq Ñ CmpU ,R2nq

for some A P CmpU ,EndpR2nqq, where B :“ Bs ´ J0Bt.
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The formula in the above exercise reveals that D˚ is also an elliptic operator2

and thus has the same local properties as D; indeed, ´B ` A can be transformed
into B̄ ` B for some zeroth-order term B if we conjugate it by a suitable complex-
antilinear change of trivialization. In particular, our local estimates for D and their
consequences, notably Lemma 4.10, are all equally valid for D˚.

To obtain suitable asymptotic estimates for D˚, let us fix asymptotic trivializa-
tions τ of E, use the corresponding trivializations of F over the ends as described
in §4.1, and choose the bundle metrics such that both appear standard in these
trivializations over the ends. We will say that the bundle metrics are compatible
with the asymptotically Hermitian structure of E whenever they are chosen
in this way outside of a compact subset of 9Σ. We can then express D as B̄ ` Sps, tq
on 9Uz “ Z˘, and integrate by parts to obtain

D˚ “ ´B ` Sps, tqT.

To identify this expression with a Cauchy-Riemann type operator, let C :“
ˆ
1 0
0 ´1

˙

denote the R-linear transformation on R2n “ Cn representing complex conjugation.
Then since C anticommutes with J0, we have

pC´1D˚Cqη “ ´CBspCηq ` CJ0BtpCηq ` CSps, tqTCη
“ ´Bsη ´ J0Btη ` CSps, tqTCη “ ´pB̄η ´ CSps, tqTCηq
“: ´pB̄ ` S̄ps, tqqη,

where we’ve defined S̄ps, tq :“ ´CSps, tqTC. Now if the asymptotic operator Az at
z P Γ˘ is written in the chosen trivialization as A :“ ´J0Bt ´S8ptq, the asymptotic
convergence of Sps, tq implies that similarly

}S̄ ´ S̄8}CkpZR
˘ q Ñ 0 as R Ñ 8

for all k ď m, where

S̄8ptq :“ ´CS8ptqC.
This defines a trivialized asymptotic operator sA “ ´J0Bt ´ S̄8ptq to which ´D˚ is
(after a suitable change of trivialization) asymptotic at the puncture z; in particular,
our proof of the global regularity result, Lemma 4.11, now also works forD˚. Finally,
notice that A and ´sA are conjugate: indeed,

pC´1 sACqη “ ´CJ0BtpCηq ` CCS8ptqCpCηq “ J0Btη ` S8ptqη “ ´Aη.

This implies that A is nondegenerate if and only if sA is; applying this assumption
for all of the Az, the proofs of Lemma 4.18 and Lemma 4.19 now also go through
for D˚.

We’ve proved:

2Technically, this property of the formal adjoint is part of the definition of ellipticity: we call a
differential operator elliptic whenever (1) it has the properties necessary for proving fundamental
estimates using Fourier transforms as we did with B̄ in §2.3, and (2) its formal adjoint also has this
property. The former requires the principal symbol of the operator to be everywhere injective, and
the latter requires it to be surjective.
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Proposition 4.29. Suppose D˚ is defined with respect to Hermitian bundle
metrics on E and F “ HomCpT 9Σ, Eq that are compatible with the asymptotically
Hermitian structure of E. If additionally all the asymptotic operators Az are non-
degenerate, then

D˚ : W k,ppF q Ñ W k´1,ppEq
is semi-Fredholm. Moreover, if D is of class Cm with 1 ď m ď 8, then kerD˚ is
contained in W ℓ,qpF q for every ℓ ď m ` 1 and q P p1,8q, and is thus independent
of the choice of k and p. �

Since kerD˚ is now known to be finite dimensional, the next result completes
the proof of the Fredholm property for D by showing that its image has finite
codimension. It should be emphasized that both the statement and the proof of this
result depend on the fact that kerD˚ is the same space for all choices of Sobolev
parameters, so e.g. it is automatically a subspace of W k´1,ppF q.

Lemma 4.30. If D is of class Cm with 1 ď m ď 8, all its asymptotic operators
are nondegenerate, and D˚ is defined under the same assumptions as in Prop. 4.29,
then for D : W k,ppEq Ñ W k´1,ppEq with 1 ď k ď m ` 1,

W k´1,ppF q “ imD ` kerD˚.

Proof. Consider first the case k “ 1. Since D : W 1,ppEq Ñ LppF q is semi-
Fredholm, its image is closed, hence imD ` kerD˚ is a closed subspace of LppF q.
Then if imD ` kerD˚ ‰ LppF q, the Hahn-Banach theorem3 provides a nontrivial
element α P pLppF qq˚ – LqpF q for 1

p
` 1

q
“ 1 such that

(4.15) xDη ` λ, αyL2pF q “ 0 for all η P W 1,ppEq, λ P kerD˚.

Choosing λ “ 0, this implies in particular

xDη, αyL2pF q “ 0 for all η P W 1,ppEq.
Since one can plug in arbitrary smooth compactly supported sections in trivialized
neighborhoods for η, this means that α is a weak solution of class Lq to the formal
adjoint equation D˚α “ 0, so α P kerD˚. This contradicts (4.15) if we plug in η “ 0
and λ “ α, thus completing the proof for k “ 1.

For k ě 2, suppose α P W k´1,ppF q Ă LppF q is given: then the case k “ 1 provides
elements η P W 1,ppEq and λ P kerD˚ such that Dη ` λ “ α. Since λ P Wm`1,qpF q
for all q P p1,8q, we have Dη “ α ´ λ P W k´1,ppF q and thus by Lemma 4.11,
η P W k,ppEq, completing the proof for all k ď m` 1. �

Remark 4.31. If D is only of class C0 but not C1, then we do not have the
exponential decay results from the previous section, but Lemma 4.30 still holds
for p ě 2 if kerD˚ is understood to be the kernel of the specific operator D˚ :
W 1,qpF q Ñ LqpEq for 1

p
` 1

q
“ 1. Indeed, Lemma 4.11 implies since p ě q that

kerD˚ is then also a subspace of W k´1,ppF q.
3In the case p “ 2, one can forego the Hahn-Banach theorem and simply take an L2-orthogonal

complement.
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The proof of the Fredholm property for D is now complete, but in order to see
that its index does not depend on k or p, we still need to see that this is true for
dim cokerD. This follows from the corresponding fact about kerD˚, via a slight
strengthening of Lemma 4.30:

Proposition 4.32. Under the same assumptions as in Lemma 4.30 for the
operators D : W k,ppEq Ñ W k´1,ppF q and D˚ : W k,ppF q Ñ W k´1,ppEq, we have
W k´1,ppF q “ imD ‘ kerD˚ and W k´1,ppEq “ imD˚ ‘ kerD. In particular, the
projections defined by these splittings give isomorphisms

cokerD – kerD˚ and cokerD˚ – kerD,

thus D˚ : W k,ppF q Ñ W k´1,ppEq is a Fredholm operator with

indD˚ “ ´ indD.

Proof. By Lemma 4.30, the first splitting follows if we can show that imD X
kerD˚ “ t0u. Recall first (see §A.5) that the smooth functions with compact support

form a dense subspace of W k,pp 9Σq for every k ě 0 and p P r1,8q, so the definition of
the formal adjoint implies via density and Hölder’s inequality that if 1 ă p, q ă 8
and 1

p
` 1

q
“ 1,

(4.16) xλ,DηyL2pF q “ xD˚λ, ηyL2pEq for all η P W 1,ppEq, λ P W 1,qpF q.

Now suppose λ P imD X kerD˚ and write λ “ Dη, assuming η P W k,ppEq. Our
regularity and asymptotic results imply that since D˚λ “ 0, λ P W 1,qpF q, where q
can be chosen to satisfy 1

p
` 1

q
“ 1. We can therefore apply (4.16) and obtain

xλ, λyL2pF q “ xλ,DηyL2pF q “ xD˚λ, ηyL2pEq “ 0,

hence λ “ 0.
The proof that W k´1,ppEq “ imD˚ ‘ kerD is analogous. �

This result hints at the fact thatD˚ is—under some natural extra assumptions—
globally equivalent to another Cauchy-Riemann type operator. To see this, let us
impose a further constraint on the relation between the Hermitian bundle metrics
x , yE and x , yF . Note that since the area form d vol is necessarily j-invariant, it

induces a Hermitian structure on T 9Σ, namely

xX, Y yΣ :“ d volpX, jY q ` i d volpX, Y q,
which matches the standard bundle metric in the trivializations over the ends defined
via the cylindrical coordinates. This induces real-linear isomorphisms from T 9Σ to
the complex-linear and -antilinear parts of the complexified cotangent bundle,

T 9Σ Ñ Λ1,0T ˚ 9Σ : X ÞÑ X1,0 :“ xX, ¨yΣ,
T 9Σ Ñ Λ0,1T ˚ 9Σ : X ÞÑ X0,1 :“ x¨, XyΣ,

where the first isomorphism is complex antilinear and the second is complex linear.
We use these to define Hermitian bundle metrics on Λ1,0T ˚ 9Σ and Λ0,1T ˚ 9Σ in terms
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of the metric on T 9Σ; note that this is a straightforward definition for Λ0,1T ˚ 9Σ, but
since the isomorphism to Λ1,0T ˚ 9Σ is complex antilinear, we really mean

xX1,0, Y 1,0yΣ :“ xY,XyΣ for X, Y P T 9Σ.

Now observe that as a vector bundle with complex structure λ ÞÑ J ˝ λ, F “
HomCpT 9Σ, Eq is naturally isomorphic to the complex tensor product

F “ Λ0,1T ˚Σ b E.

We can therefore make a natural choice for x , yF as the tensor product metric
determined by x , yΣ and x , yE. It is easy to check that this choice is compatible
with the asymptotically Hermitian structure of E.

Next, we notice that the area form d vol also induces a natural complex bundle
isomorphism

E Ñ HomCpT 9Σ, F q.
Indeed, the right hand side is canonically isomorphic to the complex tensor product

HomCpT 9Σ, F q “ Λ1,0T ˚ 9Σ b F “ Λ1,0T ˚ 9Σ b Λ0,1T ˚ 9Σ b E,

and Λ1,0T ˚ 9ΣbΛ0,1T ˚ 9Σ is isomorphic to the trivial complex line bundle ǫ1 :“ 9ΣˆC Ñ
9Σ via

Λ1,0T ˚ 9Σ b Λ0,1T ˚ 9Σ Ñ ǫ1 : X1,0 b Y 0,1 ÞÑ X1,0pY q “ xX, Y yΣ.
Exercise 4.33. Assuming x , yF is chosen as the tensor product metric described

above, show that under the natural identification of E with HomCpT 9Σ, F q,
´D˚ : ΓpF q Ñ Ω1,0p 9Σ, F q

satisfies the Leibniz rule

´D˚pfλq “ pBfqλ` fp´D˚λq
for all f P C1p 9Σ,Rq, where Bf P Ω1,0p 9Σq denotes the complex-valued p1, 0q-form
df ´ i df ˝ j.

We might summarize this exercise by saying that ´D˚ is an “anti-Cauchy-
Riemann type” operator on F . But such an object is easily transformed into an
honest Cauchy-Riemann type operator: let sF denote the conjugate bundle to F ,
which we define as the same real vector bundle F but with the sign of its complex
structure reversed, so λ ÞÑ ´J ˝ λ. Now there is a canonical isomorphism

HomCpT 9Σ, F q “ HomCpT 9Σ, sF q,
and the same operator defines a real-linear map

´D˚ : Γp sF q Ñ Ω0,1p 9Σ, sF q
which satisfies our usual Leibniz rule for Cauchy-Riemann type operators.

Its asymptotic behavior also fits into the scheme we’ve been describing: we
have already seen this by computing D˚ on the ends with respect to asymptotic
trivializations. To express this in trivialization-invariant language, observe that
each of the Hermitian bundles pEz, Jz, ωzq over S1 for z P Γ has a conjugate bundle
sEz with complex structure ´Jz and symplectic structure ´ωz; its natural Hermitian
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inner product is then the complex conjugate of the one on Ez. The asymptotic

operator Az on Ez can be expressed as ´Jz p∇t, where p∇t is a symplectic connection
on pEz, ωzq. Then p∇t is also a symplectic connection on p sEz,´ωzq, so we naturally
obtain an asymptotic operator on sEz in the form

(4.17) sAz :“ ´Az : Γp sEzq Ñ Γp sEzq,
where the sign reversal arises from the reversal of the complex structure. One can
check that if we choose a unitary trivialization of Ez and the conjugate trivialization
of sEz, this relationship between Az and sAz produces precisely the relationship
between A “ ´J0Bt ´ S8ptq and sA “ ´J0Bt ´ S̄8ptq that we saw previously, with
S̄8ptq “ ´CS8ptqC. Let us summarize all this with a theorem.

Theorem 4.34. Assume x , yF is chosen to be the tensor product metric on
F “ Λ0,1T ˚Σ b E induced by x , yE and the area form d vol. Then under the

isomorphism induced by d vol from E to HomCpT 9Σ, F q and the natural identification

of the latter with its conjugate HomCpT 9Σ, sF q, the operator ´D˚ : ΓpF q Ñ ΓpEq
defines a linear Cauchy-Riemann type operator on the conjugate bundle sF ,

´D˚ : Γp sF q Ñ Ω0,1p 9Σ, sF q,
and it is asymptotic at each puncture z P Γ to the conjugate asymptotic operator
(4.17). �
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5.1. Riemann-Roch with punctures

As in the previous lecture, let D denote a linear Cauchy-Riemann type operator
of class Cm (1 ď m ď 8) on an asymptotically Hermitian vector bundle E of

complex rank n P N over a punctured Riemann surface p 9Σ “ ΣzpΓ` Y Γ´q, jq, and
assume that D is asymptotic at each puncture z P Γ to a nondegenerate asymptotic
operator Az on the asymptotic bundle pEz, Jz, ωzq over S1. Writing

F :“ HomCpT 9Σ, Eq
for the bundle of complex-antilinear homomorphisms T 9Σ Ñ E, the main result of
the previous lecture was that

D : W k,ppEq Ñ W k´1,ppF q
is Fredholm for any k P t1, . . . , m ` 1u and p P p1,8q, and its kernel and index do
not depend on k or p. The main goal of this lecture is to compute indpDq P Z.

The index will depend on the Conley-Zehnder indices µτCZpAzq P Z introduced
in Lecture 3, but since these depend on arbitrary choices of unitary trivializations τ ,
we need a way of selecting preferred trivializations. The most natural condition is to
require that every pEz, Jz, ωzq be endowed with a unitary trivialization such that the
corresponding asymptotic trivializations of pE, Jq extend to a global trivialization;1

if there is only one puncture z, for instance, then this condition determines µτCZpAzq
uniquely. This convention has been used to state the formula for indpDq in several
of the standard references, e.g. in [HWZ99]. We would prefer however to state a

1Note that pE, Jq is always globally trivializable unless Γ “ H, as a punctured surface can be
retracted to its 1-skeleton.

119
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formula which is also valid when Γ “ H and E Ñ Σ is nontrivial. One way to do
this is by allowing completely arbitrary asymptotic trivializations, but introducing
a topological invariant to measure their failure to extend globally over E.

Definition 5.1. Fix a compact oriented surface S with boundary. The relative
first Chern number associates to every complex vector bundle pE, Jq over S and
trivialization τ of E|BS an integer

cτ1pEq P Z

satisfying the following properties:

(1) If pE, Jq Ñ S is a line bundle, then cτ1pEq is the signed count of zeroes for
a generic section η P ΓpEq that appears as a nonzero constant at BS with
respect to τ .

(2) For any two bundles pE1, J1q and pE2, J2q with trivializations τ1 and τ2
respectively over BS,

cτ1‘τ2
1 pE1 ‘ E2q “ cτ11 pE1q ` cτ21 pE2q.

Note that in the first point above, counting zeroes “with signs” actually means
adding up their orders in the sense of complex analysis, so e.g. the function z ÞÑ zk

has a zero of order k at the origin if k ě 1, while z ÞÑ z̄k has a zero of order ´k.2
It follows from standard arguments in differential topology (see [Mil97]) that this
count of zeroes is invariant under homotopies of sections that are nowhere zero at BS,
thus cτ1pEq for a line bundle does not depend on the choice of section, though it does
depend (up to homotopy) on the choice of boundary trivialization τ . It is also not
hard to show via genericity arguments that a higher rank complex vector bundle over
a compact surface can always be split into a direct sum of line bundles, and while this
splitting is not uniquely determined, changing the topology of any summand forces
correspondinging changes in other summands such that the sum of their relative
first Chern numbers remains unchanged. It follows that the conditions stated above
uniquely determine cτ1pEq for all complex vector bundles over compact oriented
surfaces. The definition clearly matches the usual first Chern number c1pEq P Z

when BS “ H, and moreover, it extends in an obvious way to the category of
asymptotically Hermitian vector bundles with asymptotic trivializations.

Exercise 5.2. Given two distinct choices of asymptotic trivializations τ1 and τ2
for an asymptotically Hermitian bundle E of rank n, show that

cτ21 pEq “ cτ11 pEq ´ degpτ2 ˝ τ´1
1 q,

where degpτ2 ˝ τ´1
1 q P Z denotes the sum over all punctures of the winding numbers

of the determinants of the transition maps S1 Ñ Upmq.3
2The precise definition can be phrased in terms of winding numbers: for a function f : C Ñ C

with an isolated zero fpz0q “ 0, the zero has order k P Z if the loop θ ÞÑ fpz0 ` ǫeiθq P Czt0u has
winding number k for all ǫ ą 0 sufficiently small. Note that this changes by a sign if the function
is composed with an orientation-reversing homeomorphism of its domain, thus cτ1pEq depends on
the orientation of S.

3Caution: to compute this winding number at a negative puncture using cylindrical coordinates
ps, tq P p´8, 0s ˆ S1, one must traverse t´su ˆ S1 for s " 1 in the wrong direction, as this is
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Exercise 5.3. Combining Exercise 5.2 above with Exercise 3.56, show that for
our asymptotically Hermitian vector bundle E with Cauchy-Riemann type operator
D and asymptotic operators Az, the number

2cτ1pEq `
ÿ

zPΓ`

µτCZpAzq ´
ÿ

zPΓ´

µτCZpAzq

is independent of the choice of asymptotic trivializations τ .

The above exercise shows that the right hand side of the following index formula
is independent of all choices.

Theorem 5.4. The Fredholm index of D is given by

indD “ nχp 9Σq ` 2cτ1pEq `
ÿ

zPΓ`

µτ
CZ

pAzq ´
ÿ

zPΓ´

µτ
CZ

pAzq,

where n “ rankCE and τ is an arbitrary choice of asymptotic trivializations.

Remark 5.5. The case n “ 0 is also allowed in the above formula: then cτ1pEq “
0 and all the Conley-Zehnder indices vanish by convention (cf. Remark 3.52), while
on the left hand side, D is the unique linear operator between two 0-dimensional
vector spaces—which is Fredholm with index 0. This case will be relevant to the
dimension of the moduli space of holomorphic branched covers of a punctured Rie-
mann surface, see Prop. 14.36.

Notation. Throughout this lecture, we shall denote the integer on the right
hand side in Theorem 5.4 by

IpDq :“ nχp 9Σq ` 2cτ1pEq `
ÿ

zPΓ`

µτCZpAzq ´
ÿ

zPΓ´

µτCZpAzq P Z.

Our goal is thus to prove that indpDq “ IpDq.
When Γ “ H, Theorem 5.4 is equivalent to the classical Riemann-Roch formula,

which is more often stated for holomorphic vector bundles over a closed Riemann
surface pΣ, jq with genus g as

(5.1) indCpD0q “ np1 ´ gq ` c1pEq.
This formula assumes that the Cauchy-Riemann type operator D0 is complex linear,
but an arbitrary real-linear Cauchy-Riemann operator is then of the form D “ D0 `
B, where the zeroth-order term B P ΓpHomRpE, F qq defines a compact perturbation
since the inclusion W k,ppΣq ãÑ W k´1,ppΣq is compact. It follows that D has the
same real Fredholm index as D0, namely twice the complex index shown on the
right hand side of (5.1), which matches what we see in Theorem 5.4.

Remark 5.6. Now seems a good moment to clarify explicitly that all dimensions
(and therefore also Fredholm indices) in this book are real dimensions, not complex
dimensions, unless otherwise stated.

consistent with the orientation induced on t´su ˆS1 as a boundary component of a large compact

subdomain of 9Σ.
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Reduction to the complex-linear case does not work in general if there are punc-
tures: it remains true that arbitrary Cauchy-Riemann type operators can be written
as D “ D0 ` B where D0 is complex linear, but the perturbation introduced by
the zeroth-order term B is not compact since W k,pp 9Σq ãÑ W k´1,pp 9Σq is not compact
when Γ ‰ H. Another indication that this idea cannot work is the fact that while
the formula in Theorem 5.4 always gives an even integer when Γ “ H, it can be odd
when there are punctures, in which case D clearly cannot have the same index as
any complex-linear operator. Our proof will therefore have to deal with more than
just the complex category.

The punctured version of Theorem 5.4 was first proved by Schwarz in his the-
sis [Sch95], its main purpose at the time being to help define algebraic operations
(notably the pair-of-pants product) in Hamiltonian Floer homology. Schwarz’s proof
used a “linear gluing” construction that gives a relation between indices of opera-
tors on bundles over surfaces obtained by gluing together constituent surfaces along
matching cylindrical ends. Since any surface with ends can be “capped off” to form
a closed surface, one obtains the general index formula if one already knows how to
compute it for closed surfaces and for planes (i.e. caps). For the latter, it is simple
enough to write down model Cauchy-Riemann operators on planes and compute
their kernels and cokernels explicitly, so in this way the general case is reduced to
the classical Riemann-Roch formula. An analogous linear gluing argument for com-
pact surfaces with boundary is used in [MS12, Appendix C] to reduce the general
Riemann-Roch formula to an explicit computation for Cauchy-Riemann operators
on the disk with a totally real boundary condition.

In this lecture, we will follow a different path and use an argument that was first
sketched by Taubes for the closed case in [Tau96a, §7], with an additional argument
for the punctured case that was suggested by Chris Gerig. The argument is (in my
opinion) analytically somewhat easier than the more standard approaches, and in
addition to proving the formula we need for punctured surfaces, it produces a new
proof in the closed case without assuming the classical Riemann-Roch formula. It
also provides a gentle preview of two analytical phenomena that will later assume
prominent roles in our discussion of SFT: bubbling and gluing.

To see the idea behind Taubes’s argument, we can start by noticing an apparent
numerical coincidence in the closed case. Assume pE, Jq is a complex line bundle over
a closed Riemann surface pΣ, jq, and D : ΓpEq Ñ ΓpF q “ Ω0,1pΣ, Eq is a Cauchy-
Riemann type operator. We know that indpDq “ indpD ` Bq for any zeroth-order
term B P ΓpHomRpE, F qq. But E and F are both complex vector bundles, so B
can always be split uniquely into its complex-linear and complex-antilinear parts,
i.e. there is a natural splitting of HomRpE, F q into a direct sum of complex line
bundles4

HomRpE, F q “ HomCpE, F q ‘ HomCpE, F q.

4Here the complex structure on HomRpE,F q and its subbundles is defined in terms of the
complex structure of F , i.e. it sends B P HomRpE,F q to J ˝ B P HomRpE,F q.
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Out of curiosity, let’s compute the first Chern number of the second factor; this will
be the signed count of zeroes of a generic complex-antilinear zeroth-order perturba-
tion. To start with, note that

HomCpE, F q “ HomCpE,Cq b F,

and then observe that HomCpE,Cq and E are isomorphic: indeed, any Hermitian
bundle metric x , yE on E gives rise to a bundle isomorphism5

E Ñ HomCpE,Cq : η ÞÑ x¨, ηyE.
We thus have HomCpE, F q – E b F , so c1pHomCpE, F qq “ c1pEq ` c1pF q. We can
compute c1pF q by the same trick since

F “ HomCpTΣ, Eq “ HomCpTΣ,Cq b E – TΣ b E,

so c1pF q “ c1pTΣq ` c1pEq “ χpΣq ` c1pEq by the Poincaré-Hopf theorem, and thus

c1pHomCpE, F qq “ χpΣq ` 2c1pEq.
Since we’re looking at a line bundle over a surface without punctures, this number
is the same as IpDq. This coincidence is too improbable to ignore, and indeed, it
turns out not to be coincidental. Here is an informal statement of a result that we
will later prove a more precise version of in order to deduce Theorem 5.4.

“Theorem”. Given a Cauchy-Riemann type operator D : H1pEq Ñ L2pF q
on a line bundle pE, Jq over a closed Riemann surface pΣ, jq, choose a complex-
antilinear zeroth-order perturbation B P ΓpHomCpE, F qq whose zeroes are all non-
degenerate. Then for sufficiently large r ą 0, kerpD` rBq is approximately spanned
by 1-dimensional spaces of sections with support localized near the positive zeroes
of B. In particular, dim kerpD ` rBq equals the number of positive zeroes of B.

To deduce indpDq “ IpDq from this, we need to apply the same trick to the
formal adjoint D˚. As we will review in §5.2, ´D˚ can be regarded under certain
natural assumptions as a Cauchy-Riemann type operator on the bundle sF conjugate
to F , and the formal adjoint of D ` rB then gives rise to a Cauchy-Riemann type
operator of the form

´D˚ ` rB1 : Γp sF q Ñ Γp sEq “ Ω0,1pΣ, sF q,
where B1 : sF Ñ sE is also complex antilinear and has the same zeroes as B, but with
opposite signs. Applying the above “theorem” to ´D˚ thus identifies kerpD` rBq˚

for sufficiently large r ą 0 with a space whose dimension equals the number of
negative zeroes of B. This gives

indpDq “ indpD ` rBq “ dimkerpD ` rBq ´ dimkerpD ` rBq˚

“ c1pHomCpE, F qq “ IpDq.
It’s worth mentioning that the “large perturbation” argument we’ve just sketched

is only one simple example of an idea with a long and illustrious history. Another
simple example is the observation by Witten [Wit82] that after choosing a Morse

5We are assuming as usual that Hermitian inner products are complex antilinear in the first
argument and linear in the second.
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function on a Riemannian manifold, certain large deformations of the de Rham
complex lead to an approximation of the Morse complex, with generators of the de
Rham complex having support concentrated near the critical points of the Morse
function—this yields a somewhat novel proof of de Rham’s theorem. A much deeper
example is Taubes’s isomorphism [Tau96b] between the Seiberg-Witten invariants
of symplectic 4-manifolds and certain holomorphic curve invariants: here also, the
idea is to consider a large compact perturbation of the Seiberg-Witten equations and
show that, in the limit where the perturbation becomes infinitely large, solutions of
the Seiberg-Witten equations localize near J-holomorphic curves. For a more recent
exploration of this idea in the context of Dirac operators, see [Mar17].

Before proceeding with the details, let us fix three simplifying assumptions that
can be imposed without loss of generality:

Assumption 5.7. E and D are of class C8.

This can always be achieved by an arbitrarily small perturbation, and small
perturbations do not change the Fredholm index.

Assumption 5.8. pE, Jq has complex rank 1.

Indeed, an asymptotically Hermitian bundle E of complex rank n P N always
admits a decomposition into asymptotically Hermitian line bundles E “ E1 ‘ . . .‘
En, producing a corresponding splitting of the target bundle F “ F1 ‘ . . . ‘ Fn.
The operator D need not respect these splittings, but it is always homotopic through
Fredholm operators to one that does: we saw in Theorem 3.53 that the asymptotic
operators Az are homotopic through nondegenerate asymptotic operators to any
other operators A1

z that have the same Conley-Zehnder indices, so one can choose
A1
z to respect the splitting. Any homotopy of Cauchy-Riemann operators following

such a homotopy of nondegenerate asymptotic operators then produces a continuous
family of Fredholm operators by the main result of Lecture 4, implying that their
indices do not change. The general index formula then follows from the line bundle
case since any two Cauchy-Riemann type Fredholm operators D1 and D2 over the
same Riemann surface satisfy

indpD1 ‘ D2q “ indpD1q ` indpD2q and IpD1 ‘ D2q “ IpD1q ` IpD2q.

Assumption 5.9. k “ 1 and p “ 2.

This means we will concretely be considering the operator

D : H1pEq Ñ L2pF q,
where H1 as usual is an abbreviation for W 1,2. This assumption is clearly harmless
since we know that indD does not depend on the choice of k and p.

5.2. Some remarks on the formal adjoint

For the beginning of this section we can drop the assumption that pE, Jq is a
line bundle and assume rankCE “ n P N, though later we will again set n “ 1.
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Recall from the end of Lecture 4 that if we fix global Hermitian structures x , yE
and x , yF on pE, Jq and pF, Jq respectively and an area form d vol on 9Σ that matches
ds ^ dt on the cylindrical ends, then D has a formal adjoint

D˚ : ΓpF q Ñ ΓpEq
satisfying

xλ,DηyL2pF q “ xD˚λ, ηyL2pEq for all η P H1pEq, λ P H1pF q.
Here the real-valued L2 pairings are defined by

xη, ξyL2pEq :“ Re

ż

9Σ

xη, ξyE d vol for η, ξ P ΓpEq,

and similarly for sections of F . The essential features of the formal adjoint are
that kerD˚ – cokerD and cokerD˚ – kerD, hence indpD˚q “ ´ indpDq. Recall

moreover that d vol induces a natural Hermitian bundle metric on 9Σ by

x¨, ¨yΣ “ d volp¨, j¨q ` i d volp¨, ¨q,
which determines a bundle isomorphism

T 9Σ Ñ Λ0,1T ˚ 9Σ : X ÞÑ X0,1 :“ x¨, XyΣ,
as well as a complex-antilinear isomorphism

T 9Σ Ñ Λ1,0T ˚ 9Σ : X ÞÑ X1,0 :“ xX, ¨yΣ.
If x , yF is then chosen to be the tensor product metric determined via the natural
isomorphism

F “ HomCpT 9Σ, Eq “ Λ0,1T ˚ 9Σ b E “ T 9Σ b E,

then E admits a natural isomorphism to Λ1,0T ˚ 9Σ b F such that

´D˚ : ΓpF q Ñ ΓpEq “ Ω1,0p 9Σ, F q
becomes an anti-Cauchy-Riemann type operator, i.e. it satisfies the Leibniz rule

´D˚pfλq “ pBfqλ` fp´D˚λq
for all f P C8p 9Σ,Rq, with Bf :“ df ´ i df ˝ j P Ω1,0p 9Σq. Equivalently, ´D˚ defines

a Cauchy-Riemann type operator on the conjugate bundle sF Ñ 9Σ, defined as the
real bundle F Ñ 9Σ but with the sign of its complex structure reversed; we shall
distinguish this Cauchy-Riemann operator from ´D˚ by writing it as

´sD˚ : Γp sF q Ñ Ω0,1p 9Σ, sF q,
though it is technically the same operator. The identity map defines a natural
complex-antilinear isomorphism between any complex vector bundle and its conju-
gate bundle; we shall denote this isomorphism generally by

E Ñ sE : v ÞÑ v̄,

so in particular it satisfies cv “ c̄v̄ for all scalars c P C, and similarly

sD˚sλ “ D˚λ
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for λ P ΓpF q. The asymptotic operators for ´sD˚ are

sAz “ ´Az : Γp sEzq Ñ Γp sEzq.
Lemma 5.10. If τ is a choice of asymptotic trivialization on E and τ̄ denotes

the conjugate asymptotic trivialization6, then

cτ̄1p sEq “ ´cτ1pEq, and µτ̄
CZ

psAzq “ ´µτ
CZ

pAzq for all z P Γ.

Proof. Assuming E is a line bundle, suppose η is a generic section of E that
matches a nonzero constant with respect to τ on the cylindrical ends, so cτ1pEq is
the signed count of zeroes of η. Then η̄ P Γp sEq is similarly a nonzero constant on
the ends with respect to τ̄ , but the signs of its zeroes are opposite those of η because
they are defined as winding numbers with respect to conjugate local trivializations.
This proves cτ̄1p sEq “ ´cτ1pEq.

The Conley-Zehnder indices can be computed from the formula

µτCZpAzq “ ατ`pAzq ` ατ´pAzq,
see Theorem 3.55. Here ατ´pAzq is the largest possible winding number relative to
τ of an eigenfunction for Az with negative eigenvalue, and ατ`pAzq is the smallest
possible winding number with positive eigenvalue. The eigenfunctions of sAz “ ´Az

are the same, but the signs of their eigenvalues are reversed, and the signs of their
winding numbers are also reversed because they must be measured relative to the
conjugate trivialization, thus

ατ̄˘psAzq “ ´ατ¯pAzq,
implying

µτ̄CZpsAzq “ ατ̄`psAzq ` ατ̄´psAzq “ ´ατ´pAzq ´ ατ`pAzq “ ´µτCZpAzq.
The above calculations are all valid for line bundles, but the general case follows

by taking direct sums. �

We are now able to show that Theorem 5.4 is consistent with what we already
know about the formal adjoint.

Proposition 5.11. Ip´sD˚q “ ´IpDq.

Proof. Under the isomorphism F “ Λ0,1T ˚ 9Σ b E “ T 9Σ b E, an asymptotic
trivialization τ on E induces an asymptotic trivialization Bs b τ on F , where Bs
denotes the asymptotic trivialization of T 9Σ defined via an outward pointing vector
field on the cylindrical ends. Counting zeroes of vector fields then proves cBs

1 pT 9Σq “
χp 9Σq, so

cBsbτ
1 pF q “ cBsbτ

1 pT 9Σ b Eq “ ncBs
1 pT 9Σq ` cτ1pEq “ nχp 9Σq ` cτ1pEq.

Applying Lemma 5.10 to the conjugate bundle then gives

cBsbτ
1 p sF q “ ´nχp 9Σq ´ cτ1pEq.

6If τ : E|U Ñ UˆCn is a local trivialization of E with τpvq “ pz, wq, the conjugate trivialization
τ̄ : sE|U Ñ U ˆ Cn is defined by τ̄ pv̄q “ pz, swq.
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The unitary trivializations of the asymptotic bundles sEz corresponding to Bs b τ are
simply τ̄ , thus using Lemma 5.10 again for the Conley-Zehnder terms,

Ip´sD˚q “ nχp 9Σq ` 2cBsbτ
1 p sF q `

ÿ

zPΓ`

µτ̄CZpsAzq ´
ÿ

zPΓ´

µτ̄CZpsAzq

“ ´nχp 9Σq ´ 2cτ1pEq ´
ÿ

zPΓ`

µτCZpAzq `
ÿ

zPΓ´

µτCZpAzq

“ ´IpDq.
�

We next consider the effect of an antilinear zeroth-order perturbation on the
formal adjoint. By “antilinear zeroth-order perturbation,” we generally mean a
smooth section

B P ΓpHomCpE, F qq.
It is perhaps easier to understand B in terms of the conjugate bundle sE: indeed,
there exists a unique

β P ΓpHomCp sE, F qq
such that

Bη “ βη̄,

and this correspondence defines a bundle isomorphism HomCpE, F q “ HomCp sE, F q.
Exercise 5.12. Assume X and Y are complex vector bundles over the same

base.

(a) Show that sXbsY is canonically isomorphic to the conjugate bundle ofXbY .
(b) Show that HomCp sX, sY q is canonically isomorphic to the conjugate bundle of

HomCpX, Y q, and HomCp sX, sY q is canonically isomorphic to the conjugate
bundle of HomCpX, Y q.

(c) Show that Λ0,1X˚ :“ HomCpX,Cq is canonically isomorphic to the conju-
gate bundle of Λ1,0X˚ :“ HomCpX,Cq.

Define the Cauchy-Riemann type operator

DB :“ D ` B : ΓpEq Ñ ΓpF q “ Ω0,1p 9Σ, Eq,
so DBη “ Dη`βη̄. To write down D˚

B, observe that since β : sE Ñ F is a complex-
linear bundle map between Hermitian bundles, it has a complex-linear adjoint

β: : F Ñ sE such that xβ:λ, η̄y sE “ xλ, βη̄yF for λ P F , η̄ P sE.
Here the bundle metric on sE is defined by xη̄, ξ̄y sE :“ xξ, ηyE. We then have

Rexλ,BηyF “ Rexλ, βη̄yF “ Rexβ:λ, η̄y sE “ Rexη, β:λyE “ Rexβ:λ, ηyE
“ Rex sβ:sλ, ηyE,

where sβ: P ΓpHomCp sF,Eqq denotes the image of β: P ΓpHomCpF, sEqq under the
complex-antilinear identity map from HomCpF, sEq to its conjugate bundle (see Ex-
ercise 5.12). The formal adjoint of DB is thus

D˚
B “ D˚ ` B˚ : ΓpF q Ñ ΓpEq,
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where B˚ : F Ñ E is defined by

B˚λ :“ sβ:sλ.
To write down the resulting Cauchy-Riemann type operator on sF , we replace B˚ :
F Ñ E with sB˚ : sF Ñ sE, defined by

sB˚sλ :“ B˚λ “ β:λ,

giving a Cauchy-Riemann operator

´sD˚
B “ ´sD˚ ` p´ sB˚q : Γp sF q Ñ Γp sEq “ Ω0,1p 9Σ, sF q.

The point of writing down this formula is to make the following observations:

Lemma 5.13. The zeroth-order perturbation ´ sB˚ : sF Ñ sE appearing in ´sD˚
B

has the following properties:

(1) ´ sB˚ : sF Ñ sE is complex antilinear;
(2) There is a natural complex bundle isomorphism HomCp sF , sEq “ HomCpF, sEq

that identifies ´ sB˚ with ´β:;
(3) If n “ 1 and B P ΓpHomCpE, F qq has only nondegenerate zeroes, then

´ sB˚ P ΓpHomCp sF, sEqq has the same zeroes but with opposite signs.

Proof. The first two statements follow immediately from the fact that ´ sB˚

is the composition of the canonical conjugation map sF Ñ F with the complex-
linear bundle map ´β: : F Ñ sE. For the third, it suffices to compare what β P
ΓpHomCp sE, F qq and ´β: : ΓpHomCpF, sEqq look like in local trivializations near a
zero: one is minus the complex conjugate of the other, hence their zeroes count with
opposite signs. �

5.3. The index zero case on a torus

As a warmup for the general case, we now fill in the details of Taubes’s proof of
Theorem 5.4 in the case

9Σ “ T2 :“ C{pZ ‘ iZq
and E “ T2 ˆ C, i.e. a trivial line bundle. In this case IpDq “ χpT2q ` 2c1pEq “ 0,
so our aim is to prove indpDq “ 0. What we will show in fact is that D is homotopic
through a continuous family of Fredholm operators to one that is an isomorphism.
Since E and F are now both trivial, it will suffice to consider the operator

D :“ B̄ “ Bs ` iBt : H1pT2,Cq Ñ L2pT2,Cq,
whose formal adjoint is D˚ :“ ´B “ ´Bs ` iBt. An antilinear zeroth-order pertur-
bation is then equivalent to a choice of function β : T2 Ñ C, giving rise to a family
of operators

Drη :“ B̄η ` rβη̄

for r P R, where η̄ : T2 Ñ C now denotes the straightforward complex conjugate
of η. Let us assume that β : T2 Ñ C is nowhere zero; note that this would not be
possible in more general situations, but is possible here because HomCp sE, F q is a
trivial bundle.

Lemma 5.14. Dr is injective for all r ą 0 sufficiently large.
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Proof. Elliptic regularity implies any η P kerDr is smooth, so we shall restrict
our attention to smooth functions η : T2 Ñ C. We start by comparing the two
second-order differential operators

D˚D and D˚
rDr : C

8pT2,Cq Ñ C8pT2,Cq.
Both are nonnegative L2-symmetric operators, and in fact the first is simply the
Laplacian

D˚D “ ´BB̄ “ p´Bs ` iBtqpBs ` iBtq “ ´B2
s ´ B2

t “ ´∆.

The formal adjoint of Dr takes the form

D˚
rη “ D˚η ` rB˚η “ D˚η ` rβη̄,

thus for any η P C8pT2,Cq,
D˚
rDrη “ pD˚ ` rB˚qpD ` rBqη

“ D˚Dη ` r
´
βB̄η ´ Bpβη̄q

¯
` r2B˚Bη

“ D˚Dη ` r pβBη̄ ´ pBβqη̄ ´ βBη̄q ` r2B˚Bη

“ D˚Dη ` r2B˚Bη ´ rpBβqη̄.

(5.2)

This is a Weitzenböck formula: its main message is that the Laplacian D˚D and
the related operator D˚

rDr differ from each other only by a zeroth-order term that
will be positive definite if r is sufficiently large. Indeed, since β is nowhere zero, we
have |Bη| ě c|η| for some constant c ą 0, thus

}Drη}2L2 “ xη,D˚
rDrηyL2 “ xη,D˚DηyL2 ` r2xη, B˚BηyL2 ´ rxη, pBβqη̄yL2

“ }Dη}2L2 ` r2}Bη}2L2 ´ rxη, pBβqη̄yL2

ě
`
r2c2 ´ r}Bβ}C0

˘
}η}2L2.

We conclude that as soon as r ą 0 is large enough to make the quantity in paren-
theses positive, Drη cannot vanish unless }η}L2 “ 0. �

Proof of Theorem 5.4 for E “ T2 ˆ C. The lemma above shows that one
can add a large antilinear perturbation to D “ B̄ making the deformed operator
Dr injective. By Lemma 5.13, the same argument applies to the formal adjoint
D˚, implying that for sufficiently large r ą 0, D˚

r is injective and thus Dr is also
surjective, and therefore an isomorphism. This proves indpDq “ indpDrq “ 0. �

Let’s consider which particular details of the setup made the proof above possible.
First, the zeroth-order perturbation is complex antilinear. We used this, if only

implicitly, in deriving the Weitzenböck formula (5.2): the key step is in the third
line, where the two terms involving Bη̄ cancel each other out and leave nothing but
zeroth-order terms remaining. This would not have happened if e.g. B : E Ñ F

had been complex linear—we would then have seen terms depending on the first
derivative of η in D˚

rDrη ´ D˚Dη, and this would have killed the whole argument.
The fact that this cancelation happens when the perturbation is antilinear probably
looks like magic at this point, but there is a principle behind it; we will discuss it
further in §5.4 below, see Remark 5.18.
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The second crucial fact we used was that β : T2 Ñ C is nowhere zero, in
order to obtain the lower bound on }Bη}L2 in terms of }η}L2. This cannot always
be achieved—it is possible in this special case only because E and F are both
trivial bundles and thus so is HomCp sE, F q. On more general bundles, the best we
could hope for would be to pick β P ΓpHomCp sE, F qq with finitely many zeroes, all
nondegenerate. In this case the above argument fails, but it still tells us something.
Suppose Σǫ Ă T2 is a region disjoint from the isolated zeroes of β. Then there exists
a constant cǫ ą 0, dependent on the region Σǫ, such that

}βη̄}2L2pT2q ě }βη̄}2L2pΣǫq ě cǫ}η}2L2pΣǫq,

so instead of the estimate at the end of the proof above implying Dr is injective, we
obtain one of the form

}Drη}2L2pT2q ě cǫr
2}η}L2pΣǫq ´ cr}η}2L2pT2q.

To see what this means, imagine we have sequences rν Ñ 8 and ην P kerDrν ,
normalized so that }ην}L2 “ 1 for all ν. The estimate above then implies

}ην}2L2pΣǫq ď c

cǫrν
Ñ 0 as ν Ñ 8,

so while all sections ην have the same amount of “energy” (as measured via their L2-
norms), the energy is escaping from Σǫ as rν increases. This is true for any domain
Σǫ disjoint from the zeroes, so we conclude that in the limit as r Ñ 8, sections in
kerDr have their energy concentrated in infinitesimally small neighborhoods of the
zeroes of β. We will see in the following how to extract useful information from this
concentration of energy.

5.4. A Weitzenböck formula for Cauchy-Riemann operators

The Weitzenböck formula (5.2) can be generalized to a useful relation between
any two Cauchy-Riemann type operators that differ by an antilinear zeroth-order
term. To see this, we start with a short digression on holomorphic and antiholomor-
phic vector bundles.

A smooth function f : C Ą U Ñ C is called antiholomorphic if it satisfies
pBs´iBtqf “ 0, which means its differential anticommutes with the complex structure
on C. The class of antiholomorphic functions is not closed under composition, but it
is closed under products, hence one can define an antiholomorphic structure on a
complex vector bundle to be a system of local trivializations for which all transition
maps are antiholomorphic. Given the standard correspondence between holomorphic
structures and Cauchy-Riemann type operators (see §2.5), it is easy to establish
a similar correspondence between antiholomorphic structures and (complex-linear)
anti-Cauchy-Riemann type operators, i.e. those which satisfy

Dpfηq “ pBfqη ` fDη

for all f P C8p 9Σ,Cq, where Bf :“ df ´ i df ˝ j P Ω1,0p 9Σq. We’ve seen one important
example of such an operator already: if D : ΓpEq Ñ ΓpF q is complex linear, then
´D˚ is a complex-linear anti-Cauchy-Riemann operator on F and thus endows F
with an antiholomorphic structure. Another example occurs naturally on conjugate
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bundles: if E has a holomorphic structure, then sE inherits from this an antiholomor-
phic structure. This is immediate from the fact that f : C Ą U Ñ C is holomorphic
if and only if f̄ : U Ñ C is antiholomorphic. If D : ΓpEq Ñ ΓpF q “ Ω0,1p 9Σ, Eq
is the corresponding complex-linear Cauchy-Riemann type operator on E, we shall
denote the resulting anti-Cauchy-Riemann operator by

sD : Γp sEq Ñ Γp sF q “ Ω1,0p 9Σ, sEq,

where by definition sDη̄ “ Dη.

Exercise 5.15. Show that if X and Y are antiholomorphic vector bundles over
the same base, then XbY and HomCpX, Y q both naturally inherit antiholomorphic
bundle structures such that the obvious Leibniz rules are satisfied. Remark: the
proof of this is exactly the same as for holomorphic bundles, one only needs to
change some signs.

The next result is the main tool needed for our proof of the index formula.

Proposition 5.16. Assume E Ñ 9Σ is an asymptotically Hermitian line bundle,
D : ΓpEq Ñ ΓpF q “ Ω0,1pΣ, Eq is a linear Cauchy-Riemann type operator C0-
asymptotic to asymptotic operators tAzuzPΓ at the punctures, and B : E Ñ F is
a complex-antilinear bundle map. We consider the family of Cauchy-Riemann type
operators

Dr :“ D ` rB : ΓpEq Ñ ΓpF q for r P R,

and denote by D˚
r “ D˚ ` rB˚ : ΓpF q Ñ ΓpEq their formal adjoints with respect

to fixed choices of area forms and bundle metrics compatible with the asymptotically
Hermitian structure of E. Then there exists a real-linear bundle map B1 : E Ñ E

such that for all r P R and η P ΓpEq,

D˚
rDrη “ D˚Dη ` r2B˚Bη ` rB1η.

Moreover, if B is C1-bounded as a section of HomCpE, F q, then B1 is C0-bounded
as a section of EndRpEq.

Proof. We consider first the case where D is complex linear. The operators
sD and ´D˚ are then complex-linear anti-Cauchy-Riemann operators on sE and F

respectively, so as a corollary of the linear local existence result in §2.5, they deter-
mine antiholomorphic vector bundle structures on sE and F . By Exercise 5.15, these
induce an antiholomorphic vector bundle structure on HomCp sE, F q, giving rise to a
complex-linear anti-Cauchy-Riemann operator BH on HomCp sE, F q that satisfies the
Leibniz rule

´D˚pΦη̄q “ pBHΦqη̄ ` ΦpsDη̄q for all η̄ P Γp sEq, Φ P ΓpHomCp sE, F qq.
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Writing Bη “ βη̄ and B˚λ “ sβ:sλ for β P ΓpHomCp sE, F qq and its complex adjoint
β: P ΓpHomCpF, sEqq, we have

D˚
rDrη “ pD˚ ` rB˚qpD ` rBqη

“ D˚Dη ` r sβ:Dη ´ rp´D˚qpβη̄q ` r2B˚Bη

“ D˚Dη ` r sβ: sDη̄ ´ rpBHβqη̄ ´ rβ sDη̄ ` r2B˚Bη

“ D˚Dη ` r2B˚Bη ´ rpBHβqη̄ ` r
` sβ: ´ β

˘ sDη̄.

Here β and sβ: are both viewed as complex-linear bundle maps sF Ñ E, the latter in
the obvious way, and the former acting as 1 b β on sF “ Λ1,0T ˚ 9Σ b sE with target
Λ1,0T ˚ 9ΣbF “ Λ1,0T ˚ 9ΣbΛ0,1T ˚ 9ΣbE “ E. Choosing unitary local trivializations,
β and sβ: are represented by the same complex-valued function: indeed, the latter
is the transpose of the former as n-by-n complex matrices, but since n “ 1, this
means they are identical, and the last term in the formula above therefore vanishes,
leaving

(5.3) D˚
rDrη “ D˚Dη ` r2B˚Bη ´ rpBHβqη̄.

If D is not complex linear, then we define its complex-linear part DC : ΓpEq Ñ
ΓpF q by

DCη :“ 1

2
pDη ´ JDpJηqq

and observe that this also satisfies the Leibniz rule DCpfηq “ pB̄fqη ` fDη for

all f P C8p 9Σq, so it is a complex-linear Cauchy-Riemann type operator and D “
DC ` A for some complex-antilinear bundle map A : E Ñ F . Writing Aη :“ αη̄

for α P ΓpHomCp sE, F qq, we can then apply (5.3) to both D “ DC ` A and Dr “
DC ` pA` rBq, giving

D˚D ´ D˚
CDC “ A˚Aη ´ pBHαqη̄

and

D˚
rDr ´ D˚

CDC “ pA ` rBq˚pA` rBqη ´ pBHαqη̄ ´ rpBHβqη̄.
Subtracting the first relation from the second gives

D˚
rDr ´ D˚D “ r2B˚B ` r rpA˚B ` B˚Aqη ´ pBHβqη̄s ,

so we can define B1η as the expression in brackets at the right.
Concerning bounds on }B1}C0: choose an asymptotic trivialization on the cylin-

drical end Z˘ – 9Uz near one of the punctures z, identifying D on this region with
B̄ ` S : C8pZ˘,Cq Ñ C8pZ˘,Cq for a smooth function S : Z˘ Ñ EndpCq which
satisfies limsÑ˘8 Sps, tq “ S8ptq for a loop S8 : S1 Ñ Endsym

R pCq determined by the
asymptotic operator Az. The conjugate operator sD is then given by B ` sS over Z˘,
and since the bundle metrics were assumed compatible with the asymptotically Her-
mitian structure, we can assume they are standard in our chosen trivialization, so
that D˚ becomes identified with ´B `ST. The antilinear bundle map B : E Ñ F is
identified likewise with a function B : Z˘ Ñ EndCpCq of the form Bps, tqv “ βps, tqv̄
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for a function β : Z˘ Ñ C. The complex-linear part of D over Z˘ is given by
DC “ B̄ ` SC, where

SC :“ 1

2
pS ´ iSiq , hence A “ 1

2
pS ` iSiq.

The latter clearly satisfies a global bound on Z˘ in light of the asymptotic conver-
gence of S to S8, thus a C

0-bound on B implies a C0-bound on A˚B ` B˚A.
A coordinate formula for BHβ can be derived from the corresponding formulas

for D˚ and sD via the Leibniz rule ´D˚pβη̄q “ pBHβqη̄ ` β sDη̄: indeed,

´ D˚pβη̄q “ ´p´B ` STqpβη̄q “ pB ´ STqpβη̄q “ pBβqη̄ ` βpBη̄q ´ STβη̄

“ pBHβqη̄ ` β sDη̄ “ pBHβqη̄ ` βpB ` sSqη̄ “ pBHβqη̄ ` βpBη̄q ` β sSη̄
implying

BHβ “ Bβ ` β sS ´ STβ.

This expression is C0-bounded in terms of the C1-norm of B. �

Remark 5.17. The above proof used the assumption n “ 1 in order to conclude
sβ: ´ β ” 0. For higher rank bundles, this imposes a nontrivial condition that must
be satisfied in order for the Weitzenböck formula to hold, cf. [GW].

Remark 5.18. We can now pick out a geometric reason for the miraculous can-
celation in the Weitzenböck formula: the perturbation B is described by a complex
bundle map sE Ñ F , where sE and F both have natural antiholomorphic bun-
dle structures defined via the complex-linear parts of sD and ´D˚ respectively. A
complex-linear perturbation B : E Ñ F would not work because E is holomorphic
rather than antiholomorphic: while sD can be fit into the same Leibniz rule with
´D˚, the same is not true of D.

5.5. Large antilinear perturbations and energy concentration

We continue in the setting of Proposition 5.16 and consider

Dr :“ D ` rB : ΓpEq Ñ ΓpF q
for r P R, where Bη “ βη̄ for a fixed section β P ΓpHomCp sE, F qq. After a com-
pact perturbation of D, we can without loss of generality also impose the following
assumptions on D, β and the area form d vol:

(i) All zeroes of β are nondegenerate.

(ii) Both |β| and 1{|β| are bounded outside of a compact subset of 9Σ.

(iii) Near each point ζ P 9Σ with βpζq “ 0, there exists a neighborhood Dpζq Ă 9Σ
of ζ , a holomorphic coordinate chart identifying pDpζq, j, ζq with the unit
disk pD, i, 0q, and a local trivialization of E over Dpζq that identifies D with
B̄ “ Bs ` iBt : C8pD,Cq Ñ C8pD,Cq and β with one of the functions

βpzq “ z or βpzq “ z̄,

the former if ζ is a positive zero and the latter if it is negative.
(iv) In the holomorphic coordinate on Dpζq described above, d vol is the stan-

dard Lebesgue measure.
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As in the torus case discussed in §5.3, we will see that the Weitzenböck formula
implies a concentration of energy near the zeroes of β for sections η P kerDr as
r Ñ 8. To understand what really happens in this limit, we will use a rescaling
trick. Denote the zero set of β by

Zpβq “ Z`pβq Y Z´pβq Ă 9Σ,

partitioned into the positive and negative zeroes. For any η P ΓpEq, ζ P Z˘pβq and
r ą 0, we then define a rescaled function

ηpζ,rq : D?
r Ñ C : z ÞÑ 1?

r
ηpz{

?
rq,

where the right hand side denotes the local representation of η on Dpζq in the chosen
coordinate and trivialization. Notice that the equation Drη “ 0 appears in this local
representation as either

(5.4) B̄η ` rzη̄ “ 0 or B̄η ` rz̄η̄ “ 0 on Dpζq,
depending on the sign of ζ , and the function f :“ ηpζ,rq then satisfies

B̄f ` zf̄ “ 0 or B̄f ` z̄f̄ “ 0 on D?
r.

We will take a closer look at these two PDEs in §5.6 below. But first, observe that
by change of variables, ››ηpζ,rq››

L2pD?
rq “ }η}L2pDpζqq.

Lemma 5.19. Assume rν Ñ 8, and ην P kerDrν is a sequence satisfying a
uniform L2-bound. Then after passing to a subsequence, the rescaled functions ηζν :“
η

pζ,rνq
ν : D?

rν Ñ C for each ζ P Z˘pβq converge in C8
locpCq to smooth functions

η
ζ
8 P L2pCq satisfying

B̄ηζ8 ` zη
ζ
8 “ 0 if ζ P Z`pβq,

B̄ηζ8 ` z̄η
ζ
8 “ 0 if ζ P Z´pβq.

Moreover, if ξν P kerDrν is another sequence with these same properties and con-

vergence ξζν Ñ ξ
ζ
8, then

lim
νÑ8

xην , ξνyL2pEq “
ÿ

ζPZpβq
xηζ8, ξζ8yL2pCq.

Proof. The uniform L2-bound implies uniform bounds on }ηζν}L2pDRq for every
R ą 0, where ν here is assumed sufficiently large so that R ă ?

rν . Since η
ζ
ν satisfies

a Cauchy-Riemann type equation on DR, the usual elliptic estimates (see Lecture 2)
then imply uniform Hk-bounds for every k P N on every compact subset in the
interior of DR, hence η

ζ
ν has a C8

loc-convergent subsequence on C, and the limit ηζ8
clearly satisfies the stated PDE. The uniform L2-bound also implies a uniform bound
on }ηζν}L2pD?

rν q and thus an R-independent uniform bound on }ηζν}L2pDRq as ν Ñ 8,

implying that ηζ8 is in L2pCq.
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The limit of xην , ξνyL2pEq is now proved using the Weitzenböck formula. Let

9Σǫ :“ 9Σz
ď

ζPZpβq
Dpζq,

so there exists a constant c ą 0 such that β satisfies |βpzqv̄| ě c|v| for all v P Ez,

z P 9Σǫ. (Note that this depends on the assumption of 1{|β| being bounded outside
of a compact subset.) Now by Proposition 5.16,

0 “ }Drνην}2
L2p 9Σq “ xην ,D˚

rν
DrνηνyL2p 9Σq

“ xην ,D˚DηνyL2p 9Σq ` r2νxην , B˚BηνyL2p 9Σq ` rνxην , B1ηνyL2p 9Σq

ě }Dην}2
L2p 9Σq ` r2νc

2}ην}2
L2p 9Σǫq ´ rνc

1}ην}2
L2p 9Σq

ě r2νc
2}ην}2

L2p 9Σǫq ´ rνc
1}ην}2

L2p 9Σq

for some constant c1 ą 0 independent of ν. This implies

}ην}2
L2p 9Σǫq ď c1

c2rν
}ην}2

L2p 9Σq Ñ 0 as ν Ñ 8

since }ην}L2p 9Σq is uniformly bounded. The same estimate applies to ξν , so that

xην , ξνyL2p 9Σǫq Ñ 0 and thus by change of variables,

lim
νÑ8

xην , ξνyL2p 9Σq “ lim
νÑ8

ÿ

ζPZpβq
xην , ξνyL2pDpζqq “ lim

νÑ8

ÿ

ζPZpβq
xηζν , ξζνyL2pD?

rν q

“
ÿ

ζPZpβq
xηζ8, ξζ8yL2pCq.

�

5.6. Two Cauchy-Riemann type problems on the plane

The rescaling trick in the previous section produced smooth solutions f : C Ñ C

of class L2pCq to the two equations

B̄f ` zf̄ “ 0, B̄f ` z̄f̄ “ 0.

It turns out that we can say precisely what all such solutions are. Write D`f :“
B̄f`zf̄ andD´f :“ B̄f` z̄f̄ . Both operators differ from the complex-linear operator
B̄ by antilinear perturbations, so they satisfy Weitzenböck formulas relating D˚

˘D˘
to the Laplacian ´∆ “ B̄˚B̄ “ ´B2

s ´B2
t . Indeed, applying (5.3) in these special cases

gives

D˚
`D`f “ ´∆f ` |z|2f ´ 2f̄ and D˚

´D´f “ ´∆f ` |z|2f.
To make use of this, recall that a smooth function u : U Ñ R on an open subset
U Ă C is called subharmonic if it satisfies

´∆u ď 0.

Subharmonic functions satisfy a mean value property:

´∆u ď 0 on U ñ upz0q ď 1

πr2

ż

Drpz0q
upzq dµpzq for all Drpz0q Ă U ,
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where Drpz0q Ă C denotes the disk of radius r ą 0 about a point z0 P U , and dµpzq
is the Lebesgue measure on C; see e.g. [Eva98, p. 85].

Exercise 5.20. Show that for any smooth complex-valued function f on an
open subset of C,

∆|f |2 “ 2Rexf,∆fy ` 2|∇f |2,
where x , y denotes the standard Hermitian inner product on C and |∇f |2 :“
|Bsf |2 ` |Btf |2.

Proposition 5.21. The equation B̄f ` z̄f̄ “ 0 does not admit any nontrivial
smooth solutions f P L2pC,Cq.

Proof. If f : C Ñ C is smooth with D´f “ 0, then the Weitzenböck formula
for D´ implies ∆f “ |z|2f . Then by Exercise 5.20,

∆|f |2 “ 2Rexf, |z|2fy ` 2|∇f |2 “ 2|z|2|f |2 ` 2|∇f |2,

implying that |f |2 : C Ñ R is subharmonic. Now if fpz0q ‰ 0 for some z0 P C, the
mean value property implies

ż

Drpz0q
|fpzq|2 dµpzq ě πr2|fpz0q|2 Ñ 8 as r Ñ 8,

so f R L2pCq. �

Proposition 5.22. Every smooth solution f P L2pC,Cq to the equation B̄f `
zf̄ “ 0 is a constant real multiple of f0pzq :“ e´ 1

2
|z|2.

Proof. We claim first that every smooth solution in L2pC,Cq of D`f “ 0 is
purely real valued. The Weitzenböck formula for this case gives ∆f “ |z|2f´2f̄ , and
taking the difference between this equation and its complex conjugate then implies
that u :“ Im f : C Ñ R satisfies

∆u “ p|z|2 ` 2qu.

Now by Exercise 5.20,

∆pu2q “ 2|∇u|2 ` 2p|z|2 ` 2qu2 ě 0,

so u2 : C Ñ R is subharmonic, and the mean value property implies as in the proof
of Prop. 5.21 that u R L2pCq and hence f R L2pCq unless u ” 0. This proves the
claim.

It is easy to check however that f0 is a solution and is in L2pCq. Since it is also
nowhere zero, every other solution f must then take the form fpzq “ vpzqf0pzq for
some real-valued function v : C Ñ R. Since D` is a Cauchy-Riemann type operator,
the Leibniz rule then implies B̄v ” 0. But the only globally holomorphic functions
with trivial imaginary parts are constant. �
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5.7. A linear gluing argument

Now we’re getting somewhere.

Lemma 5.23. Suppose the assumptions of §5.5 hold and β P ΓpHomCp sE, F qq has
I` ě 0 positive and I´ ě 0 negative zeroes. Then for all r ą 0 sufficiently large,

dimkerDr ď I` and dim cokerDr ď I´.

In particular, for sufficiently large r, Dr is injective if all zeroes of β are negative
and surjective if all zeroes are positive.

Proof. Arguing by contradiction, suppose there exists a sequence rν Ñ 8 such
that dim kerDrν ą I`, and pick pI``1q sequences of sections η1ν , . . . , ηI``1

ν P kerDrν

which form L2-orthonormal sets for each ν. By Lemma 5.19, we can then extract
a subsequence such that rescaling near the zeroes of β produces C8

loc-convergent
sequences whose limits form an pI` ` 1q-dimensional orthonormal set in

à
ζPZpβq

L2pC,Cq,

where the component functions f P L2pC,Cq for ζ P Z`pζq satisfy B̄f ` zf̄ “ 0,
while those for ζ P Z´pζq satisfy B̄f ` z̄f̄ “ 0. Proposition 5.21 now implies that
the component functions for ζ P Z´pζq are all trivial, and by Proposition 5.22,
the components for ζ P Z`pζq belong to 1-dimensional subspaces kerD` Ă L2pCq
generated by the function e´ 1

2
|z|2. We conclude that the limiting orthonormal set

lives in a precisely I`-dimensional subspace
à

ζPZ`pβq
kerD` Ă

à
ζPZpβq

L2pC,Cq,

and this is a contradiction since there are I` ` 1 elements in the set.
Applying the same argument to the formal adjoint implies similarly dim kerD˚

r ď
I´ for r sufficiently large. �

We would next like to turn the two inequalities in the above lemma into equal-
ities, which means showing that the I`-dimensional subspace of

À
ζPZ`pβq L

2pC,Cq
generated by solutions of B̄f `zf̄ “ 0 is isomorphic to kerDr for r sufficiently large.
This requires a simple example of a linear gluing argument, the point of which is
to reverse the “convergence after rescaling” process that we saw in Lemma 5.19.
The first step is a pregluing construction which turns elements of

À
ζPZ`pβq kerD`

into approximate solutions to Drη “ 0 for large r. To this end, fix a smooth bump
function

ρ P C8
0 pD̊, r0, 1sq, ρ|D1{2 ” 1

and define for each ζ P Z`pβq and r ą 0 a linear map

Φζr : kerD` Ñ ΓpEq
such that Φζrpfq is a section with support in Dpζq whose expression in our fixed
coordinate and trivialization on that neighborhood is the function

f ζr pzq “ ρpzq
?
rfp

?
rzq.
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Adding up the Φζr for all ζ P Z`pβq then produces a linear map

Φr :
à

ζPZ`pβq
kerD` Ñ ΓpEq

whose image consists of sections supported near Z`pβq, each a linear combination
of cut-off Gaussians with energy concentrated in smaller neighborhoods of Z`pβq
for larger r. These sections are manifestly not in kerDr since they vanish on open
subsets and thus violate unique continuation, but they are close, in a quantitative
sense:

Lemma 5.24. For each r ą 0, there exists a constant cr ą 0 such that

}DrΦrpfq}L2 ď cr}f}L2 for all f P
à

ζPZ`pβq
kerD`,

and cr Ñ 0 as r Ñ 8. Moreover, for every pair f, g P À
ζPZ`pβq kerD`,

xΦrpfq,ΦrpgqyL2 Ñ xf, gyL2

as r Ñ 8.

Proof. First, observe that any f P À
ζPZ`pβq kerD` is described by a collection

of functions tfζ P L2pCquζPZ`pβq which take the form

fζpzq “ Kζe
´ 1

2
|z|2,

for some constants Kζ P R. Since each fζ is in kerD`, we plug in the local formula
(5.4) for Dr and find

Dr

`
Φrpfq|Dpζq

˘
pzq “ B̄ρpzq ¨

?
rfζp

?
rzq ` ρpzq ¨ rB̄fζp

?
rzq

` rzρpzq
?
rfζp

?
rzq

“ B̄ρpzq ¨
?
rfζp

?
rzq ` ρpzqr ¨ D`fζp

?
rzq

“ B̄ρpzq ¨
?
rKζe

´ 1

2
r|z|2.

(5.5)

Now since B̄ρ “ 0 in D1{2, we obtain

}DrΦrpfq}2L2 “
ÿ

ζPZ`pβq

ż

Dpζq
|DrΦrpfqpzq|2 dµpzq

“
ÿ

ζPZ`pβq

ż

DzD1{2

|B̄ρpzq|2rK2
ζ e

´r|z|2 dµpzq

ď Ire´r{4
ÿ

ζPZ`pβq
K2
ζ ,

where we abbreviate I :“
ş
DzD1{2

ˇ̌
B̄ρpzq

ˇ̌2
dµpzq. The norm of f is given by

}f}2L2 “
ÿ

ζPZ`pβq

ż

C

K2
ζ e

´|z|2 dµpzq “
ˆż

C

e´|z|2 dµpzq
˙ ÿ

ζPZ`pβq
K2
ζ .

We conclude that there is a bound of the form

}DrΦrpfq}L2 ď C
?
re´r{2}f}L2,
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which proves the first statement since
?
re´r{2 Ñ 0 as r Ñ 8.

The second statement follows by a change of variable, since

xΦrpfq,ΦrpgqyL2 “
ÿ

ζPZ`pβq
xΦrpfq|Dpζq,Φrpgq|DpζqyL2pDpζqq

“
ÿ

ζPZ`pβq

ż

D

ρ2pzqrfζp
?
rzqgζp

?
rzq dµpzq

“
ÿ

ζPZ`pβq

ż

D?
r

ρ2
ˆ
z?
r

˙
fζpzqgζpzq dµpzq

The functions fζ and gζ are both real multiples of e´ 1

2
|z|2, so this last integral for

each ζ P Z`pβq is bounded between
ş
D?

r{2
fζpzqgζpzq dµpzq and

ş
D?

r
fζpzqgζpzq dµpzq,

both of which converge to
ş
C
fζpzqgζpzq dµpzq as r Ñ 8, thus

lim
rÑ8

xΦrpfq,ΦrpgqyL2 “ xf, gyL2.

�

To turn approximate solutions into actual solutions, let

Πr : L
2pEq Ñ kerDr

denote the orthogonal projection. We will prove:

Proposition 5.25. If all zeroes of β are positive, then the linear map

Πr ˝ Φr :
à

ζPZ`pβq
kerD` Ñ kerDr

is injective for all r ą 0 sufficiently large.

This statement says in effect that whenever r ą 0 is large enough and η :“
Φrpfq P ΓpEq is in the image of the pregluing map, with f normalized by }f}L2 “ 1,
we can find a “correction” ξ P pkerDrqK such that

η ` ξ ‰ 0 but Drpη ` ξq “ 0.

An element ξ P pkerDrqK with the second property certainly exists, and in fact it’s
unique: indeed, the assumption Z´pβq “ H implies via Lemma 5.23 that Dr is
surjective and thus restricts to an isomorphism from pkerDqK X H1pEq to L2pF q,
with a bounded right inverse

Qr : L
2pF q Ñ H1pEq X pkerDqK,

hence ξ :“ ´QrpDrηq. We know moreover from Lemma 5.24 that }η}L2 is close to
}f}L2 “ 1, so to prove η ` ξ ‰ 0, it would suffice to show }ξ}L2 is small, which
sounds likely since we also know }Drη}L2 is small and Qr is a bounded operator. To
make this reasoning precise, we just need to have some control over }Qr} as r Ñ 8,
or equivalently, a quantitative measure of the injectivity of Dr|pkerDrqKXH1pEq. This
requires one last appeal to the Weitzenböck formula.
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Lemma 5.26. Assume all zeroes of β are positive. Then there exist constants
c ą 0 and r0 such that for all r ą r0,

}η}L2 ď c}Drη}L2 for all η P H1pEq X pkerDrqK.

Proof. Let us instead prove that if zeroes of β are all negative, then the same
bound holds for all η P H1pEq. The stated result follows from this by considering
the formal adjoint and using Exercise 5.27 below. Note that by density, it suffices
to prove the estimate holds for all η P C8

0 pEq.
Assume therefore that Z`pβq “ H and, arguing by contradiction, suppose there

exist sequences rν Ñ 8 and ην P C8
0 pEq with }ην}L2 “ 1 and

}Drνην}L2 Ñ 0.

The usual rescaling trick and application of the Weitzenböck formula then produces

for each ζ P Z´pβq a sequence of functions ηζν :“ η
pζ,rνq
ν : D?

rν Ñ C which satisfy
ÿ

ζPZ´pβq
}ηζν}2L2pD?

rν q Ñ 1 and }D´η
ζ
ν}L2pD?

rν q Ñ 0

as ν Ñ 8. Indeed, defining 9Σǫ as in the proof of Lemma 5.19, a similar application
of the Weitzenböck formula yields

}Drνην}2
L2p 9Σq ě r2νc

2}ην}2
L2p 9Σǫq ´ rνc

1}ην}2
L2p 9Σq “ r2νc

2}ην}2
L2p 9Σǫq ´ rνc

1,

for some c1 ą 0. Thus we obtain

}ην}2
L2p 9Σǫq ď

}Drνην}2
L2p 9Σq

c2r2ν
` c1

rνc2
Ñ 0 as ν Ñ 8,

so there is again concentration of energy near the zeroes of the antilinear perturba-
tion: in particular,

1 “ lim
νÑ8

}ην}2
L2p 9Σq

“ lim
νÑ8

}ην}2
L2p 9Σǫq ` lim

νÑ8

ÿ

ζPZ´pβq
}ην}2L2pDpζqq

“ lim
νÑ8

ÿ

ζPZ´pβq
}ηζν}2L2pD?

rν q.

Moreover, we have

D´η
ζ
νpzq “ 1

rν
B̄ην

ˆ
z?
rν

˙
` z̄?

rν
η̄ν

ˆ
z?
rν

˙
“ 1

rν
Drνην

ˆ
z?
rν

˙
.

Taking the square of the norms on each side, we may integrate and use change of
variables to obtain

}D´η
ζ
ν}L2pD?

rν q “ 1?
rν

}Drνην}L2pDpζqq Ñ 0 as ν Ñ 8.

The elliptic estimates from Lecture 2 now provide uniformHk-bounds for each ηζν
on compact subsets of C for every k P N, so that a subsequence converges in C8

locpCq
to a smooth map ηζ8 P L2pC,Cq satisfying D´η

ζ
8 “ 0. But

ř
ζPZ´pβq }ηζ8}2

L2pCq “ 1, so

at least one of these solutions is nontrivial and thus contradicts Proposition 5.21. �
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Exercise 5.27. Show that for any Fredholm Cauchy-Riemann type operator D
on E, the following two estimates are equivalent, with the same constant c ą 0 in
both:

(i) }η}L2pEq ď c}Dη}L2pF q for all η P H1pEq X pkerDqK;
(ii) }λ}L2pF q ď c}D˚λ}L2pEq for all λ P H1pF q X pkerD˚qK.

Hint: Elliptic regularity implies that for D and D˚ as bounded linear operators
H1 Ñ L2, pkerDqK “ imD˚ and pkerD˚qK “ imD.

Proof of Proposition 5.25. If the statement is not true, then there exist
sequences rν Ñ 8 and

fν P
à

ζPZ`pβq
kerD`

such that }fν}L2 “ 1 and ην :“ Φrν pfνq P pkerDrνqK for all ν. Lemmas 5.24 and 5.26
then provide estimates of the form

‚ }ην}L2 Ñ 1,
‚ }Drνην}L2 Ñ 0, and
‚ }ην}L2 ď c}Drνην}L2

as ν Ñ 8, with c ą 0 independent of ν. These imply:

1 “ lim
νÑ8

}ην}L2 ď lim
νÑ8

c}Drνην}L2 “ 0.

�

We’ve proved:

Proposition 5.28. Suppose the assumptions of §5.5 hold and that the section
β P ΓpHomCp sE, F qq has I` ě 0 positive and I´ ě 0 negative zeroes. If I´ “ 0, then
Dr is surjective with dimkerDr “ I` for all r ą 0 sufficiently large. If I` “ 0,
then Dr is injective with dim cokerDr “ I´ for all r ą 0 sufficiently large. In either
case,

indpDrq “ I` ´ I´

for all r ą 0 sufficiently large. �

5.8. Antilinear deformations of asymptotic operators

Proposition 5.28 suffices to prove the index formula in the closed case, but there
is an additional snag if Γ ‰ H: since H1p 9Σq ãÑ L2p 9Σq is not a compact inclusion,
we have no guarantee that D and Dr :“ D ` rB will have the same index, and
generally they will not. A solution to this problem has been pointed out by Chris
Gerig, using a special class of asymptotic operators that also originate in the work
of Taubes (see [Tau10, Lemma 2.3]).

In general, the only obvious way to guarantee indpDq “ indpDrq for large r ą 0
is if we can arrange for every operator in the family tDrurě0 to be Fredholm, which
is not automatic since the zeroth-order perturbation B : E Ñ F is required to be
bounded away from zero near 8 and must therefore change the asymptotic operators
at the punctures. We are therefore led to ask:
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Question. For what nondegenerate asymptotic operators A : H1pEq Ñ L2pEq
on a Hermitian line bundle pE, J, ωq Ñ S1 can one find complex-antilinear bundle
maps B : E Ñ E such that

Ar :“ A ´ rB : H1pEq Ñ L2pEq
is an isomorphism for every r ě 0?

It turns out that it will suffice to find, for each unitary trivialization τ and every
k P Z, a particular pair pAk, Bkq such that Ak ´ rBk is nondegenerate for all r ě 0
and µτCZpAkq “ k. To see why, let us proceed under the assumption that such pairs
can be found, and use them to compute the index:

Lemma 5.29. Given D as in Theorem 5.4, fix asymptotic trivializations τ and
suppose that for each puncture z P Γ there exists a smooth asymptotic operator A1

z

on pEz, Jz, ωzq with µτ
CZ

pA1
zq “ µτ

CZ
pAzq, such that if A1

z is written with respect to
τ as ´J0Bt ´ Szptq, then the deformed asymptotic operator

(5.6) H1pS1,R2q Ñ L2pS1,R2q : η ÞÑ ´J0Btη ´ Szptqη ´ rβzptqη̄
is nondegenerate for some smooth loop βz : S

1 Ñ Czt0u and every r ě 0. Then

indpDq “ χp 9Σq ` 2cτ1pEq `
ÿ

zPΓ`

windpβzq ´
ÿ

zPΓ´

windpβzq.

Proof. Since µτCZpAzq “ µτCZpA1
zq, we can deform Az to A1

z continuously
through a family of nondegenerate asymptotic operators. It follows that we can
deform D through a continuous family of Fredholm Cauchy-Riemann type oper-
ators to a new operator D1 whose asymptotic operators are A1

z for z P Γ, and
indpD1q “ indpDq. After a further deformation that preserves the Fredholm prop-
erty, we are free to assume in fact that D1 is written with respect to the trivialization
τ on the cylindrical end near z P Γ˘ as the translation-invariant operator

Bs ` J0Bt ` Szptq.
Now choose β P ΓpHomCp sE, F qq with nondegenerate zeroes such that the deformed
operators Drη :“ D1η ` rβη̄ appear in trivialized form on the cylindrical end near
z P Γ˘ as

Drη “ Bsη ` J0Btη ` Szptqη ` rβzptqη̄.
This means Dr is asymptotic at z to (5.6), which is nondegenerate for every r ě 0,
implying Dr is Fredholm for every r ě 0 and thus

indpDq “ indpDrq.
The trivializations τ induce trivializations over the cylindrical ends for sE and

F “ Λ0,1T ˚ 9ΣbE, and the expression for β in the resulting asymptotic trivialization
of HomCp sE, F q near z P Γ is βzptq. It follows that the signed count of zeroes of β is

ipDq :“ cτ1pHomCp sE, F qq `
ÿ

zPΓ`

windpβzq ´
ÿ

zPΓ´

windpβzq

“ χp 9Σq ` 2cτ1pEq `
ÿ

zPΓ`

windpβzq ´
ÿ

zPΓ´

windpβzq,
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where the computation cτ1pHomCp sE, F qq “ χp 9Σq ` 2cτ1pEq follows from the natural
isomorphism

HomCp sE, F q “ sE˚ b F “ E b F “ E b Λ0,1T ˚ 9Σ b E “ Λ0,1T ˚ 9Σ b E b E

“ T 9Σ b E b E.

We are free to assume that all zeroes of β are either positive or negative, depending
on the sign of ipDq. Proposition 5.28 then implies indpDrq “ ipDq for large r. �

Notice that instead of nondegenerate families A´rB parametrized by r P r0,8q,
it is just as well to find such families which are nondegenerate and have the right
Conley-Zehnder index for all r ą 0, as the r ě 1 portion of this family can be
rewritten as pA´Bq ´ rB for r ě 0. The following lemma thus completes the proof
of Theorem 5.4.

Lemma 5.30. For every k P Z, the trivial Hermitian line bundle over S1 admits
a smooth asymptotic operator Ak and a smooth loop βk : S

1 Ñ Czt0u such that the
deformed asymptotic operators

Ak,rη :“ Akη ´ rβkη̄

are nondegenerate for every r ą 0 and satisfy

µCZpAk,rq “ windpβkq “ k.

Proof. We claim that the choices

Akη :“ ´J0Btη ´ πkη and βkptq :“ e2πikt

do the trick. We prove this in three steps.
Step 1: k “ 0. The above formula gives A0,r “ ´J0Btη ´ rη̄, in which the

r “ 1 case is precisely the operator that we used in Lecture 3 to normalize the
Conley-Zehnder index, hence µCZpA0,1q “ 0 by definition. More generally, all of
these operators can be expressed in the form A :“ ´J0Bt ´S where S P Endsym

R pR2q
is a constant nonsingular 2-by-2 symmetric matrix that anticommutes with J0. We
claim that all asymptotic operators of this form are nondegenerate. Indeed, the

conditions ST “ S and SJ0 “ ´J0S for J0 “
ˆ
0 ´1
1 0

˙
imply that S takes the form

ˆ
a b

b ´a

˙
with detS “ ´a2 ´ b2 ‰ 0, and moreover S is of this form if and only if

J0S also is. In particular, J0S is traceless, symmetric, and nonsingular. Solutions
of Aη “ 0 then satisfy 9η “ J0Sη, which has no periodic solutions since J0S has one
positive and one negative eigenvalue, hence kerA “ t0u.

Step 2: even k. There is a cheap trick to deduce the case k “ 2m for any m P N

from the k “ 0 case. Recall that by Exercise 3.56 in Lecture 3, conjugating A0,r by
a change of trivialization changes its Conley-Zehnder index by twice the degree of
that change. In particular, the operator

rA0,rη :“ e2πimtA0,rpe´2πimtηq



144 Chris Wendl

is also a nondegenerate asymptotic operator, but with µCZprA0,rq “ µCZpA0,rq`2m “
k. Explicitly, we compute

rA0,rη “ ´J0Btη ´ πkη ´ rke2πiktη̄,

so Ak,r “ rA0,r{k is also nondegenerate for every r ą 0.
Step 3: odd k. Another cheap trick relates each Ak,r toA2k,r after an adjustment

in r. Given an arbitrary asymptotic operator A “ ´J0Bt ´ Sptq and m P N, define

Am :“ ´J0Bt ´ mSpmtq.
Geometrically, if A is a trivialized representation for the asymptotic operator of
a Reeb orbit γ : S1 Ñ M , then Am is the operator for the m-fold covered orbit
γm : S1 Ñ M : t ÞÑ γpmtq. It is easy to check in particular that if we define
ηmptq :“ ηpmtq for any given loop η : S1 Ñ R2, then

Amηm “ mpAηqm,
so this gives an embedding of kerA into kerAm, implying that whenever Am is
nondegenerate for some m P N, so is A. To make use of this, observe that

A2
k,rη “ ´J0Btη ´ π2kη ´ 2re4πiktη̄ “ A2k,2rη,

so A2
k,r is nondegenerate for all r ą 0 by Step 2, and therefore so is Ak,r. �

The proof of Theorem 5.4 is now complete.

Exercise 5.31. Derive a Weitzenböck formula for asymptotic operators and use
it to show that for any smooth asymptotic operator A on the trivial Hermitian line
bundle and any smooth β : S1 Ñ Czt0u, the deformed operators Arη :“ Aη ´ rβη̄

are all nondegenerate for r ą 0 sufficiently large. Deduce from this that µCZpArq “
windpβq for large r ą 0.
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In this lecture, we introduce the moduli spaces of holomorphic curves that are
used to define SFT.

Recall that in Lecture 1, we motivated the notion of a contact manifold by con-
sidering hypersurfaces M in a symplectic manifold pW,ωq that satisfy a convexity
(also known as “contact type”) condition. The point of that condition was that it
presents M as one member of a smooth 1-parameter family of hypersurfaces that all
have the same Hamiltonian dynamics. That 1-parameter family furnishes the basic
model of what we call the symplectization of M with its induced contact structure.
A useful generalization of this notion was introduced in [HZ94], and was later recog-
nized to be the most natural geometric setting for punctured holomorphic curves. It
has the advantage of allowing us to view seemingly distinct theories such as Hamil-
tonian Floer homology as special cases of SFT—and even if we are only interested
in contact manifolds, the generalization sometimes makes computations easier than
they might be in a purely contact setting. We therefore begin this lecture by intro-
ducing stable Hamiltonian structures. Once the geometric setting is understood, we
shall proceed to define the moduli spaces of punctured holomorphic curves for SFT
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and establish a few of their basic properties, in particular the dichotomy between
simple curves and multiple covers, and an asymptotic regularity result that forces
exponential convergence near the punctures.

6.1. Stable Hamiltonian structures

6.1.1. Hamiltonian structures and dynamics. For any smooth hypersur-
face M in a 2n-dimensional symplectic manifold pW,ωq, the restriction ωM :“
ω|TM P Ω2pMq is a closed 2-form of maximal rank on M . Its 1-dimensional ker-
nel is the characteristic line field kerωM Ă TM , whose integral curves are the orbits
on M of any Hamiltonian vector field generated by a function H : W Ñ R that has
M as a regular level set. The following definition is a way of formulating this notion
without needing to mention the ambient manifold W .

Definition 6.1. A Hamiltonian structure on a smooth p2n´1q-manifoldM
is a closed 2-form ω P Ω2pMq with maximal rank. The 1-dimensional distribution

ℓω :“ kerω Ă TM

is then called the characteristic line field of ω.

Notice that ω descends to a nondegenerate 2-form on the quotient bundle TM{ℓω,
making the latter into a symplectic vector bundle over M . Since symplectic linear
maps preserve orientation, it follows that TM{ℓω is canonically oriented, so if M is
orientable, then ℓω is necessarily also orientable. We will typically consider situations
in which M is given with an orientation, so that ℓω inherits an orientation.1 A
nowhere zero section X P Γpℓωq that is oriented positively can then be called a
Hamiltonian vector field on pM,ωq.

The set of all possible Hamiltonian vector fields on pM,ωq forms an open and
convex subset of the infinite-dimensional vector space Γpℓωq. In order to select a
favored element in this space and discuss Hamiltonian flows on M , one needs to
choose some auxiliary data.

Definition 6.2. Given an oriented manifoldM with a Hamiltonian structure ω,
a framing of ω is a choice of 1-form λ P Ω1pMq such that λ is positive on the
oriented line field ℓω. The pair pω, λq will be referred to in this case as a framed
Hamiltonian structure on M .2

Exercise 6.3. Fix an oriented p2n ´ 1q-manifold M with Hamiltonian struc-
ture ω.

(a) Show that the space of all framings of ω is convex, and use a partition of
unity to show that framings always exist.

1Our convention for orienting quotient spaces is that if V is an oriented vector space and
W Ă V is an oriented subspace, then for any positive basis pw1, . . . , wk, v1, . . . , vmq of V such that
pw1, . . . , wkq is a positive basis of W , the quotient projection sends pv1, . . . , vmq to a positive basis
of V {W .

2This terminology is widespread but not entirely standardized, e.g. [Eli07] uses the word
“framing” to mean what we would call a “stable framing” (see Definition 6.15) together with an
extra choice of ω-compatible complex structure J on ξ “ kerλ.
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(b) Show that λ P Ω1pMq is a framing of ω if and only if λ ^ ωn´1 ą 0.

A framing λ associates to a Hamiltonian structure ω two useful pieces of auxiliary
data: one is the so-called Reeb vector field R, which is the particular Hamiltonian
vector field determined by the conditions

ωpR, ¨q ” 0 and λpRq ” 1.

Secondly, λ determines a complementary vector bundle for ℓω, namely

ξ :“ ker λ Ă TM.

This is a co-oriented hyperplane distribution transverse to ℓω, thus ω|ξ is nondegen-
erate and gives ξ Ñ M the structure of a symplectic vector bundle.

Example 6.4. If α P Ω1pMq is a contact form on M , then pdα, αq is a framed
Hamiltonian structure whose associated vector field R and hyperplane distribution
ξ are the usual Reeb vector field from contact geometry (see Definition 1.18) and
the contact structure defined via α.

As in the contact-geometric setting, the Reeb vector field of an arbitrary framed
Hamiltonian structure pω, λq satisfies

LRω “ dιRω ` ιRdω “ 0,

thus its flow ϕt : M Ñ M preserves ω. Unlike the contact setting, ϕt need not
satisfy any particular properties in relation to λ, so it need not preserve ξ. However,
for any integral curve γ Ă M of ℓω, the linearized flow of R along γ preserves R and
thus descends to the quotient bundle TM{ℓω , on which it preserves the symplectic
structure since LRω “ 0. Defining

πξ : TM Ñ ξ

as the fiberwise linear projection along ℓω, πξ descends to a natural bundle isomor-

phism TM{ℓω –Ñ ξ, so the observations above prove:

Proposition 6.5. Suppose pω, λq is a framed Hamiltonian structure on M with
associated Reeb vector field R and flow ϕt, and γ : pa, bq Ñ M is a solution to the
equation 9γ “ Rpγq. Then for any t0, t1 P pa, bq, the linear map

πξ ˝ dϕt1´t0pγpt0qq : ξγpt0q Ñ ξγpt1q

is a symplectic isomorphism. In particular, there exists a unique symplectic connec-
tion ∇ω on the bundle ξ along each integral curve of ℓω such that parallel transport
along the path γ is given by the composition of the projection πξ with the linearized
Reeb flow. �

Exercise 6.6. Show that if ∇ is any symmetric connection on M , then the
symplectic connection ∇ω on γ˚ξ in Proposition 6.5 is given by the formula

∇ω
t η “ πξ p∇tη ´ ∇ηRq .

Hint: It suffices to show that the right hand side defines a connection on γ˚ξ whose
parallel sections are the same as those of ∇ω.
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Lemma 6.7. For any solution γ : pa, bq Ñ M of 9γ “ Rpγq, any η P Γpγ˚ξq and
any symmetric connection ∇ on M ,

λp∇tη ´ ∇ηRq “ ´dλpRpγq, ηq.
In particular, it follows that the projection πξ can be omitted from the formula in
Exercise 6.6 if dλpR, ¨q ” 0.

Proof. Consider a smooth 1-parameter family tγρ : pa, bq Ñ MuρPp´ǫ,ǫq with
γ0 “ γ and Bργρ|ρ“0 “ η. Repeating the calculation that preceded Definition 3.4 in
the present more general context, one finds

∇ρ pπξ 9γρq “ ∇tη ´ ∇ηR ´ dλpη, Rpγqq ¨Rpγq,
and the fact that πξ 9γρ is in Γpγ˚

ρ ξq for every ρ while πξ 9γ “ 0 implies that the right
hand side is a section of γ˚ξ. Evaluating λ on this expression then gives the stated
formula. �

Definition 6.8. A periodic orbit γ : R Ñ M with period T ą 0 of the Reeb
vector field R for a framed Hamiltonian structure pω, λq is called nondegenerate
if the symplectic linear map πξ ˝ dϕT pγp0qq : ξγp0q Ñ ξγp0q does not have 1 as an
eigenvalue. Equivalently, this means that the bundle γ˚ξ Ñ R does not admit any
T -periodic sections that are parallel with respect to the symplectic connection ∇ω

described in Proposition 6.5.

In the case pω, λq “ pdα, αq for α a contact form, this notion of nondegeneracy
is equivalent to the notion we defined for Reeb vector fields of contact forms in §1.3,
and it implies that a T -periodic orbit γ is always isolated, in the sense that there
cannot exist a sequence of Tj-periodic orbits γj : R Ñ M disjoint from γ for which
Tj Ñ T and γj Ñ γ in C8 (or any other reasonable topology).

As in the contact case, nondegeneracy can also be rephrased in terms of asymp-
totic operators. If γ : S1 Ñ M satisfies

9γ “ T ¨Rpγq
for some T ą 0 and J : ξ Ñ ξ is a choice of complex structure compatible with ω,
then pγ˚ξ, J, ω|ξq is a Hermitian vector bundle over S1, and we define the asymptotic
operator associated to γ by

Aγ :“ ´J∇ω
t : Γpγ˚ξq Ñ Γpγ˚ξq.

Here ∇ω is the symplectic connection defined on ξ along integral curves of ℓω via
Proposition 6.5. Exercise 3.9 implies that Aγ is a symmetric operator with respect
to the natural real L2-product on Γpγ˚ξq determined by the bundle metric ωp¨, J ¨q,
and the definition of nondegeneracy for the orbit γ can now be reformulated as
the condition that the asymptotic operator Aγ is nondegenerate in the sense of
Lecture 3, i.e. its kernel is trivial. In this case, we define the Conley-Zehnder
index of γ with respect to any choice of symplectic trivialization τ for γ˚ξ as

µτCZpγq :“ µτCZpAγq.
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An explicit formula for Aγ comes from Exercise 6.6: for any symmetric connection
∇ on M , we have

Aγη “ ´Jπξ p∇tη ´ T∇ηRq .
Note that by Lemma 6.7, the projection πξ cannot always be omitted from this
formula, though it can in the contact case.

In Lecture 3, the symmetry of the asymptotic operator in the contact setting
was explained by interpreting it as the Hessian of the contact action functional
Aαpγq :“

ş
S1 γ

˚α. A similar interpretation is possible in this more general setting,
though the action functional may be only locally defined. Indeed, while ω P Ω2pMq
need not be globally exact, it is necessarily exact on a neighborhood of the image of
any given loop γ0 : S

1 Ñ M , so one can pick a primitive β of ω on this neighborhood
and, for a sufficiently small neighborhood Upγ0q Ă C8pS1,Mq of γ0, consider the
action functional

(6.1) Aω : Upγ0q Ñ R : γ ÞÑ
ż

S1

γ˚β.

Its first variation at γ P Upγ0q in the direction η P Γpγ˚ξq is then

dAωpγqη “ ´
ż

S1

ωp 9γ, ηq dt “ x´Jπξ 9γ, ηyL2,

where x , yL2 denotes the real L2-product on γ˚ξ defined by integrating ωp¨, J ¨q.
This leads us to interpret ´Jπξ 9γ as a “gradient” ∇Aωpγq, and if 9γ “ T ¨Rpγq, then
differentiating this gradient in the direction of η P Γpγ˚ξq gives Aγη.

6.1.2. Collar neighborhoods and cobordisms. If pW,ωq is a symplectic
manifold, any hypersurface M Ă W naturally inherits the Hamiltonian structure
ωM :“ ω|TM , and Exercise 6.3 implies that if M is oriented (which we shall always
assume), then it can be endowed with a framing as auxiliary data. We would now
like to examine how the symplectic structure in a neighborhood of M is determined
by the Hamiltonian structure on M .

Proposition 6.9. Suppose M is a smooth oriented hypersurface in a symplectic
manifold pW,ωq, and associate to any given vector field V P ΓpTW |Mq along M the
1-form

λ :“ ωpV, ¨q|TM P Ω1pMq.
Then V is positively transverse3 toM if and only if λ is a framing of the Hamiltonian
structure ωM :“ ω|TM P Ω2pMq. Moreover, if this holds and M is compact and
contained in the interior of W , then a neighborhood N pMq Ă W of M admits a
symplectomorphism

pN pMq, ωq – pp´ǫ, ǫq ˆ M,ωM ` dprλqq
identifying M Ă N pMq with t0u ˆM and V with Br, where r denotes the coordinate
on the first factor of p´ǫ, ǫq ˆ M .

3In this context, we say that V is positively transverse to M if for every point x P M and
positively oriented basis pY1, . . . , Y2n´1q of TxM , the basis pV pxq, Y1, . . . , Y2n´1q of TxW is also
positively oriented.



150 Chris Wendl

Proof. Pick a Hamiltonian vector field X P Γpℓωq on M . If V is tangent to M
at some point x P M , then clearly λpXpxqq “ ωpV pxq, Xpxqq “ ´ωpXpxq, V pxqq “ 0
since Xpxq P kerωM . If on the other hand V is transverse to M at x, then
λpXpxqq “ ´ωpXpxq, V pxqq cannot vanish, as this would imply ωpXpxq, ¨q “ 0,
violating the assumption that ω is nondegenerate. To check the sign, choose a
basis pY1, . . . , Y2n´2q of ξ :“ ker λ at x that is positively oriented with respect
to the volume form ωn´1|ξ, and observe that the orientation of ℓω is defined to
make pXpxq, Y1, . . . , Y2n´2q a positively oriented basis of TxM . The orientation of
the basis pV pxq, Xpxq, Y1, . . . , Y2n´2q of TxW is therefore positive or negative de-
pending on whether V pxq is positively or negatively transverse to M . In either
case, ωnpV pxq, Xpxq, Y1, . . . , Y2n´2q is the product of a positive combinatorial fac-
tor with ωpV pxq, Xpxqq and ωn´1pY1, . . . , Y2n´2q since ωpV pxq, Yjq “ λpYjq “ 0 and
ωpXpxq, Yjq “ 0 for all j “ 1, . . . , 2n´2. Since ωn´1pY1, . . . , Y2n´2q is positive by the
definition of the orientation on ξ, the sign of λpXpxqq “ ωpV pxq, Xpxqq is therefore
positive if and only if the basis pV pxq, Xpxq, Y1, . . . , Y2n´2q is positively oriented.

Now assume λ “ ωpV, ¨q|TM is a framing and let R denote the associated Reeb
vector field. To find the desired tubular neighborhood of M in W , we shall use the
Moser deformation trick. We first extend V arbitrarily to a smooth vector field on
a neighborhood of M and use its flow ϕtV to define an embedding

p´ǫ, ǫq ˆ M : pr, xq ÞÑ ϕrV pxq
for ǫ ą 0 sufficiently small. This identifies a neighborhood of M with p´ǫ, ǫq ˆ M

such that M becomes t0u ˆ M and V becomes Br. Under this identification, ω
matches the 2-form ω0 :“ ωM ` dprλq along M “ t0u ˆ M ; indeed, the latter is
ωM ` dr ^ λ along this hypersurface, so it satisfies

ω0|TM “ ωM “ ω|TM , and ω0pBr, ¨q|TM “ λ “ ωpV, ¨q|TM “ ωpBr, ¨q|TM .
This proves that ω0 is also a symplectic form on some neighborhood of M , and so
is ωt :“ tω ` p1´ tqω for every t P r0, 1s, which also matches ω along M . The latter
implies that ωt represents the same cohomology class inH2

dRpp´ǫ, ǫqˆMq “ H2
dRpMq

for every t P r0, 1s, thus we can find a smooth family of 1-forms βt on p´ǫ, ǫq ˆ M

satisfying
ωt “ ω0 ` dβt and βt|M “ 0 for all t P r0, 1s.

If there exists a smooth isotopy ψt on some neighborhood of M satisfying pψtq˚ωt “
ω0 for every t P r0, 1s, then it is generated by a time-dependent vector field Yt which
must satisfy

0 “ d

dt
pψtq˚ωt “ pψtq˚ pLYtωt ` Btωtq ,

and thus
0 “ LYtωt ` Btpdβtq “ dιYtωt ` d 9βt

for 9βt :“ Btβt. This relation is then satisfied if we pick Yt to be the unique vector
field satisfying ωtpYt, ¨q “ ´ 9βt, which is clearly possible on some neighborhood of M
due to the nondegeneracy of ωt. Moreover, Yt then vanishes along M , so its flow up
to time t “ 1 is well defined on a possibly smaller neighborhood ofM , and we obtain
a diffeomorphism of such a neighborhood that fixes M and identifies ω with ω0. �



Lectures on Symplectic Field Theory 151

Remark 6.10. The statement about the tubular neighborhood in Proposition 6.9
has obvious analogues ifM is a boundary component ofW instead of lying in the in-
terior. Here one obtains a collar of the form p´ǫ, 0sˆM if the given orientation ofM
matches the boundary orientation of BW , which is true if and only if the transverse
vector field V points outward. If instead V points inward, these two orientations are
opposite and the collar is of the form r0, ǫq ˆ M .

Example 6.11. In the case pω, λq “ pdα, αq for a contact form α, the symplectic
form on the tubular neighborhood in Proposition 6.9 can be rewritten as dpetαq by
defining the coordinate t :“ lnpr ` 1q. The proposition is easier to prove in this
case: one can construct the neighborhood simply by flowing along V , with no need
for the Moser deformation trick (cf. Exercise 1.14).

Definition 6.12. Given two closed p2n ´ 1q-dimensional oriented manifolds
M˘ with Hamiltonian structures ω˘, a symplectic cobordism from pM´, ω´q
to pM`, ω`q is a compact symplectic 2n-manifold W whose boundary admits an
orientation-preserving diffeomorphism to ´M´

š
M` identifying ω|T pBW q with ω´

on M´ and ω` on M`. Here the minus sign in front of M´ denotes an orientation
reversal, i.e. the given orientation ofM´ is opposite the boundary orientation of BW .

If the Hamiltonian structures ω˘ are additionally endowed with framings λ˘,
then we can also refer to pW,ωq as a symplectic cobordism from pM´,H´q to
pM`,H`q, where we abbreviate the framed Hamiltonian structures H˘ :“ pω˘, λ˘q
on M˘.

We will sometimes refer to the boundary componentsM` andM´ of a symplectic
cobordism pW,ωq as its positive and negative boundary respectively. In the case
where H˘ “ pdα˘, α˘q for contact forms α˘ on M˘, pW,ωq is what we have previ-
ously called a symplectic cobordism from pM´, ξ´ :“ kerα´q to pM`, ξ` :“ kerα`q,
and the positive/negative boundaries were previously called the convex/concave
boundaries (see §1.4). Note however that convexity and concavity impose nontrivial
conditions on pW,ωq near its boundary, e.g. that ω|BW must be exact, whereas any
compact symplectic manifold with boundary can be viewed as a symplectic cobor-
dism between two manifolds with Hamiltonian structures (either¡¡ of which may be
empty). Moreover, if dimW ě 4, then no component of BW can be both convex and
concave; see [Wen18, Proposition 8.10] for a simple proof of this based on Stokes’
theorem. For cobordisms between Hamiltonian structures, however, the labeling
of each boundary component as positive or negative is a choice that can be freely
reversed—the only caveat is that if we are considering framed Hamiltonian struc-
tures, then each orientation reversal requires replacing the corresponding framing λ
with ´λ.

From the perspective of SFT, the main difference between the positive and neg-
ative boundaries of a cobordism pW,ωq is the form of the collar neighborhoods
N pM˘q Ă W that they inherit from Proposition 6.9 and Remark 6.10, namely

pN pM`q, ωq – pp´ǫ, 0s ˆ M`, ω` ` dprλ`qq ,
pN pM´q, ωq – pr0, ǫq ˆ M´, ω´ ` dprλ´qq .(6.2)
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pp´ǫ, 0s ˆ M`, dprλ`q ` ω`q

pr0, ǫq ˆ M´, dprλ´q ` ω´q

pW,ωq

Figure 6.1. A symplectic cobordism with positive and negative
boundary components BW “ ´M´

š
M` inheriting Hamiltonian

structures ω˘, shown with their symplectic collar neighborhoods de-
termined by choices of framings λ˘.

Remark 6.13. While it may happen that the framings λ˘ of pM˘, ω˘q in the
above picture are contact forms, one cannot generally expect the induced contact
structures to be determined uniquely up to isotopy unless there is also a convexity
or concavity condition. For a concrete example, consider the torus T3 with the
sequence of contact forms

αk :“ cosp2πkρq dθ ` sinp2πkρq dφ
for k P N, written in coordinates pρ, φ, θq P S1 ˆS1 ˆS1. We will show in Lecture 10
that the contact structures ξk :“ kerαk are not contactomorphic for different values
of k. But all of them can be deformed through families of contact structures given
by

ξsk :“ ker rp1 ´ sqαk ` s dρs , s P r0, 1q,
so that by Gray’s stability theorem, they are all isotopic to arbitrarily small per-
turbations of the same integrable distribution ξ1 :“ ker dρ. Now pick an area
form σ on the closed disk D2 and consider the symplectic manifold pW,ωq :“
pD2 ˆT2, σ‘pdφ^dθqq. Identifying BD2 with S1 in the canonical way, the boundary
ofW becomes T3 with Hamiltonian structure ω|T pBW q “ dφ^dθ, and dρ can be cho-
sen as a framing. It follows that for any s ă 1 close enough to 1 and any k P N, the
contact form p1 ´ sqαk ` s dρ is also a framing of this same Hamiltonian structure,
even though the isomorphism class of the induced contact structure depends on k.4

6.1.3. Stability. We now introduce an extra condition on framed Hamiltonian
structures that will be crucial for the analysis of punctured holomorphic curves.

Definition 6.14. A hypersurface M in the interior of a symplectic manifold
pW,ωq is called stable if a neighborhood ofM admits a stabilizing vector field V ,

4Apart from being an example of a symplectic cobordism with non-convex framed Hamiltonian
boundary, the construction in Remark 6.13 amounts to the observation, originating in [Gir94],
that all of the contact structures ξk on T3 are weakly symplectically fillable, and in fact the same
symplectic manifold can be regarded as a weak filling of all of them.
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meaning that V is transverse to M and the 1-parameter family of hypersurfaces

Mt :“ ϕtV pMq, ´ǫ ă t ă ǫ

generated by the flow ϕtV of V has the property that each of the diffeomorphisms
M Ñ Mt defined by flowing along V preserves characteristic line fields. The defini-
tion has obvious analogues for cases where M is a boundary component of W with
V pointing in or outwards.

Definition 6.15. A framing λ of a Hamiltonian structure ω on M is called
stable if

dλpR, ¨q ” 0

for the associated Reeb vector field R, or equivalently, kerω Ă ker dλ. The pair
pω, λq is in this case called a stable Hamiltonian structure (or “SHS” for short).

Stable hypersurfaces first appeared in [HZ94] as a class of regular energy sur-
faces in Hamiltonian systems for which one could reasonably expect the existence
of periodic orbits. Indeed, we saw in §1.3 that Liouville vector fields transverse to
a hypersurface are stabilizing vector fields, thus contact-type hypersurfaces are also
stable. Relatedly, pdα, αq is a stable Hamiltonian structure whenever α is a contact
form; we will take a look at some less familiar examples in §6.3. The first appearance
of stable Hamiltonian structures as such (though initially without this terminology)
was in [BEH`03], where they furnished the natural setting for the compactness
results of symplectic field theory. They have been studied more systematically in
[CV15].

Proposition 6.16. A hypersurface M in a symplectic manifold pW,ωq is stable
if and only if the Hamiltonian structure ωM :“ ω|TM on M admits a stable framing.

Proof. Suppose V is a stabilizing vector field for M with flow ϕtV , and λ :“
ωpV, ¨q|TM is the induced framing of ωM , with associated Reeb vector field R. Then
R generates the kernel of pϕtV q˚ω|TM for all t close to 0, implying

0 “ LV ωpR, ¨q
ˇ̌
TM

“ dιV ωpR, ¨q
ˇ̌
TM

“ dλpR, ¨q|TM ,
so λ is a stable framing.

Conversely, if λ is any stable framing of ωM with Reeb vector field R, then Propo-
sition 6.9 identifies a neighborhood pN pMq, ωq ofM with pp´ǫ, ǫq ˆ M,ωM ` dprλqq,
and on Mt :“ ttu ˆ M for every t P p´ǫ, ǫq we have

ωpR, ¨q|TMt “ pωM ` t dλqpR, ¨q “ 0.

This shows that R generates the characteristic line field of Mt for every t, thus Br is
a stabilizing vector field. �

We can immediately observe two convenient features of stable Hamiltonian struc-
tures that do not hold without the stability condition: first, the Reeb flow preserves
λ since

LRλ “ dιRλ ` ιRdλ “ dp1q ` 0 “ 0.

The linearized Reeb flow therefore preserves ξ, so there is no longer a need to
compose it with the projection πξ : TM Ñ ξ when defining the natural symplectic
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connection ∇ω along orbits and the notion of nondegeneracy. Similarly, Lemma 6.7
now removes the need for including πξ in the formula of Exercise 6.6 for ∇ω, and this
leads to a simplified formula for the asymptotic operator at a T -periodic orbit γ:

Aγη “ ´J p∇tη ´ T∇ηRq .
Definition 6.17. A symplectic cobordism with stable boundary is a

symplectic cobordism from pM´,H´q to pM`,H`q in the sense of Definition 6.12,
whereM˘ are closed oriented manifolds endowed with stable Hamiltonian structures
H˘ “ pω˘, λ˘q.

6.2. Almost complex manifolds with cylindrical ends

6.2.1. Symplectizations. In §1.3, we called the noncompact cylindrical sym-
plectic manifold pRˆM, dperαqq the symplectization of the contact manifold pM, ξ “
kerαq, and observed (see Exercise 1.21) that up to symplectomorphism, it only de-
pends on ξ and not on α. We also defined a natural class of compatible almost
complex structures J pαq on R ˆ M . If M is endowed with a framed Hamiltonian
structure H “ pω, λq instead of a contact form α, then there is no single symplectic
structure on R ˆ M that can be called canonical, but there is a natural class of
symplectic structures arising from the model collar neighborhoods we wrote down
in Propostion 6.9. Indeed, fix ǫ ą 0 small and define

(6.3) T :“
 
ϕ P C8pR, p´ǫ, ǫqq

ˇ̌
ϕ1 ą 0

(
,

which has an obvious identification with the set of all “level-preserving” embeddings
R ˆ M ãÑ p´ǫ, ǫq ˆ M . If ǫ ą 0 is small enough for ω ` dprλq to be symplectic on
p´ǫ, ǫq ˆM , then pulling it back via the embedding defined via any choice of ϕ P T
gives rise to a symplectic form

(6.4) ωϕ :“ ω ` d pϕprqλq
on R ˆ M .

There is a much more obvious generalization of the space J pαq to the framed
Hamiltonian setting.

Definition 6.18. Given a framed Hamiltonian structure H “ pω, λq with asso-
ciated Reeb vector field R and hyperplane distribution ξ, denote by

J pHq Ă J pR ˆ Mq
the space of smooth almost complex structures J on R ˆ M with the following
properties:

‚ J is invariant under the R-action on RˆM by translation of the first factor;
‚ JBr “ R and JR “ ´Br, where r denotes the natural coordinate on the
first factor;

‚ Jpξq “ ξ and J |ξ is compatible5 with the symplectic vector bundle structure
ω|ξ.

5A question frequently asked by beginners in this field is: would it not suffice to assume J |ξ is
only tamed by ω|ξ and not necessarily compatible? The short answer is that the standard analytical
treatment of punctured holomorphic curves depends on this compatibility assumption in essential
ways, mainly because without it, asymptotic operators would not be symmetric (cf. Exercise 3.5).
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Notice that if H “ pdα, αq for a contact form α, then J pHq matches the space
J pαq defined in Lecture 1. One of the crucial reasons to consider only stable Hamil-
tonian structures will be the following easy observation:

Proposition 6.19. Given a framed Hamiltonian structure H “ pω, λq and an
almost complex structure J on RˆM , let us say that J is tamed by H if the number
ǫ ą 0 in (6.3) can be chosen such that the symplectic form ωϕ of (6.4) tames J for
every ϕ P T . The following conditions are then equivalent:

(1) Every J P J pHq is tamed by H.
(2) There exists a J P J pHq that is tamed by H.
(3) The framing λ is stable.

Proof. Consider the splitting T pR ˆ Mq “ ε ‘ ξ, where ξ “ ker λ and ε is the
subbundle spanned by Br and the Reeb vector field R. For any J P J pHq, these two
subbundles are both complex, and ε comes with a canonical trivialization identifying
J |ε with i. If λ is stable and ϕ P T , then writing ωϕ “ ω`ϕprq dλ`ϕ1prq dr^λ, we
notice that ε and ξ are also ωϕ-symplectic orthogonal complements. Tameness then
follows from the fact that J |ε “ i is tamed by ωϕ|ε “ dr ^ λ|ε and J |ξ is tamed by
ωϕ|ξ “ pω ` ϕprq dλq|ξ, where the latter necessarily holds for any ǫ ą 0 sufficiently
small since ω|ξ tames J |ξ and tameness is an open condition.

Conversely, suppose J P J pHq and λ is not stable, so there exists a point x P M
where dλpR, vq ą 0 for some v P ξx. At p0, xq P RˆM , we can pick a constant c ą 0
and write

ωϕpR ` cJv, JpR ` cJvqq “ ωϕpBr, Rq ` c2ωϕpv, Jvq ´ cωϕpR, vq
“ ϕ1p0q ` c2 pω ` ϕp0q dλq pv, Jvq ´ cϕp0q dλpR, vq.

Choosing ϕ P T so that ϕp0q “ ǫ{2, the sum of the second and third terms becomes
negative for any c ą 0 sufficiently small, and since ϕ P T can also be chosen to
make ϕ1p0q as small as we like, there exists a choice for which the total is negative,
meaning ωϕ does not tame J . �

Given a stable Hamiltonian structure H “ pω, λq and J P J pHq, we define the
energy of a J-holomorphic curve u : pΣ, jq Ñ pR ˆ M,Jq by

Epuq :“ sup
ϕPT

ż

Σ

u˚ωϕ,

where the parameter ǫ ą 0 in the definition of T is assumed small enough so that
ωϕ tames J for every ϕ P T . Tameness then implies Epuq ě 0, with equality if and
only if u is constant. In the contact case, this notion of energy is not identical to the
“Hofer energy” that we defined in Lecture 1, nor to Hofer’s original definition from
[Hof93], but all three are equivalent for our purposes, in the sense that uniform
bounds on any of them imply uniform bounds on the others.

If one wishes to relax this assumption, then several fundamental results need to be reproved,
e.g. the Fredholm property for Cauchy-Riemann type operators, and their proofs are not obvious.
See §6.7 for further discussion.
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Example 6.20. If x : R Ñ M is a periodic orbit of R with period T ą 0, then
we can parametrize it as the loop γ : S1 Ñ M : t ÞÑ xptT q satisfying 9γ “ T ¨ Rpγq
and associate to this loop the map

uγ : R ˆ S1 Ñ R ˆ M : ps, tq ÞÑ pTs, γptqq.
Then uγ is J-holomorphic for any J P J pHq, and is called the trivial cylinder (or
sometimes also the orbit cylinder) over γ. Its energy can be computed via Stokes’s
theorem: since

ş
RˆS1 u

˚
γω “ 0 and

ş
S1 γ

˚λ “ T , we have

Epuγq “ sup
ϕPT

ż

RˆS1

u˚dpϕprqλq “ 2ǫT.

Exercise 6.21. Given any orbit x : R Ñ M of R, show that the map

u : C Ñ R ˆ M : s ` it ÞÑ ps, xptqq
is J-holomorphic for every J P J pHq, but its energy is infinite. Remark: Here it
does not matter whether the orbit is periodic. If it is, then the parametrization
x : R Ñ M covers it infinitely many times.

Remark 6.22. For an instructive concrete example of Exercise 6.21, take M “
S1 with its trivial Hamiltonian structure (ω :“ 0 P Ω2pS1q has maximal rank) and
the framing λ :“ dt P Ω1pS1q with respect to the obvious coordinate t P S1 “ R{Z.
Then xptq :“ t is a Reeb orbit, J pω, λq contains only the standard complex structure
of RˆS1, and u becomes the holomorphic map C Ñ RˆS1 : s` it ÞÑ ps, tq, which,
under the biholomorphic identification ψ : R ˆ S1 Ñ Czt0u : ps, tq ÞÑ e2πps`itq,
becomes the complex-valued function ψ ˝ upzq “ e2πz on C. This function has an
essential singularity at 8. More generally, one can show that a holomorphic map u :
Dzt0u Ñ RˆS1 has infinite energy if and only if the singularity of ψ˝u : Dzt0u Ñ C

at 0 is essential (cf. Exercise 9.5).

The trivial cylinders in Example 6.20 have several desirable properties, e.g. the
map uγ : R ˆ S1 Ñ R ˆ M is proper, and its composition with the projection
R ˆ M Ñ M converges asymptotically to a loop near each of the punctures in
R ˆ S1 – S2zt0,8u. We will see in Lecture 9 that under generic assumptions
about the dynamics of the Reeb vector field, all punctured holomorphic curves with
finite energy have these two properties. By contrast, the plane u : C Ñ R ˆ M in
Exercise 6.21 is not a proper map, and its projection to M may have dense image
(if the orbit is not periodic) on a neighborhood of the puncture in C – S2zt8u. We
shall generally exclude curves with infinite energy from consideration.

In order to see why asymptotic operators are relevant in SFT, let us compute
the linearized Cauchy-Riemann operator

Duγ : Γpu˚
γT pR ˆ Mqq Ñ Ω0,1pR ˆ S1, u˚

γT pR ˆ Mqq
for the trivial cylinder in Example 6.20. We derived a general formula for Du in
§2.1, but in the present situation we will get more useful information by computing
Duγ directly. To do this, consider the natural splitting of complex subbundles

T pR ˆ Mq “ ε ‘ ξ,
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where ε denotes the line bundle spanned by Br and R, which comes with a global
trivialization identifying J |ε with the standard complex structure i. Under the
resulting splittings u˚

γT pRˆMq “ u˚
γε‘u˚

γξ and HomCpT pRˆS1q, u˚
γT pRˆMqq “

HomCpT pR ˆ S1q, u˚
γεq ‘ HomCpT pR ˆ S1q, u˚

γξq, we can write Duγ in block form

Duγ “
ˆ
Dε
uγ

Dεξ
uγ

Dξε
uγ

Dξ
uγ

˙
.

Exercise 6.23. Suppose D : ΓpEq Ñ Ω0,1p 9Σ, Eq is a linear Cauchy-Riemann
type operator on a vector bundle E with a complex-linear splitting E “ E1 ‘ E2,
and

D “
ˆ
D11 D12

D21 D22

˙

is the resulting block decomposition of D. Use the Leibniz rule satisfied by D
to show that D11 and D22 are also Cauchy-Riemann type operators on E1 and
E2 respectively, while the off-diagonal terms are tensorial, i.e. they commute with
multiplication by smooth real-valued functions and thus define bundle maps D12 :
E2 Ñ Λ0,1T ˚ 9Σ b E1 and D21 : E1 Ñ Λ0,1T ˚ 9Σ b E2.

Now observe that if u “ puR, uMq : RˆS1 Ñ RˆM is another cylinder near uγ,
the nonlinear operator pB̄JuqBs “ Bsu`J Btu P Γpu˚T pRˆMqq “ Γpu˚ε‘u˚ξq takes
the form

pB̄JuqBs “
ˆ

BsuR ´ λpBtuMq ` i pBtuR ` λpBsuMqq
πξ BsuM ` Jπξ BtuM

˙
,

where we are using the canonical trivialization of u˚ε via Br and R to express the top
block as a complex-valued function. As observed already in Lecture 3, the bottom
block of this expression can be interpreted in terms of the gradient flow of an action
functional, in this case the locally defined functional Aω : C8pS1q Ñ R from §6.1.1,
with ∇Aωpγq “ ´Jπξ Btγ. Linearizing in the direction of a section ηξ P Γpu˚

γξq and
taking the ξ component thus yields an expression involving the Hessian of Aω at the
critical point γ, namely

pDξ
uγ
ηξqBs “ pBs ´ Aγqηξ.

To compute the blocks Dε
uγ

and Dξε
uγ
, notice that Duγη

ε “ 0 whenever ηε is a
constant linear combination of Br and R, as ηε is then the derivative of a smooth
family of J-holomorphic reparametrizations of uγ. This is enough to prove Dξε

uγ
“ 0

since the latter is tensorial by Exercise 6.23, and expressing arbitrary sections of u˚
γε

as fBr ` gR, we can apply the Leibniz rule for Dε
uγ

and conclude

pDε
uγ
ηεqBs “ pBs ` i Btqηε

in the canonical trivialization. The remaining off-diagonal term can be computed as
follows: assume uρ “ puρR, uρMq : RˆS1 Ñ RˆM is a smooth 1-parameter family of
maps for ρ P R near 0 such that u0 “ uγ and ηξ “ Bρuρ|ρ“0 P Γpu˚

γξq, which implies

BρuρR
ˇ̌
ρ“0

“ λ
´

BρuρM
ˇ̌
ρ“0

¯
“ 0.
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Differentiating the real and imaginary parts in the top block of pB̄JuρqBs with respect
to the parameter at ρ “ 0 then gives

Bρ pBsuρR ´ λpBtuρMq
ˇ̌
ρ“0

“ ´Bρ rλpBtuρqs
ˇ̌
ρ“0

“ ´dλpη, Btuγq “ T ¨ dλpRpγq, ηq,
and

Bρ pBtuρR ` λpBsuρqq
ˇ̌
ρ“0

“ Bρ rλpBsuρqs
ˇ̌
ρ“0

“ dλpη, Bsuγq “ 0.

This proves:

Proposition 6.24. For any framed Hamiltonian structure H “ pω, λq and J P
J pHq, the J-holomorphic trivial cylinder uγ : R ˆ S1 Ñ R ˆ M for a T -periodic
orbit γ : S1 Ñ M has linearized Cauchy-Riemann operator Duγ : Γpu˚

γε ‘ u˚
γξq Ñ

Ω0,1pR ˆ S1, u˚
γε ‘ u˚

γξq given by

`
Duγη

˘
Bs “ Bsη `

ˆ
iBt T ¨ dλpRpγq, ¨q
0 ´Aγ

˙
η.

In particular, if pω, λq is a stable Hamiltonian structure, then the off-diagonal term
vanishes and Duγ becomes equivalent to an operator from Γpu˚

γε‘u˚
γξq to itself taking

the form Bs ´ p´iBt ‘ Aγq, where ´iBt ‘ Aγ defines an asymptotic operator on the
direct sum of the trivial Hermitian line bundle over S1 with γ˚ξ. �

Proposition 6.24 places the linearization Duγ into the analytical context of the
Fredholm theory from Lectures 4 and 5, though it does so if and only if the framing
λ of ω is stable. This is the second reason why we shall almost always assume our
Hamiltonian structures are stable from now on.

6.2.2. Completed cobordisms. Assume pW,ωq is a symplectic cobordism
from pM´,H´q to pM`,H`q, where H˘ “ pω˘, λ˘q are framed Hamiltonian struc-
tures. For most purposes, pW,ωq is not a suitable setting for J-holomorphic curves,
as it lacks any mechanism to control the behavior of curves that touch the bound-
ary. We will therefore remove the boundary by attaching cylindrical ends, and then
impose a finite energy condition to control the behavior of curves near infinity. As
a smooth manifold, the completion of W is defined by

xW :“
`
p´8, 0s ˆ M´

˘
YM´ W YM`

`
r0,8q ˆ M`

˘
,

where the smooth structure on a neighborhood of M˘ “ t0u ˆ M˘ Ă W is defined
with reference to the collar neighborhoods of BW in (6.2). Modifying (6.3) by

(6.5) T0 :“
 
ϕ P C8pR, p´ǫ, ǫqq

ˇ̌
ϕ1 ą 0 and ϕprq “ r for r near 0

(

for a fixed ǫ ą 0 sufficiently small, we can then use any ϕ P T0 to define a symplectic

form on xW by

ωϕ :“

$
’&
’%

d pϕprqλ`q ` ω` on r0,8q ˆ M`,

ω on W,

d pϕprqλ´q ` ω´ on p´8, 0s ˆ M´,

see Figure 6.2. For each r0 ě 0, we define the compact submanifold

W r0 :“ pr´r0, 0s ˆ M´q YM´ W YM` pr0, r0s ˆ M`q ,
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pW,ωq

pp´ǫ, 0s ˆ M`, dprλ`q ` ω`q

pr0, ǫq ˆ M´, dprλ´q ` ω´q

pr0,8q ˆ M`, dpϕprqλ`q ` ω`q

pp´8, 0s ˆ M´, dpϕprqλ´q ` ω´q

Figure 6.2. The completion pxW,ωϕq of a symplectic cobordism
between two manifolds with framed Hamiltonian structures.

and can view pW r0 , ωϕq as a symplectic cobordism from pM r0
´ ,H

r0
´ q to pM r0

` ,H
r0
` q

where M r0
˘ :“ t˘r0u ˆ M˘ Ă xW and the framed Hamiltonian structures Hr0

˘ “
pωr0˘ , λ

r0
˘ q are given by

ωr0˘ :“ ωϕ
ˇ̌
TM

r0
˘

“ ω˘ ` ϕp˘r0q dλ˘, and λr0˘ :“ ωϕpBr, ¨q
ˇ̌
TM

r0
˘

“ ϕ1p˘r0q λ˘.

Notice that if theH˘ are stable, then pW r0, ωϕq also becomes a symplectic cobordism
with stable boundary for arbitrary choices ϕ P T0.

Since xW is noncompact, almost complex structures J on xW will need to satisfy
conditions near infinity in order for moduli spaces of J-holomorphic curves to be well
behaved, but we would like to preserve the freedom of choosing arbitrary compatible
or tame almost complex structures in compact subsets.

Definition 6.25. Given ψ P T0 and r0 ě 0, let

Jτ pωψ, r0,H`,H´q Ă J pxW q
denote the space of smooth almost complex structures J on xW such that:

‚ J on rr0,8q ˆ M` matches an element of J pH`q;6

6While it might seem natural to instead require J |rr0,8qˆM`
P J pHr0

` q, the resulting space
of almost complex structures would be equivalent to replacing pW,ωq by the larger cobordism
pW r0 , ωψq and then repeating this definition with r0 set to 0. As stated, the definition allows a bit
more freedom in applications, which will be useful in Lecture 8 when we need to make perturbations
of J on compact subsets to achieve transversality. A similar remark applies to the conditions at
the negative end.
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‚ J on p´8,´r0s ˆ M´ matches an element of J pH´q;
‚ J on W r0 is tamed by ωψ.

Let

J pωψ, r0,H`,H´q Ă Jτ pωψ, r0,H`,H´q
denote the subset for which J is additionally compatible with ωψ on W r0.

Setting

(6.6) T pψ, r0q :“
 
ϕ P T0

ˇ̌
ϕ ” ψ on r´r0, r0s

(
,

Proposition 6.19 implies that if the framed Hamiltonian structures H˘ are both
stable, then any given J P J pωψ, r0,H`,H´q is tamed by ωϕ for every ϕ P T pψ, r0q
whenever the number ǫ ą 0 in (6.5) is chosen sufficiently small. In this case it is

sensible to define the energy of a J-holomorphic curve u : pΣ, jq Ñ pxW,Jq by

Epuq :“ sup
ϕPT pψ,r0q

ż

Σ

u˚ωϕ.

Remark 6.26. For any closed manifold M with stable Hamiltonian structure
H “ pω, λq and a choice of strictly increasing function ϕ : r0, 1s Ñ p´ǫ, ǫq for ǫ ą 0
sufficiently small, one can consider the cobordism

pr0, 1s ˆ M,ω ` dpϕprqλqq.
This has stable boundary, and one would like to regard it as the “trivial cobor-
dism from pM,Hq to itself” and identify its completion with the symplectization of
pM,Hq, though strictly speaking this is wrong: the stable Hamiltonian structures
H˘ that it induces on M´ :“ t0u ˆ M and M` :“ t1u ˆ M are in general differ-
ent from H, and one cannot technically regard J pHq as contained in any space of
the form J pωψ, r0,H`,H´q without inventing questionable new notions such as the
“infinitesimal trivial cobordism” r0, 0s ˆ M . It is nonetheless true for fairly triv-
ial reasons that most results about Jτ pωψ, r0,H`,H´q or J pωψ, r0,H`,H´q apply
equally well to J pHq, and we shall use this fact in the following without always
mentioning it.

6.3. Examples of stable Hamiltonian structures

6.3.1. The contact case. The following example has been mentioned a few
times already and is the one we will work with most often in this book. If α is
a contact form on M , then H :“ pdα, αq is a stable Hamiltonian structure whose
Reeb vector field is the usual contact-geometric notion of a Reeb vector field R “ Rα.
The space J pHq in this case matches what was called J pαq in Lecture 1. For two
contact manifolds pM˘, ξ˘ “ kerα˘q, a symplectic cobordism pW,ωq from pM´, ξ´q
to pM`, ξ`q as defined in §1.4 can also be regarded as a symplectic cobordism with
stable boundary from pM´,H´q to pM´,H`q, where we choose a Liouville vector
field V near BW to write α˘ :“ ωpV, ¨q|TM˘ and H˘ :“ pdα˘, α˘q. Conversely, any
symplectic cobordism from pM´,H´q to pM`,H`q with H˘ “ pdα˘, α˘q given by
contact forms is also a symplectic cobordism in the contact sense from pM´, ξ´ “
kerα´q to pM`, ξ` “ kerα`q. One can see this from the collar neighborhoods (6.2),
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in which ω takes the form dα˘ ` dprα˘q “ d ppr ` 1qα˘q, hence it has primitives in
these collars whose restrictions to the boundary are contact forms for ξ˘.

6.3.2. The Floer case. The next example allows one to treat Hamiltonian
Floer homology for most purposes as a special case of SFT.

Suppose pW,Ωq is a closed symplectic manifold and H : S1ˆW Ñ R is a smooth
function, and denote Ht :“ Hpt, ¨q : W Ñ R. The time-dependent Hamiltonian vec-
tor field Xt defined by dHt “ ´ΩpXt, ¨q can then be viewed as defining a symplectic
connection on the trivial symplectic fiber bundle

M :“ S1 ˆ W
tÝÑ S1,

i.e. the flow of Rpt, xq :“ Bt ` Xtpxq defines symplectic parallel transport maps
between fibers. The horizontal subbundle for this connection is the “symplectic
orthogonal complement” of the vertical subbundle with respect to the closed 2-form

ω :“ Ω ` dt^ dH.

In other words, ω restricts to the fibers of M Ñ S1 as Ω, and the subbundle
tY P TM | ωpY, ¨q|T ptconstuˆW q “ 0u is generated by R, so ω is the connection 2-
form defining the connection, cf. [MS17]. Setting λ :“ dt then makes H :“ pω, λq
a stable Hamiltonian structure with Reeb vector field R, and its closed orbits in
homotopy classes that project to S1 with degree one are in 1-to-1 correspondence
with the 1-periodic Hamiltonian orbits on W . Notice that this is very different from
the contact case: instead of being a contact structure, ξ “ ker dt is an integrable
distribution whose integral submanifolds are the fibers of M Ñ S1.

Exercise 6.27. Show that the notions of nondegeneracy for closed Reeb orbits
on M and for 1-periodic Hamiltonian orbits on W (see §1.2) coincide.

Exercise 6.28. Work out the relationship between the locally defined action
functional Aω from §6.1.1 in this example and the symplectic action functional for
Hamiltonian systems that we discussed in §1.2. (Try not to worry too much about
signs.)

A choice of J P J pHq is equivalent to a choice of smooth S1-parametrized family
of compatible almost complex structures tJtutPS1 on pW,ωq, and J-holomorphic

curves u : p 9Σ, jq Ñ pR ˆ M,Jq can then be written as

u “ pf, vq : 9Σ Ñ
`
R ˆ S1

˘
ˆ W,

where f : p 9Σ, jq Ñ pR ˆ S1, iq is holomorphic. In particular, if p 9Σ, jq “ pR ˆ S1, iq
and f is taken to have an extension to S2 Ñ S2 of degree one, then u can be
reparametrized so that f is the identity map, hence u “ pId, vq : R ˆ S1 Ñ pR ˆ
S1q ˆW is a section of the trivial fiber bundle pRˆS1q ˆW Ñ RˆS1, and one can
check that the equation satisfied by v : R ˆ S1 Ñ W is precisely the Floer equation

Bsv ` JtpvqpBtv ´ Xtpvqq “ 0.

This setup admits various easy generalizations that produce other interesting
variants of Floer homology. One can, for instance, replace the trivial fibration
M “ S1 ˆ W Ñ S1 with the mapping torus of a given symplectomorphism φ :
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pW,ωq Ñ pW,ωq, producing a theory in which closed Reeb orbits are equivalent to
fixed points of (some Hamiltonian perturbation of) φ. This theory is known as sym-
plectic Floer homology, see e.g. [DS94,Sei02]. One can also consider closed Reeb
orbits whose projections to S1 have degree greater than 1: this produces a theory
based on the periodic (but not necessarily fixed) points of the symplectomorphism φ.
A particular variant of this, specialized to the case dimW “ 2, is known as periodic
Floer homology ; see [HS05]. In a slightly different direction, Heegaard Floer ho-
mology, a topological invariant of 3-manifolds inspired by Floer’s Lagrangian inter-
section theory, can be reformulated as a theory that counts punctured holomorphic
curves with Legendrian boundary in the symplectization of Σ ˆ r0, 1s with a very
simple stable Hamiltonian structure, where Σ is a Heegaard surface for the given
3-manifold; see [Lip06]. As a general rule, it is possible (though not always help-
ful) to reformulate almost any Floer-type theory based on a perturbed holomorphic
curve equation within the geometric setup for SFT.

For another interesting example of stable Hamiltonian structures separate from
the contact and Floer cases, see [BEH`03, Example 2.2 and Remark 5.9].

6.4. Moduli spaces of asymptotically cylindrical curves

Fix a closed manifold M with stable Hamiltonian structure H “ pω, λq and

J P J pHq, along with a Riemann surface p 9Σ “ ΣzΓ, jq with positive and/or negative
punctures Γ “ Γ` Y Γ´ and choices of holomorphic cylindrical coordinates ps, tq P
Z˘ – 9Uz near each puncture z P Γ˘. Here we are again using the notation

Z` “ r0,8q ˆ S1, Z´ “ p´8, 0s ˆ S1,

with the choice of Z` or Z´ depending on the sign of the puncture (cf. §4.1).

Definition 6.29. A smooth map u : 9Σ Ñ R ˆ M is called asymptotically
cylindrical if for each z P Γ˘, there exists a closed Reeb orbit γz : S

1 Ñ M with
associated trivial cylinder uγz : R ˆ S1 Ñ R ˆ M , and constants s0 P R and t0 P S1

such that

(6.7) ups ´ s0, t´ t0q “ expuγz ps,tq hzps, tq for ps, tq P Z˘ – 9Uz with |s| " 0,

where hzps, tq is a vector field along uγz satisfying

hzp¨ ` s, ¨q Ñ 0 in C8pZ˘q as s Ñ ˘8.

Here we assume that the exponential map and all norms involved in describing the
C8-convergence of hzp¨`s, ¨q are invariant under the R-translation action on RˆM .
We call γz the asymptotic orbit of u at the puncture z, and call the vector field
hz along uγz appearing in (6.7) the asymptotic representative of u at z.

Note that the decay condition in Definition 6.29 implies that both hz and the
constants s0 and t0 are uniquely determined by u and the choice of holomorphic
cylindrical coordinate system near z. The following exercise shows that the asymp-
totically cylindrical condition itself is also independent of the choices of holomorphic
cylindrical coordinates.
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xW

9Σ

u

Figure 6.3. An asymptotically cylindrical holomorphic curve in

pxW,Jq with genus 2, one positive puncture and two negative punc-
tures.

Exercise 6.30. Consider S1 with the trivial stable Hamiltonian structureH (see
Remark 6.22) and the standard complex structure i P J pHq on its symplectization
R ˆ S1. The biholomorphic map R ˆ S1 Ñ C˚ “ S2zt0,8u : ps, tq ÞÑ e2πps`itq can
be used to identify the latter with a twice-punctured Riemann sphere.

(a) Show that a holomorphic map u : p 9Σ, jq Ñ pR ˆ S1, iq is asymptotically
cylindrical if and only if it extends over the punctures to a holomorphic map
pΣ, jq Ñ pS2, iq. Find a relationship between its asymptotic orbits and the
presence of critical points of the extension at Γ.

(b) Deduce that for any two choices of holomorphic cylindrical coordinates near

a puncture of 9Σ, the resulting coordinate transformation satisfies the con-
ditions of an asymptotically cylindrical map.

(c) Conclude that the notion of an asymptotically cylindrical map in Defini-
tion 6.29 does not depend on the choices of holomorphic cylindrical coordi-
nates.

These notions extend in a straightforward way to the setting of a completed sym-

plectic cobordism xW with fixed choices of ψ P T0, r0 ě 0 and J P Jτpωψ, r0,H`,H´q.
We shall denote by ξ˘ and R˘ the hyperplane distribution and Reeb vector field
respectively determined by stable Hamiltonian structures H˘ “ pω˘, λ˘q on the

boundary components M˘ Ă BW . An asymptotically cylindrical map u : p 9Σ, jq Ñ
pxW,Jq is then a proper map that sends neighborhoods of positive/negative punc-

tures to the positive/negative cylindrical ends of xW , where they asymptotically
approach trivial cylinders over closed orbits of R˘ in t˘8u ˆ M˘; see Figure 6.3.
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It is easy to check that asymptotically cylindrical J-holomorphic curves always
have finite energy. We will prove in Lecture 9 that the converse is also true whenever
all Reeb orbits are nondegenerate.

Every asymptotically cylindrical curve u : 9Σ Ñ xW has a well-defined relative
homology class, meaning the following. Denote the asymptotic orbits of u at
its punctures z P Γ˘ by γz, and let γ̄

˘ Ă M˘ denote the closed 1-dimensional
submanifold defined as the union over z P Γ˘ of the images of the orbits γz. Let sΣ
denote the surface with boundary obtained from 9Σ by appending t˘8uˆS1 to each

of its cylindrical ends, and let ĎW likewise denote the compactification of xW obtained
by attaching t˘8u ˆM˘ to its cylindrical ends. Both of these are compact oriented

topological manifolds with boundary whose interiors are 9Σ and xW respectively, and

BĎW has a natural identification with BW “ ´M´
š
M`. Then u : 9Σ Ñ xW has a

unique continuous extension

ū : psΣ, BsΣq Ñ pĎW, γ̄` Y γ̄
´q

and thus represents a relative homology class

rus :“ u˚rsΣs P H2pĎW, γ̄` Y γ̄
´q “ H2pW, γ̄` Y γ̄

´q,
where rsΣs P H2psΣ, BsΣq denotes the relative fundamental class of sΣ, and we can use
the obvious deformation retraction of ĎW toW in order to consider homology classes
in W instead of ĎW . If we consider curves in a symplectization R ˆ M instead of

the completed cobordism xW , then ĎW becomes r´8,8s ˆM and it is convenient to
retract this to t0u ˆ M – M , thus writing

rus P H2pr´8,8s ˆ M, γ̄` Y γ̄
´q “ H2pM, γ̄` Y γ̄

´q.
We now proceed to define moduli spaces. Fix integers g,m, k`, k´ ě 0 along

with ordered sets of Reeb orbits

γ
˘ “ pγ˘

1 , . . . , γ
˘
k˘

q,
where each γ˘

i is a closed orbit of R˘ in M˘. Denote the union of the images of the
γ˘
i by γ̄

˘ Ă M˘, and choose a relative homology class

A P H2pW, γ̄` Y γ̄
´q

whose image under the boundary map H2pW, γ̄` Y γ̄
´q BÝÑ H1pγ̄` Y γ̄

´q defined
via the long exact sequence of the pair pW, γ̄` Y γ̄

´q is

BA “
kÿ̀

i“1

rγ`
i s ´

kÿ́

i“1

rγ´
i s P H1pγ̄` Y γ̄

´q.

The moduli space of unparametrized J-holomorphic curves of genus g with m
marked points, homologous to A and asymptotic to pγ`,γ´q is then defined
as a set of equivalence classes of tuples

Mg,mpJ,A,γ`,γ´q “
 

pΣ, j,Γ`,Γ´,Θ, uq
(L

„,
where:

(1) pΣ, jq is a closed connected Riemann surface of genus g;
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(2) Γ` “ pz`
1 , . . . , z

`
k`

q, Γ´ “ pz´
1 , . . . , z

´
k´

q and Θ “ pζ1, . . . , ζmq are disjoint
ordered sets of distinct points in Σ;

(3) u : p 9Σ :“ ΣzpΓ` Y Γ´q, jq Ñ pxW,Jq is an asymptotically cylindrical J-
holomorphic map with rus “ A, asymptotic at z˘

i P Γ˘ to γ˘
i for i “

1, . . . , k˘;
(4) Equivalence

pΣ0, j0,Γ
`
0 ,Γ

´
0 ,Θ0, u0q „ pΣ1, j1,Γ

`
1 ,Γ

´
1 ,Θ1, u1q

means the existence of a biholomorphic map ψ : pΣ0, j0q Ñ pΣ1, j1q, taking
Γ˘
0 to Γ˘

1 and Θ0 to Θ1 with the ordering preserved, such that

u1 ˝ ψ “ u0.

We shall often abuse notation by abbreviating elements rpΣ, j,Γ`,Γ´,Θ, uqs in
this moduli space by

u P Mg,mpJ,A,γ`,γ´q.
The automorphism group

Autpuq “ AutpΣ, j,Γ`,Γ´,Θ, uq
of u is defined as the group of biholomorphic maps ψ : pΣ, jq Ñ pΣ, jq which act
as the identity on Γ` Y Γ´ Y Θ and satisfy u “ u ˝ ψ. Clearly the isomorphism
class of this group depends only on the equivalence class rpΣ, j,Γ`,Γ´,Θ, uqs P
Mg,mpJ,A,γ`,γ´q, and we will see in §6.6 below that it is always finite unless

u : 9Σ Ñ xW is constant. The significance of the marked points is that they determine
an evaluation map

ev : Mg,mpJ,A,γ`,γ´q Ñ xWˆm : rpΣ, j,Γ`,Γ´,Θ, uqs ÞÑ pupζ1q, . . . , upζmqq
where Θ “ pζ1, . . . , ζmq. For most of our applications we will be free to assume
m “ 0, as marked points are not needed for defining the most basic versions of
SFT; the evaluation map does play a prominent role however in more algebraically
elaborate versions of the theory, and especially in the Gromov-Witten invariants
(the “closed case” of SFT).

Remark 6.31. The definition of Mg,mpJ,A,γ`,γ´q given above permits ele-

ments rpΣ, j,Γ`,Γ´,Θ, uqs P Mg,mpJ,A,γ`,γ´q for which u : 9Σ Ñ xW is a constant

map if Γ` “ Γ´ “ H and A “ 0 P H2pxW q, but in this case it is conventional to
impose an extra stability condition, namely that constant maps are allowed only if

χpΣzΘq ă 0.

Several details in our study of Mg,mpJ,A,γ`,γ´q and its compactification will only
make sense under this extra assumption, which is harmless since, in practice, we
our usually only interested in nonconstant curves. One consequence is that if u is
constant, then the group AutpΣ, j,Θq of biholomorphic maps on pΣ, jq fixing Θ is fi-
nite, so in conjunction with Theorem 6.34 below, this implies that the automorphism
group Autpuq for an element u P Mg,mpJ,A,γ`,γ´q is always finite.
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The elliptic regularity results from Lectures 2 and 4 give us a wide range of
freedom in defining the topology of Mg,mpJ,A,γ`,γ´q, as they imply that most
reasonable choices we could conceivably make on this front will turn out to be
equivalent. Let us define the notion of convergence in Mg,mpJ,A,γ`,γ´q as follows:

rpΣν , jν ,Γ`
ν ,Γ

´
ν ,Θν, uνqs Ñ rpΣ, j,Γ`,Γ´,Θ, uqs as ν Ñ 8

means that for sufficiently large ν, the equivalence classes in the sequence admit
representatives of the form pΣ, j1

ν ,Γ
`,Γ´,Θ, u1

νq such that

(1) j1
ν Ñ j in C8;

(2) u1
ν Ñ u in C8

locp 9Σ,xW q;
(3) ū1

ν Ñ ū in C0psΣ,W q.
It will also turn out that the third condition is unnecessary if one adds an assumption
to make sure that all closed Reeb orbits are isolated, though the proof of this is
nontrivial and requires the bubbling analysis that we will discuss in Lecture 9. One
can show that there is a unique metrizable topology onMg,mpJ,A,γ`,γ´q for which
this is the notion of convergence. We will not prove this since we do not really need
to know it in such generality—in practice, we will eventually focus on cases in which
Mg,mpJ,A,γ`,γ´q can also be given the structure of a smooth manifold or orbifold,
and we will then see directly that the resulting notion of convergence is equivalent
to what is defined above.

6.5. Asymptotic regularity

For the analytic setup in the next lecture, we will need to use exponentially
weighted Sobolev spaces, thus we need to check that all asymptotically cylindrical
holomorphic curves actually belong to such spaces. At the local level this is already
clear: since we are using smooth almost complex structures, the results of §2.4 imply
that all J-holomorphic curves are smooth, and in particular they are of classW k,p

loc for
every k P N and p P p1,8q. Similarly, convergence of a sequence of J-holomorphic

curves in C8
loc is equivalent to convergence inW k,p

loc for every k and p. It remains only
to check that suitable decay conditions are satisfied on each of the cylindrical ends.
This requires some of the same ideas that were used in §4.6 to prove exponential
decay for solutions of linear Cauchy-Riemann type equations.

The following result originates (in a somewhat less general context) in [HWZ96],
and the complete proof would be too lengthy to present here, but we will give a
sketch. We recall the following notation from §4.6: for Sobolev parameters k, p and
a real number δ P R, the exponentially weighted Sobolev space of functions of
class W k,p,δ on the half-cylinder Z̊` “ p0,8q ˆ S1 or Z̊´ “ p´8, 0q ˆ S1 is

W k,p,δpZ̊˘q :“
!
e¯δsf

ˇ̌
ˇ f P W k,ppZ̊˘q

)
.

This is a Banach space with respect to the norm

}f}W k,p,δ :“ }e˘δsf}W k,p,
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and if δ ą 0, then its elements satisfy a forced exponential decay condition as
s Ñ ˘8. Recall also from Definition 6.29 the notion of the asymptotic representative
of a holomorphic curve at a puncture.

Proposition 6.32. Assume H “ pω, λq is a stable Hamiltonian structure on a
manifold M , J P J pHq, γ : S1 Ñ M is a nondegenerate Reeb orbit and δ ą 0 is
small enough so that the asymptotic operator Aγ has no eigenvalues in r´δ, δs.

Suppose u : p 9Σ, jq Ñ pRˆM,Jq is J-holomorphic and asymptotically cylindrical
with a puncture z P Γ˘ that is asymptotic to γ. Then its asymptotic repesentative
at z with respect to any choice of holomorphic cylindrical coordinates belongs to
W k,p,δpZ˘q for every k P N and p P p1,8q.

Further, suppose Jν P J pHq is a C8-convergent sequence with Jν Ñ J , and

uν : p 9Σ, jνq Ñ pRˆM,Jνq is a sequence of asymptotically cylindrical Jν-holomorphic
curves with convergence

jν Ñ j in C8pΣq, uν Ñ u in C8
locp 9Σq, and ūν Ñ ū in C0psΣq,

where jν also matches j on some fixed neighborhood of the puncture z for every ν.
Then the asymptotic representatives of uν at z converge in W k,p,δpZ˘q for every
k P N and p P p1,8q to the asymptotic repesentative of u at z.

Remark 6.33. The obvious analogue of Proposition 6.32 for curves in completed
cobordisms also holds, with no meaingful change to the proof.

Sketch of the proof of Proposition 6.32. After a slight reparametriza-
tion of u near infinity, one can assume the asymptotic representative h P Γpu˚

γT pRˆ
Mq|Z˘ q for u at z P Γ˘ takes values in the subbundle u˚

γξ, which can be regarded
as the normal bundle of the trivial cylinder. The following general principle then
applies: whenever v : pS, jq Ñ pW,Jq and w : pS 1, j1q Ñ pW,Jq are two immersed
J-holomorphic curves such that w is obtained by exponentiating a section η of the
normal bundle of v, the section η satisfies a linear Cauchy-Riemann type equation
defined on that normal bundle. The proof of this is similar to the argument in
Proposition 2.34; for a complete account, see e.g. [Wen20, Proposition B.28]. In
the present context, it means that our asymptotic representative h is annihilated
by some linear Cauchy-Riemann type operator D that is defined on the bundle u˚

γξ

over one cylindrical end, and the asymptotic behavior of u implies that that operator
is C8-asymptotic to the nondegenerate asymptotic operator Aγ. Proposition 4.26
then implies h P W k,p,δpZ˘q for all k P N and p P p1,8q.

The case of a converging sequence is handled similarly; cf. Exercises 4.24 and 4.27.
�

6.6. Simple curves and multiple covers revisited

In §2.6, we proved that closed J-holomorphic curves are all either embedded in
the complement of a finite set or are multiple covers of curves with this property.
The same thing holds in the punctured case:

Theorem 6.34. Assume u : p 9Σ, jq Ñ pxW,Jq is a nonconstant asymptoti-
cally cylindrical J-holomorphic curve whose asymptotic orbits are all nondegenerate,
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where 9Σ “ ΣzΓ for some closed Riemann surface pΣ, jq and finite subset Γ Ă Σ.
Then there exists a factorization u “ v ˝ ϕ, where

‚ ϕ : pΣ, jq Ñ pΣ1, j1q is a holomorphic map of positive degree to another
closed and connected Riemann surface pΣ1, j1q;

‚ v : p 9Σ1, j1q Ñ pxW,Jq is an asymptotically cylindrical J-holomorphic curve
which is embedded except at a finite set of non-immersed points and self-
intersections, where 9Σ1 :“ Σ1zΓ1 with Γ1 :“ ϕpΓq and Γ “ ϕ´1pΓ1q.

As in the closed case, we call u a simple curve if the holomorphic map ϕ :
pΣ, jq Ñ pΣ1, j1q is a diffeomorphism, and u is otherwise a k-fold multiple cover
of v with k :“ degpϕq ě 2.

The proof of this theorem is an almost verbatim repeat of the proof of The-
orem 2.35 in Lecture 2, but with one new ingredient added. Recall that in the
closed case, our proof required two lemmas which described the local picture of a

J-holomorphic curve u : 9Σ Ñ xW near either a double point upz0q “ upz1q for z0 ‰ z1
or a non-immersed point dupz0q “ 0. Both statements were completely local and
thus equally valid for non-closed curves, but we now need similar statements to
describe what kinds of singularities can appear in the neighborhood of a puncture.
The following lemma is due to Siefring [Sie08] and follows from a “relative asymp-
totic formula” that describes the exponential decay of asymptotic representatives
somewhat more precisely than Proposition 6.32 (cf. Lemma 15.4).

Lemma 6.35 (Asymptotics). Assume u : p 9Σ “ ΣzΓ, jq Ñ pxW,Jq is asymptoti-
cally cylindrical and is asymptotic at z0 P Γ to a nondegenerate Reeb orbit. Then
a punctured neighborhood 9Uz0 Ă 9Σ of z0 can be identified biholomorphically with the

punctured disk 9D “ Dzt0u such that

upzq “ vpzkq for z P 9D “ 9Uz0 ,

where k P N and v : p 9D, iq Ñ pxW,Jq is an embedded and asymptotically cylindrical

J-holomorphic curve. Moreover, if u1 : p 9Σ1 “ Σ1zΓ1, j1q Ñ pxW,Jq is another asymp-
totically cylindrical curve with a puncture z1

0 P Γ1, then the images of u near z0 and
u1 near z1

0 are either identical or disjoint. �

Exercise 6.36. With Lemma 6.35 in hand, adapt the proof of Theorem 2.35 in
Lecture 2 to prove Theorem 6.34. If you get stuck, see [Nel15, §3.2].

Proposition 6.37. If rpΣ, j,Γ`,Γ´,Θ, uqs P Mg,mpJ,A,γ`,γ´q is represented
by a simple curve, then Autpuq is trivial. If it is represented by a k-fold cover of a
simple curve, then |Autpuq| ď k. In particular, Autpuq is always finite.7

Proof. If u is simple, then it is a diffeomorphism onto its image in a small
neighbourhood of some point, and any map ϕ satisfying u “ u ˝ ϕ would be the
identity on such a neighbourhood. By unique continuation, we conclude that Autpuq
is trivial. In general if u “ v ˝ ϕ for some simple

v : Σ1 Ñ W

7cf. Remark 6.31 for the case where u is constant.
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and
ϕ : Σ Ñ Σ1

a k-fold branched cover, we have

Autpuq “ tf : Σ Ñ Σ | v ˝ ϕ ˝ f “ v ˝ ϕu.
By a similar argument as in the previous case, knowing that v is simple implies we
only need to look at solutions to

ϕ ˝ f “ ϕ.

Remove the set of branch points B from Σ1 together with the set ϕ´1pBq from Σ,
so that ϕ becomes an honest covering map. Any ϕ P Autpuq then defines a deck
transformation of the cover, and for a cover of degree k, there are at most k such
transformations. �

6.7. Possible generalizations

In this section I would like to add a few remarks on the set of assumptions
involved in our geometric setup, and which of them could possibly be relaxed. A
certain amount of what I have to say on this subject is speculative and should
perhaps be taken with a grain of salt; in any case, the reader who is only interested
in the standard setup for SFT may feel free to skip it.

6.7.1. Asymptotically cylindrical ends. When pW,ωq is a symplectic cobor-
dism with stable boundary pM˘,H˘q and J P Jτ pωψ, r0,H`,H´q belongs to our

distinguished class of almost complex structures, the completion pxW,Jq is what is
known as an almost complex manifold with cylindrical ends. In particular,
it has the feature that J is translation-invariant on both ends outside of some com-
pact subset. For certain applications, it is natural to consider a weaker variant of
this condition, in which J is not translation-invariant and thus does not belong to
J pH˘q on any neighborhood of infinity but has asymptotic approach to something
that is translation-invariant. The precise condition suggested in [BEH`03] was as
follows: if τc : R ˆ S1 Ñ R ˆ S1 denotes the translation map pr, xq ÞÑ pr ` c, xq for
c P R, then there exist J˘ P J pH˘q such that

(6.8) τ˚
c J

ˇ̌
r0,8qˆM`

Ñ J` as c Ñ 8 and τ˚
c J

ˇ̌
p´8,0sˆM´

Ñ J´ as c Ñ ´8,

with uniform convergence of all derivatives. If pxW,Jq satisfies this condition, it is
known as an almost complex manifold with asymptotically cylindrical ends.
It remains unclear whether any reasonable theory of J-holomorphic curves exists at
this level of generality, though Bao [Bao15] has shown that the compactness results
from [BEH`03] do extend under a stricter hypothesis that the convergence in (6.8)
is exponentially fast. It seems very likely that the rest of the results in this book
will also hold under Bao’s hypothesis, but proving this would require some extra
analytical effort that we would prefer to avoid, and it is in any case unnecessary
for the development of symplectic and contact invariants. One concrete application
of the compactness results from [Bao15] is to show that certain configurations
of nodal J-holomorphic curves in an almost complex 4-manifold have the same
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geometric structure as the neighborhood of a singular point in a Lefschetz fibration;
see [Wen18, Appendix A].

6.7.2. Tame but not compatible. In the analysis of closed J-holomorphic
curves on a symplectic manifold pW,ωq, it almost never matters whether J is as-
sumed to be compatible with ω or only tamed by it. One encounters occasional
situations in which a lemma is easier to prove under one of those assumptions than
the other, e.g. tameness has the obvious advantage of being an open condition, while
certain formulas take appealingly simpler forms in the compatible case. But almost
everything that is important in the theory works either way.

For an odd-dimensional manifold M with a stable Hamiltonian structure H “
pω, λq, we have defined the special class of translation-invariant almost complex
structures J P J pHq on R ˆ M with the property that J |ξ is compatible with ω|ξ,
and there is a temptation to believe that replacing “compatible” with “tame” in this
definition would be harmless. That is false. This is to say, while it seems possible
that the analytical foundations of SFT might still work when J |ξ is only tamed by
but not compatible with ω|ξ, this is by no means obvious: some nontrivial work
would need to be done to prove it, and that work has not been done. The difficulty
concerns the asymptotic operators

Aγ “ ´J∇ω
t : Γpγ˚ξq Ñ Γpγ˚ξq

associated to closed Reeb orbits γ. We have seen in Proposition 6.24 that Aγ ap-
pears in the linearized Cauchy-Riemann operator for the trivial cylinder over γ, and
for that reason, it will also appear in asymptotic expressions of linearized Cauchy-
Riemann operators for arbitrary asymptotically cylindrical curves. When we study
the local structure of the moduli space in the next two lectures, we will need those
linearized Cauchy-Riemann operators to be Fredholm, and our proof of this in Lec-
ture 4 made essential use of the fact that Aγ is L

2-symmetric. We have also invoked
the symmetry of Aγ whenever we discussed exponential convergence of solutions
at infinity, as in §4.6 and §6.5, and the existing proofs of Lemma 6.35, which we
used for establishing the dichotomy between simple and multiply covered curves,
also require it.

The symmetry of Aγ was proved in Exercise 3.5, but this required ω|ξ to be
J-invariant, i.e. compatibility, not just tameness. Without compatibility, Aγ need
not be symmetric, and its eigenvalues need not be real.

This is not necessarily a catastrophe, as the tameness of J does still give Aγ “
´J∇ω

t some useful properties short of symmetry. This situation has an analogue in
the finite-dimensional setting of Morse homology. The role of asymptotic operators
in that setting is played by the Hessian ∇2fpxq : TxM Ñ TxM of a Morse function
f :M Ñ M at a critical point x P M , which appears in linearizations of the gradient-
flow equation because ∇2fpxq is the linearization of the gradient vector field ∇f at a
point in its zero-set. However, Morse homology can also be defined under a relaxed
assumption, where instead of counting flow lines of the actual gradient of f with
respect to a Riemannian metric, one counts flow lines of some other gradient-like
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vector field X on M , meaning

dfpXq ą 0 wherever df ‰ 0.

One can see by looking at f in local Morse coordinates that under this condition, X
must vanish at the critical points of f , and for technical reasons one usually needs
to impose a more precise condition on the behavior of X near those points, e.g. that
for some choice of Riemannian metric on M there exists a constant δ ą 0 such that

dfpXq ě δ
`
|X|2 ` |df |2

˘
.

If one now linearizes the flow equation for X , the term that appears near ˘8 for
each flow line is no longer the Hessian of f at critical points x, but rather the
linearization DXpxq : TxM Ñ TxM of the vector field at points in its zero-set. Such
a linearization need not be symmetric, and for smooth vector fields in general, there
are few constraints on what the linear map DXpxq : TxM Ñ TxM may look like
beyond saying that for generic vector fields, it will be invertible. For gradient-like
vector fields, however, there are constraints, e.g. nonzero eigenvalues of DXpxq :
TxM Ñ TxM must always have nontrivial real part (see [CE12, Lemma 9.9]).

The relevance of gradient-like vector fields to our discussion is that if H “ pω, λq
is a stable Hamiltonian structure on M and J : ξ Ñ ξ is ω-tame, then the “vector
field” V pγq :“ ´Jπξ 9γ on C8pS1,Mq is gradient-like with respect to the action
functional Aω of §6.1.1, because

dAωpωqV pγq “ ´
ż

S1

ωp 9γ,´Jπξ 9γq dt “
ż

S1

ωpπξ 9γ, Jπξ 9γq dt ě 0,

with strict inequality unless γ parametrizes a Reeb orbit. The asymptotic operator
Aγ “ ´J∇ω

t : L2pγ˚ξq Ą H1pγ˚ξq Ñ L2pγ˚ξq is defined as the linearization of
V at a Reeb orbit γ, so one can use these observations to prove as in the finite-
dimensional case that no eigenvalue of Aγ can be purely imaginary unless it is 0.
This added information is enough to generalize our proof of Theorem 4.14 on the
invertibility of translation-invariant operators Bs ´ Aγ over the cylinder, which was
the main technical step in our proof of the Fredholm property in Lecture 4. There
remain other things to check, especially in the realm of asymptotic decay conditions,
and one should not attempt to use the machinery of SFT in this greater generality
without first writing down those details. But if I had to bet the life of one of my
Ph.D. students,8 I would bet that it works.

6.7.3. Framed but not stable. Every compact symplectic manifold pW,ωq
with boundary can be viewed as a symplectic cobordism between odd-dimensional
manifolds pM˘,H˘q endowed with framed Hamiltonian structures H˘ “ pω˘, λ˘q.
The collar neighborhoods (6.2) then give rise to a reasonable notion of a symplec-

tic completion pxW,ωϕq admitting tame almost complex structures that belong to
J pH˘q on the cylindrical ends. In general, the framings λ˘ of H˘ do not need to be
stable in order for this construction to make sense, and stability imposes an extra
constraint, i.e. not every Hamiltonian structure admits a stable framing. However,
we saw two reasons in this lecture why the theory of J-holomorphic curves may run

8Needless to say, I learned this expression from my Ph.D. advisor.
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into trouble if stability of λ˘ is not also assumed. The first reason concerns the

definition of energy: the symplectic structure ωϕ on xW depends in general on the
arbitrary choice of a function ϕ in the space T0 defined in (6.5), and for a non-stable
Hamiltonian structure, ωϕ does not tame J for every choice of ϕ. We will see in
Lecture 9 that the ability to choose ϕ P T0 arbitrarily is essential, and as a conse-
quence, there really is no reasonable compactness theory for J-holomorphic curves
on cobordisms with non-stable boundary.

But compactness is not the only feature of the SFT setup, and one can imagine
applications for which this aspect of the theory is unimportant, or is trivial for
other geometric reasons. Thus a valid question remains: can other aspects of the
fundamentals of SFT, such as the Fredholm and transversality theory, still be defined
with respect to Hamiltonian structures that are not stable?

On this question I am slightly more optimistic, but the answer as in §6.7.2 is
that if it can be done, then some nontrivial amount of work would be required in
proving it. The danger here is visible in Proposition 6.24: if dλpR, ¨q does not vanish
everywhere, then the linearized Cauchy-Riemann operator for a trivial cylinder does
not take the form Bs´A for an asymptotic operatorA, and as a result, the linearized
operators for asymptotically cylindrical curves in general will not fit into the scheme
of the Fredholm theory we established in Lecture 4. On the other hand, it is quite
easy to see that the particular consequence of Theorem 4.14 we will need in the next
lecture holds anyway: the linearization along the trivial cylinder takes the form

(6.9) Bs ´
ˆ

´iBt ´B
0 Aγ

˙
“
ˆ

Bs ´ p´iBtq B

0 Bs ´ Aγ

˙

with respect to the splitting u˚
γT pR ˆ Mq “ u˚

γε ‘ u˚
γξ, for some bundle map B :

u˚
γξ Ñ u˚

γε. Such upper-triangular operators are invertible whenever both of their
diagonal terms are. Here the upper left block presents us with a minor headache
since ´iBt is a degenerate asymptotic operator, but we will see in the next lecture
how to rectify this by working in exponentially weighted Sobolev spaces, which has
the effect of adding a small constant to this operator to make it nondegenerate.
The result is that the analysis behind our proof of the semi-Fredholm property in
Lecture 4 actually does work in this more general context. Moreover, the non-
symmetric operator appearing in the first matrix in (6.9) has the same spectral
properties as an asymptotic operator: each of its eigenvalues is also an eigenvalue
of either ´iBt or Aγ. There are again still some things to check, but it seems likely
that all of our results thus far and in the next two lectures could admit reasonable
generalizations to the non-stable setting. We will not attempt to carry out such
a generalization in this book, since we have no interesting applications for it in
mind—the most important Hamiltonian structures are the examples from contact
geometry and Floer homology discussed in §6.3, and these are of course stable.

6.7.4. SFT without symplectic structures? Let’s not carried away: what-
ever subset of the results in this book remains intact after removing symplectic
structures entirely from the picture, one should clearly no longer refer to it as “sym-
plectic” field theory. Nonetheless, a large portion of the theory of moduli spaces of
closed J-holomorphic curves is valid in arbitrary almost complex manifolds with no
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taming symplectic form—the usual regularity results all hold, the moduli spaces are
well defined, the dichotomy between simple and multiply covered curves still makes
sense, and so does the main result of the next lecture, namely that after a generic
perturbation of J , the moduli space becomes a smooth manifold whose dimension
is determined by the index formula in Lecture 5. What definitely does not work is
Gromov’s compactness theorem: one can define a purely analytical notion of energy
for a J-holomorphic curve (essentially as the L2-norm of its derivative, see [MS12]),
but without any taming condition there is no reason for this energy to be bounded.
As we will see in Lecture 9, without uniform energy bounds, the moduli space cannot
be expected to have a natural compactification. Generalizing to an arbitrary almost
complex manifold with cylindrical ends will definitely not improve this situation, so
let us accept from the start that without tameness, there will be no compactness
theory.

It nonetheless seems reasonable to ask whether the Fredholm and transversality

theory of SFT might still hold. In fact, if pxW,Jq is an almost complex manifold with
cylindrical ends r0,8q ˆ M` and/or p´8, 0s ˆ M´ on which J belongs to J pH˘q
for stable Hamiltonian structures H˘ on M˘, then the Fredholm and transversality
theory will be absolutely fine: there is no need to have any symplectic structure
on the original compact cobordism W . A more interesting question is whether the
Hamiltonian structures on the cylindrical ends can also be dispensed with, i.e. we
could assume that J is translation-invariant on the cylindrical ends and maps Br
to some vector fields R˘ on M˘, but place no further assumptions on these vector
fields or on the maximal J-invariant subbundles ξ˘ Ă T ptru ˆ M˘q.

One now runs into a starker version of the problem already discussed in §6.7.2:
the asymptotic operators that appear as asymptotic data for linearized Cauchy-
Riemann operators take the form

Aγ “ ´J∇t : Γpγ˚ξq Ñ Γpγ˚ξq,
where∇ is a connection on γ˚ξ determined by the linearized flow of R, but ξ does not
carry any symplectic structure for this connection to preserve, and as a consequence,
there is now virtually no constraint on the spectral properties of Aγ. In particular,
Aγ can have purely imaginary eigenvalues without being degenerate, in which case
the proof of Theorem 4.14 on translation-invariant operators Bs ´ Aγ cannot be
rescued, and the Fredholm property will fail. This does not necessarily mean that
the situation is hopeless, but anything further I could say on this topic would be
pure speculation.
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In this lecture, we study the local structure of the moduli space

MpJq :“ Mg,mpJ,A,γ`,γ´q
introduced in §6.4. We assume as before that pW,ωq is a 2n-dimensional symplectic
cobordism with stable boundary BW “ ´M´

š
M` inheriting stable Hamilton-

ian structures H˘ “ pω˘, λ˘q with induced Reeb vector fields R˘ and hyperplane
distributions ξ˘ “ ker λ˘, while g,m, k`, k´ ě 0 are integers, γ˘ “ pγ˘

1 , . . . , γ
˘
k˘

q
are ordered sets of closed R˘-orbits in M˘, and A P H2pW, γ̄` Y γ̄

´q is a relative
homology class with BA “ ř

irγ`
i s ´ ř

irγ´
i s P H1pW, γ̄` Y γ̄

´q. The noncompact

completion of pW,ωq is denoted by pxW,ωψq for some fixed function ψ : R Ñ p´ǫ, ǫq
that scales the symplectic form on the cylindrical ends, and r0 ě 0 is a fixed constant
which determines the size of the ends rr0,8q ˆ M` and p´8,´r0s ˆ M´ on which
we require our almost complex structures

J P Jτ pωψ, r0,H`,H´q
to be R-invariant. The complement of these ends has closure

W r0 :“ pr´r0, 0s ˆ M´q YM´ W YM` pr0, r0s ˆ M`q .
We will often make use of the fact that since J matches translation-invariant almost
complex structures in J pH˘q outside of W r0, there are natural complex vector
bundle splittings

T pR ˆ M˘q “ ε˘ ‘ ξ˘,

where ε˘ denotes the canonically trivial line bundle spanned by Br and the Reeb
vector field R˘.

We will sometimes also consider the slightly simpler situation of J-holomorphic
curves in pRˆM,Jq, where M is a closed manifold with a fixed stable Hamiltonian

175
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structure H “ pω, λq and R-invariant almost complex structure J P J pHq. In this
case, we shall write

xW :“ R ˆ M, M˘ :“ M, and H˘ “ pω˘, λ˘q :“ H “ pω, λq,
and regard A as an element of H2pM, γ̄` Y γ̄

´q.

7.1. The main result on regular curves

The major theorem we need to prove in this lecture gives MpJq a smooth struc-
ture in the presence of suitable transversality conditions. It will be followed in the
next lecture by two important results examining when these transversality condi-
tions can be achieved. Before stating the first result, there is a word that may need
some clarification: orbifolds, introduced originally by Satake [Sat56] under a differ-
ent name, are Hausdorff topological spaces that are locally homeomorphic to open
subsets of vector spaces divided by finite group actions. More precisely, if we say that
a spaceM admits the structure of an n-dimensional orbifold with local isotropy
group G at a given point x P M , this implies that there is a homeomorphism

U
ϕÑ O

L
G,

where U Ă M is a neighborhood of x, G is a finite group with a linear action1

on Rn, O Ă Rn is a G-invariant open neighborhood of 0 and ϕpxq “ 0. It is
important to understand that the isotropy group can vary from point to point, but
it is always required to be finite, and one can easily show that if a given point x P M
has isotropy group G, then x has a neighborhood in which all points have isotropy
groups isomorphic to subgroups of G. This implies that the set of points with
trivial isotropy group is open, and this subset is then a manifold. More should be
said about the precise meaning of smoothness on an orbifold and what a smooth map
between orbifolds is. Definitions for these notions may be found e.g. in [ALR07,
Dav,FO99]), and they vary slightly among different sources; an elegant presentation
in the language of groupoids is given in [McD06, §2]. For the sake of applications
treated in this book, it will not be necessary to know the precise definitions, as
we will only need to consider orbifolds with trivial isotropy, i.e. manifolds. For the
following theorem, it will suffice to understand that an orbifold is what arises if you
divide a manifold by a smooth and proper Lie group action that is not necessarily
free but has at most a finite stabilizer subgroup at every point.

Theorem 7.1. Suppose either J P J pHq or J P Jτ pωψ, r0,H`,H´q, and that
the orbits γ˘

i are all nondegenerate. Then the moduli space MpJq contains an open
subset

MregpJq Ă MpJq

1Some sources require the G-action on Rn to be linear, and some only require it to be a smooth
action that fixes the origin. The two notions are equivalent: if the G-action is smooth but not
linear, one can use averaging to construct a G-invariant Riemannian metric on O and then observe
that the exponential map identifies a neighborhood of 0 in T0R

n equivariantly with O, where the
G-action on T0R

n is defined by linearizing the original G-action at the origin.
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consisting of so-called Fredholm regular curves, which naturally admits the structure
of a smooth orbifold of dimension

dimMregpJq “ pn´ 3qp2 ´ 2g ´ k` ´ k´q ` 2cτ1pAq

`
kÿ̀

i“1

µτCZpγ`
i q ´

kÿ́

i“1

µτCZpγ´
i q ` 2m,

where dimW “ 2n, τ is a choice of unitary trivialization for pξ˘, J, ω˘q along each
of the asymptotic orbits γ˘

i , and c
τ
1pAq denotes the relative first Chern number of the

complex vector bundle pu˚TxW,Jq Ñ 9Σ with respect to the asymptotic trivialization
determined by τ and the splitting T pR ˆ M˘q “ ε˘ ‘ ξ˘. The local isotropy group
of MregpJq at u is Autpuq, hence the moduli space is a manifold near any regular
element with trivial automorphism group.

Exercise 7.2. Verify that the number in the dimension formula above is inde-

pendent of the choice of trivializations τ , and that cτ1pu˚TxW q depends only on the
relative homology class A.

The integer in the above dimension formula is often called the virtual dimen-
sion of MpJq and denoted by

vir-dimMpJq :“ pn´ 3qp2 ´ 2g ´ k` ´ k´q ` 2cτ1pAq

`
kÿ̀

i“1

µτCZpγ`
i q ´

kÿ́

i“1

µτCZpγ´
i q ` 2m.

Ignoring the marked points, the virtual dimension of a space Mg,0pJ,A,γ`,γ´q
containing a curve u : p 9Σ, jq Ñ pxW,Jq with punctures z P Γ˘ and nondegenerate
asymptotic orbits tγzuzPΓ˘ is sometimes also called the index of u,

indpuq :“ pn ´ 3qχp 9Σq ` 2cτ1pu˚TxW q `
ÿ

zPΓ`

µτCZpγzq ´
ÿ

zPΓ´

µτCZpγzq P Z,

and we will see that it is in fact the Fredholm index of an operator closely related to
the linearized Cauchy-Riemann operator Du at u. The word “virtual” refers to the
fact that in general, the regularity condition may fail, and thus MpJq might not be
smooth, or if it is, it might actually be of a different dimension (see Example 8.8
below), but in an ideal world where transversality is always satisfied, its dimension
would be vir-dimMpJq. This notion makes sense in finite-dimensional contexts as
well: if f : Rn Ñ Rm is a smooth map, then we would say that f´1p0q has virtual
dimension n´m, even though f´1p0q might in general be all sorts of strange things
other than a smooth pn ´ mq-dimensional manifold. In particular, n ´ m could
be negative, in which case f´1p0q would be empty if transversality were satisfied,
but in general this need not be the case. It is true however that f can always be
perturbed to a map whose zero set is an pn´mq-dimensional manifold (or empty if
n´m ă 0). The same is true in principle of the nonlinear Cauchy-Riemann equation,
and in the next lecture, we will prove that the transversality condition behind the
definition of MregpJq Ă MpJq can be achieved at least for the somewhere injective
curves in MpJq after allowing C8-small perturbations of J . In general, it is a
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formidably difficult problem to find perturbations that are sufficiently generic to
achieve transversality while also respecting all symmetries inherent in the setup as
well as the extra structure provided by the compatification ofMpJq, which is usually
crucial for meangingful applications. Such issues require more sophisticated methods
than we will discuss here, but a good place to read about them is [FFGW16].

Sections 7.2 and 7.3 below serve as preparation for the proof of Theorem 7.1,
which is carried out in §7.4. Section 7.5 then proves a few more specialized results
about the space MregpJq that are useful in applications.

7.2. Functional-analytic setup

The first step in proving Theorem 7.1 is to define a suitable Banach manifold of
maps for candidate solutions of the nonlinear Cauchy-Riemann equation to live in.
Before doing this, a brief digression on the definition of the word “manifold” is in
order.

Remark 7.3. In finite dimensions, the standard convention (which we follow in
this book) is to require all manifolds to be not only locally Euclidean but also Haus-
dorff and second countable. Those last two conditions are important, for instance
because without both of them, the standard classification of compact 1-manifolds as
disjoint unions of circles and intervals becomes false, and many fundamental results
in differential topology (including the proof that B2 “ 0 in all Floer-type theories)
depend on that classification. On the other hand, conventions vary on the precise
set of topological adjectives that should be associated to the word “manifold” in
infinite dimensions. In the classic book by Lang [Lan99], smooth Banach manifolds
are not assumed to be Hausdorff, second countable or paracompact except when
each of those conditions is specifically needed. So for instance, they are not needed
in the implicit function theorem, but this observation comes with caveats: if you use
the implicit function theorem to cut a finite-dimensional submanifold out of a non-
Hausdorff Banach manifold, then the submanifold might not be Hausdorff either.
In practice, all of the important manifolds we encounter in this book, both finite
and infinite dimensional, will be metrizable and separable, from which it follows
that they are both Hausdorff and second countable. Some care is warranted be-
cause for an infinite-dimensional Banach space, separability is typically not obvious,
and without the second countability axiom, fundamental results like the Sard-Smale
theorem (see §8.1) become false.

Fix k P N and p P p1,8q with kp ą 2, a small number δ ě 0, and a Riemannian

metric on xW that is translation-invariant in the cylindrical ends. Fix also a closed
connected surface Σ of genus g, and disjoint finite ordered sets of distinct points

Γ˘ “ pz˘
1 , . . . , z

˘
k˘

q, Θ “ pζ1, . . . , ζmq

in Σ, together with disjoint neighborhoods

U˘
j Ă Σ
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of each z˘
j P Γ˘ with complex structures jΓ and biholomorphic identifications of

pU˘
j , jΓ, zjq with pD, i, 0q for each j “ 1, . . . , k˘. This determines holomorphic cylin-

drical coordinates identifying each of the punctured neighborhoods

9U˘
j Ă 9Σ :“ ΣzpΓ` Y Γ´q

biholomorphically with the half-cylinder Z˘.
For reasons that will become clear when we study the linearized Cauchy-Riemann

operator in the punctured setting, we will need to consider exponentially weighted
Sobolev spaces. Suppose E Ñ 9Σ is an asymptotically Hermitian vector bundle: then
the Banach space

W k,p,δpEq Ă W
k,p
loc pEq

is defined to consist of sections η P W k,p
loc pEq whose representatives f : Z˘ Ñ Cm in

cylindrical coordinates ps, tq P Z˘ and asymptotic trivializations at the ends satisfy

(7.1) }e˘δsf}W k,ppZ˘q ă 8.

The norm of a section η P W k,p,δpEq is defined by adding the W k,p-norm of η over a

large compact subdomain in 9Σ to the weighted norms (7.1) for each cylindrical end.
If δ “ 0, this just produces the usual W k,ppEq, but for δ ą 0, sections in W k,p,δpEq
are guaranteed to have exponential decay at infinity.

Remark 7.4. It is occasionally useful to observe that the definition ofW k,p,δpEq
also makes sense when δ ă 0. In this case, sections in W k,p,δpEq are of class W k,p

loc

but need not be globally in W k,ppEq, as they are also allowed to have exponential
growth at infinity.

We now want to define a Banach manifold of maps u : 9Σ Ñ xW that will contain
all the asymptotically cylindrical J-holomorphic curves with our particular choice
of asymptotic orbits. Recall from §6.4 that the asymptotically cylindrical condition
means

(7.2) ups ´ s0, t´ t0q “ exppT˘
j s,γ

˘
j ptqq hjps, tq for sufficiently large |s|

in holomorphic cylindrical coordinates ps, tq P Z˘ near each puncture z˘
j P Γ˘, where

T˘
j ą 0 is the period of the orbit γ˘

j : S1 Ñ M˘, hjps, tq is a vector field along the
trivial cylinder that decays along with all its derivatives as s Ñ ˘8, and s0 P R

and t0 P S1 are constants. Equivalently, every asymptotically cylindrical map can
be assumed to satisfy

ups, tq “ exppT˘
j s`a,γ˘

j pt`bqq hjps, tq, lim
sÑ˘8

hps, tq “ 0

for some constants a P R and b P S1. Here the exponential map is defined with
respect to a connection that is R-invariant on the cylindrical ends; since W , M`
and M´ are compact, none of the resulting definitions depend on this choice so long
as the R-invariance condition is satisfied. Let us fix a neighborhood

D Ă TxW
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of the zero-section that is also R-invariant on the cylindrical ends and small enough

to have the property that for the bundle projection π : TxW Ñ xW , the map

pπ, expq|D : D ãÑ W ˆ W

is a well-defined diffeomorphism onto a neighborhood of the diagonal. We then
define the space

Bk,p,δ :“ W k,p,δp 9Σ,xW ; γ`,γ´q Ă C0p 9Σ,xW q
to consist of all continuous maps u : 9Σ Ñ xW of the form

upzq “ expfpzq hpzq,
where:

‚ f : 9Σ Ñ xW is smooth and, in our fixed cylindrical coordinates ps, tq P Z˘
on neighborhoods of the punctures z˘

j P Γ˘, takes the form

fps, tq “ pT˘
j s ` a, γ˘

j pt` bqq for |s| sufficiently large,

where a P R and b P S1 are arbitrary constants and T˘
j ą 0 is the period of

the Reeb orbit γ˘
j : S1 Ñ M˘;

‚ h P W k,p,δpf˚TxW q and hpzq P D for all z P 9Σ.

Though it is not immediate since 9Σ is noncompact, one can adapt the ideas in
[El̆ı67] or [Pal68] to give Bk,p,δ the structure of a smooth, separable and metriz-
able Banach manifold. The key point is the condition kp ą 2, which guarantees

the continuous inclusion W k,p,δpf˚TxW q ãÑ C0pf˚TxW q as well as Banach algebra
and Ck-continuity properties, cf. Propositions 2.4, 2.7 and 2.8 in Lecture 2. These
properties are needed in order to show that the transition maps between pairs of
charts of the form expf h ÞÑ h are smooth.

The tangent space to Bk,p,δ at u P Bk,p,δ can be written as

TuB
k,p,δ “ W k,p,δpu˚TxW q ‘ VΓ,

where VΓ Ă Γpu˚TxW q is a non-canonical choice of a 2pk` ` k´q-dimensional vector
space of smooth sections asymptotic at the punctures to constant linear combina-
tions of the vector fields spanning the canonical trivialization of the first factor in
T pR ˆ M˘q “ ε˘ ‘ ξ˘, i.e. they point in the Br- and R˘-directions. The space VΓ
appears due to the fact that two distinct elements of Bk,p,δ are generally asymptotic
to collections of trivial cylinders that differ from each other by k` ` k´ pairs of
constant shifts pa, bq P R ˆ S1.

Fix J P Jτpωψ, r0,H`,H´q and a smooth complex structure j on Σ that matches
jΓ in the neighborhoods U˘

j of the punctures. The nonlinear Cauchy-Riemann op-
erator is then defined as a smooth section

B̄j,J : Bk,p,δ Ñ Ek´1,p,δ : u ÞÑ du` Jpuq ˝ du ˝ j
of a Banach space bundle

Ek´1,p,δ Ñ Bk,p,δ

with fibers
Ek´1,p,δ
u “ W k´1,p,δpHomCpT 9Σ, u˚TxW qq.
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The zero set of B̄j,J is the set of all maps u P Bk,p,δ that are pseudoholomorphic from

p 9Σ, jq to pxW,Jq. Note that the smoothness of B̄j,J depends mainly on the fact that
J is smooth. Indeed, in local coordinates B̄j,J looks like u ÞÑ Bsu ` pJ ˝ uqBtu, in
which the most obviously nonlinear ingredient is u ÞÑ J ˝ u. If J were only of class
Ck, then the Ck-continuity property would imply that the map u ÞÑ J ˝ u sends
maps of classW k,p continuously to maps of class W k,p, and one can use an inductive
argument to show that this map then becomes r-times differentiable if J is of class
Ck`r; see [Wend, Lemma 2.12.5]. Moreover, B̄j,Jpuq satisfies the same exponential
weighting condition as u at the cylindrical ends due to the fact that J is R-invariant
near infinity.

For u P B̄´1
j,Jp0q, the linearization DB̄j,Jpuq : TuBk,p,δ Ñ Ek´1,p,δ

u defines a bounded
linear operator

Du : W
k,p,δpu˚TxW q ‘ VΓ Ñ W k´1,p,δpHomCpT 9Σ, u˚TxW qq.

We derived a formula for this operator in Lecture 2 and showed that it is of Cauchy-
Riemann type. Since VΓ is finite dimensional, Du will be Fredholm if and only if its
restriction to the first factor is Fredholm; denote this restriction by

Dδ : W
k,p,δpu˚TxW q Ñ W k´1,p,δpHomCpT 9Σ, u˚TxW qq,

where we’ve chosen the notation to emphasize the dependence of this operator on
the choice of exponential weight δ ě 0 in the definition of our Banach space. We
will see presently why it’s important to pay attention to this detail. We first take
note of the following consequence of the computation in Proposition 6.24 for Du in
the case where u is a trivial cylinder:

Proposition 7.5. The Cauchy-Riemann type operator Du on u˚TxW is as-
ymptotic at its punctures z˘

j P Γ˘ for j “ 1, . . . , k˘ to the asymptotic operators

p´iBtq ‘ Aγ˘
j
on pγ˘

j q˚pε˘ ‘ ξ˘q. �

Perhaps you can now see a problem: even if the orbits γ˘
j are all nondegenerate,

the asymptotic operators p´iBtq‘Aγ˘
j
are degenerate, as they have nontrivial kernel

consisting of constant sections in the first (trivial) factor of pγ˘
j q˚pε˘ ‘ ξ˘q. This

implies in particular that

D0 : W
k,ppu˚TxW q Ñ W k´1,ppHomCpT 9Σ, u˚TxW qq

is not Fredholm, except of course in the special case where there are no punctures.
The situation is saved by the exponential weight:

Lemma 7.6. For every δ ą 0 sufficiently small, the operator Dδ is Fredholm and
has index

indpDδq “ nχpΣq ´ pn` 1q#Γ ` 2cτ1pu˚TxW q `
kÿ̀

j“1

µτ
CZ

pγ`
j q ´

kÿ́

j“1

µτ
CZ

pγ´
j q.

Moreover, every element of MpJq can be represented by a map u P Bk,p,δ.
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Proof. The second claim follows from Proposition 6.32 in the previous lecture.
To see that Dδ : W k,p,δ Ñ W k´1,p,δ is Fredholm and to compute its index, we

can identify it with a Cauchy-Riemann type operator from W k,p to W k´1,p. Indeed,
pick any smooth function f : 9Σ Ñ R with fps, tq “ ¯δs on the cylindrical ends
near Γ˘, define Banach space isomorphisms

Φδ : W
k,p Ñ W k,p,δ : η ÞÑ efη,

Ψδ :W
k´1,p Ñ W k´1,p,δ : θ ÞÑ efθ,

and consider the bounded linear map

D1
δ :“ Ψ´1

δ DδΦδ : W
k,ppu˚TxW q Ñ W k´1,ppHomCpT 9Σ, u˚TxW qq.

Using the Leibniz rule for Dδ, it is straightforward to show that D1
δ is also a linear

Cauchy-Riemann type operator. Moreover, suppose Dδ takes the form B̄ `Sps, tq in
coordinates and trivialization on the cylindrical end near z˘

j , where Sps, tq Ñ S8ptq
as s Ñ ˘8 and Aγ˘

j
“ ´iBt ´ S8ptq. Then D1

δ on this same end takes the form

D1
δη “ e˘δspB̄ ` Sps, tqqpe¯δsηq “ B̄η ` pSps, tq ¯ δqη

and is therefore asymptotic to the perturbed asymptotic operator

rA˘
j :“

´
p´iBtq ‘ Aγ˘

j

¯
˘ δ.

The latter is the direct sum of two asymptotic operators ´iBt ˘ δ on the trivial
line bundle and Aγ˘

j
˘ δ on pγ˘

j q˚ξ˘ respectively. Since γ˘
j is nondegenerate by

assumption and the spectrum ofAγ˘
j
is discrete, we can assume kerpAγ˘

j
˘δq remains

trivial if δ ą 0 is sufficiently small, and the Conley-Zehnder index of this perturbed
operator will be the same as without the perturbation. On the other hand, the
spectrum of ´iBt consists of the integer multiples of 2π, thus ´iBt ˘ δ also becomes
nondegenerate for any δ ą 0 small. Its Conley-Zehnder index can be deduced from
the winding numbers of its eigenfunctions using Theorem 3.55 in Lecture 3: ´iBt
has a 2-dimensional nullspace consisting of sections with winding number 0, and
this becomes an eigenspace for the smallest positive eigenvalue if the puncture is
positive or the largest negative eigenvalue if the puncture is negative. Theorem 3.55
thus gives

µCZp´iBt ˘ δq “ ¯1,

and therefore,

µτCZprA˘
j q “ ¯1 ` µτCZpγ˘

j q.
Plugging this into the general index formula from Lecture 5 then gives the stated
result. �

Putting back the missing 2p#Γq dimensions in the domain of Du, we have:

Corollary 7.7. For all δ ą 0 sufficiently small, the linearized Cauchy-Riemann
operator Du : TuB

k,p,δ Ñ Ek´1,p,δ
u is Fredholm with index

indpDuq “ nχpΣq ´ pn ´ 1q#Γ ` 2cτ1pu˚TxW q `
kÿ̀

j“1

µτCZpγ`
j q ´

kÿ́

j“1

µτCZpγ´
j q.
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7.3. Moduli of complex structures

Since the moduli space MpJq is not defined with reference to any fixed complex

structure on the domains 9Σ, we must build this freedom into the setup.

7.3.1. Teichmüller space and automorphism groups. For any integers
g, ℓ ě 0, the moduli space of Riemann surfaces of genus g with ℓ marked
points is a space of equivalence classes

Mg,ℓ “ tpΣ, j,Θqu
L

„
where pΣ, jq is a closed, oriented and connected surface with genus g, Θ Ă Σ is
an ordered set of ℓ points and equivalence is defined via biholomorphic maps that
preserve the marked points Θ along with their ordering. We shall refer to triples
pΣ, j,Θq that represent equivalence classes in this space as pointed Riemann sur-
faces. The space Mg,ℓ has been studied extensively in algebraic geometry, though
it can also be understood using the same global analytic methods that we have been
applying for MpJq. It is known in particular that Mg,ℓ is always a smooth orbifold,
and for any rpΣ, j,Θqs P Mg,ℓ, it satisfies

(7.3) dimAutpΣ, j,Θq ´ dimMg,ℓ “ 3χpΣq ´ 2ℓ,

where AutpΣ, j,Θq is the group of biholomorphic transformations of pΣ, jq that fix
the points in Θ, which is a smooth finite-dimensional Lie group. We will sketch
proofs of these facts below. Observe that there are only four special cases in which
χpΣzΘq is nonnegative, and for these, we will see that it is not difficult to give
explicit descriptions of both AutpΣ, j,Θq and Mg,ℓ. All other cases satisfy the
following condition:

Definition 7.8. A pointed Riemann surface pΣ, j,Θq is stable if χpΣzΘq ă 0.

In the stable cases, Proposition 7.9 below shows that AutpΣ, j,Θq is always a
finite group, thus (7.3) turns into the well-known dimension formula

(7.4) dimMg,ℓ “ ´3χpΣq ` 2ℓ “ 6g ´ 6 ` 2ℓ.

This is also the dimension of the Teichmüller space

T pΣ,Θq :“ J pΣq
L
Diff0pΣ,Θq,

where J pΣq denotes the space of all smooth complex structures on Σ compatible
with its orientation, and

Diff0pΣ,Θq Ă DiffpΣ,Θq
is the identity component of the group DiffpΣ,Θq of orientation-preserving diffeo-
morphisms that fix Θ, acting on J pΣq by ϕ ¨ j :“ ϕ˚j.2 It is a classical result that
T pΣ,Θq is always a smooth manifold of the same dimension as Mg,ℓ, and indeed,
the latter can be presented (see Exercise 7.11 below) as the quotient of the former
by the discrete action of the mapping class group

MpΣ,Θq :“ DiffpΣ,Θq
L
Diff0pΣ,Θq.

2Strictly speaking, acting by pullbacks defines a right group action J pΣqˆDiffpΣ, θq Ñ J pΣq :
pj, ϕq ÞÑ ϕ˚j, and if I wanted to turn it into a left group action, I should define the action of ϕ on
j to be pϕ´1q˚j. I hope you will forgive me for consistently ignoring this technicality.
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We will see below that T pΣ,Θq admits easy explicit descriptions in the four non-
stable cases, whereas in the stable cases, the fact that T pΣ,Θq is a manifold and
Mg,ℓ is an orbifold can be derived from the following:

Proposition 7.9. If χpΣzΘq ă 0, then the action of Diff0pΣ,Θq on J pΣq is
free and proper. Moreover, the action of DiffpΣ,Θq on J pΣq is also proper, and its
stabilizer subgroup AutpΣ, j,Θq for each j P J pΣq is finite.

Sketch of the proof. If ϕ P Diff0pΣ,Θq satisfies ϕ˚j “ j for some j P J pΣq,
then ϕ : pΣ, jq Ñ pΣ, jq is holomorphic, thus if ϕ ‰ Id, its fixed points are isolated
and count positively for the purposes of the Lefschetz fixed point theorem, which
says

#Fixpϕq “ χpΣq
since ϕ is homotopic to the identity. But ϕ has at least ℓ “ #Θ fixed points, so
this implies χpΣq ´ ℓ “ χpΣzΘq ě 0 and thus contradicts the stability assumption.
This proves that the Diff0pΣ,Θq-action on J pΣq is free, and also that the group
AutpΣ, j,Θq is discrete for each j P J pΣq, as AutpΣ, j,Θq X Diff0pΣ,Θq “ tIdu.

The proof of properness requires some ideas from the compactness theory of
holomorphic curves, which we have not discussed yet but will do so in Lecture 9, so
for now we will give only an outline of the argument. (The missing details are filled
in by Exercise 9.21.) Properness of the action of Diff0pΣ,Θq on J pΣq means that
the map

Diff0pΣ,Θq ˆ J pΣq Ñ J pΣq ˆ J pΣq : pϕ, jq ÞÑ pϕ˚j, jq
is proper, thus we need to show that if ϕν P Diff0pΣ,Θq and jν P J pΣq are sequences
with C8-convergence jν Ñ j and j1

ν :“ ϕ˚
νjν Ñ j1, then ϕν also has a C8-convergent

subsequence. The maps ϕν : pΣ, j1
νq Ñ pΣ, jνq in this situation are holomorphic

curves of degree 1 with respect to converging sequences of domain and target complex
structures, and they satisfy the uniform “energy” bound

Epϕνq :“
ż

Σ

ϕ˚
νd vol “

ż

ϕνpΣq
d vol “

ż

Σ

d vol “ VolpΣq

for any choice of area form d vol on Σ, which can be interpreted as a symplectic form
taming the complex structures jν and j1

ν . By elliptic regularity (Corollary 2.25), ϕν
will have a C8-convergent subsequence if it satisfies a uniform C1-bound, is this
implies uniform W 1,p-bounds for p ą 2. If no such bound holds, then one can
reparametrize ϕν around a sequence of points where its first derivative is blowing
up and find a nonconstant holomorphic sphere pS2, iq Ñ pΣ, jq “bubbling off” in
the limit. This is impossible if Σ has positive genus, since the map S2 Ñ Σ would
have to have degree at least 1, but π2pΣq “ 0. If Σ is also a sphere, then there is a
different contradiction when #Θ ě 3, because the fact that degpϕνq “ 1 implies that
the bubble must absorb all available energy—it follows that there can be at most
one bubble, which is found by reparametrizing the sequence around some specific
limit point ζ8 P S2, and on S2ztζ8u the sequence ϕν converges in C

8
loc to a constant

map. The latter is impossible since each ϕν fixes at least two distinct marked points
in S2ztζ8u.
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We observe finally that the compactness argument in the previous paragraph
works equally well if Diff0pΣ,Θq is replaced by DiffpΣ,Θq, and one can then apply
it to any sequence in AutpΣ, j,Θq, proving that this group is compact. Since it is
also discrete, AutpΣ, j,Θq is therefore finite. �

Remark 7.10. The case g “ 1 with no marked points is not stable, but the
compactness part of the proof above still works in this case, proving that AutpT2, jq
is compact for every j P J pT2q.

Exercise 7.11. Show that the action of DiffpΣ,Θq on J pΣq descends to a proper
action of the mapping class group MpΣ,Θq on T pΣ,Θq whose stabilizer subgroup
at each rjs P T pΣ,Θq is

AutpΣ, j,Θq
L
Aut0pΣ, j,Θq, where Aut0pΣ, j,Θq :“ AutpΣ, j,Θq XDiff0pΣ,Θq.

Show also that this stabilizer is always finite, and T pΣ,Θq{MpΣ,Θq is naturally
homeomorphic to Mg,ℓ. Hint: There is nothing to prove if g “ 0 and ℓ ď 2, as
standard results on mapping class groups imply MpΣ,Θq is trivial in these cases.

Another way to see why T pΣ,Θq is a smooth manifold is by interpreting (7.3)
as a formula for a Fredholm index. Indeed, consider first the case ℓ “ 0. The right
hand side is then χpΣq ` 2c1pTΣq, which is, according to Riemann-Roch, the index
of the operator

DId :W k,ppTΣq Ñ W k´1,ppEndCpTΣqq,
defined as the linearization at the identity map of the nonlinear Cauchy-Riemann
operator for holomorphic maps pΣ, jq Ñ pΣ, jq. This is also known as the canonical
Cauchy-Riemann operator for pΣ, jq, i.e. it is the one that looks like the standard
B̄ in any choice of holomorphic local trivialization of TΣ, so its kernel is the space of
holomorphic vector fields. Viewing it as a linearization, we see that there is a natural
inclusion TId AutpΣ, jq ãÑ kerDId, and it is not hard to show that this inclusion is in
fact an isomorphism. For this it suffices to show that AutpΣ, jq and kerDId have the
same dimension, and in fact both can be computed explicitly in all cases. For g “ 0
and g “ 1, AutpΣ, jq has real dimension 6 or 2 respectively, as follows from explicit
descriptions of these groups which we shall review below. In the genus 0 case, we
have c1pTΣq “ 2 and indDId “ 6, so dim kerDId ě 6, but the reverse inequality
also holds because picking any three distinct points ζ1, ζ2, ζ3 P Σ gives a linear map

kerDId Ñ Tζ1Σ ‘ Tζ2Σ ‘ Tζ3Σ

X ÞÑ pXpζ1q, Xpζ2q, Xpζ3qq
that must be injective since all zeroes of the holomorphic vector field X P kerDId

count positively.3 This proves dim kerDId “ 6 “ indDId, hence DId is surjective
and TId AutpS2, jq “ kerDId. In the genus one case, DId has index 0 and is not
surjective, but a similar argument using c1pTT2q “ 0 shows that dim kerDId ď 2,
which is therefore an equality since dim kerDId ě dimAutpT2, jq “ 2. For genus
at least 2, the first Chern number becomes negative and the positivity of zeroes of

3In keeping with Remark 5.6, it seems important to clarify here that although DId is naturally
a complex-linear operator, all dimensions and Fredholm indices in this discussion are real—which
is why they are all even.
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holomorphic vector fields thus implies that DId is injective, hence AutpΣ, jq is also 0-
dimensional, meaning it is discrete—this gives an alternative proof of the discreteness
of automorphism groups in the stable case, without need of the Lefschetz fixed point
theorem (cf. Proposition 7.9).

The cokernel of DId likewise has a natural identification with TrjsT pΣq, resulting
from the observation that the image of DId is essentially the tangent space to the
orbit of j under the natural Diff0pΣq-action on J pΣq. To see this, suppose ϕρ P
Diff0pΣq is a smooth 1-parameter family of diffeomorphisms with ϕ0 “ Id, and write
X :“ Bρϕρ|ρ“0 P ΓpTΣq. Choose an area form d vol on Σ and let ∇ denote the Levi-
Cività connection with respect to the Riemannian metric g :“ d volp¨, j¨q; observe
that since ∇ respects the metric, it also respects the conformal structure of pΣ, jq
and therefore satisfies ∇j ” 0. It follows then from (2.1) that DId : ΓpTΣq Ñ
Ω0,1pΣ, TΣq is given by

DIdX “ ∇X ` j ˝ ∇X ˝ j,
and a quick computation using the symmetry of ∇ then yields the formula

Bρ
`
ϕ˚
ρj
˘ ˇ̌
ρ“0

“ Bρ
`
Tϕ´1

ρ ˝ j ˝ Tϕρ
˘ ˇ̌
ρ“0

“ ´∇X ˝ j ` j ˝ ∇X

“ jp∇X ` j ˝ ∇X ˝ jq “ jDIdX “ DIdpjXq P ΓpEndCpTΣqq.
We should note that this way of identifying imDId with a Diff0pΣq-orbit ignores a
few technical details that deserve some care: strictly speaking, if we are viewing DId

as an operator W k,ppTΣq Ñ W k´1,ppEndCpTΣqq, then Diff0pΣq should be replaced
by a neighborhood of Id in the Banach manifold of W k,p-smooth maps Σ Ñ Σ,
with k and p chosen large enough to be able to say that these maps are at least
C1-diffeomorphisms. The resulting orbit of j then lives not in J pΣq but in the space
J k´1,ppΣq of almost complex structures of class W k´1,p. (For a more careful treat-
ment of Teichmüller theory from this perspective, see [Tro92].) Just as the choice
of k and p does not affect the index or kernel of DId, these analytical details have no
meaningful impact on the conclusion of the discussion, which is a characterization
of cokerDId.

This whole discussion remains valid if marked points are included: the main
difference is then that the Cauchy-Riemann operator on TΣ should be restricted to
a space of vector fields that vanish at Θ, defining a 2ℓ-codimensional subspace

W
k,p
Θ pTΣq :“

 
X P W k,ppTΣq

ˇ̌
X|Θ “ 0

(
,

which is the tangent space at Id to the Banach manifold of W k,p-smooth maps
Σ Ñ Σ that fix the marked points. Restricting the domain in this way decreases
the Fredholm index of DId by 2ℓ, producing the right hand side of (7.3). The same
arguments as sketched above then give natural isomorphisms

kerDId “ TId AutpΣ, j,Θq “: autpΣ, j,Θq, and cokerDId “ TrjsT pΣ,Θq.
7.3.2. Teichmüller slices. The following notion will give a practical means of

building variations in j into the analytic description of MpJq.
Definition 7.12. Given a pointed Riemann surface pΣ, j0,Θq, a Teichmüller

slice through pj0,Θq (or simply a “Teichmüller slice through j0” if Θ “ H) is a
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smooth family of complex structures tjτ P J pΣquτPP parametrized by some smooth
finite-dimensional manifold P such that:

(1) jτ0 “ j0 for some τ0 P P ;
(2) The map P Ñ T pΣ,Θq : τ ÞÑ rjτ s is a diffeomorphism onto an open

neighborhood of rj0s;
(3) For every τ P P , the linear map

(7.5) TτP Ñ ΓpEndCpTΣ, jqq : γ1p0q ÞÑ Bsjγpsq
ˇ̌
s“0

defined by choosing smooth paths γpsq P P through γp0q “ τ sends TτP
injectively onto to a complement of the image of the canonical Cauchy-
Riemann operator DId : W k,p

Θ pTΣq Ñ W k´1,ppEndCpTΣ, jqq of pΣ, jq.
We shall typically identify a Teichmüller slice with its image

T :“
ď

τPP
tjτu Ă J pΣq,

which we regard as a smoothly embedded finite-dimensional submanifold of J pΣq
that contains j0 and has tangent spaces

TjT Ă ΓpEndCpTΣ, jqq
given by the image of the map (7.5); symbolically, the third condition then says

DIdpW k,p
Θ pTΣqq ‘ TjT “ W k´1,ppEndCpTΣ, jqq for each j P T .

Exercise 7.13. Verify that the image of the map (7.5) is automatically a section
of EndCpTΣ, jq, not just EndRpTΣq.

Exercise 7.14. Show that the definition of a Teichmüller slice does not depend
on the choices of Sobolev parameters k P N and p P p1,8q. Hint: Elliptic regularity.

The important consequence of the identification Trj0sT pΣ,Θq “ cokerDId is that
in practice, Teichmüller slices are relatively easy to construct:

Proposition 7.15. Suppose P is a finite-dimensional manifold and tjτ P J pΣquτPP
is a smooth family of complex structures such that jτ0 “ j0 for some τ0 P Θ and the
third condition in Definition 7.12 is satisfied for τ “ τ0. Then tjτuτPP becomes a
Teichmüller slice after replacing P with any sufficiently small open neighborhood of
τ0 in P . �

It is easy to see that Teichmüller slices always exist, e.g. first choose Tj0T Ă
ΓpEndCpTΣqq to be any complement of imDId, let O Ă Tj0T be a suitably small
neighborhood of 0 in this vector space, and define a family tjy P J pΣquyPO by

(7.6) jy “
ˆ
1 ` 1

2
j0y

˙
j0

ˆ
1 ` 1

2
j0y

˙´1

,

where the inverse on the right is defined as long as y P O is sufficiently small.
We will often need Teichmüller slices that satisfy a few additional properties, and

for this purpose, it is useful to consider the stable and non-stable cases separately.
Non-stable pointed Riemann surfaces include the spheres with at most two marked
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points and the torus with no marked points. For spheres pS2, j,Θq, the uniformiza-
tion theorem (see Theorem 9.22) implies that pS2, jq is always biholomorphically
equivalent to the standard Riemann sphere pS2, iq, i.e. the extended complex plane
C Y t8u. Moreover, if there are no more than three marked points, then we can
choose biholomorphic maps to assign each of them wherever we like: the standard
convention is to make Θ a subset of the points 8, 0 and 1 in that order. It fol-
lows that M0,ℓ is a one-point space for ℓ ď 2, and since the mapping class group is
trivial in these cases, so is T pS2,Θq for #Θ ď 2 (cf. Exercise 7.11). Precise descrip-
tions of the automorphism groups in these cases are well known: AutpS2, iq is the
6-dimensional group of fractional linear transformations

C Y t8u Ñ C Y t8u : z ÞÑ az ` b

cz ` d
, a, b, c, d P C with ad ´ bc “ 1,

often denoted by PSLp2,Cq :“ SLp2,Cq{t˘1u, while AutpS2, i, p8qq “ AutpC, iq
is the 4-dimensional group of affine transformations on C, and AutpS2, i, p0,8qq “
GLp1,Cq “ C˚. Equation (7.3) now translates into the observation that when
#Θ ď 2, T pS2,Θq is discrete and AutpS2, i,Θq “ AutpS2zΘ, iq is a Lie group of
dimension 6 ´ 2p#Θq.

Remark 7.16. The main points in the previous paragraph can also be deduced
from holomorphic curve theory without any knowledge of the uniformization the-
orem or the mapping class group. In particular, the fact that T pS2,Θq is dis-

crete for #Θ ď 3 follows already from the observation that DId : W k,p
Θ pTS2q Ñ

W k´1,ppEndCpTS2qq in these cases is surjective. We proved this previously for
the case Θ “ H, and the other cases follow similarly: our explicit descriptions
of AutpS2, i,Θq give easy lower bounds for dim kerDId, and these match the up-
per bounds one gets by counting zeroes of holomorphic vector fields. Feeding this
knowledge into the implicit function theorem and applying a bit of compactness
theory as in Proposition 7.9, one can even turn this into a proof (without need of
uniformization) that T pS2,Θq is a one-point space. Notice that all complex struc-
tures compatible with a given orientation on a surface are also compatible with a
symplectic form, thus they form a contractible space. Given j P J pS2q, it follows
that there exists a smooth path tjs P J pS2qusPr0,1s with j0 “ i and j1 “ j, and the
idea is then to show that the parametric moduli space

 
ps, ϕq

ˇ̌
s P r0, 1s and ϕ : pS2, iq Ñ pS2, jsq holomorphic

with degpϕq “ 1 and ϕpζq “ ζ for ζ “ 0, 1,8
(

is a smooth, compact and connected 1-manifold with boundary for which the projec-
tion ps, ϕq ÞÑ s is a diffeomorphism to r0, 1s. This gives rise to a smooth 1-parameter
family of diffeomorphisms ϕs P Diff0pS2,Θq such that ϕ0 “ Id and ϕ˚

sjs “ i for ev-
ery s, proving rjs “ ris P T pS2,Θq if Θ Ă t0, 1,8u.

Remark 7.17. No nontrivial transformation in PSLp2,Cq fixes more than two
distinct points on S2, thus AutpS2, i,Θq is always a trivial group when #Θ ě 3,
and Exercise 7.11 then implies that M0,ℓ is a manifold. One can also see this more
directly, as every pointed Riemann sphere pS2, j,Θq with ℓ ě 3 marked points is
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equivalent to a unique one of the form pS2, i,Θ1q where Θ1 “ p0, 1,8, ζ4, . . . , ζℓq.
This gives a natural homeomorphism between M0,ℓ and the set of ordered pℓ ´ 3q-
tuples of distinct points in S2zt0, 1,8u.

The torus with no marked points is more interesting, as it is the only case for
which both the Teichmüller space and the automorphism group have positive di-
mensions (equal, according to (7.3)). Applying uniformization again, the universal
cover of any genus one Riemann surface pT2, jq is the standard complex plane pC, iq,
which means that pT2, jq is always biholomorphic to the quotient of pC, iq by a lattice
Λ Ă C. We can assume without loss of generality that Λ is generated by 1 P C and
some point λ in the upper half plane H Ă C. Acting on i with the real-linear trans-
formation that sends 1 ÞÑ 1 and λ ÞÑ i then identifies pC{Λ, iq biholomorphically
with pT2, jλq, where T2 “ R2{Z2 and jλ is a translation-invariant complex structure
compatible with the orientation of T2. In fact, every such translation-invariant com-
plex structure on T2 can be obtained in this way, thus we have now parametrized
the set of all translation-invariant complex structures on T2 by the upper half plane.

Lemma 7.18. For λ, λ1 P H, the translation-invariant complex structures jλ and
jλ1 on T2 represent the same element in the Teichmüller space T pT2q if and only if
λ “ λ1.

Proof. If rjλs “ rjλ1s P T pT2q, then jλ “ ϕ˚jλ1 for some ϕ P Diff0pT2q, which
can be lifted to a diffeomorphism of C that fixes the lattice Z` iZ. Transforming via
the real-linear map that sends 1 ÞÑ 1 and λ ÞÑ i, this gives rise to a map ψ : C Ñ C

that is biholomorphic with respect to the standard complex structure and satisfies
ψp0q “ 0, ψp1q “ 1 and ψpλq “ λ1. But the only biholomorphic map on C that fixes
two points is the identity. �

Since every pT2, jq is biholomorphically equivalent to at least one of the pT2, jλq
by uniformization, the lemma implies that the smooth family

(7.7) T :“
 
jλ P J pT2q

(
λPH

globally parametrizes the Teichmüller space T pT2q. It should now seem unsurprising
that T is also a Teichmüller slice in the sense of Definition 7.12 through each jλ. One
can prove this by writing down the canonical Cauchy-Riemann operator for pC{Λ, iq
as the standard B̄ on a trivial complex line bundle, so for a natural choice of L2-
pairings, its formal adjoint is ´B on a similarly trivial line bundle. The kernel of the
latter is the space of constant functions C{Λ Ñ C, which has a natural identification
with the tangent space TjλT for each λ P H.

One can form a similarly explicit picture of the groups AutpT2, jλq for each λ P H.
First, let ζ “ rp0, 0qs P R2{Z2 “ T2, and consider the subgroup

AutpT2, jλ, ζq “
 
ψ P AutpT2, jλq

ˇ̌
ψpζq “ ζ

(
.

We know this subgroup is finite since pT2, jλ, pζqq is stable, but we can be more
precise. Identifying pT2, jλq with pC{Λ, iq, any ψ P AutpT2, jλq that fixes ζ lifts via

the projection C Ñ C{Λ to a biholomorphic map rψ : pC, iq Ñ pC, iq that fixes the

origin. All such maps are of the form rψpzq “ cz for some c P C˚, implying that ψ is
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the projection to T2 “ C{pZ` iZq of a real-linear map on C which preserves Z` iZ.
In other words, ψ P SLp2,Zq, and this discussion implies

AutpT2, jλ, ζq “
 
ψ P SLp2,Zq

ˇ̌
ψ˚jλ “ jλ

(
.

It is not hard to show explicitly that this group is finite, though its order will depend
in general on λ. For finiteness, note that it is discrete, and after a suitable change of
basis transforming jλ to the standard complex structure i, can be identified with a
subgroup of SLp2,Rq XGLp1,Cq “ Up1q, which is compact. Now observe that since
every jλ is translation-invariant, AutpT2, jλq also contains a complentary subgroup
which is a copy of T2 acting on T2 by translations. Clearly any ψ P AutpT2, jλq
can be composed with a translation to produce an element of AutpT2, jλ, ζq, so this
presents the full automorphism group as a semidirect product

AutpT2, jλq “ T2 ¸ AutpT2, jλ, ζq.
The main observation we would like to take away from this decription is the fol-
lowing: for every λ P H, the action of AutpT2, jλq on J pΣq preserves the specific
Teichmüller slice defined in (7.7). That is a property we will want to have more
generally:

Proposition 7.19. Given any pointed Riemann surface pΣ, j0,Θq, there exists
a Teichmüller slice T through pj0,Θq with the following properties:

(1) T is preserved under the group action

AutpΣ, j0,Θq ˆ J pΣq Ñ J pΣq
pψ, jq ÞÑ ψ˚j;

(2) For every j P T , AutpΣ, j,Θq X Diff0pΣ,Θq “ AutpΣ, j0,Θq X Diff0pΣ,Θq;
(3) Every j P T equals j0 near Θ.

Proof. There is nothing to prove if Σ “ S2 and #Θ ď 2, since T pΣ,Θq is
trivial in these cases. For the case Σ “ T2 and Θ “ H, the third condition we
want to satisfy is vacuous, and the first two are satisfied by the explicit Teichmüller
slice defined in (7.7); in particular, AutpT2, jλq X Diff0pT2q is the same group of
translations for all λ P H. It therefore remains only to deal with cases where
pΣ, j0,Θq is stable, so that

G :“ AutpΣ, j0,Θq
is a finite group and GXDiff0pΣ,Θq is trivial, making the second condition vacuous.
To produce a slice T that is G-invariant, it suffices to find a G-invariant complement
Tj0T for imDId and then follow the prescription of (7.6). Note that imDId is itself
G-invariant, so for this purpose, it is enough to choose a G-invariant L2-pairing
on the sections of EndCpTΣq, and define Tj0T as the L2-orthogonal complement
of imDId. Elliptic regularity for weak solutions implies that the elements of Tj0T
are then smooth. A suitable L2-pairing can be defined naturally in terms of a
G-invariant Riemannian metric on Σ, which is easy to construct by an averaging
procedure since G is finite.

Having constructed Tj0T to be G-invariant, we can now modify it as follows.
Fix a small G-invariant neighborhood U Ă Σ of Θ and a smooth G-invariant cutoff
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function β : Σ Ñ r0, 1s such that 1´ β is supported in U and β “ 0 near Θ. Taking
U sufficiently small, we can assume that the transformation

y ÞÑ βy

maps any bounded subset of the finite-dimensional space Tj0T to something arbitrar-
ily close in the Lp-norm, so that without loss of generality, the space tβy | y P Tj0T u
is also a G-invariant complenent to the image of DId :W 1,p

Θ pTΣq Ñ LppEndCpTΣqq.
Since βy always vanishes near Θ, applying (7.6) to this new subspace now pro-
duces a G-invariant Teichmüller slice consisting of complex structures that match
j0 near Θ. �

Remark 7.20. If pΣ, j0,Θq is stable, then the cutoff trick in the proof above
extends easily to give an AutpΣ, j0,Θq-invariant Teichmüller slice T such that each
j P T can be assumed to match j0 near any finite set fixed in advance (not just Θ).
If we are willing to allow Teichmüller slices that are not AutpΣ, j0,Θq-invariant, then
this remains true in the non-stable cases as well, and is sometimes useful, e.g. this
freedom is exploited in the proof of automatic transversality for non-immersed J-
holomorphic curves in 4-manifolds (see [Wen10a, Lemma 3.15]).

Lemma 7.21. For any Teichmüller slice T through pj0,Θq that is preserved by
the action of G :“ AutpΣ, j0,Θq, the subgroup G0 :“ AutpΣ, j0,Θq X Diff0pΣ,Θq
acts trivially on T , hence the G-action descends to an action of H :“ G{G0 on T ,
and the natural map

T
L
H Ñ Mg,ℓ

induced by restricting the quotient projection J pΣq Ñ J pΣq{DiffpΣ,Θq to T is a
local homeomorphism near rj0s.

Proof. The triviality of the action by G0 on T is immediate from the fact that
no two points in T represent the same element of Teichmüller space. Exercise 7.11
identifies Mg,ℓ with T pΣ,Θq{MpΣ,Θq, where the mapping class groupMpΣ,Θq acts
on T pΣ,Θq with finite stabilizer group H at rj0s P T pΣ,Θq. Since the mapping class
group is discrete and H is finite, a neighborhood of rpΣ, j0,Θqs in Mg,ℓ then has a
natural identification with U{H for some H-invariant neighborhood U Ă T pΣ,Θq
of rj0s. This neighborhood is identified with a neighborhood U 1 Ă T of j0 via the
map T Ñ T pΣ,Θq : j ÞÑ rjs, but the latter is also H-equivariant, so it descends to
a homeomorphism U 1{H Ñ U{H . �

7.3.3. Adding marked points. The lemma below is not necessary for the
proof of Theorem 7.1, but will be needed in §7.5 for results involving forgetful maps.

According to the dimension formula (7.4), each marked point added to a stable
Riemann surface increases the dimension of Teichmüller space by 2. It will occa-
sionally be useful to have a more precise description of how Teichmüller slices can
be modified under the addition of marked points. Notice that for any nested pair
Θ Ă Θ1 Ă Σ of finite ordered subsets, Diff0pΣ,Θ1q is a subgroup of Diff0pΣ,Θq,
giving rise to a canonical projection map between Teichmüller spaces

T pΣ,Θ1q “ J pΣq{Diff0pΣ,Θ1q Ñ J pΣq{Diff0pΣ,Θq “ T pΣ,Θq.
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The next lemma implies that this map is always a smooth submersion. For simplicity
of notation, we shall consider only the case where Θ consists of the first ℓ elements
in the ordered set Θ1 for some ℓ ě 0.

Lemma 7.22. Suppose pΣ, j0,Θq is a pointed Riemann surface with ℓ ě 0 marked
points Θ “ pw1, . . . , wℓq, and given another ordered set of distinct points pζ1, . . . , ζkq
in ΣzΘ, let Θ1 “ pw1, . . . , wℓ, ζ1, . . . , ζkq.

(1) If pΣ, j0,Θq is not stable and k “ 1, then every Teichmüller slice through
pj0,Θq is also a Teichmüller slice through pj0,Θ1q and vice versa.

(2) If pΣ, j0,Θq is stable, then for any neighborhood V Ă ΣzΘ of tζ1, . . . , ζku,
there exist Teichmüller slices T through pj0,Θq and T 1 through pj0,Θ1q that
each satisfy the conditions of Proposition 7.19, where T 1 is of the form

T 1 “ tϕ˚
τ j P J pΣqupj,τqPT ˆpU1ˆ...ˆUkq

for some smooth family of diffeomorphisms tϕτ : Σ Ñ ΣuτPU1ˆ...ˆUk
para-

metrized by the product of a set of disjoint neighborhoods

ζ1 P U1 Ă V Ă ΣzΘ, . . . ζk P Uk Ă V Ă ΣzΘ,
such that each ϕτ is supported in V, ϕτ “ Id for τ “ pζ1, . . . , ζkq, and

ϕτ pζiq “ ζ 1
i for each i “ 1, . . . , k if τ “ pζ 1

1, . . . , ζ
1
kq.

Notice that in the construction for the stable case, T 1 contains T as the subfamily
tϕ˚

τ j | j P T , τ “ pζ1, . . . , ζkqu, and under the natural identifications of T and T 1

with subsets of T pΣ,Θq and T pΣ,Θ1q respectively, the canonical map T pΣ,Θ1q Ñ
T pΣ,Θq becomes identified with the natural projection map T ˆ U1 ˆ . . .Uk Ñ T .
The main point of the construction is that since

pΣ, ϕ˚
τ j, pw1, . . . , wℓ, ζ1, . . . , ζkqq „ pΣ, j, pw1, . . . , wℓ, ϕτ pζ1q, . . . , ϕτ pζkqqq ,

the extra 2k dimensions in T 1 compared with T now have an obvious geometric
interpretation as the freedom to move the extra k marked points.

Proof of Lemma 7.22. We handle the non-stable cases first: if Σ – S2, ℓ ď
2 and k “ 1, then there is nothing to prove because T pΣ,Θq and T pΣ,Θ1q are
both trivial. The remaining non-stable case is Σ – T2 with ℓ “ 0 and k “ 1, so
T pΣ,Θq “ T pT2q and T pΣ,Θ1q “ T pT2, ζq are both 2-dimensional manifolds, and
we can assume j0 is one of the translation-invariant complex structures jλ introduced
above Lemma 7.18. The key observation here is that the image of the canonical
Cauchy-Riemann operator

DId : W k,ppTT2q Ñ W k´1,ppEndCpTT2qq

does not change if we restrict its domain to W k,p
Θ1 pTT2q, as kerDId “ TId AutpT2, jλq

is precisely the space of constant vector fields, defining a closed complement of the
subspace W k,p

Θ1 pTT2q of vector fields that vanish at ζ :

W k,ppTT2q “ W
k,p
Θ1 pTT2q ‘ kerDId.
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As a consequence, subspaces complementary to imDId are the same with repect to
both domains, so that the defining property of a Teichmüller slice is the same for
pT2, jλq as it is for pT2, jλ, ζq.

Now assume pΣ, j0,Θq is stable, so the automorphism groups

G :“ AutpΣ, j0,Θq and G1 :“ AutpΣ, j0,Θ1q
are finite, with G1 Ă G. By Prop. 7.19 and Remark 7.20, we can find a G-invariant
Teichmüller slice T through pj0,Θq such that every j P T matches j0 on a neigh-
borhood of Θ1. In particular, there are fixed disjoint neighborhoods Ui Ă Σ of the
points ζi for i “ 1, . . . , k on which all j P T match j0. Let us fix such a set of
neighborhoods, which we can assume to be contained in any given neighborhood
V Ă ΣzΘ of tζ1, . . . , ζku, and also fix holomorphic coordinates identifying each bi-
holomorphically with pD, iq so that ζi is the origin. Since G

1 acts j0-holomorphically
and fixes each ζi, we can also assume that the G1-action on Σ preserves these coor-
dinate neighborhoods and acts on each by rotations with respect to the coordinates.
Now choose a smooth cutoff function β : r0, 1s Ñ r0, 1s with βpsq “ 1 near s “ 0
and βpsq “ 0 near s “ 1, and for each i “ 1, . . . , k, define

Vi Ă ΓpTΣq
to be the vector space of all smooth vector fields that are supported in Ui and take
the form

Xpzq “ βp|z|qX0

in the chosen coordinates on this neighborhood, where X0 P C is an arbitrary
constant. The direct sum

V 1 “ V1 ‘ . . .‘ Vk

is then a 2k-dimensional subspace of ΓpTΣq satisfying

(7.8) W
k,p
Θ pTΣq “ W

k,p
Θ1 pTΣq ‘ V 1,

and since elements of G1 act on the coordinate neighborhoods by rotations, the
induced action of G1 on W

k,p
Θ pTΣq defined by pullbacks preserves this splitting.

Now choose a G1-invariant neighborhood O1 Ă V 1 of the origin and define a smooth
family of diffeomorphisms

tϕX P DiffpΣ,ΘquXPO1 ,

where for each X P O1, ϕX is the time-1 flow of X , which is supported in U1Y. . .YUk
and therefore fixes Θ. Since each X P V 1 is holomorphic near the points ζi, we can
assume after possibly shrinking O1 that every ϕX is j0-holomorphic on some smaller
neighborhood of these points for X P O1. We can then define T 1 as the smoothly
parametrized family

T 1 “ tϕ˚
Xj P J pΣqupj,XqPT ˆO1 .

Since every j P T matches j0 near Θ1 and every ϕX has support in U1 Y . . . Y Uk
and is holomorphic on a smaller neighborhood of tζ1, . . . , ζku, every j P T 1 has the
desired property that it matches j0 near Θ1. Moreover, T 1 is G1-invariant since the
same is true of both T and the collection of diffeomorphisms tϕXuXPO1 . To see that
T 1 really is a Teichmüller slice through pj0,Θ1q, which correponds to the parameter
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pj0, 0q P T ˆ O1, we observe that differentiating ϕ˚
Xj with respect to variations in

j P T at pj,Xq “ pj0, 0q produces Tj0T , while fixing j “ j0 and differentiating with
respect to variations in X P O1 produces DIdpV 1q, hence

Tj0T
1 “ Tj0T ‘ DIdpV 1q.

This is indeed a complementary subspace to the image of DId : W k,p
Θ1 pTΣq Ñ

W k´1,ppEndCpTΣqq in light of (7.8), since the image of DId on the larger domain

W
k,p
Θ pTΣq is complementary to Tj0T .
Finally, we observe that by construction, the map

O1 Ñ U1 ˆ . . .ˆ Uk : X ÞÑ pϕXpζ1q, . . . , ϕXpζkqq
sends some neighborhood of 0 diffeomorphically to a neighborhood of pζ1, . . . , ζkq,
so after shrinking neighborhoods as necessary, we can reparametrize the family
tϕXuXPO1 according to the images of the points ζ1, . . . , ζk as in the statement of
the lemma. �

7.4. Fredholm regularity and the implicit function theorem

We are now in a position to define the necessary regularity condition and prove
that a neighborhood of any given regular element rpΣ, j0,Γ`,Γ´,Θ, u0qs in MpJq is
an orbifold of the stated dimension. After reparametrizing, we can assume without
loss of generality that Σ, Γ˘ and Θ are precisely the data that were fixed in §7.2,
and j0 P J pΣq matches jΓ on our fixed coordinate neighborhoods of Γ˘. Combining
the local regularity results of Lecture 2 with the exponential convergence result in
§6.5, we also have

u0 P Bk,p,δ

for every k P N and p P p1,8q with kp ą 2 and δ ą 0 sufficiently small, so u0
belongs to the zero set of the smooth section B̄j0,J : Bk,p,δ Ñ Ek´1,p,δ. Let us fix the
parameters k, p, δ, and also assume that δ is small enough for our computation of
the index of Du : TuB

k,p,δ Ñ Ek´1,p,δ
u in Corollary 7.7 to be valid.

In order to build variations in j0 into this setup, we choose a Teichmüller slice

T Ă J pΣq
through pj0,ΓYΘq as provided by Prop. 7.19, so in particular, T is invariant under
the action of the group

G :“ AutpΣ, j0,Γ Y Θq
of biholomorphic maps fixing Γ Y Θ, and every j P T matches jΓ near Γ. Equation
(7.3) now becomes

(7.9) dimG ´ dim T “ 3χpΣq ´ 2pk` ` k´ ` mq.
There is a natural extension of the nonlinear operator B̄j0,J in §7.2 to a smooth

section
B̄J : T ˆ Bk,p,δ Ñ Ek´1,p,δ : pj, uq ÞÑ du` Jpuq ˝ du ˝ j

of a Banach space bundle Ek´1,p,δ Ñ T ˆ Bk,p,δ with fibers

Ek´1,p,δ
pj,uq “ W k´1,p,δ

`
HomCppT 9Σ, jq, pu˚TxW,Jqq

˘
.
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Since the action of G on J pΣq preserves T , each ϕ P G defines a diffeomorphism

T ˆ Bk,p,δ Ñ T ˆ Bk,p,δ : pj, uq ÞÑ ϕ ¨ pj, uq :“ pϕ˚j, u ˝ ϕq
which is covered by a bundle map Ek´1,p,δ Ñ Ek´1,p,δ given by

Ek´1,p,δ
pj,uq Ñ Ek´1,p,δ

pϕ˚j,u˝ϕq : λ ÞÑ ϕ ¨ λ :“ λ ˝ dϕ.

The section B̄J : T ˆ Bk,p,δ Ñ Ek´1,p,δ is equivariant with respect to this G-action.

Its zero set is the set of all pairs pj, uq P T ˆ Bk,p,δ for which u : p 9Σ, jq Ñ pxW,Jq is
pseudoholomorphic, and it contains pj0, u0q by construction. It also is preserved by
the action of G, thus each ϕ P G acts on B̄´1

J p0q by

(7.10) B̄´1
J p0q Ñ B̄´1

J p0q : pj, uq ÞÑ pϕ˚j, u ˝ ϕq.
The stabilizer of this action at pj0, u0q is Autpu0q, a finite group whenever u0 is not
constant (see Proposition 6.37). Observe that any two elements in the same G-orbit
of B̄´1

J p0q define equivalent elements of the moduli space MpJq, as they are related
to each other by a biholomorphic reparametrization that fixes the punctures and
marked points.

Proposition 7.23. The map

B̄´1
J p0q

L
G Ñ MpJq : rpj, uqs ÞÑ rpΣ, j,Γ`,Γ´,Θ, uqs

defines a homeomorphism from an open neighborhood of rpj0, u0qs to an open neigh-
borhood of rpΣ, j0,Γ`,Γ´,Θ, u0qs.

The tricky aspect of this statement is that arbitrary elements of MpJq near u0
may be given with representatives u : p 9Σ, jq Ñ pxW,Jq for which j is close to j0 but
does not belong to the chosen Teichmüller slice T . We will therefore have to replace
such curves by reparametrizations, making use of the following lemma:

Lemma 7.24. Suppose ϕν P DiffpΣ,Γq is a sequence with convergence ϕν Ñ Id in

C8pΣq, and let sΣ denote the compactification of 9Σ to a compact topological surface

with boundary as described in §6.4. Then the restricted maps 9Σ
ϕνÑ 9Σ converge in

C8
locp 9Σq and have continuous extensions sΣ sϕνÑ sΣ that converge in C0psΣq.

Proof. The C8
loc-convergence on

9Σ is clear. For C0-convergence on sΣ, it suffices
to prove uniform convergence on each of the cylindrical ends. Let us choose local
coordinates near one of the punctures, identifying a neighborhood with the unit disk
D Ă C such that the puncture becomes 0 P D. Since ϕν P DiffpΣ,Γq and ϕν Ñ Id,
we can then assume ϕνpD1{2q Ă D for ν large and ϕνp0q “ 0, hence

ϕνpzq “ Aνpzqz for z P D1{2,

where Aν : D1{2 Ñ EndRpCq is a C8-convergent sequence with Aνp0q “ dϕνp0q and
Aν Ñ 1. Let us now rewrite this in the cylindrical coordinates

s ` it P C{iZ – R ˆ S1
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related to z by z “ e´2πps`itq: for s ą 0 sufficiently large, ϕν then takes the form

ϕνps ` itq “ ´ 1

2π
log pAνpzqzq “ ´ 1

2π
log

ˆ
e´2πsAνpzq z|z|

˙

“ s ´ 1

2π
log

`
Aνpzqe´2πit

˘
Ñ s ` it,

where since Aνe
´2πit stays a positive distance away from 0 for large ν, the conver-

gence is uniform in s and t. �

Proof of Proposition 7.23. There are four issues to address: that the map
in question is both injective and surjective on sufficiently small neighborhoods, and
also that the map and its inverse are both continuous.

For injectivity, let us abbreviate

Θ1 :“ Γ Y Θ,

and let H Ă MpΣ,Θ1q denote the stabilizer of rj0s P T pΣ,Θ1q under the action of
MpΣ,Θ1q on T pΣ,Θ1q. According to Exercise 7.11, the inclusion G ãÑ DiffpΣ,Θ1q
descends to an isomorphism G{G0 Ñ H , where

G0 :“ G X Diff0pΣ,Θ1q.
Suppose pj, uq, pj1, u1q P B̄´1

J p0q represent the same element of MpJq, meaning there
exists a diffeomorphism ϕ P DiffpΣ,Θ1q with j1 “ ϕ˚j and u1 “ u ˝ ϕ. Assume both
are sufficiently close to pj0, u0q so that rjs, rj1s P T pΣ, θq both lie in some H-invariant
neighborhood U Ă T pΣ,Θ1q of rj0s that is small enough to be disjoint from rψs ¨ U
for every rψs P MpΣ,Θ1qzH . The condition ϕ˚j “ j1 then implies rϕs P H , hence
rϕs “ rψs P MpΣ,Θ1q for some ψ P G. The latter then satisfies

rψ˚js “ rψs ¨ rjs “ rϕs ¨ rjs “ rϕ˚js “ rj1s P T pΣ,Θ1q,
but since T is G-invariant and the map T Ñ T pΣ,Θ1q : j ÞÑ rjs is injective,
ψ˚j P T then implies ψ˚j “ j1. The map ϕ˝ψ´1 therefore belongs to AutpΣ, j,Θ1qX
Diff0pΣ,Θ1q, which according to Proposition 7.19 can be assumed to be a subgroup
of G. This proves ϕ P G, hence pj, uq and pj1, u1q are equivalent in B̄´1

J p0q{G.
We next prove surjectivity. According to our definition of the topology of MpJq

in §6.4, any sequence in MpJq converging to rpΣ, j0,Γ`,Γ´,Θ, u0qs can be written
as rpΣ, jν ,Γ`,Γ´,Θ, uνqs P MpJq, where

jν Ñ j0 in C8pΣq, uν Ñ u0 in C8
locp 9Σq, and ūν Ñ ū0 in C0psΣq.

Claim: These sequences can always be modified, without changing the equivalence
classes in MpJq, so as to assume jν P T for all ν sufficiently large.

Consider first the stable case, i.e. χpΣzΘ1q ă 0. The convergence jν Ñ j0 implies
rjνs Ñ rj0s in T pΣ,Θ1q, so by the local homeomorphism of T pΣ,Θ1q with T near j0,
there exists a sequence ϕν P Diff0pΣ,Θ1q for ν sufficiently large satisfying

j1
ν :“ ϕ˚

νjν P T and j1
ν Ñ j0.

Since the action of Diff0pΣ,Θ1q on J pΣq is proper, ϕν then has a C8-convergent
subsequence whose limit is in G0, and the freeness of the action then implies that
this limit is the identity map. Since that is the only possible limit for convergent
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subsequences of ϕν , this proves ϕν Ñ Id, and we are then free to replace jν and uν
by j1

ν P T and u1
ν :“ uν ˝ϕν respectively. Lemma 7.24 implies that u1

ν still converges

to u0 in both C8
locp 9Σq and C0psΣq, so this proves the claim.

In the non-stable cases χpΣzΘ1q ě 0, the argument above requires the follow-
ing small modification. Expand Θ1 to a slightly larger finite set Θ2 Ă Σ so that
χpΣzΘ2q “ ´1; this requires adding one extra marked point in the case Σ “ T2

with Γ “ Θ “ H, and up to three extra points if Σ “ S2. In either case, the group
of homotopically trivial automorphisms G0 is exactly large enough to find ψν P G0

sending the extra marked points to any desired images, thus we can choose ψν to
make ϕν ˝ψν fix all points in Θ2. By the second condition in Proposition 7.19, the ψν
also belong to AutpΣ, j1

ν ,Θ
1q, thus ϕν ˝ψν is now a sequence of biholomorphic maps

pΣ, j1
νq Ñ pΣ, jνq that fix Θ2, and the argument of the previous paragraph implies

ϕν ˝ ψν Ñ Id. Replacing jν and uν with j2
ν :“ pϕν ˝ ψνq˚jν and u2

ν :“ uν ˝ pϕν ˝ ψνq
then proves the claim.

With the claim in place, relabel the modified sequences as jν and uν, and notice

that the maps uν : p 9Σ, jνq Ñ pxW,Jq now satisfy the hypotheses of Proposition 6.32,
implying that uν converges to u0 in the topology of Bk,p,δ, hence pjν , uνq P B̄´1

J p0q and
pjν , uνq Ñ pj0, u0q. This proves both surjectivity and the continuity of the inverse
map.

The continuity of the map B̄´1
J p0q{G Ñ MpJq is an easy consequence of elliptic

regularity: specifically, Corollary 2.25 implies that any W k,p
loc -convergent sequence of

J-holomorphic curves is also C8
loc-convergent, and C

0-convergence on the ends follows
from W k,p,δ-convergence since the latter implies W k,p-convergence and kp ą 2. �

Definition 7.25. We say that rpΣ, j0,Γ`,Γ´,Θ, u0qs is Fredholm regular if
there exists a choice of Teichmüller slice T through pj0,Γ,Θq such that the lineariza-
tion

DB̄Jpj0, u0q : Tj0T ‘ Tu0B
k,p,δ Ñ Ek´1,p,δ

pj0,u0q ,

py, ηq ÞÑ Jpu0q ˝ du0 ˝ y ` Du0η

is surjective.

Remark 7.26. It is not hard to show that the surjectivity condition in this
definition does not actually depend on the choice of Teichmüller slice. The key
point is that Tj0T is complementary to the image of the canonical Cauchy-Riemann

operator DId : W k,p
ΓYΘpTΣq Ñ W k´1,ppEndCpTΣqq. Composing the latter with du :

T 9Σ Ñ u˚TxW then produces a subspace of Ek´1,p,δ
pj0,u0q that is automatically contained

in imDu0 , because the smooth sections in this subspace can all be obtained by
differentiating B̄Jpj0, uq for a family of reparametrizations u “ u0 ˝ ϕ with ϕ P
DiffpΣ,Γ Y Θq. As a consequence, the operator in Definition 7.25 has the same
image as its obvious extension

W k´1,p,δpEndCpT 9Σqq ‘ Tu0B
k,p,δ Ñ Ek´1,p,δ

pj0,u0q ,

py, ηq ÞÑ Jpu0q ˝ du0 ˝ y ` Du0η,

which does not involve any Teichmüller slice. (For more detailed versions of this
argument, see [Wend, Lemma 4.3.2] or [Wen10a, Lemma 3.11]).
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Remark 7.27. The G-equivariance of B̄J implies that if rpΣ, j0,Γ`,Γ´,Θ, u0qs P
MpJq is Fredholm regular, then so is every curve rpΣ, j,Γ`,Γ´,Θ, uqs P MpJq for
which pj, uq P B̄´1

J p0q belongs to the same G-orbit as pj0, u0q.
The operator in Definition 7.25 is Fredholm, and we can plug in the formula

(7.9) for dimTj0T “ dim T and Corollary 7.7 for indDu to compute

indDB̄Jpj0, u0q “ dimTj0T ` indDu0

“ dimG ´ 3χpΣq ` 2p#Γq ` 2m ` nχpΣq ´ pn ´ 1q#Γ

` 2cτ1pu˚TxW q `
kÿ̀

j“1

µτCZpγ`
j q ´

kÿ́

j“1

µτCZpγ´
j q

“ dimG ` pn´ 3qχp 9Σq ` 2cτ1pAq `
kÿ̀

j“1

µτCZpγ`
j q ´

kÿ́

j“1

µτCZpγ´
j q ` 2m

“ dimG ` vir-dimMpJq.
It follows that if DB̄Jpj0, u0q is surjective, then its kernel has finite dimension equal
to dimG`vir-dimMpJq and thus admits a closed complement, so DB̄Jpj0, u0q then
admits a bounded right inverse. We can therefore apply the infinite-dimensional
version of the implicit function theorem (see e.g. [Lan99, §I.5]) to conclude:

Lemma 7.28. If rpΣ, j0,Γ`,Γ´,Θ, u0qs P MpJq is Fredholm regular, then some
G-invariant neighborhood V Ă B̄´1

J p0q of pj0, u0q is a smooth submanifold of T ˆBk,p,δ

with dimension dimG ` vir-dimMpJq. �

It should now be clear how we intend to get from here to the statement that
MregpJq is an orbifold of dimension equal to vir-dimMpJq. Proposition 7.23 iden-
tifies a neighborhood of u0 P MregpJq with a neighborhood of rpj0, u0qs in B̄´1

J p0q{G,
where a G-invariant neighborhood of pj0, u0q in B̄´1

J p0q can be assumed to be a
smooth manifold of the correct dimension, and the action of G on B̄´1

J p0q is proper
with finite stabilizer subgroups given by the automorphism groups of each curve.
There is just one caveat: to conclude that B̄´1

J p0q{G is a smooth orbifold, we need to
know that the G-action on B̄´1

J p0q is smooth, and this is less obvious than it looks.
The naive way one would try to prove it is by showing that the G-action on the
infinite-dimensional Banach manifold T ˆ Bk,p,δ is smooth—if it is, then its restric-
tion to the smooth submanifold B̄´1

J p0q is also smooth. There is just one problem:
if G is not discrete, then the map

G ˆ pT ˆ Bk,p,δq ΦÝÑ T ˆ Bk,p,δ : pϕ, pj, uqq ÞÑ pϕ˚j, u ˝ ϕq
is definitely not smooth—in fact it is not even differentiable, at least not with respect
to variations in G. One can see this by trying to compute its partial derivative at a
point pId, pj, uqq with respect to variations in G: given a vector field X P ΓpTΣq in
the Lie algebra of G, choosing a smooth family ϕρ P G with ϕ0 “ Id and Bρϕρ|ρ“0 “
X gives

dΦpId, pj, uqqpX, p0, 0qq “
`
Bρpϕ˚

ρjq|ρ“0, Bρpu ˝ ϕρq|ρ“0

˘
“ pDIdpjXq, dupXqq .
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The trouble here is that for arbitrary elements pj, uq P T ˆ Bk,p,δ, the expression on

the right hand side does not belong to Tpj,uqpT ˆBk,p,δq; if u is of class W k,p
loc but not

W
k`1,p
loc , then the section dupXq of u˚TxW will not be of class W k,p

loc and thus does not
belong to TuB

k,p,δ. This annoying issue arises whenever one attempts to differentiate
non-discrete reparametrization actions on infinite-dimensional Banach manifolds of
maps, and the desire to view such maps as “smooth” was part of the motivation for
the development of sc-calculus by Hofer-Wysocki-Zehnder (see e.g. [FFGW16] and
the references therein).

For the problem at hand, however, it is not necessary to reinvent differential
calculus. The situation is saved by the fact that, due to elliptic regularity, elements of
B̄´1
J p0q are much nicer than arbitrary maps of classW k,p,δ, and moreover, convergence
of elements of B̄´1

J p0q implies something much stronger than justW k,p,δ-convergence.

Lemma 7.29. For the smooth G-invariant neighborhood V Ă B̄´1
J p0q of pj0, u0q

in Lemma 7.28, the action of G on V is smooth.

Sketch of the proof. To prove that the action is of class C1, it suffices to
show that for every pϕ, pj, uqq P G ˆ V and any choice of smooth charts for G near
ϕ and V near pj, uq, all partial derivatives of the map pϕ1, pj1, u1qq ÞÑ ppϕ1q˚j1, u1 ˝ϕ1q
are well defined and continuous on a neighborhood of pϕ, pj, uqq. For the derivatives
in directions tangent to B̄´1

J p0q this is already clear, as the action of each individual
element ϕ P G on the infinite-dimensional manifold T ˆ Bk,p,δ was smooth in the
first place. It therefore suffices to consider derivatives in directions tangent to G,
and for this purpose we can focus on the case ϕ “ Id since any smooth path in
G through ϕ can be written as the composition of ϕ (which acts smoothly) with a
path through Id. Let us therefore choose a smooth 1-parameter family ϕρ P G with
ϕ0 “ Id and write X :“ Bρϕρ|ρ“0 P g Ă ΓpTΣq. We have

Bρpϕ˚
ρj, u ˝ ϕρq

ˇ̌
ρ“0

“ pDIdpjXq, dupXqq P kerDB̄Jpj, uq “ Tpj,uqB̄´1
J p0q,

where the fact that the right hand side really belongs to Tpj,uqB̄´1
J p0q depends on the

fact that, by elliptic regularity, u is smooth. To show that this expression really is
the derivative of a differentiable path ρ ÞÑ pϕ˚

ρj, u ˝ ϕρq P T ˆ Bk,p,δ with respect to

the smooth structure of T ˆBk,p,δ, one needs to choose a Banach manifold chart for
Bk,p,δ and write down the maps uρ P Bk,p,δ in this chart. Following the prescription
of [El̆ı67], we can assume that the chart in question has the form

Bk,p,δ Q uρ “ expf ηρ ÞÑ ηρ P W k,p,δpf˚TxW q ‘ VΓ,

where f : 9Σ Ñ xW is a smooth map that matches trivial cylinders near each of

the punctures, and VΓ Ă Γpf˚TxW q is a finite-dimensional space of sections that
are “constant” near infinity as described in §7.2. The path ρ ÞÑ uρ P Bk,p,δ is then
differentiable if and only if the difference quotients

Dhηρ
ˇ̌
ρ“0

:“ ηh ´ η0

h
P W k,p,δpf˚TxW q ‘ VΓ

converge in the topology of W k,p,δpf˚TxW q ‘ VΓ to Bρηρ|ρ“0 as h Ñ 0. On this front,
the first important observation is that since u is smooth and ϕρ depends smoothly
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on ρ, the map pρ, zq ÞÑ ηρpzq is smooth with respect to ρ as well as z, thus by standard
results about difference quotients (see §A.3), the convergence Dhηρ|ρ“0 Ñ Bρηρ|ρ“0

as h Ñ 0 is in C8
locp 9Σq. One can then apply asymptotic regularity arguments as in

§6.5 to achieve exponentially weighted convergence on each cylindrical end.
One can next apply both local and asymptotic regularity in a similar way to

show that the tangent vector dupXq P TuBk,p,δ depends continuously on both X P g

and u P Bk,p,δ so long as pj, uq belongs to B̄´1
J p0q, the key point being that under that

condition, the W k,p,δ-convergence of u also implies convergence in a much stronger
topology, so that the apparent loss of a derivative in dupXq makes no difference.
This proves that the group action is of class C1.

Finally, the following observation gives rise to an inductive trick for going from
C1 to C8: there is a natural choice of almost complex structure J 1 on the manifold

TxW such that if M :“ B̄´1
J p0q is a smooth manifold, then its tangent bundle TM

can be identified with a space of J 1-holomorphic curves in xW , and differentiating
the G-action on M gives an action of TG on TM. The same regularity arguments
then prove that the action of TG on TM is of class C1, thus the original action is
of class C2, and so forth. �

Proof of Theorem 7.1. Combining all of the results above shows that ev-
ery curve in MregpJq has a neighborhood that can be identified with the quotient
of a smooth finite-dimensional manifold B̄´1

J p0q Ă T ˆ Bk,p,δ by the smooth action
of a Lie group G with finite isotropy such that dim B̄´1

J p0q{G “ vir-dimMpJq.
The moduli space MpJq thus inherits orbifold charts from the manifold charts
that B̄´1

J p0q obtains from applying the implicit function theorem to the section
B̄J : T ˆ Bk,p,δ Ñ Ek´1,p,δ. There is still a bit of work to be done in showing
that transition maps relating any two overlapping charts that arise in this way are
smooth. The hard part is actually to show that two charts constructed near a given
curve pj0, u0q via two different choices of Teichmüller slice are smoothly compatible.
This is yet another case where, as in Lemma 7.29, the smoothness cannot be seen at
the infinite-dimensional level, but only works on the finite-dimensional submanifolds
as a consequence of elliptic regularity. For details, see the proof of Theorem 4.3.6
in [Wend]. �

Exercise 7.30. Take a deep breath.

It will be useful also to take note of how the analytical picture of MpJq near a
Fredholm regular curve u0 P MpJq characterizes the tangent space Tu0MpJq. The

group G “ AutpΣ, j0,Γ Y Θq may be either finite or (if χp 9ΣzΘq ě 0) a positive-
dimensional Lie group, in which case we shall denote its Lie algebra by

g :“ autpΣ, j0,Γ Y Θq “ TIdG.

Recall that by Remark 6.31, we only need to consider nontrivial g in cases where

u0 : 9Σ Ñ xW is not a constant map. Now if u0 is Fredholm regular, so that B̄´1
J p0q

near pj0, u0q is a manifold with Tpj0,u0qB̄´1
J p0q “ kerDB̄Jpj0, u0q, we can linearize the

group action (7.10) with respect to G and obtain a map

g Ñ kerDB̄Jpj0, u0q : X ÞÑ pDIdpj0Xq, du0pXqq
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which is injective since X and du0 can each only have isolated zeroes. It is therefore
natural to regard g as a linear subspace of kerDB̄Jpj0, u0q, and linearizing Proposi-
tion 7.23 in the regular case then leads to the following statement:

Proposition 7.31. If rpΣ, j0,Γ`,Γ´,Θ, u0qs P MpJq is Fredholm regular, then
the tangent space Tu0MpJq admits a natural isomorphism

Tu0MpJq “ kerDB̄Jpj0, u0q
M
autpΣ, j0,Γ Y Θq.

�

7.5. Evaluation and forgetful maps

In addition to the smoothness of MpJq, we sometimes need to know that certain
canonically defined maps on MpJq are smooth. Considering curves with m marked
points and k˘ positive/negative punctures and writing

ℓ :“ m ` k` ` k´,

the first of these is the forgetful map

(7.11) Φ : Mg,mpJ,A,γ`,γ´q Ñ Mg,ℓ,

which sends an equivalence class of curves pΣ, j,Γ`,Γ´,Θ, uq to the equivalence class
of its underlying Riemann surface pΣ, j,Γ Y Θq by forgetting the map u : 9Σ Ñ xW .
Recall that since T pΣ,Γ Y Θq is a smooth manifold and Mg,ℓ is its quotient by the
proper action ofMpΣ,Θq with finite isotropy, Mg,ℓ carries a natural smooth orbifold
structure.

Proposition 7.32. The forgetful map (7.11) is smooth in some neighborhood of
any Fredholm regular curve.

Proof. Suppose rpΣ, j0,Γ`,Γ´,Θ, u0qs P Mg,mpJ,A,γ`,γ´q is regular, denote

G “ AutpΣ, j0,Γ Y Θq, G0 :“ G X Diff0pΣ, j0,Γ Y Θq and H :“ G{G0,

and assume T Ă J pΣq is a G-invariant Teichmüller slice as provided by Proposi-
tion 7.19. By Lemma 7.21, the natural map

T {H Ñ Mg,ℓ : rjs ÞÑ rpΣ, j,Γ Y Θqs
is then a homeomorphism between open neighborhoods of rj0s and rpΣ, j0,Γ Y Θqs,
and in fact one can use this map to define the smooth orbifold structure of Mg,ℓ

and thus call it a local diffeomorphism. Combining this local picture of Mg,ℓ with
Proposition 7.23, the forgetful map is expressed locally as

B̄´1
J p0q

L
G Ñ T {H : rpj, uqs ÞÑ rjs,

where Fredholm regularity implies via the implicit function theorem that B̄´1
J p0q is

a smooth submanifold of T ˆ Bk,p,δ. This map between orbifolds is smooth because
it is induced by the smooth map B̄´1

J p0q Ñ T : pj, uq ÞÑ j, which is the composition
of the smooth inclusion B̄´1

J p0q ãÑ T ˆ Bk,p,δ with the manifestly smooth projection
map T ˆ Bk,p,δ Ñ T . �
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In the presence of marked points, we can consider the evaluation map

(7.12) ev : Mg,mpJ,A,γ`,γ´q Ñ xWˆm,

sending the equivalence class of a curve pΣ, j,Γ`,Γ´,Θ, uq to the m-tuple of points
pupζ1q, . . . , upζmqq in its image, where Θ “ pζ1, . . . , ζmq.

Proposition 7.33. The evaluation map (7.12) is smooth on the set of Fredholm
regular curves in Mg,mpJ,A,γ`,γ´q.

Proof. In the neighborhood of a regular curve u0 : p 9Σ “ ΣzpΓ` Y Γ´q, j0q Ñ
pxW,Jq with marked points Θ “ pζ1, . . . , ζmq P 9Σˆm, ev takes the form

B̄´1
J p0q

L
AutpΣ, j0,Γ Y Θq Ñ xWˆm : rpj, uqs ÞÑ pupζ1q, . . . , upζmqq.

This lifts to a map B̄´1
J p0q Ñ xWˆm, which is the composition of the smooth inclusion

of the submanifold B̄´1
J p0q ãÑ T ˆBk,p,δ with the smooth projection T ˆBk,p,δ Ñ Bk,p,δ

and the map

(7.13) Bk,p,δ Ñ xWˆm : u ÞÑ pupζ1q, . . . , upζmqq.
The latter is smooth for the following reason: by the prescription in [El̆ı67], the
Banach manifold structure on Bk,p,δ is defined via charts of the form expf η ÞÑ η P
W k,p,δpf˚TxW q ‘ VΓ for smooth reference maps f : 9Σ Ñ xW that are cylindrical near
infinity, where VΓ is a finite-dimensional space of smooth vector fields along f . The
map (7.13) with respect to a chart thus takes the form

W k,p,δpf˚TxW q ‘ VΓ Ą O Ñ xW : η ÞÑ pexpfpζ1q ηpζ1q, . . . , expfpηmq ηpζmqq

for a suitable neighborhood O Ă W k,p,δpf˚TxW q‘VΓ of 0. Each factor in this map is

just the composition of the smooth map exp : TxW Ñ xW (defined on a neighborhood

of the zero-section) with a map of the form W k,p,δpf˚TxW q ‘ VΓ Ñ TfpζiqxW : η ÞÑ
ηpζiq. The latter map is linear, and crucially, it is also continuous (and therefore
smooth) since k and p are always chosen for the Sobolev embedding theorem to
hold. �

There are also other types of “forgetful” maps defined by forgetting marked
points instead of the map u: for instance, the map

(7.14) πm : Mg,mpJ,A,γ`,γ´q Ñ Mg,0pJ,A,γ`,γ´q,
modifies rpΣ, j,Γ`,Γ´,Θ, uqs by replacing Θ with the empty set. We would like
to show next that this map is a smooth submersion over the set of Fredholm reg-
ular curves. From a certain perspective, this statement is very easy to believe,
though the proof turns out to inolve a few subtleties. First, suppose u0 : p 9Σ “
ΣzpΓ` Y Γ´q, j0q Ñ pxW,Jq represents a regular curve in Mg,0pJ,A,γ`,γ´q, write
G :“ AutpΣ, j0,Γq, and choose a suitable Teichmüller slice T through j0 so that
a neighborhood U Ă Mg,0pJ,A,γ`,γ´q of u0 is identified with V{G for a suitable
G-invariant neighborhood

V Ă B̄´1
J p0q
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of pj0, u0q that is a smooth submanifold of T ˆBk,p,δ. If ∆ Ă 9Σˆm denotes the closed
subset consisting of m-tuples in which at least two entries are equal, then there is
now an obvious homeomorphism

´
V ˆ p 9Σˆmz∆q

¯L
G Ñ π´1

m pUq,
rpj, u,Θqs ÞÑ rpΣ, j,Γ`,Γ´,Θ, uqs,

(7.15)

where automorphisms ϕ P G act on pj, uq in the usual way and send Θ “ pζ1, . . . , ζmq P
9Σˆmz∆ to

ϕ˚Θ :“ pϕ´1pζ1q, . . . , ϕ´1pζmqq.
The isotropy subgroup for each pj, u,Θq P Vˆp 9Σˆmz∆q under the G-action is simply
the finite automorphism group of u with its marked points Θ, so this picture identifies
π´1
m pUq with a smooth orbifold having dimension equal to the virtual dimension of

Mg,mpJ,A,γ`,γ´q. Notice that while u0 P Mg,0pJ,A,γ`,γ´q in this discussion
was assumed to be Fredholm regular, we have not considered so far whether any
given element of π´1

m pu0q Ă Mg,mpJ,A,γ`,γ´q is Fredholm regular. It would be
tempting at this point to circumvent that question and just use (7.15) to define the
smooth structure on Mg,mpJ,A,γ`,γ´q. This would make it obvious that πm is a
smooth submersion, as πm in this picture looks like the map

´
V ˆ p 9Σˆmz∆q

¯ L
G Ñ V{G

induced by theG-equivariant (and manifestly smooth) projection map Vˆp 9Σˆmz∆q Ñ
V. But there is a technical problem: the evaluation map in this picture looks like

´
V ˆ p 9Σˆmz∆q

¯ L
G Ñ xWˆm,

rpj, u, pζ1, . . . , ζmqs ÞÑ pupζ1q, . . . , upζmqq,
and it is not obvious whether this map is smooth. The most natural way to try to

prove it would be to present its lift V ˆ p 9Σˆmz∆q Ñ xWˆm as the composition of the
smooth inclusion

B̄´1
J p0q ˆ p 9Σˆmz∆q ãÑ T ˆ Bk,p,δ ˆ p 9Σˆmz∆q

with the map

T ˆ Bk,p,δ ˆ p 9Σˆmz∆q Ñ xWˆm : pj, u, pζ1, . . . , ζmqq ÞÑ pupζ1q, . . . , upζmqq.
But the latter is definitely not a smooth map, as arbitrary elements u P Bk,p,δ can
only be assumed to have finitely many derivatives. Our intuition says that this
should not pose a problem since, by elliptic regularity, u is indeed smooth whenever
pj, uq P B̄´1

J p0q, but turning this intuition into a rigorous argument is not easy.
This difficulty did not arise in Proposition 7.33 because we were only considering

parametrizations u : 9Σ Ñ xW for which the locations of the marked points were fixed
in advanced and not allowed to change—in this case the lack of deriatives of maps
u P Bk,p,δ makes no difference. But that argument required Mg,mpJ,A,γ`,γ´q
to be endowed with the particular smooth structure that comes from applying the
implicit function theorem to Fredholm regular curves with marked points. It means
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in particular that instead of using (7.15), a neighborhood of rpΣ, j0,Γ`,Γ´,Θ, u0qs P
Mg,mpJ,A,γ`,γ´q must be identified with a subset of B̄´1

J p0q{AutpΣ, j0,Γ Y Θq,
with the definition of B̄J now requiring a Teichmüller slice of larger dimension in
order to account for the marked points. That perspective has some disadvantages in
comparison with (7.15), notably that it makes it much harder to see why the map
πm is a smooth submersion or what its fibers look like. With this as motivation,
the next lemma says that it is safe after all to go back and forth between these two
perspectives on Mg,mpJ,A,γ`,γ´q.

Lemma 7.34. If u0 : p 9Σ “ ΣzpΓ` Y Γ´q, j0q Ñ pxW,Jq represents a Fredholm
regular element of the moduli space Mg,0pJ,A,γ`,γ´q without marked points, then
every element of π´1

m pu0q Ă Mg,mpJ,A,γ`,γ´q is also Fredholm regular. Moreover,
for a sufficiently small neighborhood U Ă Mg,0pJ,A,γ`,γ´q of u0, there exists a
Teichmüller slice T through pj0,Γq and a neighborhood V Ă B̄´1

J p0q Ă T ˆ Bk,p,δ of
pj0, u0q such that the map (7.15) is a diffeomorphism.

Proof. By an inductive argument, it will suffice to consider cases where u0
already has some marked points and one more is added. Let

π : Mg,m`1pJ,A,γ`,γ´q Ñ Mg,mpJ,A,γ`,γ´q
denote the canonical map defined by forgetting the last marked point, suppose

u0 : p 9Σ “ ΣzpΓ` YΓ´q, j0q Ñ pxW,Jq with marked points Θ “ pζ1, . . . , ζmq represents
a Fredholm regular element in Mg,mpJ,A,γ`,γ´q, write G “ AutpΣ, j0,Γ Y Θq,
and choose a Teichmüller slice T through pj0,Γ Y Θq and a suitable neighborhood
U Ă Mg,mpJ,A,γ`,γ´q of u0 that is identified with V{G for some smooth G-
invariant neighborhood V of pj0, u0q in the zero set of B̄J : T ˆ Bk,p,δ Ñ Ek´1,p,δ.
There is then a natural homeomorphism

´
V ˆ p 9ΣzΘq

¯ L
G Ñ π´1pUq,

rpj, u, ζqs ÞÑ rpΣ, j,Γ`,Γ´,Θζ , uqs
(7.16)

where

Θζ :“ pζ1, . . . , ζm, ζq.
We claim that every element in π´1pu0q is Fredholm regular, hence a neighborhood
of this set in Mg,m`1pJ,A,γ`,γ´q has a natural smooth structure given by Theo-
rem 7.1, and moreover, that the map (7.16) is a diffeomorphism with respect to this
smooth structure.

Slightly different arguments are required depending on whether pΣ, j0,Γ Y Θq is

or is not stable, so let us first consider the stable case. Fix ζm`1 P 9ΣzΘ and write
Θ1 “ pζ1, . . . , ζm`1q. Let T and T 1 denote the pair of Teichmüller slices through
pj0,Γ Y Θq and pj0,Γ Y Θ1q respectively provided by Lemma 7.22, so in particular,

T 1 “
 
ϕ˚
ζ j P J pΣq

(
pj,ζqPT ˆU

for an arbitrarily small neighborhood U Ă 9Σ of ζm`1 and a smooth family of diffeo-
morphisms tϕζ : Σ Ñ ΣuζPU that are supported in a slightly larger neighborhood of



Lectures on Symplectic Field Theory 205

ζm`1 and satisfy ϕζm`1
“ Id and ϕζpζm`1q “ ζ for every ζ P U . Since T Ă T 1, the

operator

(7.17) DB̄Jpj0, u0q : Tj0T 1 ‘ Tu0B
k,p,δ Ñ Ek´1,p,δ

pj0,u0q

that needs to be surjective in order for rpΣ, j0,Γ`,Γ´,Θ1, u0qs P Mg,m`1pJ,A,γ`,γ´q
to be Fredholm regular is simply an extension of the operator

(7.18) DB̄Jpj0, u0q : Tj0T ‘ Tu0B
k,p,δ Ñ Ek´1,p,δ

pj0,u0q

to a larger domain, and the latter is surjective by assumption, so the regularity claim
holds. Next, observe that in some neighborhood of pj0, u0q, B̄´1

J p0q Ă T ˆ Bk,p,δ is a
smooth submanifold with dimension I :“ indpu0q ` 2m, and the set

(7.19)
 

pϕ˚
ζ j, u ˝ ϕζq P T 1 ˆ Bk,p,δ

ˇ̌
pj, uq P T ˆ Bk,p,δ, B̄Jpj, uq “ 0 and ζ P U

(

then forms a smooth manifold of dimension I ` 2 living inside B̄´1
J p0q Ă T 1 ˆ

Bk,p,δ. But the linearization (7.17) of B̄J on T 1 ˆ Bk,p,δ is a surjective Fredholm
operator of index I`2 since the related operator (7.18) has index I and dimTj0T

1 “
dimTj0T ` 2, so the implicit function theorem implies that (7.19) characterizes an
entire neighborhood of rpj0, u0qs in B̄´1

J p0q Ă T 1 ˆ Bk,p,δ. With this understood,
the map (7.16) can now be expressed in terms of a map from a neighborhood of

pj0, u0, ζm`1q in B̄´1
J p0q ˆ p 9ΣzΘq Ă T ˆ Bk,p,δ ˆ p 9ΣzΘq to a neighborhood of pj0, u0q

in B̄´1
J p0q Ă T 1 ˆ Bk,p,δ taking the form

pj, u, ζq ÞÑ pϕ˚
ζ j, u ˝ ϕζq.

By the same argument as in Lemma 7.29, this map is smooth, and it has nonsingular
derivative, so it is a diffeomorphism between the corresponding neighborhoods.

If pΣ, j0,Γ Y Θq is not stable, then the treatment of Teichmüller slices in this
story simplifies: Lemma 7.22 implies that we can fix a single G-invariant Teichmüller
slice through both pj0,Θq and pj0,Θ1q, which is then also G1-invariant for G1 :“
AutpΣ, j0,Γ Y Θ1q. The matter of Fredholm regularity is thus trivial, i.e. u0 is
regular if and only if every element of π´1pu0q is regular. On the other hand, G is
no longer finite, but is a positive-dimensional Lie group with G1 as a Lie subgroup
of codimension 2. The important observation is then that there is a well-defined
smooth map

G{G1 Ñ 9Σ : rϕs ÞÑ ϕpζm`1q
which takes a neighborhood of rIds P G{G1 diffeomorphically to a neighborhood of

ζm`1 in 9Σ. We leave the remaining details as an exercise. �

Corollary 7.35. The map from Mg,mpJ,A,γ`,γ´q to Mg,0pJ,A,γ`,γ´q de-
fined by forgetting all marked points is a smooth submersion on the preimage of the
set of Fredholm regular curves in Mg,0pJ,A,γ`,γ´q. �
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The previous lecture proved that the open set of Fredholm regular J-holomorphic
curves in MpJq has a natural smooth finite-dimensional orbifold structure. In prac-
tice, however, Fredholm regularity is a technical condition that can rarely be directly
checked. To remedy this, the present lecture will be devoted to genericity results,
showing that Fredholm regularity will always hold if we are willing to make small
perturbations of J . We need to prove two slightly different versions of this statement:
one for curves in a completed symplectic cobordism (§8.2), and another for curves
in symplectizations (§8.3), which presents distinctive problems because the space of
allowable perturbations is smaller. The caveat in both cases is that these generic-
ity arguments only work for somewhere injective curves, i.e. they fail for multiple
covers. This has to do with the fundamental incompatibility between transversality
and symmetry, and it is generally not a solvable problem within the framework de-
veloped in this book, though there certainly do exist interesting ideas for solving it
(see [FFGW16]). For all applications that we will discuss rigorously in this book,
rigor is possible only because geometric conditions can be used to exclude most
multiple covers from consideration. This caveat does not fully negate the value of
non-rigorous handwaving based on the fiction that transversality for multiple covers
is not a problem—we will indulge in such handwaving in Lectures 12 and 13.

8.1. A paradigm for genericity arguments

Before stating the main results of this lecture, let us discuss in general terms
what a “genericity” result is and how one can go about proving it. The canonical
example of a genericity result is Sard’s theorem: for any smooth map f : M Ñ N

207
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between finite-dimensional manifolds, almost every point in N is a regular value.
The words “almost every” imply in particular that the set of regular values is dense,
so any point p P N admits an arbitrarily small perturbation to a nearby point p1 P N
such that f´1pp1q is a smooth submanifold of M . But “almost every” also implies
something better than density: the intersection of two dense sets can be empty, but
if there is a countable set of conditions that are satisfied by almost every point, then
almost every point satisfies all of them, as the the union of countably many sets of
measure zero still has measure zero.

A second example of a genericity result is the statement that on any smooth
vector bundle E Ñ B, every section can be perturbed to one that is transverse to
the zero-section, implying (via the implicit function theorem) that its zero set is a
submanifold of B. Stated in this way, one obtains a dense subset ΓregpEq Ă ΓpEq
such that every η P ΓregpEq is transverse to the zero-section, but as with Sard’s
theorem, more than density is actually true. The statement “almost every section is
transverse to the zero-section” would unfortunately not make sense, as there is no
natural measure on infinite-dimensional spaces like ΓpEq with which to define what
“almost every” should mean. The following notion serves as a reasonable substitute
in infinite-dimensional settings.

Definition 8.1. If X is a topological space, a subset Y Ă X is called comeager
if it contains a countable intersection of open and dense sets.1

If X is a complete metrizable space, then the Baire category theorem implies
that comeager subsets are always dense—moreover, any countable intersection of
comeager subsets is also comeager and therefore dense. Informally, we often say
that a given statement dependent on a choice of auxiliary data (living in a complete
metrizable space) is true generically, or “for generic choices,” if it is true whenever
the data are chosen from some comeager subset of the space of all possible data.

In order to describe the standard procedure we will follow for proving genericity
results, let us sketch the proof that generic sections of a smooth vector bundle
E Ñ B are transverse to the zero-section. For this purpose, the bundle may in
general be either finite or infinite dimensional, though in the latter case, we will see
that some extra conditions on sections need to be imposed. Given s P ΓpEq, let us
call a point x P s´1p0q regular if the linearization at that point

Dspxq : TxB Ñ Ex

is surjective. A section s is then transverse to the zero-section if and only if every
point x P s´1p0q is regular. To show that this is true generically, the first step is to
choose a suitable subset

X Ă ΓpEq
in which one would like to perturb s. This set needs to be sufficiently large, in a sense
to be specified below, and it also needs to be a manifold—putting both conditions

1Elsewhere in the symplectic literature, comeager subsets are sometimes referred to as “sets
of second category,” which is unfortunately slightly at odds with the standard meaning of “second
category,” though it is accurate to say that the complement of a comeager subset (also known as
a “meager” subset) is a set of first category. The term Baire subset is also sometimes used as a
synonym for “comeager subset”.
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together, X will usually need to be an infinite-dimensional Banach manifold. One
should also choose X so that if E 1 Ñ X ˆ B denotes the pullback of E along the
projection X ˆ B Ñ B, then the section

f : X ˆ B Ñ E 1 : ps, xq ÞÑ spxq
is smooth. Its zero set

MpXq :“ f´1p0q “ tps, xq P X ˆ B | spxq “ 0u
is called a universal moduli space, as it can be regarded as the union over all
admissible perturbed sections s P X Ă ΓpEq of the “moduli spaces”

Mpsq :“ s´1p0q.
The essential step in most genericity proofs is to show that for every ps, xq P M,
the linearization

Dfps, xq : TsX ‘ TxB Ñ E 1
ps,xq : pt, vq ÞÑ Dspxqv ` tpxq

is surjective. The way to prove this is typically by ignoring the term Dspxq and
proving that the linearization with respect to variations in s

(8.1) D1fps, xq : TsX Ñ E 1
ps,xq : t ÞÑ tpxq

is surjective. Now perhaps you can see what was meant by the words “sufficiently
large” above: since zeroes of a given section s P X can in principle appear anywhere,
the only way to make sure (8.1) is surjective is by constructing X so that for every
x P B and v P Ex, X contains a section t P X with tpxq “ v. If this holds, then2 the
universal moduli space becomes a smooth manifold, typically infinite dimensional.
The bulk of the effort in most genericity arguments goes into establishing this fact.

The rest of the argument follows a standard pattern: one considers the projection
map

π : M Ñ X : ps, xq ÞÑ s,

which is clearly smooth if M is a smooth submanifold of X ˆ B. In light of the
obvious bijection between π´1psq and Mpsq “ s´1p0q for each s P X , we are moti-
vated to ask whether generic sections s P X are regular values of this projection, so
that π´1psq becomes a manifold. When X is finite dimensional, this question is an-
swered by Sard’s theorem, but we also need an answer for cases where dimX “ 8.
The following generalization of Sard’s theorem was proved by Smale in 1965; for a
concise proof using finite-dimensional reduction, see [MS12, §A.5].3

The Sard-Smale Theorem ([Sma65]). Suppose M and N are second count-
able Banach manifolds of class Ck and F :M Ñ N is a map of class Ck with k ě 1
such that for every x P M , the derivative dF pxq : TxM Ñ TF pxqN is a Fredholm

2There is a detail brushed under the rug here if X is infinite dimensional: in order to apply the
implicit function theorem and prove that f´1p0q is a manifold, one needs to know that Dfps, xq is
not only surjective but also has a bounded right inverse. This will be automatic for the cases we
are interested in because Dspxq in those cases is Fredholm (see Exercise 8.11.

3The Sard-Smale theorem is stated in [MS12] for separable Banach spaces, but the proof is
easily adapted for second countable Banach manifolds using local charts and the fact that every
open cover has a countable subcover.
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operator with k ě ind dF pxq ` 1. Then there exists a comeager subset N reg Ă N

such that for every y P N reg and x P F´1pyq, dF pxq : TxM Ñ TyN is surjective. �

The derivative of the projection π : M Ñ X at ps, xq P M is the linear projection
map

dπps, xq : kerDfps, xq Ñ TxX : pt, vq ÞÑ t.

To complete the picture, we need an easy algebraic lemma about linear maps:

Lemma 8.2. Suppose X, Y and Z are vector spaces, D : X Ñ Z and A : Y Ñ Z

are linear maps, and L : X ‘ Y Ñ Z : px, yq ÞÑ Dx`Ay is surjective. Then for the
projection

Π : kerL Ñ Y : px, yq ÞÑ y,

there are natural isomorphisms kerΠ – kerD and coker Π – cokerD.

Proof. The isomorphism of the kernels is clear: it is just the restriction of
the inclusion X ãÑ X ‘ Y : x ÞÑ px, 0q to kerD. We construct an isomorphism
coker Π Ñ cokerD as follows. Observe that imΠ is simply the space of all y P Y

such that Ay “ ´Dx for some x P X , hence imΠ “ A´1pimDq, and
coker Π “ Y

L
imΠ “ Y

L
A´1pimDq.

Now it is easy to check that the map A : Y Ñ imA descends to an isomorphism

A : Y
L
A´1pimDq Ñ imA

L
pimD X imAq,

and similarly, the inclusion imA ãÑ Z descends to an injective homomorphism

imA
L

pimD X imAq Ñ Z
L
imD.

Since every z P Z can be written as z “ Dx ` Ay by assumption, this map is also
surjective. �

To apply this, suppose every section in X has the property that Dspxq : TxB Ñ
Ex is Fredholm for every x P s´1p0q; note that this is always true if B and E are
finite dimensional, and it is also true for the infinite-dimensional nonlinear Cauchy-
Riemann operator B̄ : T ˆBk,p,δ Ñ Ek´1,p,δ considered in the previous lecture. Since
kerDspxq and cokerDspxq are finite dimensional, Lemma 8.2 now implies the same
for kerDπps, xq and cokerDπps, xq for every ps, xq P M, hence Dπps, xq is always
Fredholm, and moreover, it is surjective if and only if Dspxq is surjective. The Sard-
Smale theorem therefore gives us a comeager subset Xreg Ă X such that for every
s P Xreg and x P s´1p0q, Dspxq is surjective—in other words, s is transverse to the
zero-section.

Our analytical setup for the moduli space of J-holomorphic curves differs from
the story described above in the following respects:

(1) Instead of MpJq being globally the zero set of a section of a vector bundle,
it can locally be identified with sets of the form B̄´1

J p0q{G, i.e. the quotient
of a zero set of a bundle by a smooth Lie group action with finite isotropy.

(2) The set of admissible perturbations (called X in the discussion above) will
not be quite large enough in general: in particular, it will not be true that
for every pj, uq P B̄´1

J p0q, perturbations of J can be found realizing arbitrary
perturbations in the value of B̄Jpj, uq.
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We will see that the first issue is not really a problem, but the second one is. It is a
symptom of the equivariance of B̄J : T ˆ Bk,p,δ Ñ Ek´1,p,δ with respect to the action
of the automorphism group: transversality would easily be achieved if arbitrary non-
equivariant perturbations to B̄J were allowed, but all perturbations that result from
changing J are automatically equivariant, which is a serious restriction. This is why
multiply covered curves must be excluded from the main results of this lecture.

There is one other complication that also afflicts the example sketched above
but was brushed under the rug: the space of allowable perturbations X Ă ΓpEq
must be defined to have certain properties for technical reasons, but X is typically
not the space we actually want to prove a theorem about. If the goal is to prove
that generic smooth sections η P ΓpEq are transverse to the zero-section, then the
natural choice would seem to be X :“ ΓpEq, but this is only a Fréchet space, not
a Banach manifold: you cannot use it in the implicit function theorem to prove
that the universal moduli space is smooth, and you cannot feed it into the Sard-
Smale theorem. There are various ways to overcome this difficulty, but they are all
somewhat unnatural and add an extra step to the proof—in the holomorphic curve
setting, that step will be described in §8.2.4.

8.2. Generic transversality in cobordisms

8.2.1. A theorem for somewhere injective curves. A smooth map u : 9Σ Ñ
xW is said to have an injective point z P 9Σ if

dupzq : Tz 9Σ Ñ TupzqxW is injective and u´1pupzqq “ tzu.

If u is a proper map, then it is easy to see that the set of injective points is open in 9Σ,
though in general it could also be empty; this is the case e.g. for multiply covered J-
holomorphic curves. We say u is somewhere injective if its set of injective points is
nonempty. For asymptotically cylindrical J-holomorphic curves with nondegenerate
asymptotic orbits, Theorem 6.34 implies that somewhere injectivity is equivalent to
being simple, i.e. not multiply covered.

Here is the first of the two main results in this lecture. It is stated specifically
for curves in completed cobordisms; an analogue for curves in symplectizations will
be the subject of §8.3.

Theorem 8.3. Assume as in Theorem 7.1 that all the orbits γ˘
i are nondegen-

erate, fix an almost complex structure Jfix P J pωψ, r0,H`,H´q and an open subset

U Ă W r0.

Then there exists a comeager subset

J reg
U Ă

!
J P J pωψ, r0,H`,H´q

ˇ̌
ˇ J “ Jfix on xW zU

)
,

such that for every J P J reg
U , every curve u P MpJq that has an injective point

mapped into U is Fredholm regular. In particular, the curves with this property
define an open subset of MpJq that is a smooth manifold with dimension equal to
its virtual dimension.
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Remark 8.4. The theorem is equally true if J pωψ, r0,H`,H´q is replaced by
the larger space Jτpωψ, r0,H`,H´q. This distinction makes a difference at only one
step in the proof, where the compatible case is slightly harder than the tame case
because the space of available perturbations is smaller (see Lemma 8.13 and the
discussion that precedes it).

Remark 8.5. Since U Ă xW has compact closure, the set
!
J P J pωψ, r0,H`,H´q

ˇ̌
ˇ J “ Jfix on xW zU

)

with its natural C8-topology is a complete metrizable space; in fact it can be given
the structure of a Fréchet manifold, though we will not need to use this fact. The
important detail is that the Baire category theorem applies to this space, and guar-
antees that comeager subsets of it are dense.

Remark 8.6. As mentioned above, the condition that u : 9Σ Ñ xW has an
injective point mapped into U is satisfied if and only if u is simple and up 9Σq X U ‰
H. Instead of expressing it this way in Theorem 8.3, we have stated precisely
the condition that is needed in the proof—the reason to do it this way is that in
some other contexts, statements analogous to Theorem 8.3 are true but there is no
straightforward equivalence between simple curves and somewhere injective curves.
The simplest example is that for (unpunctured) J-holomorphic disks with totally
real boundary conditions, it is not true in general that every curve factors through
a curve whose injective points are dense; see [Laz00,Laz11].

Remark 8.7. Theorems 7.1 and 8.3 both admit easy extensions to the study of
moduli spaces dependent on finitely many parameters. Concretely, suppose P is a
smooth finite-dimensional manifold and tJsusPP is a smooth family of almost com-
plex structures satisfying the usual conditions. One can then define a parametric
moduli space

MptJsuq “
 

ps, uq
ˇ̌
s P P, u P MpJsq

(

and a notion of parametric regularity for pairs ps, uq P MptJsuq, which is again an
open condition, such that the space MregptJsuq of parametrically regular elements
will be an orbifold of dimension

dimMregptJsuq “ vir-dimMpJq ` dimP.

The proof of this is the same as in Lecture 7, except that the section B̄J : T ˆBk,p,δ Ñ
Ek´1,p,δ in §7.4 gets replaced by

B̄tJsu : T ˆ Bk,p,δ ˆ P Ñ Ek´1,p,δ : pj, u, sq ÞÑ du` Jspuq ˝ du ˝ j,

for a bundle with fibers Ek´1,p,δ
pj,u,sq :“ W k´1,p,δpHomCppT 9Σ, jq, pu˚TxW,Jsqqq, and we

call ps, rpΣ, j,Γ`,Γ´,Θ, uqsq P MptJsuq parametrically regular if the linearization
DB̄tJsupj, u, sq is surjective. Notice that since DB̄tJsupj, u, sq is the sum of DB̄Jpj, uq
with an extra term defined on TsP , every ps, uq P MptJsuq for which u P MpJsq is
Fredholm regular is also parametrically regular. The converse however is false, as
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0 1
s

MpJ0q MpJ1q

Figure 8.1. The picture shows a smooth parametric moduli space
MptJsuq with P :“ r0, 1s and its projection MptJsuq Ñ r0, 1s :
ps, uq ÞÑ s in a case where vir-dimMpJsq “ 0. The parametric mod-
uli space is 1-dimensional and the spaces MpJsq are regular and 0-
dimensional for almost every s P r0, 1s, but this need not hold when
s is a critical value of the projection. In the picture, one such space
MpJsq contains a 1-dimensional component consisting of non-regular
curves, so its dimension differs from its virtual dimension.

MregptJsuq can contain pairs ps, uq for which u R MregpJsq; these are precisely the
critical points of the map

(8.2) MregptJsuq Ñ P : ps, uq ÞÑ s.

The generalization of Theorem 8.3 to the parametric setting states that after
generic perturbations of the family tJsusPP that are fixed outside of some open
subset U Ă W r0 and fixed everywhere for s outside of some precompact open subset
V Ă P , all elements ps, uq P MptJsuq for which s P V and u has an injective
point mapping to U will be parametrically regular. The proof requires only minor
modifications to the proof of Theorem 8.3, so we shall leave it as an exercise. The
standard and most important example is P “ r0, 1s with V “ p0, 1q, meaning that
we consider generic homotopies between two fixed almost complex structures J0
and J1. Figure 8.1 shows an example in which the moduli spaces MpJsq each have
virtual dimension zero and MptJsuq is a 1-manifold. Since the projection (8.2) is
not generally a submersion, there can exist critical values s P r0, 1s at which MpJsq
fails to be a 0-dimensional manifold. In general these cannot be excluded by making
generic choices of the homotopy, though in certain cases, one can exclude them using
“automatic” transversality results, which give criteria for all Js to be regular with
no need for genericity (see §14.1).

Example 8.8. It is not hard to imagine situations in which transversality must
fail generically for multiply covered curves. Suppose for instance that pW,ωq is an
8-dimensional symplectic manifold with compatible almost complex structure J0,
and u0 : S2 Ñ W is a simple J0-holomorphic sphere with no punctures and ru0s “
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A P H2pW q, where c1pAq “ ´1. This means u0 represents an element of a moduli
space M0,0pJ0, Aq with

vir-dimM0,0pJ0, Aq “ 2 ´ 2g ` 2c1pAq “ 0.

In particular if u0 is regular and tJs P J pωqusPRk is a smooth k-parameter family of
compatible almost complex structures including J0, then Remark 8.7 implies that
a neighborhood of p0, u0q in the parametric moduli space MptJsuq “ tps, uq | s P
Rk, u P M0,0pJs, Aqu is a smooth k-dimensional manifold, and this will be true no
matter how the family tJsu is chosen. But for each of the elements ps, uq P MptJsuq
parametrized by a J-holomorphic map u : pS2 “ CY t8u, iq Ñ pW,Jsq, there is also
a double cover

u1 : S2 Ñ W : z ÞÑ upz2q,
with ru1s “ 2A, so u1 P M0,0pJs, 2Aq and

vir-dimM0,0pJs, 2Aq “ 2 ´ 2g ` 2c1p2Aq “ ´2.

Negative virtual dimension means that M0,0pJ0, 2Aq should be empty whenever
Fredholm regularity is achieved, but this is clearly impossible, even generically, since
elements of M0,0pJs, Aq always have double covers belonging to M0,0pJs, 2Aq.

Remark 8.9. The most common way to apply Theorem 8.3 is by setting U equal
to the interior of W r0, so generic perturbations of J are allowed everywhere except
on the regions where it is required to be R-invariant. The theorem then achieves
transversality for all simple curves that are not confined to the R-invariant regions.
We will show in §8.3 that transversality for all curves of the latter type can also
be achieved by generic perturbations within the spaces J pH˘q of compatible R-
invariant almost complex structures on the symplectizations RˆM˘, hence generic
choices in J pωψ, r0,H`,H´q do achieve transversality for all simple curves.

8.2.2. The universal moduli space. Our proof of Theorem 8.3 will roughly
follow the paradigm that was described in §8.1, based on the Sard-Smale theorem.
The first step is therefore to define a suitable Banach manifold of perturbations of
the almost complex structure to incorporate into our functional-analytic setup. All
known ways of doing this are in some sense non-ideal, e.g. one could take almost
complex structures of class Ck or W k,p, but this necessarily introduces non-smooth
almost complex structures into the picture, with the consequence that the nonlinear
Cauchy-Riemann operator has only finitely many derivatives. That is not the end
of the world, and indeed, this is the approach taken in [MS12], but I will instead
present an approach that was introduced by Floer in [Flo88b], in terms of what is
now called the “Floer Cǫ space”. The idea is to work with a Banach manifold that
continuously embeds into the space of smooth almost complex structures, so that
the nonlinear Cauchy-Riemann operator will always be smooth. It’s a nice trick,
but the catch is that we obtain a space that is strictly smaller than the actual space
of smooth almost complex structures we’re interested in, and has a much stronger
topology. The Cǫ space should be viewed as a useful tool but not a deeply meaningful
object—you might notice that while some of the intermediate results stated below
depend on its (somewhat ad hoc) definition, Theorem 8.3 does not. This is due to
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a general trick described in §8.2.4 below for turning results about Cǫ into results
about C8.

As in the statement of Theorem 8.3, assume U Ă W r0 is open and Jfix P
J pωψ, r0,H`,H´q. Let

JU :“
!
J P J pωψ, r0,H`,H´q

ˇ̌
ˇ J “ Jfix on xW zU

)
,

and choose any almost complex structure

J ref P JU .

Informally, we can regard JU as an infinite-dimensional manifold4 with tangent
spaces

TJrefJU “
!
Y P Γ

`
EndCpTxW,J refq

˘ ˇ̌
ˇ Y |xW zU ” 0 and ωψp¨, Y ¨q ` ωψpY ¨, ¨q ” 0

)
,

where the antilinearity of Y P TJrefJU means that Y is tangent to the space of almost
complex structures, and the condition relating it to ωψ means that these structures
are compatible with ωψ. (This condition would be omitted if we had defined JU to
be a subset of the larger space Jτ pωψ, r0,H`,H´q instead of J pωψ, r0,H`,H´q; see
Remark 8.4.) One can check that the map

Y ÞÑ JY :“
ˆ
1 ` 1

2
J refY

˙
J ref

ˆ
1 ` 1

2
J refY

˙´1

sends any sufficiently C0-small neighborhood of 0 P TJrefJU bijectively to a neigh-
borhood of J ref in JU . We thus fix a sufficiently small constant c ą 0 and define the
space of “Cǫ-small perturbations of J ref” by

J ǫ

U :“
#
JY P JU

ˇ̌
ˇ̌ Y P TJrefJU with

8ÿ

ℓ“0

ǫℓ}Y }CℓpUq ă c

+
,

where ǫ :“ pǫℓq8
ℓ“0 is a fixed sequence of positive numbers with ǫℓ Ñ 0 as ℓ Ñ 8.

The sum

}Y }Cǫ
:“

8ÿ

ℓ“0

ǫℓ}Y }CℓpUq

defines a norm, and the space of smooth sections Y P TJrefJU for which this norm is
finite is then a separable Banach space; see Appendix B for a proof of this statement.
This makes J ǫ

U a separable and metrizable Banach manifold, as the map JY ÞÑ Y

can be viewed as a chart identifying it with an open subset of the aforementioned
Banach space. Not every J P JU that is C8-close to J ref belongs to J ǫ

U , but there
is a continuous inclusion

J ǫ

U ãÑ JU ,

where the latter carries its usual C8-topology and J ǫ

U carries the topology induced
by the Cǫ-norm. By a lemma due to Floer, choosing a sequence ǫℓ that decays suffi-
ciently fast makes J ǫ

U large enough to contain perturbations in arbitrary directions

4Strictly speaking, it is a Fréchet manifold, but not a Banach manifold.



216 Chris Wendl

with arbitrarily small support near arbitrary points in U ; see Theorem B.6 in Ap-
pendix B for a precise version of this statement and its proof. We will assume from
now on that a suitably fast decaying sequence has been fixed.

We now define for each J P JU the set

M˚pJq :“
 
u P MpJq

ˇ̌
u has an injective point with image in U

(
,

which is an open subset of MpJq since U and the condition of being an injective
point are both open. The corresponding universal moduli space is defined by

M˚pJ ǫ

U q :“
 

pu, Jq
ˇ̌
J P J ǫ

U and u P M˚pJq
(
.

Remark 8.10. The notion of convergence in MpJq defined in §6.4 also makes
sense for a sequence of the form uν P MpJνq where Jν is a convergent sequence in
J ǫ

U . In this way, M˚pJ ǫ

U q inherits a natural topology.

The use of the word “universal” is somewhat unfortunate, as M˚pJ ǫ

U q depends
on many auxiliary choices such as J ref and pǫℓq8

ℓ“0. Nonetheless, M
˚pJ ǫ

U q turns out
to have exactly the properties we need for applying the Sard-Smale theorem—in
particular, it is a smooth separable Banach manifold. To see this, we can adapt
the functional-analytic setup from the proof of Theorem 7.1 and identify M˚pJ ǫ

U q
locally with a quotient of the zero set of a smooth section of a Banach space bundle.

Suppose J0 P J ǫ

U and rpΣ, j0,Γ`,Γ´,Θ, u0qs P M˚pJ0q where u0 : 9Σ Ñ xW has an
injective point z0 with u0pz0q P U . Choose a Teichmüller slice T through pj0,ΓYΘq
as in Proposition 7.19 and consider the smooth section

B̄ : T ˆ Bk,p,δ ˆ J ǫ

U Ñ Ek´1,p,δ : pj, u, Jq ÞÑ du` Jpuq ˝ du ˝ j,
where Ek´1,p,δ is the obvious extension of our previous Banach space bundle to a
bundle over T ˆ Bk,p,δ ˆ J ǫ

U . We’re assuming as before that k P N, 1 ă p ă 8,
kp ą 2, and δ ą 0 is small. A neighborhood of pu0, J0q in M˚pJ ǫ

U q can then be
identified with a neighborhood of rpj0, u0, J0qs in

B̄´1p0q
L
G,

where G :“ AutpΣ, j0,ΓYΘq acts properly on B̄´1p0q by ϕ ¨pj, u, Jq :“ pϕ˚j, u˝ϕ, Jq.
Since u0 has an injective point, Autpu0q is trivial and theG-action on a neighborhood
of pj0, u0, J0q is therefore free. The main task is then to show that B̄´1p0q is a
smooth Banach manifold on some G-invariant neighborhood of pj0, u0, J0q, as elliptic
regularity will imply as in Lemma 7.29 that the G-action on this neighborhood is
smooth, so its quotient becomes a smooth Banach manifold as well. This will follow
from the implicit function theorem if we can show that the linearization

DB̄pj0, u0, J0q : Tj0T ‘ Tu0B
k,p,δ ‘ TJ0J

ǫ

U Ñ Ek´1,p,δ
pj0,u0,J0q

is surjective with a bounded right inverse. Note that DB̄pj0, u0, J0q is not a Fred-
holm operator due to the infinite-dimensional summand TJ0J

ǫ

U in its domain, thus
in contrast to the situation in Theorem 7.1, it is no longer obvious whether surjec-
tivity implies the existence of a bounded right inverse. However, the restriction of
DB̄pj0, u0, J0q to the factor Tu0B

k,p,δ is Fredholm, so the first part of the following
exercise shows that surjectivity is sufficient.
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Exercise 8.11. Given Banach spaces X , Y and Z, a Fredholm operator T :
X Ñ Y and another bounded linear operator A : Z Ñ Y , consider the operator
L : X ‘ Z Ñ Y : px, zq ÞÑ Tx` Az. Prove:

(a) The kernel of L has a closed complement in X‘Z. Hint: Write X “ V ‘K

and Y “ W ‘ C with K “ kerT and C – cokerT, so that V
TÝÑ W is an

isomorphism. Compute kerL in terms of these splittings, and don’t forget
that C is finite dimensional.

(b) The image of L is closed in Y . Hint: Consider the restriction of L to the
closed complement of kerL from part (a).

The next lemma is now the main technical step in the proof of Theorem 8.3.

Lemma 8.12. The operator

W k,p,δpu˚
0T

xW q ‘ TJ0J
ǫ

U

LÑ W k´1,p,δpHomCpT 9Σ, u˚
0T

xW qq
pη, Y q ÞÑ DB̄pj0, u0, J0qp0, η, Y q “ Du0η ` Y pu0q ˝ du0 ˝ j0

is surjective for every k P N, p P p1,8q and δ ą 0 sufficiently small.

Proof. Consider first the case k “ 1,5 so we are looking at a bounded linear
map

W 1,p,δpu˚
0T

xW q ‘ TJ0J
ǫ

U

LÑ Lp,δpHomCpT 9Σ, u˚
0T

xW qq,
and let us fix any value for δ ą 0 such that the operator Dδ :“ Du0|

W 1,p,δpu˚
0
TxW q :

W 1,p,δpu˚
0T

xW q Ñ Lp,δpHomCpT 9Σ, u˚
0T

xW qq is Fredholm (cf. Lemma 7.6). Observe
that the dual of any space of sections of class Lp,δ can be identified with sections of
class Lq,´δ for 1

p
` 1

q
“ 1 (recall Remark 7.4). Indeed, choosing a suitable L2-pairing

defines a bounded bilinear map

(8.3) x , yL2 : Lp,δ ‘ Lq,´δ Ñ R,

and one can use isomorphisms of the form Lp Ñ Lp,δ : η ÞÑ efη as in the proof of
Lemma 7.6 to prove pLp,δq˚ – Lq,´δ as a corollary of the standard fact that pLpq˚ –
Lq. With this understood, the fact that Dδ : W

1,p,δ Ñ Lp,δ is Fredholm implies via
Exercise 8.11 that L has closed image. Thus if it is not surjective, the Hahn-Banach

theorem provides a nontrivial element θ P Lq,´δpHomCpT 9Σ, u˚
0T

xW qq that annihilates
its image under the pairing (8.3), which amounts to the two conditions

xDδη, θyL2 “ 0 for all η P W 1,p,δpu˚
0T

xW q,
xY pu0q ˝ du0 ˝ j0, θyL2 “ 0 for all Y P TJ0J ǫ

U .
(8.4)

The first relation is valid in particular for all smooth sections η with compact support
and thus means that θ is a weak solution to the formal adjoint equation D˚

δθ “ 0;
applying elliptic regularity and the similarity principle, θ is therefore smooth and has
only isolated zeroes. We will see however that this contradicts the second relation
as long as there exists an injective point z0 P 9Σ with u0pz0q P U . Indeed, since
the set of injective points with this property is open and zeroes of θ are isolated,

5Note that since Lemma 8.12 is a purely linear result, it does not require the assumption
kp ą 2.
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let us assume without loss of generality that θpz0q ‰ 0. Then since du0pz0q ‰ 0,
one can apply a standard lemma from symplectic linear algebra (see Lemma 8.13
below) to find a smooth section Y P TJ0JU whose value at u0pz0q is chosen such that
Y pu0q˝du0˝j0 “ θ at z0, implying that the pointwise inner product xY pu0q˝du0˝j0, θy
is positive in some neighborhood of z0. By Theorem B.6, one can then multiply a
small perturbation of Y by a bump function to produce a section (still denoted
by Y ) of class Cǫ so that the pointwise inner product of Y pu0q ˝ du0 ˝ j0 with θ

is still positive near z0 but vanishes everywhere else; note that this requires the
assumption u´1

0 pu0pz0qq “ tz0u, so that the value of Y near u0pz0q affects the value
of Y pu0q ˝ du0 ˝ j0 near z0 but nowhere else. This contradicts the second condition
in (8.4) and thus completes the proof for k “ 1.

In the general case, suppose α P W k´1,p,δpHomCpT 9Σ, u˚
0T

xW qq. Then α is also of
class Lp,δ, so surjectivity in the k “ 1 case implies the existence of η P W 1,p,δ and
Y P TJ0J ǫ

U with Dδη ` Y pu0q ˝ du0 ˝ j0 “ α. Since Y pu0q ˝ du0 ˝ j0 is smooth with
compact support, one can then use elliptic regularity to show η P W k,p,δ, and this
proves surjectivity for arbitrary k P N and p P p1,8q. �

The choice of the bump function Y P TJ0JU in the proof above required an
elementary but slightly non-obvious lemma from linear algebra. This is the only
point in the argument where the symplectic structure on W r0 makes any difference,
and only if we are requiring perturbed almost complex structures to be compatible
with ωψ (rather than just tame), as this condition meaningfully shrinks the space
of available perturbations Y along J0. But the lemma below shows that this space
of perturbations is still large enough. Recall that on any symplectic vector space
pV, ωq with compatible complex structure J , one can choose a basis to identify J

with i and ω with the standard structure ωstd. The linear maps Y that anticommute
with i and satisfy ωstdpY v, wq ` ωstdpv, Y wq “ 0 for all v, w P V are then precisely
the symmetric matrices that are complex antilinear.

Lemma 8.13. For any nonzero vectors v, w P R2n, there exists a symmetric
matrix Y that anticommutes with i and satisfies Y v “ w.

Proof. We borrow the proof directly from [MS12, Lemma 3.2.2] and simply
state a formula for Y :

Y “ 1

|v|2
`
wvT ` vwT ` i

`
wvT ` vwT

˘
i
˘

´ 1

|v|4
`
xw, vy

`
vvT ` ivvT i

˘
´ xw, ivy

`
ivvT ´ vvT i

˘˘
,

where x , y denotes the standard real inner product on R2n “ Cn. �

Corollary 8.14. The universal moduli space M˚pJ ǫ

U q is a smooth, separable
and metrizable Banach manifold, and the projection M˚pJ ǫ

U q Ñ J ǫ

U : pu, Jq ÞÑ J is
smooth.

Proof. Assume kp ą 2 and δ ą 0 is sufficiently small. The section B̄ :
T ˆ Bk,p,δ ˆ J ǫ

U Ñ Ek´1,p,δ
pj0,u0,J0q is equivariant with respect to the action of G :“
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AutpΣ, j0,Θq, and its linearization at pj0, u0, J0q is the sum of the operator con-
sidered in Lemma 8.12 with extra terms defined on a finite-dimensional subspace
Tj0T ‘ VΓ, and is therefore surjective. In light of equivariance and Exercise 8.11, it
follows that the linearization of B̄ has a bounded right inverse at every point in some
G-invariant neighborhood of pj0, u0, J0q in B̄´1p0q. The implicit function theorem
then implies that that neighborhood is a smooth submanifold of T ˆBk,p,δˆJ ǫ

U , and
the G-action on that neighborhood is smooth by elliptic regularity as in Lemma 7.29.
The projection map

B̄´1p0q Ñ J ǫ

U : pj, u, Jq ÞÑ J

is also smooth on this neighborhood since it is the restriction to a smooth subman-
ifold of the obviously smooth projection map T ˆ Bk,p,δ ˆ J ǫ

U Ñ J ǫ

U . Since G acts
freely and properly on B̄´1p0q, the neighborhood of rpj0, u0, J0qs in B̄´1p0q{G then
inherits a smooth Banach manifold structure for which the projection is still smooth,
and this quotient is identified locally with M˚pJ ǫ

U q. Smoothness of transition maps
is shown via the same regularity arguments as in the proof of Theorem 7.1. �

8.2.3. Applying the Sard-Smale theorem. We claim now that

(8.5) M˚pJ ǫ

U q Ñ J ǫ

U : pu, Jq ÞÑ J

is a smooth nonlinear Fredholm map, i.e. its derivative at every point is a Fredholm
operator. Using the local identification of M˚pJ ǫ

U q with B̄´1p0q{G as in the proof of
Corollary 8.14 and lifting the projection to B̄´1p0q, the derivative of B̄´1p0q Ñ J ǫ

U at
pj0, u0, J0q takes the form

kerDB̄pj0, u0, J0q Ñ TJ0J
ǫ

U : py, η, Y q ÞÑ Y.

The Fredholm property for this projection is a consequence of the Fredholm property
for DB̄pj0, u0q via Lemma 8.2, which also implies that the projection is surjective if
and only if DB̄pj0, u0q is surjective, i.e. if u0 is a Fredholm regular curve. Applying
the Sard-Smale theorem to the map (8.5), we conclude:

Corollary 8.15. There exists a comeager subset

J ǫ,reg
U Ă J ǫ

U

such that for all J P J ǫ,reg
U , every u P M˚pJq is Fredholm regular. �

8.2.4. From Cǫ to C
8. The arguments above would constitute a proof of The-

orem 8.3 if we were allowed to replace the space of smooth almost complex structures
JU with the space J ǫ

U of Cǫ-small perturbations of J ref . Let us define

J reg
U Ă JU

to be the space of all J P JU with the property that all curves inM˚pJq are Fredholm
regular. The theorem claims that this set is comeager in JU . We can already see at
this point that it is dense: indeed, the Baire category theorem implies that J ǫ,reg

U is
dense in J ǫ

U , so in particular there exists a sequence Jν P Jǫ,reg
U that converges to J ref

in the Cǫ-topology and therefore also in the C8-topology. The choice of J ref P JU

in this discussion was arbitrary, so this proves density.
To prove that J reg

U is not only dense but also contains a countable intersection
of open and dense sets in JU , we can adapt an argument originally due to Taubes.
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The idea is to present M˚pJq as a countable union of compact subsets M˚
NpJq for

N P N, and thus present J reg
U as a corresponding countable intersection of spaces

J reg,N
U that achieve regularity only for the elements in M˚

NpJq. The compactness of

M˚
NpJq will then permit us to prove that J reg,N

U is not only dense but also open.
The definition of M˚

NpJq is motivated in part by the knowledge that spaces of
J-holomorphic curves have natural compactifications. We have not yet discussed
the compactification MpJq of MpJq, but we have covered enough of the analyt-
ical techniques behind this construction to suffice for most details of the present
discussion.

Lemma 8.16. For each J P JU , there exists a nested sequence of subsets M˚
1pJq Ă

M˚
2pJq Ă . . . Ă M˚pJq such that:

(1)
Ť
NPN M

˚
NpJq “ M˚pJq;

(2) For any compact subset K P JU and every N P N, the set

M˚
NpKq :“ tpu, Jq | J P K and u P M˚

NpJqu

with its natural topology (cf. Remark 8.10) is compact.

Proof. We start by finding a nested sequence in J pΣq that proves a similar
statement about the moduli space of Riemann surface Mg,ℓ, where ℓ :“ #pΓ Y Θq.
This depends mainly on the fact that Mg,ℓ is a finite-dimensional orbifold, so in
particular it is locally compact and second countable. Fix a model surface Σ of
genus g along with disjoint sets of punctures Γ Ă Σ and marked points Θ Ă Σ,
abbreviating Θ1 :“ ΓYΘ. For each j P J pΣq, choose a Teichmüller slice Tj Ă J pΣq
through pj,Θ1q, and let Vj Ă Tj denote a compact neighborhood of j. Then the
image of Vj under the quotient projection π : J pΣq Ñ J pΣq

L
DiffpΣ,Θ1q “ Mg,ℓ

is a compact neighborhood of rjs in Mg,ℓ. The union of these for all j P J pΣq
therefore forms an open cover of Mg,ℓ, which has a countable subcover, i.e.

Mg,ℓ “
8ď

N“1

πpVjN q

for some sequence j1, j2, j3, . . . P J pΣq. For each N P N, define

JNpΣq :“
Nď

i“1

Vji Ă J pΣq.

We now have a nested sequence J1pΣq Ă J2pΣq Ă . . . Ă J pΣq of compact subsets
whose union projects surjectively to Mg,ℓ under the quotient projection.

With this preparation in place, fix Riemannian metrics onxW and 9Σ with translation-
invariance on the cylindrical ends and use distp , q to denote the distance functions.
For N P N and J P JU , we define M˚

NpJq Ă M˚pJq to be the set of equivalence
classes admitting representatives pΣ, j,Γ`,Γ´,Θ, uq with the following properties:

‚ j P JNpΣq
‚ supzP 9Σ |dupzq| ď N ;



Lectures on Symplectic Field Theory 221

‚ There exists z0 P 9Σ such that

distpupz0q,xW zUq ě 1

N
, |dupz0q| ě 1

N
, distpz0,Γq ě 1

N
,

and

inf
zP 9Σztz0u

distpupz0q, upzqq
distpz0, zq ě 1

N
.

Observe that since every u P M˚pJq is asymptotically cylindrical, its first derivative
is globally bounded and it therefore belongs to M˚

NpJq for all N sufficiently large.
Conversely, every u P M˚

NpJq has an injective point lying a fixed distance away
from the punctures and whose image lies a fixed distance from the complement
of U . Now for any convergent sequence Jν Ñ J in JU , arbitrary sequences uν P
M˚

NpJνq have representatives of the form pΣ, jν ,Γ`,Γ`,Θ, uνq with jν P JNpΣq and
uν satisfying the two other two conditions above. Since JNpΣq is compact, we can
pass to a subsequence and assume jν Ñ j P JNpΣq. The Jν-holomorphic maps

uν : p 9Σ, jνq Ñ pxW,Jνq all have intersections with the precompact subset U Ă W r0

on some compact subset of 9Σ, and they have uniformly bounded first derivatives,
thus they are uniformly C1-bounded on compact subsets, and therefore also W 1,p

loc -
bounded for p ą 2. By Corollary 2.25, we can now pass to a further subsequence

so that uν converges in C8
locp 9Σq to a J-holomorphic map u : p 9Σ, jq Ñ pxW,Jq, which

necessarily also satisfies the closed conditions in the definition of the space M˚
NpJq.

One can apply further compactness arguments as in Lemma 9.20 to show that in
this situation, u is also asymptotically cylindrical and the continuous extensions

ūν : pΣ Ñ xW are C0-convergent to ū : pΣ Ñ xW , hence u P M˚
NpJq and puν , Jνq

converges to pu, Jq. �

To complete the proof of Theorem 8.3, define

J reg,N
U Ă JU

for each N P N as the set of all J P JU for which every element of M˚
NpJq is

Fredholm regular.

Lemma 8.17. For every N P N, J reg,N
U is open and dense in JU .

Proof. Density is immediate, since we’ve seen already that every J P JU admits
a C8-small perturbation that achieves regularity for all curves in

Ť
NPN M

˚
NpJq.

For openness, suppose the contrary: then there exists J8 P J reg,N
U and a sequence

Jν P JUzJ reg,N
U with Jν Ñ J8 in the C8-topology. There must also exist a sequence

of curves uν P M˚
NpJνq that are not Fredholm regular. But then a subsequence of

uν converges to an element u8 P M˚
NpJ8q, which must be Fredholm regular. The

latter is an open condition and thus gives a contradiction to the assumption that uν
is not regular for all ν. �

Proof of Theorem 8.3. Since M˚pJq “ Ť
NPN M

˚
NpJq, we have

J reg
U “

č

NPN
J reg,N

U ,

which is a countable intersection of open and dense sets. �
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8.3. Generic transversality in symplectizations

8.3.1. Main results in the R-invariant setting. If M is a closed manifold
with a stable Hamiltonian structure H, one can easily adapt Theorem 8.3 to say
that for any symplectic structure of the usual form ωf on R ˆM , generic C8-small
ωf -compatible perturbations of any given J P J pHq in an open subset U Ă R ˆ M

with compact closure will achieve regularity for all curves that map an injective
point into U . The trouble with this statement is that after the perturbation, J no
longer belongs to J pHq: in particular it cannot be R-invariant, nor can we expect
it to preserve the subbundle ξ “ ker λ or map Br to the Reeb vector field. Requiring
these conditions confines us to a much smaller space of perturbed almost complex
structures than in Theorem 8.3, and it is no longer obvious whether this space will
be large enough to achieve transversality.

The following statement refers to a stable Hamiltonian structure H “ pω, λq with
induced hyperplane distribution ξ “ ker λ and Reeb vector field R, and we denote
by

πξ : T pR ˆ Mq Ñ ξ

the projection along the trivial subbundle generated by Br and R. We will sometimes
view λ and dλ as forms on RˆM by pulling them back via the projection RˆM Ñ
M ; with this in mind, the dλ-complement of ξ Ă T pRˆMq at a point p P RˆM

will be denoted by

ξKdλ
p :“

 
X P TppR ˆ Mq

ˇ̌
dλpX, ¨q|ξp “ 0

(
Ă TppR ˆ Mq.

We assume as usual that MpJq “ Mg,mpJ,A,γ`,γ´q denotes a moduli space of
asymptotically cylindrical J-holomorphic curves with a fixed genus g and number
of marked points m, representing a fixed relative homology class A and asymptotic
to fixed sets of Reeb orbits γ˘

i at its positive and negative punctures.

Theorem 8.18. Suppose M is a closed p2n´ 1q-dimensional manifold carrying
a stable Hamiltonian structure H “ pω, λq, Jfix P J pHq,

U Ă M

is an open subset, and the orbits γ˘
i in the definition of the moduli space MpJq “

Mg,mpJ,A,γ`,γ´q are all nondegenerate. Then there exists a comeager subset

J reg
U Ă

 
J P J pHq

ˇ̌
J “ Jfix on R ˆ pMzUq

(

such that for every J P J reg
U , every curve u P MpJq with a representative u : 9Σ Ñ

R ˆ M that has an injective point z P 9Σ satisfying

(i) upzq P R ˆ U , and
(ii) im dupzq X ξKdλ

upzq “ t0u
is Fredholm regular.

This result is applied most frequently with U “ M , in which case the condition
upzq P R ˆ U is vacuous. Since dλpR, ¨q ” 0, the second condition on the injective
point z can be rephrased by asking for the linear map

dλpπξ ˝ TupXq, ¨q|ξupzq : ξupzq Ñ R
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to be nontrivial for every nonzero X P Tz 9Σ. If λ is contact, then this is immediate
whenever πξ˝TupXq ‰ 0 since dλ|ξ is nondegenerate, and the condition πξ˝TupXq ‰
0 is also easy to achieve:

Proposition 8.19. If J P J pHq, then for any connected J-holomorphic curve

u : p 9Σ, jq Ñ pR ˆ M,Jq, the section

πξ ˝ du P ΓpHomCpT 9Σ, u˚ξqq
either is identically zero or has only isolated zeroes.

As you might guess, this result is a consequence of the similarity principle; see
§8.3.2 for a proof. Notice that if πξ ˝ du ” 0, then u is everywhere tangent to the
vector fields Br and R, so if it is asymptotically cylindrical, then it can only be a
trivial cylinder or a cover thereof.

Proposition 8.20. All trivial cylinders over nondegenerate Reeb orbits have
index 0 and are Fredholm regular.

Proof. Let uγ : R ˆ S1 Ñ R ˆ M denote the trivial cylinder over an orbit
γ : S1 Ñ M . The virtual dimension formula proved in Lecture 7 gives

indpuγq “ pn´ 3qχpR ˆ S1q ` 2cτ1pu˚
γT pR ˆ Mqq ` µτCZpγq ´ µτCZpγq

“ 2cτ1pu˚
γT pR ˆ Mqq “ 0

since the asymptotic trivialization τ has an obvious extension to a global trivial-
ization of u˚

γξ, and u˚
γT pR ˆ Mq is globally the direct sum of the latter with the

trivial line bundle spanned by Br and R. Using this splitting, the linearized Cauchy-
Riemann operator Duγ can be identified with B̄ ‘ pBs ´ Aγq, where

B̄ “ Bs ` iBt : W k,p,δpR ˆ S1,Cq ‘ VΓ Ñ W k´1,p,δpR ˆ S1,Cq
and

Bs ´ Aγ : W
k,p,δpu˚

γξq Ñ W k´1,p,δpu˚
γξq.

Here we are assuming without loss of generality that VΓ is a complex 2-dimensional
space of smooth sections of the trivial line bundle spanned by Br and R that are
constant near infinity, and we are identifying this with a space of smooth complex-
valued functions on R ˆ S1. Nondegeneracy implies that Bs ´ A : W k,p Ñ W k´1,p

is an isomorphism, recall Theorem 4.14 in Lecture 4. Using weight functions as
in the proof of Lemma 7.6 to define isomorphisms between W k,p,δ and W k,p, one
can identify Bs ´ Aγ : W k,p,δ Ñ W k´1,p,δ with a small perturbation of the same
operator W k,p Ñ W k´1,p, hence it is also an isomorphism for δ ą 0 sufficiently
small. To see that B̄ : W k,p,δ ‘ VΓ Ñ W k´1,p,δ is also surjective, observe first that
its index is 2; this follows from our calculation of indpuγq and corresponds to the
fact that dimAutpR ˆ S1, iq “ 2. The kernel of this operator consists of bounded
holomorphic C-valued functions on R ˆ S1, so it is precisely the real 2-dimensional
space of constant functions, implying

dim cokerpB̄q “ dimkerpB̄q ´ indpB̄q “ 2 ´ 2 “ 0,

so Duγ is surjective. �
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Corollary 8.21. For any contact form α on a closed manifold M , there exists
a comeager subset J regpαq Ă J pαq such that for every J P J regpαq, all somewhere
injective asymptotically cylindrical J-holomorphic curves in R ˆ M are Fredholm
regular. �

Note that in the setting of Corollary 8.21, a curve that is not a cover of a trivial
cylinder always belongs to a smooth 1-parameter family of curves related to each
other by R-translation, so that the kernel of the linearized Cauchy-Riemann operator
automatically has kernel of dimension at least 1. This precludes Fredholm regularity
for curves of index 0, thus:

Corollary 8.22. If α is a contact form and J P J regpαq, then all simple

asymptotically cylindrical J-holomorphic curves u : p 9Σ, jq Ñ pR ˆ M,Jq other than
trivial cylinders satisfy

indpuq ě 1.

�

The following example shows that outside of the contact case, the nonvanishing
of πξ ˝ du does not suffice on its own for achieving transversality:

Example 8.23 (cf. §6.3.2). Assume pW,Ωq is a closed symplectic manifold of
dimension 2n´2 with a periodic time-dependent Hamiltonian H : S1ˆW Ñ R, and
M :“ S1ˆW is assigned the stable Hamiltonian structure pω, λq :“ pΩ`dt^dH, dtq.
A choice of J P J pHq is then equivalent to a choice of t-dependent family of Ω-
compatible almost complex structures tJt P J pW,ΩqutPS1 , and for any fixed t P S1

and s P R, Jt-holomorphic curves v : pΣ, jq Ñ pW,Jtq give rise to J-holomorphic
curves

u : pΣ, jq Ñ pR ˆ M,Jq : z ÞÑ ps, t, vpzqq.
In particular, when n “ 2 one can consider the example where W “ Σ is a closed
surface, so curves of this form exist for any choice of J P J pHq, no matter how
generic (remember that the domain complex structure j is arbitrary, it is not fixed
in advance). If Σ has genus g and the map v : Σ Ñ Σ has degree 1, then since u
has no punctures and satisfies c1prusq “ c1pu˚T pRˆS1 ˆΣqq “ c1pTΣq “ χpΣq, the
index of u is

indpuq “ pn´ 3qχpΣq ` 2χpΣq “ χpΣq “ 2 ´ 2g.

This shows that u cannot be Fredholm regular unless g “ 0.

Theorem 8.18 appeared for the first time in the contact case in [Dra04], and
alternative proofs have since appeared in the appendix of [Bou06] (for cylinders in
the contact case) and in [Wena] (under slightly different assumptions in the stable
Hamiltonian setting). What I will describe below is a generalization of Bourgeois’s
proof.

8.3.2. Injective points of the projected curve. One point of difficulty in
proving transversality in R ˆ M is that in contrast to the setting of Theorem 8.3,
generic perturbations within J pHq can never be truly local, i.e. if you perturb J

near a point pr, xq P R ˆ M , then you are also perturbing it in a neighborhood
of the entire line R ˆ txu. We therefore need to know that we can find a point
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z P 9Σ that is the only point where u : 9Σ Ñ R ˆ M passes through such a line; put
another way, we need to know that not only u “ puR, uMq : 9Σ Ñ R ˆ M but also

the projected map uM : 9Σ Ñ M is somewhere injective. The first step in showing
this is Proposition 8.19 above, as the zeroes of the section

πξ ˝ du P ΓpHomCpT 9Σ, u˚ξqq
are precisely the non-immersed points of uM : 9Σ Ñ M ; everywhere else, uM is
an immersion transverse to the Reeb vector field. To prove Proposition 8.19, we
shall use the fact that the vector fields Br and R generate an integrable J-invariant
distribution on R ˆ M . Indeed, the zeroes of πξ ˝ du are the points of tangency
with this distribution, hence the result is an immediate consequence of the following
statement:

Lemma 8.24. Suppose pW,Jq is an almost complex manifold, Ξ Ă TW is a
smooth integrable J-invariant distribution and u : pΣ, jq Ñ pW,Jq is a connected
pseudoholomorphic curve whose image is not contained in a leaf of the foliation
generated by Ξ. Then all points z P Σ with im dupzq Ă Ξ are isolated in Σ.

Proof. The statement is local, so assume pΣ, jq “ pD, iq with coordinates s`it,
W “ Cn, and up0q “ 0. Let 2m denote the real dimension of Ξ, and observe that
since Ξ is integrable, we can change coordinates near 0 and assume without loss of
generality that at every point p P Cn near 0, Ξp “ Cm ‘ t0u Ă Cn “ TpC

n. The
J-invariance of Ξ then implies that in coordinates pw, ζq P Cm ˆ Cn´m, J takes the
form

Jpw, ζq “
ˆ
J1pw, ζq Y pw, ζq

0 J2pw, ζq

˙
,

where J2
1 and J2

2 are both ´1, and J1Y ` Y J2 “ 0. Writing upzq “ pfpzq, vpzqq P
Cm ˆ Cn´m, the Cauchy-Riemann equation Bsu` JpuqBtu “ 0 is then equivalent to
the two equations

Bsf ` J1pf, vq Btf ` Y pf, vq Btv “ 0,

Bsv ` J2pf, vq Btv “ 0.
(8.6)

We have im dupzq Ă Ξ wherever Bsv “ Btv “ 0; notice that it suffices to consider
the condition Bsv “ 0 since Btv “ J2pf, vq Bsv. Differentiating the second equation
in (8.6) with respect to s gives

BspBsvq ` J2pf, vq BtpBsvq ` Bs rJ2pf, vqs J2pf, vq Bsv “ 0,

where in the last term we’ve substituted J2pf, vq Bsv for Btv. Setting J̄pzq :“
J2pfpzq, vpzqq and Apzq :“ Bs rJ2pfpzq, vpzqqs J2pfpzq, vpzqq, this becomes a linear
Cauchy-Riemann type equation BspBsvq ` J̄ BtpBsvq ` ApBsvq “ 0, so the similarity
principle implies that zeroes of Bsv are isolated unless it is identically zero. The
latter would mean v is constant, so u is contained in a leaf of Ξ. �

Lemma 8.25. Suppose J P J pHq, γ : S1 Ñ M is a closed Reeb orbit, and

u “ puR, uMq : p 9Σ, jq Ñ pR ˆ M,Jq is an asymptotically cylindrical J-holomorphic
curve that is not a cover of a trivial cylinder. Then all intersections of the map
uM : 9Σ Ñ M with the image of the orbit γ are isolated.
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Proof. The trivial cylinder over γ is a J-holomorphic curve, so the statement
follows from the fact that two asymptotically cylindrical J-holomorphic curves can
only have isolated intersections unless both are covers of the same simple curve. �

We can now prove the statement we need about somewhere injectivity for uM :
9Σ Ñ M . This result first appeared in [HWZ99, Theorem 1.13].

Proposition 8.26. Suppose J P J pHq and

u “ puR, uMq : p 9Σ, jq Ñ pR ˆ M,Jq
is a simple asymptotically cylindrical J-holomorphic curve which is not a trivial
cylinder and has only nondegenerate asymptotic orbits. Then the set of injective
points z P 9Σ of the map uM : 9Σ Ñ M for which uMpzq is not contained in any of
the asymptotic orbits of u is open and dense.

Proof. Openness is clear, so our main task is to prove density. The idea is
first to show via elementary topological arguments that if the set of injective points
is not dense, then 9Σ contains two disjoint open sets on which uM is an embedding
with identical images. We will then conclude from this that if u is simple, it must
be equivalent to one of its nontrivial R-translations, and the latter is impossible for
an asymptotically cylindrical curve.

Step 1: We begin by harmlessly removing some discrete sets of points in 9Σ that
would make the subsequent arguments more complicated. Let

P Ă M

denote the union of the images of the asymptotic orbits of u, a finite disjoint union
of circles. Lemma 8.25 implies that u´1

M pP q is a discrete subset of 9Σ. By Proposi-

tion 8.19, there is also a discrete set Z Ă 9Σzu´1
M pP q containing all points z R u´1

M pP q
where πξ ˝ dupzq “ 0, and we claim that

Z 1 :“ u´1
M puMpZqq

is a discrete subset of 9Σzu´1
M pP q. Indeed, uMpZq is a discrete subset ofMzP since the

points in Z can only accumulate at infinity,6 hence accumulation points of uMpZq Ă
M can occur only in P . For each individual point p P uMpZq, the fact that p R P
implies u´1

M ppq is compact, and it consists of a discrete (and therefore finite) set of
points with πξ ˝ dupzq “ 0, plus possibly some other points where πξ ˝ dupzq ‰ 0,
but uM is an embedding near each point of the latter type, so that these points of
u´1
M ppq must always be isolated and are therefore also finite in number. This proves

the claim, and we conclude that

:Σ :“ 9Σz
`
u´1
M pP q Y Z 1˘

an open and dense subset of 9Σ, as it is obtained by removing a discrete subset from
the open and dense subset 9Σzu´1

M pP q. To prove the proposition, it will now suffice

to prove that the set of points z P :Σ which are injective points of uM : 9Σ Ñ M is

6Actually the asymptotic formula of [HWZ96] implies that both Z and u´1

M pP q are always
finite for curves that are not covers of trivial cylinders, but we do not need to use that here.
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dense in :Σ. We shall argue by contradiction and assume from now on that density
fails.

Step 2: We will find two open subsets U ,V Ă 9Σ such that uM restricts to an
embedding on both, but

U X V “ H and uMpUq “ uMpVq.
Indeed, assume the set of injective points of uM lying in :Σ is not dense in :Σ. Then
there exists a point z0 P :Σ with a closed neighborhood Dpz0q Ă :Σ such that no

z P Dpz0q is an injective point. Since z P :Σ implies πξ ˝ dupzq ‰ 0, this means that

for every z P Dpz0q, there exists ζ P 9Σztzu with uMpzq “ uMpζq, and the definition

of :Σ implies ζ is also in :Σ, hence πξ ˝ dupζq ‰ 0 and uM is a local embedding near ζ .

Since upzq R P and uM maps 9Σzu´1
M pP q properly to MzP , we also conclude that

u´1
M puMpzqq is finite. Now suppose u´1

M puMpz0qq “ tz0, ζ1, . . . , ζmu, and let Dpζjq Ă :Σ
for j “ 1, . . . , m denote closed neighborhoods on which uM is an embedding. We
claim that after possibly shrinking Dpz0q, we can assume

uMpDpz0qq Ă
mď

j“1

uMpDpζjqq.

Let us first shrink Dpz0q so that uM is an embedding on Dpz0q, which is possible
since πξ ˝dupz0q ‰ 0. Then if the claim is false, there exists a sequence zν P Dpz0q of
noninjective points with zν Ñ z0, hence there is also a sequence z1

ν P :ΣzDpz0q with
uMpzνq “ uMpz1

νq but z1
ν not converging to any of ζ1, . . . , ζm. But since uMpz1

νq Ñ
uMpz0q R P , the points z1

ν are confined to a compact subset of 9Σ and therefore have

a subsequence z1
ν Ñ z1

8 P 9Σ with uMpz1
8q “ uMpz0q. The limit cannot be z0 itself

since z1
ν R Dpz0q, thus z1

8 must be one of the ζ1, . . . , ζm, and we have a contradiction.
We claim next that at least one of the sets uMpDpz0qq X uMpDpζjqq has nonempty
interior. This is a simple exercise in metric space topology: it can be reduced to
the fact that if X is a metric space with closed subsets V,W Ă X that both have
empty interior (meaning no open subset of X is contained in V or W ), then V YW

also has empty interior. Since the subsets uMpDpz0qq X uMpDpζjqq Ă uMpDpz0qq for
j “ 1, . . . , m are all closed but their union is uMpDpz0qq, they cannot all have empty
interior. This achieves the goal of Step 2.

Step 3: We show that u is biholomorphically equivalent to one of itsR-translations

τ ¨ u :“ puR ` τ, uMq : 9Σ Ñ R ˆ M

for τ P Rzt0u. To see this, note that for J P J pHq, the nonlinear Cauchy-Riemann
equation Tu ˝ j “ J ˝ Tu is equivalent to the two equations

duR “ u˚
Mλ ˝ j,

πξ ˝ duM ˝ j “ JpuMq ˝ πξ ˝ duM .
(8.7)

Since πξ ˝ duM : T 9Σ Ñ u˚
Mξ is fiberwise injective everywhere on the neighborhoods

U and V, the second equation determines j in terms of J on each of these regions;
in particular, the identification of uMpUq with uMpVq provides a biholomorphic map
of V to U so that u|U and u|V may be regarded as two J-holomorphic maps from
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the same Riemann surface which differ only in the R-factor. But with j and uM
both fixed, the first equation in (8.7) determines duR and thus determines uR up to
the addition of a constant τ P R. If τ “ 0, this means u has two disjoint regions on
which its images are identical, contradicting the assumption that u is simple. Thus
τ ‰ 0, and since two distinct simple curves can only intersect each other at isolated
points, we conclude u “ τ ¨ u up to parametrization.

Step 4: We now derive a contradiction. The relation u “ τ ¨ u implies that in
fact u “ kτ ¨ u for every k P Z, so we obtain a diverging sequence of R-translations
τk Ñ 8 such that u and τk ¨ u always have identical images in R ˆ M . It follows
that for some point z P 9Σ with upzq “ pr, xq where x is not contained in any of the
asymptotic orbits of u, the points pr ´ τk, xq are all in the image of u as τk Ñ 8.
But this contradicts the asymptotically cylindrical behavior of u. �

8.3.3. Smoothness of the universal moduli space. The overall outline of
the proof of Theorem 8.18 is the same as for Theorem 8.3: one needs to define a
suitable space J ǫ

U of perturbed almost complex structures, giving rise to a universal
moduli space M˚pJ ǫ

U q that is a smooth Banach manifold, and then apply the Sard-
Smale theorem to conclude that generic elements of J ǫ

U are regular values of the
projection M˚pJ ǫ

U q Ñ J ǫ

U : pu, Jq ÞÑ J . If J ǫ

U is a space of Cǫ-perturbed almost
complex structures, then in the final step one can use the Taubes trick as in §8.2.4 to
transform the genericity result in J ǫ

U into a genericity result within the space J pHq
of smooth almost complex structures. The only step that differs meaningfully from
what we’ve already discussed is the smoothness of the universal moduli space, so let
us focus on this detail.

Assume J ref P J pHq with J ref “ Jfix outside RˆU , and J ǫ

U is a Banach manifold
of Cǫ-small perturbations of J ref in J pHq that are also fixed outside of R ˆ U . For
J P J pHq, we consider the open subset M˚pJq Ă MpJq defined by

M˚pJq :“
 
u P MpJq

ˇ̌
u “ puR, uMq : 9Σ Ñ R ˆ M has an injective point z P 9Σ with

upzq P R ˆ U , πξ ˝ dupzq ‰ 0 and im duMpzq X ξKdλ
upzq “ t0u

(
.

and the corresponding universal moduli space

M˚pJ ǫ

U q :“
 

pu, Jq
ˇ̌
J P J ǫ

U and u P M˚pJq
(
.

The local structure of M˚pJ ǫ

U q near an element pu0, J0q with representative u0 :

p 9Σ, j0q Ñ pR ˆ M,J0q can again be described via the zero set of a smooth section

B̄ : T ˆ Bk,p,δ ˆ J ǫ

U Ñ Ek´1,p,δ : pj, u, Jq ÞÑ du` Jpuq ˝ du ˝ j,
where T is a Teichmüller slice through pj0,Γ Y Θq, and it suffices to show that the
linear map

W k,p,δpu˚
0T pR ˆ Mqq ‘ TJ0J

ǫ

U

LÑ W k´1,p,δpHomCpT 9Σ, u˚
0T pR ˆ Mqqq

pη, Y q ÞÑ Du0η ` Y pu0q ˝ du0 ˝ j0
is always surjective. As usual, here we’re assuming k P N, 1 ă p ă 8, and
the exponential weight δ ą 0 is small but positive so that the map W k,p,δ Ñ
W k´1,p,δ : η ÞÑ Du0η is Fredholm. The image of L is then closed, and focusing
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on the k “ 1 case, if L is not surjective then there exists a nontrivial element
θ P Lq,´δpHomCpT 9Σ, u˚

0T pR ˆ Mqqq such that

xDu0η, θyL2 “ 0 for all η P W 1,p,δpu˚
0T pR ˆ Mqq,

xY pu0q ˝ du0 ˝ j0, θyL2 “ 0 for all Y P TJ0J ǫ

U .
(8.8)

The first condition implies via elliptic regularity and the similarity principle that θ
is smooth and has only isolated zeroes. So far this is all the same as in the proof
of Theorem 8.3, but the next step is trickier: since perturbing J0 within J pHq
only changes the action of the almost complex structure on ξ but not on the trivial
subbundle generated by Br and R, it is not clear whether the range of values allowed
for Y is large enough to force xY pu0q ˝ du0 ˝ j0, θyL2 ą 0.

To overcome this, let us decompose everything in this picture with respect to
the natural splitting

T pR ˆ Mq “ ε ‘ ξ,

where ε denotes the trivial line bundle spanned by Br and R. In particular, the
domain and target bundles of the Cauchy-Riemann type operator Du0 now split as

u˚
0T pR ˆ Mq “ u˚

0ε ‘ u˚
0ξ,

HomCpT 9Σ, u˚
0T pR ˆ Mqq “ HomCpT 9Σ, u˚

0εq ‘ HomCpT 9Σ, u˚
0ξq,

and we shall write η “ pηε, ηξq and θ “ pθε, θξq accordingly. This gives a block
decomposition of Du0 as

Du0η “
ˆ

pDu0ηqε
pDu0ηqξ

˙
“
ˆ
Dε
u0

Dεξ
u0

Dξε
u0

Dξ
u0

˙ˆ
ηε

ηξ

˙
.

By Exercise 6.23, Dε
u0

and Dξ
u0

are each Cauchy-Riemann type operators on u˚
0ε

and u˚
0ξ respectively, while the off-diagonal terms are both tensorial, i.e. zeroth-

order operators. Since perturbations of J0 in J pHq only change its action on ξ,
Y P TJ0J ǫ

U now takes the block form

Y “
ˆ
0 0
0 Y ξ

˙
,

where Y ξ is a Cǫ-small section of the bundle EndCpξ, J0q over M . Assuming the L2-
pairings are defined so as to respect these splittings, the second condition in (8.8)
now becomes

xY ξpu0q ˝ πξ ˝ du0 ˝ j0, θξyL2 “ 0,

and given any injective point z0 P 9Σ of pu0qM : 9Σ Ñ M satisfying u0pz0q P RˆU , we
have enough freedom to choose Y ξ near Rˆ tu0pz0qu such that this pairing becomes
positive unless

θξ “ 0 near z0.

Assuming this holds, it remains to show that θε also vanishes near z0, which will
contradict the fact that θ only has isolated zeroes. To this end, notice that the first
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condition in (8.8) implies via separate choices of the components ηε and ηξ with
support near z0 that

xDε
u0
ηε, θεyL2 “ 0 for all ηε supported near z0,

xDεξ
u0
ηξ, θεyL2 “ 0 for all ηξ supported near z0.

(8.9)

The first of these two conditions gives no new information, since we already know
that θ “ pθε, 0q solves an anti-Cauchy-Riemann equation. To get some information
out of the second condition, we will need an explicit formula for Dεξ

u0
.

Lemma 8.27. The tensorial operator Dεξ
u0

: u˚
0ξ Ñ HomCpT 9Σ, u˚

0εq takes the form
Dεξ
u0
ηξ “

“
´dλ

`
ηξ, du ˝ jp¨q

˘‰
Br `

“
dλ

`
ηξ, dup¨q

˘‰
R.

Proof. As a preliminary step, notice that ´dr ˝ J “ λ for any J P J pHq;
indeed, the conditions Jpξq “ ξ Ă ker dr and JBr “ R imply that these two 1-forms
have matching values on Br, R and ξ. As a consequence, λ˝J0 “ dr, so in particular
λ ˝ J0 is closed.

Choosing local holomorphic coordinates ps, tq in an arbitrary neighborhood in
9Σ, we have

pDεξ
u0
ηξqBs “ dr

`
pDu0η

ξqBs
˘

Br ` λ
`
pDu0η

ξqBs
˘
R.

Extend u0 : 9Σ Ñ R ˆ M to a smooth 1-parameter family of maps tuρ : 9Σ Ñ
R ˆ MuρPR with Bρuρ|ρ“0 “ ηξ P Γpu˚

0ξq. Then by the definition of the linearized
Cauchy-Riemann operator,

pDu0η
ξqBs “ ∇ρ pBsuρ ` J0puρqBtuρq|

ρ“0
,

for any choice of connection ∇ on R ˆ M . Since Bsu0 ` J0pu0qBtu0 “ 0, we find

λ
`
pDu0η

ξqBs
˘

“ λ
`
∇ρ pBsuρ ` J0puρqBtuρq|

ρ“0

˘
“ Bρ rλpBsuρ ` J0puρqBtuρqs|

ρ“0

“ Bρ rλpBsuρqs|
ρ“0

` Bρ rpλ ˝ J0qpBtuρqs|
ρ“0

“ dλpηξ, Bsuq ` dpλ ˝ J0qpηξ, Btuq
“ dλpηξ, Bsuq,

where we’ve used the formula

dλpX, Y q “ LX rλpY qs ´ LY rλpXqs ´ λprX, Y sq
and eliminated several terms using the fact that λpηξq “ λpJ0ηξq “ 0 since ηξ is
valued in ξ, plus dpλ ˝ J0q “ 0. A similar computation gives

dr
`
pDu0η

ξqBs
˘

“ ´dλpηξ, Btuq,
so removing the local coordinates from the picture produces the stated formula. �

Lemma 8.28. If im dupz0q X ξKdλ
upz0q “ t0u, then Dεξ

u0
: u˚

0ξ Ñ HomCpT 9Σ, u˚
0εq is

fiberwise surjective on a neighborhood of z0.

Proof. Choose holomorphic coordinates s` it near z0 and use Lemma 8.27 to
write

pDεξ
u0
ηξqBs “

“
´dλpηξ, Btuq

‰
Br `

“
dλpηξ, Bsuq

‰
R.
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This describes a bundle map u˚
0ξ Ñ u˚

0ε near z0 that is surjective at every point
z where dλp¨, Btuq|ξupzq and dλp¨, Bsuq|ξupzq are linearly independent in Hompξupzq,Rq.
The latter is true if and only if for every pair of coefficients a, b P R that do not
both vanish,

0 ‰ a dλp¨, Btuq|ξupzq ` b dλp¨, Bsuq|ξupzq “ dλp¨, aBtu ` bBsuq|ξupuq,

meaning no nontrivial vector in im du is in ξKdλ. �

Now assuming that our injective point z0 also satisfies the condition in Lemma 8.28,
we can choose ηξ with support near z0 to satisfy

xDu0η
ξ, θεyL2 ą 0

unless θε vanishes identically near z0. The two conditions in (8.9) therefore imply
θε ” 0 near z0 and thus θ ” 0, which is a contradiction.

We’ve proved that the universal moduli space is smooth as claimed. Since the
rest of the proof of Theorem 8.18 is the same as in the non-R-invariant case, we
leave those details to the reader.

Remark 8.29. You may have noticed that in both Theorems 8.3 and 8.18,
our proof that the universal moduli space is smooth relied on a surjectivity result
that was actually stronger than needed: in both cases, we needed to prove that an
operator of the form

Tj0T ‘ Tu0B
k,p,δ ‘ TJ0J

ǫ

U Ñ Ek´1,p,δ
pj0,u0,J0q

was surjective, but we ended up proving that its restriction to the smaller domain
Tu0B

k,p,δ‘TJ0J ǫ

U is already surjective. This technical detail hints at a stronger result
that can be proved using these methods: one can show that not only is M˚pJ ǫ

U q
smooth but also the forgetful map

M˚pJ ǫ

U q Ñ Mg,k``k´`m

prpΣ, j,Γ`,Γ´,Θ, uqs, Jq ÞÑ rpΣ, j,Γ Y Θqs
sending a J-holomorphic curve to its underlying domain in the moduli space of
Riemann surfaces is a submersion, cf. the blog post [Wenb] and its sequel. One can
use this to prove generic transversality results for spaces of J-holomorphic curves
whose domains are constrained within the moduli space of Riemann surfaces, which
gives rise to more elaborate algebraic structures on SFT, e.g. this idea plays a
prominent role in the study of Gromov-Witten invariants.
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Moduli spaces of pseudoholomorphic curves are generally not compact, but they
have natural compactifications, obtained by allowing certain types of curves with
singular behavior. For closed holomorphic curves, this fact is known as Gromov’s
compactness theorem, and our main goal in this lecture is to state its generalization
to punctured curves, which is usually called the SFT compactness theorem. The the-
orem was first proved in [BEH`03] (see also [CM05] for an alternative approach),
and we do not have space here to present a complete proof, but we can still describe
the main geometric and analytical ideas behind it.

The overarching theme of this lecture is the notion of bubbling, of which we will
see several examples. Bubbling arises in a natural way from elliptic regularity: recall
that in Lecture 2, we proved that whenever kp ą 2, any uniformly W k,p-bounded
sequence uν of J-holomorphic curves for a smooth almost complex structure J is
also uniformly Cm

loc-bounded for every m P N (cf. Theorem 2.24). The Arzelà-Ascoli
theorem implies that such sequences have C8

loc-convergent subsequences, and this is
true in particular whenever uν is uniformly C1-bounded, as a C1-bound implies a
W 1,p-bound with p ą 2. Let us take note of this fact for future use:

Proposition 9.1. If pW,Jνq is a sequence of almost complex manifolds with
Jν Ñ J in C8, then any uniformly C1-bounded sequence of Jν-holomorphic maps
uν : D Ñ W has a subsequence convergent in C8

loc on D̊. �

233
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If one wants to prove compactness for a moduli space of J-holomorphic curves,
it therefore suffices in general to establish a C1-bound. We will work mainly in
settings where a weaker condition than this holds, namely that the curves uν have
bounded energy Epuνq ě 0, defined typically as the integral of a taming symplectic
form over uν , or (in the noncompact settings that we consider) the supremum of
such integrals for a distinguished class of taming symplectic forms. Observe that if
u : pD, iq Ñ pW,Jq is J-holomorphic and J is tamed by a symplectic form ω, then
gpX, Y q :“ 1

2
rωpX, JY q ` ωpY, JXqs defines a Riemannian metric on W such that

in holomorphic coordinates s ` it P D, the equation Bsu ` J Btu “ 0 implies

u˚ωpBs, Btq “ ωpBsu, Btuq “ 1

2
rωpBsu, JBsuq ` ωpBtu, JBtuqs

“ 1

2

`
|Bsu|2g ` |Btu|2g

˘
,

(9.1)

This shows that a uniform bound on Epuνq “
ş
D
u˚
νω for a sequence of local J-

holomorphic curves uν implies a uniform local W 1,2-bound. That is just short of
the W 1,p-bound for p ą 2 that is required for producing results like Proposition 9.1,
but it will turn out to suffice for exerting tight control over the range of interesting
things that can happen when C1-bounds fail. In such cases, the sequence uν will
not be compact, but we will see that it becomes compact after removing finitely
many points from its domain, and near those points one can take a sequence of
reparametrizations to find additional nontrivial holomorphic curves in the limit, the
so-called “bubbles”. This is one of the ways that the “nodal” curves in Gromov’s
compactness theorem can arise, and we will see the same phenomenon at work in
several other contexts as well.

9.1. Removal of singularities

As an important tool for use in the rest of this lecture, we begin with the following
result from [Gro85]:

Theorem 9.2 (Gromov’s removable singularity theorem). Assume pW,ωq is a
symplectic manifold with a tame almost complex structure J , and u : Dzt0u Ñ W is
a J-holomorphic curve that has its image contained in a compact subset of W and
satisfies ż

Dzt0u
u˚ω ă 8.

Then u admits a smooth extension to D.

The most interesting part of the proof (§9.1.1) establishes that u has a continuous
extension, and after that (§9.1.2) we will use elliptic regularity to show that the
continuous extension is actually smooth.

9.1.1. The continuous extension. We will use as a black box the following
additional result from [Gro85], which is closely related to a standard result about
minimal surfaces:
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pp´

Brppq

p

upΣq

upΣ1q

Figure 9.1. The intersection of a J-holomorphic curve u with an
open ball Brppq defines a proper map Σ Ñ Brppq. The monotonicity
lemma prevents this map from having arbitrarily small area if it passes
through p.

Theorem (Gromov’s monotonicity lemma [Gro85]). Suppose pW,ωq is a com-
pact symplectic manifold (possibly with boundary), J is an ω-tame almost complex
structure, and Brppq Ă W denotes the open ball of radius r ą 0 about p P W with
respect to the Riemannian metric gpX, Y q :“ 1

2
ωpX, JY q ` 1

2
ωpY, JXq. Then there

exist constants c, R ą 0 such that for all r P p0, Rq and p P W with Brppq Ă W , every
proper non-constant J-holomorphic curve u : pΣ, jq Ñ pBrppq, Jq passing through p
satisfies ż

Σ

u˚ω ě cr2.

In the statement above, pΣ, jq is assumed to be an arbitrary (generally noncom-
pact) Riemann surface without boundary. In applications, one typically has a larger
(e.g. closed or punctured) domain Σ1 in the picture, and Σ is defined to be the con-
nected component of u´1pBrppqq Ă Σ1 containing some point z P u´1ppq. The main
message of the theorem is that u must use up at least a certain amount of energy
for every ball whose center it passes through, so e.g. the portion of the curve passing
through Brppq cannot become arbitrarily “thin” as in Figure 9.1.

Returning to the removable singularity theorem, we shall use the biholomorphic
map

Z` :“ r0,8q ˆ S1 Ñ Dzt0u : ps, tq ÞÑ e´2πps`itq

to transform J-holomorphic maps Dzt0u Ñ W into maps Z` Ñ W , and the goal
will be to show that whenever such a map u has precompact image and satisfiesş
Z`
u˚ω ă 8, there exists a point p P W such that

(9.2) ups, ¨q Ñ p in C8pS1,W q as s Ñ 8.

Fix the obvious flat metric on Z` and any Riemannian metric on W in order to
define norms such as |dups, tq| for ps, tq P Z`.

Lemma 9.3. There exists a constant C ą 0 such that |dups, tq| ď C for all
ps, tq P Z`.
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Proof, part 1. Arguing by contradiction, suppose there exists a sequence zk “
psk, tkq P Z` with |dupzkq| “: Rk Ñ 8. Choose a sequence of positive numbers
ǫk ą 0 that converge to zero but not too fast, so that ǫkRk Ñ 8. We then consider
the sequence of reparametrized maps

vk : DǫkRk
Ñ W : z ÞÑ upzk ` z{Rkq.

These are also J-holomorphic since z ÞÑ zk ` z{Rk is holomorphic, and the values
of vk depend only on the values of u over the ǫk-disk about zk. Notice that since
sk Ñ 8 and ǫk Ñ 0, we are free to assume that all of these ǫk-disks are disjoint;
moreover, tameness of J implies u˚ω ě 0 and v˚

kω ě 0, thus

ÿ

k

ż

DǫkRk

v˚
kω “

ÿ

k

ż

Dǫk
pzkq

u˚ω ď
ż

Z`

u˚ω ă 8,

implying

(9.3)

ż

DǫkRk

v˚
kω Ñ 0 as k Ñ 8.

We would now like to say something about a limit of the maps vk as k Ñ 8, but this
will require a brief pause in the proof, as we don’t yet have quite enough information
to do so. We know that the vk are uniformly C0-bounded since upZ`q is contained
in a compact subset. It would be ideal if we also had a uniform C1-bound, as then
elliptic regularity (Prop. 9.1) would give a C8

loc convergent subsequence on the union
of all the domains DǫkRk

, i.e. on the entire plane. We have

dvkpzq “ 1

Rk

dupzk ` z{Rkq,

hence |dvkp0q| “ 1, but we will need to know more about |du| on the rest of Dǫkpzkq
in order to deduce a C1-bound for vk on all of DǫkRk

. We’ll come back to this in a
moment. proof to be continued. . .

Here is the auxiliary lemma that is needed to complete the proof above:

Lemma 9.4 (Hofer). Suppose pX, dq is a complete metric space, g : X Ñ r0,8q
is continuous, x0 P X and ǫ0 ą 0. Then there exist x P X and ǫ ą 0 such that,

(a) ǫ ď ǫ0,
(b) gpxqǫ ě gpx0qǫ0,
(c) dpx, x0q ď 2ǫ0, and

(d) gpyq ď 2gpxq for all y P Bǫpxq.

Proof. If there is no x1 P Bǫ0px0q such that gpx1q ą 2gpx0q, then we can
set x “ x0 and ǫ “ ǫ0 and are done. If such a point x1 does exist, then we set
ǫ1 :“ ǫ0{2 and repeat the process above for the pair px1, ǫ1q: that is, if there is

no x2 P Bǫ1px1q with gpx2q ą 2gpx1q, we set px, ǫq “ px1, ǫ1q and are finished, and
otherwise define ǫ2 “ ǫ1{2 and repeat for px2, ǫ2q. This process must eventually
terminate, as otherwise we obtain a Cauchy sequence xn with gpxnq Ñ 8, which is
impossible if X is complete. �
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Proof of Lemma 9.3, part 2. Applying Lemma 9.4 to X “ Z` with gpzq “
|dupzq|, we can replace the original sequences ǫk and zk with new sequences for which
all the previously stated properties still hold, but additionally,

|dupzq| ď 2|dupzkq| for all z P Dǫkpzkq.
Our sequence of reparametrizations vk then satisfies

|dvkpzq| ď 2 for all z P DǫkRk
,

so by elliptic regularity, vk has a subsequence convergent in C
8
locpCq to a J-holomorphic

map

v8 : C Ñ W

which is not constant since |dv8p0q| “ limkÑ8 |dvkp0q| “ 1. Informally, we say that
the blow-up of the derivatives at zk has caused a plane to “bubble off”. However,
(9.3) implies that for every R ą 0, one can write ǫkRk ě R for k sufficiently large
and thus ż

DR

v˚
8ω “ lim

kÑ8

ż

DR

v˚
kω ď lim

kÑ8

ż

DǫkRk

v˚
kω “ 0,

implying
ş
C
v˚

8ω “ 0. It follows that v8 must be constant, so we have a contradic-
tion. �

To obtain the uniform limit of ups, ¨q as s Ñ 8, we now pick any sequence of
nonnegative numbers sk Ñ 8 and consider the sequence of J-holomorphic half-
cylinders

uk : r´sk,8q ˆ S1 Ñ W : ps, tq ÞÑ ups` sk, tq.
By Lemma 9.3, these maps are uniformly C1-bounded, so elliptic regularity gives a
subsequence converging in C8

loc on R ˆ S1 to a J-holomorphic cylinder

u8 : R ˆ S1 Ñ W.

Observe that for any c ą 0, we can write ´sk{2 ď ´c for sufficiently large k and
thus computeż

r´c,csˆS1

u˚
8ω “ lim

kÑ8

ż

r´c,c,sˆS1

u˚
kω ď lim

kÑ8

ż

r´sk{2,8qˆS1

u˚
kω

“ lim
kÑ8

ż

rsk{2,8qˆS1

u˚ω “ 0

since
ş
Z`
u˚ω ă 8. This implies

ş
RˆS1 u

˚
8ω “ 0, so u8 is a constant map to some

point p P W , hence after replacing sk with a subsequence,

upsk, ¨q “ ukp0, ¨q Ñ p in C8pS1,W q as k Ñ 8.

To finish the proof of (9.2), we need to show that one cannot find two sequences
sk Ñ 8 and s1

k Ñ 8 such that upsk, ¨q Ñ p and ups1
k, ¨q Ñ p1 for distinct points

p ‰ p1 P W . This is an easy consequence of the monotonicity lemma: indeed,
if two such sequences exist, then we can find a sequence s2

k Ñ 8 for which the
loops ups2

k, ¨q alternate between arbitrarily small neighborhoods of p and p1. Since
u is continuous, it must then pass through BB2rppq infinitely many times for r ą 0
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sufficiently small, and in fact there exists an infinite sequence of pairwise disjoint
neighborhoods Uk Ă Z` such that each

u|Uk
: Uk Ñ Brpqkq

is a proper map passing through some point qk P BB2rppq. The monotonicity lemma
then implies ż

Z`

u˚ω ě
ÿ

k

ż

Uk

u˚ω ě
ÿ

k

cr2 “ 8,

a contradiction.

Exercise 9.5. Given an area form ω on S2 “ C Y t8u and a finite subset
Γ Ă S2, show that a holomorphic function f : S2zΓ Ñ C has an essential singularity
at one of its punctures if and only if

ş
C
f˚ω “ 8.

9.1.2. From C0 XH1 to C8. To complete the proof of Theorem 9.2, we need
to show that a continuous map u : D Ñ W that is smooth and J-holomorphic on
Dzt0u and satisfies

ş
Dzt0u u

˚ω ă 8 is also smooth at 0 P D. By (9.1), the first

derivative of u on Dzt0u is in L2pDzt0uq, so the next exercise implies u P H1pDq.
Exercise 9.6. Show that if f is a continuous function on the closed disk D Ă C

that is continuously differentiable on 9D “ Dzt0u and its first derivative is Lebesgue

integrable on 9D, then f also has a weak first derivative on D, which is equal to its
classical derivative almost everywhere.

If we could say u P W 1,ppDq for some p ą 2 instead of p “ 2, then the smooth-
ness of u would now follow from the local nonlinear regularity results in Lecture 2
(see Corollary 2.25). The following addendum to those regularity results therefore
completes the proof; note that in this statement, the hypothesis u P C0pDq is not
redundant since we do not assume p ą 2. Our proof of the lemma is adapted from
an argument due to Sikorav, cf. [Sik94, Prop. 2.3.6(i)].

Lemma 9.7. Assume 1 ă p ă 8 and J is a continuous almost complex structure
on Cn. If u : D Ñ Cn is a J-holomorphic map in C0pDq X W 1,ppD̊q, then for every

q ą p, u is also of class W 1,q on all compact subsets of D̊.

Proof. Assume u : D Ñ Cn is inW 1,pXC0 and is J-holomorphic. Given z0 P D̊,
we can assume after changing coodinates on Cn that upz0q “ 0 and Jp0q “ i. As in
the proof of Theorem 2.24, we then write Q :“ i´J : Cn Ñ EndRpCnq and consider
rescaled functions of the form

pJ : Cn Ñ J pCnq, pJpxq :“ Jpx{Rq,
pQ : Cn Ñ EndRpCnq, pQpxq :“ Qpx{Rq “ i´ pJpxq,

û : D Ñ Cn, ûpzq :“ Rupz0 ` ǫzq,
(9.4)

where ǫ P p0, 1s and R ě 1 are constants, so that u is J-holomorphic if and only if
û satisfies

(9.5) B̄û ´ pQpûqBtû “ 0.
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Choosing R ě 1 sufficiently large makes pQ arbitrarily C0-small on the unit disk
D2n Ă Cn, and after fixing R in this way, we can (since u is continuous) choose
ǫ P p0, 1s sufficiently small to ensure ûpDq Ă D2n. In this way we are allowed to
assume

} pQpûq}C0pDq ă δ

for some small constant δ ą 0, which can always be made smaller if necessary by
adjusting R and ǫ. Consider the bounded linear operator

DQ :“ B̄ ´ pQpûqBt : W 1,ppD̊,Cnq Ñ LppD̊,Cnq,

which has û P kerDQ by (9.5), and observe that DQ is close to B̄ : W 1,ppD̊q Ñ LppD̊q
in the operator norm if δ is sufficiently small. Fix r P p0, 1q and a smooth compactly

supported function β P C8
0 pD̊q with β|Dr ” 1. The Leibniz rule gives

DQpβûq “
´

B̄β ´ pQpûqBtβ
¯
û P C0pDq,

hence DQpβûq P LqpD̊q. The rough outline of our argument will now be as follows:

recall from §2.3 that B̄ : W 1,ppD̊q Ñ LppD̊q has a bounded right inverse T : LppD̊q Ñ
W 1,ppD̊q given by the convolution with a fundamental solution of the B̄-equation.
Since LqpD̊q Ă LppD̊q for q ą p, the same operator restricts to LqpD̊q as a bounded

right inverse of B̄ : W 1,qpD̊q Ñ LqpD̊q, and also satisfies T B̄pβûq “ βû since βû P
W

1,p
0 pD̊q (cf. Exercise 2.14). The fact that DQ : W 1,p Ñ Lp is close to B̄ implies that

it also has a bounded right inverse

TQ : LppD̊q Ñ W 1,ppD̊q,
which we expect should similarly restrict to Lq as a right inverse of DQ : W 1,q Ñ Lq

and satisfy βû “ TQDQpβûq. If we can justify these last two claims, then they imply

βû P W 1,qpD̊q and thus û P W 1,qpD̊rq, as we’ve already seen that DQpβûq is in LqpD̊q.
The consequence for the original map u P W 1,ppD̊q will be that its restriction to a

sufficiently small disk around the arbitrarily chosen point z0 P D̊ is of class W 1,q.
To put this discussion on solid ground, let us write down TQ : LppD̊q Ñ W 1,ppD̊q

more explicitly. The relation B̄ ˝ T “ 1 gives

DQ ˝ T “ 1 ´ pQpûqBt ˝ T : LppD̊q Ñ LppD̊q,
and this operator is clearly invertible if δ is sufficiently small; note that the necessary
threshold for δ depends only on the norm of T : LppD̊q Ñ W 1,ppD̊q, and not in any
way on u, ǫ or R. In fact, we can also assume (possibly after shrinking δ further)

that 1 ´ pQpûqBt ˝ T is an invertible operator on LqpD̊q. A natural definition for TQ
is then

TQ :“ T
´
1 ´ pQpûqBt ˝ T

¯´1

: LppD̊q Ñ W 1,ppD̊q,

which has the desired property of restricting to LqpD̊q as a bounded right inverse

of DQ : W 1,qpD̊q Ñ LqpD̊q. Now using the relations T B̄pβûq “ βû and B̄T “ 1, we
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compute,

TQDQpβûq “ T
´
1 ´ pQpûqBt ˝ T

¯´1

pB̄ ´ pQpûqBtqpβûq

“ T
´
1 ´ pQpûqBt ˝ T

¯´1

pB̄ ´ pQpûqBtqT B̄pβûq

“ T
´
1 ´ pQpûqBt ˝ T

¯´1 ´
B̄pβûq ´ pQpûqBtT B̄pβûq

¯

“ T
´
1 ´ pQpûqBt ˝ T

¯´1 ´
1 ´ pQpûqBt ˝ T

¯
B̄pβûq

“ T B̄pβûq “ βû.

This validates the argument outlined above: sinceDQpβûq is in both Lp and Lq, βû “
TQDQpβûq is in both W 1,p and W 1,q, proving the first statement in the lemma. �

9.2. Finite energy and asymptotics

As further preparation for the compactness discussion, we now prove the long-
awaited converse of the fact that asymptotically cylindrical curves have finite en-
ergy. We work in the setting described in §6.2.2: pW,ωq is a symplectic cobordism
with stable boundary BW “ ´M´

š
M` carrying stable Hamiltonian structures

H˘ “ pω˘, λ˘q with induced hyperplane distributions ξ˘ “ ker λ˘ and Reeb vector

fields R˘. The completion pxW,ωhq carries the symplectic structure

ωh :“

$
’&
’%

d phprqλ`q ` ω` on r0,8q ˆ M`
ω on W,

d phprqλ´q ` ω´ on p´8, 0s ˆ M´,

for some C0-small smooth function hprq with h1 ą 0 that is the identity near r “ 0,
and for a fixed constant r0, we define a compact subset

W r0 :“ pr´r0, 0s ˆ M´q YM´ W YM` pr0, r0s ˆ M`q Ă xW,

outside of which our ωh-tame almost complex structures J P Jτ pωh, r0,H`,H´q are
required to be translation-invariant and compatible with H˘. The energy of a

J-holomorphic curve u : p 9Σ, jq Ñ pxW,Jq is defined by

Epuq :“ sup
fPT ph,r0q

ż

9Σ

u˚ωf ,

where

T ph, r0q :“
 
f P C8pR, p´ǫ, ǫqq

ˇ̌
f 1 ą 0 and f ” h near r´r0, r0s

(
.

The constant ǫ ą 0 should always be assumed sufficiently small so that if J˘ P
J pH˘q and X P ξ˘,

(9.6) pω˘ ` κ dλ˘qpX, J˘Xq ą 0 whenever X ‰ 0 and κ P p´2ǫ, 2ǫq.
This condition implies that every J P Jτpωh, r0,H`,H´q is tamed by ωf for every
f P T ph, r0q; cf. Proposition 6.19. It follows that all J-holomorphic curves satisfy
Epuq ě 0, with equality if and only if u is constant.
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Theorem 9.8. Assume all closed Reeb orbits in pM`,H`q and pM´,H´q are
nondegenerate, J P Jτ pωh, r0,H`,H´q, pΣ, jq is a closed Riemann surface with
9Σ “ ΣzΓ for some finite subset Γ Ă Σ, and u : p 9Σ, jq Ñ pxW,Jq is a J-holomorphic
curve such that none of the singularities in Γ are removable and Epuq ă 8. Then
u is asymptotically cylindrical.

Remark 9.9. The theorem also holds in the setting of a symplectization pR ˆ
M,Jq with J P J pHq for a stable Hamiltonian structure H “ pω, λq on M . The
only real difference in this case is the slightly simpler definition of energy,

Epuq “ sup
fPT

ż

9Σ

u˚ωf ,

where ωf :“ d
`
fprqλ

˘
` ω and

T “
 
f P C8pR, p´ǫ, ǫqq

ˇ̌
f 1 ą 0

(
.

This change necessitates a few trivial modifications to the proof of Theorem 9.8
given below.

Like removal of singularities, Theorem 9.8 is really a local result, so let us for-
mulate a more precise and more general statement in these terms. Let

9D :“ Dzt0u Ă C

and define the two biholomorphic maps

ϕ` : Z` :“ r0,8q ˆ S1 Ñ 9D : ps, tq ÞÑ e´2πps`itq

ϕ´ : Z´ :“ p´8, 0s ˆ S1 Ñ 9D : ps, tq ÞÑ e2πps`itq.
(9.7)

Theorem 9.10. Suppose J P Jτpωh, r0,H`,H´q and u : p 9D, iq Ñ pxW,Jq is a J-
holomorphic map with Epuq ă 8. Then either the singularity at 0 P D is removable
or u is a proper map. In the latter case the puncture is either positive or negative,
meaning that u maps neighborhoods of 0 to neighborhoods of t˘8u ˆ M˘, and the
puncture has a well-defined charge, defined as

Q “ lim
ǫÑ0`

ż

BDǫ

u˚λ˘,

which satisfies ˘Q ą 0. Moreover, the map

puRps, tq, uMps, tqq :“ u ˝ ϕ˘ps, tq P R ˆ M˘ for ps, tq P Z˘ near infinity

satisfies

uRps, ¨q ´ Ts Ñ c in C8pS1q as s Ñ ˘8
for T :“ |Q| and a constant c P R, while for every sequence sk Ñ ˘8, one can
restrict to a subsequence such that

uMpsk, ¨q Ñ γpT ¨q in C8pS1,M˘q as k Ñ 8
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for some T -periodic Reeb orbit γ : R{TZ Ñ M˘. If γ is nondegenerate or Morse-
Bott,1 then in fact

uMps, ¨q Ñ γpT ¨q in C8pS1,M˘q as s Ñ ˘8
We will not prove this result in its full strength, as in particular the last step

(when γ is nondegenerate or Morse-Bott) requires some asymptotic elliptic regularity
results that we do not have space to explain here. Note however that most of the
statement above does not require any nondegeneracy assumption at all. The price
for this level of generality is that if sk, s

1
k Ñ ˘8 are two distinct sequences, then

we have no guarantee in general that the two Reeb orbits obtained as limits of
subsequences of uMpsk, ¨q and uMps1

k, ¨q will be the same; an explicit example where
they differ can be found in [Sie17]. If one of these orbits is assumed to be isolated,
however—which is guaranteed if the orbit is nondegenerate—then we will be able to
show that both are the same up to parametrization, hence geometrically, uMps, tq
lies in arbitrarily small neighborhoods of the orbit γ as s Ñ ˘8. This turns out
to be also true in the more general Morse-Bott setting, though it is then much
harder to prove since γ need not be isolated. Once uMps, ¨q is localized near γ,
one can use the nondegeneracy condition as in §6.5 to prove that uMps, ¨q converges
exponentially fast to γ as s Ñ 8. For details on this step, we refer to the original
sources: [HWZ96,HWZ01] for the nondegenerate case, and [HWZ96,Bou02]
when the Reeb vector field is Morse-Bott. Those papers deal exclusively with the
contact case, but the setting of general stable Hamiltonian structures is also dealt
with in [Sie08].

Ignoring the final step for now, the proof of Theorem 9.10 will reuse most of the
techniques that we already saw in our proof of removal of singularities in §9.1. The
main idea is to use a combination of the monotonicity lemma and bubbling analysis
to show that unless u has a removable singularity, it is a proper map, and for any
sequence sk Ñ ˘8, the holomorphic maps defined by

ukps, tq “ u ˝ ϕ˘ps ` sk, tq
on a sequence of increasingly large half-cylinders must have a subsequence converging
in C8

locpRˆS1q to either a constant map or a trivial cylinder. The first case will turn
out to mean (as in Theorem 9.2) that the puncture is removable, and the second
implies asymptotic convergence to a closed Reeb orbit.

One major difference between the proof of Theorem 9.10 and removal of singu-

larities is that since xW is noncompact, sequences of curves in xW with uniformly
bounded first derivatives need not be locally C0-bounded. This issue will arise both
in the bubbling argument to prove |dukps, tq| ď C and in the analysis of the sequence
uk itself. In such cases, one can use the R-translation action

(9.8) τc : R ˆ M˘ Ñ R ˆ M˘ : pr, xq ÞÑ pr ` c, xq for c P R

on suitable subsets of the cylindrical ends to replace unbounded sequences with
uniformly C1-bounded sequences of curves mapping into RˆM` or RˆM´. These

1The Morse-Bott condition is a standard generalization of nondegeneracy: the T -periodic orbit
γ is called Morse-Bott if it belongs to a smooth k-dimensional family of T -periodic orbits for
some k ě 0 such that dimkerAγ “ k.
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R-translations are the reason why our definition of energy needs to be something
slightly more complicated than just the symplectic area

ş
9Σ
u˚Ω for a single choice

of symplectic form. To understand bubbling in the presence of arbitrarily large
R-translations, we will need the following lemma.

Lemma 9.11. Suppose J P J pHq for some stable Hamiltonian structure H “
pω, λq on an odd-dimensional manifold M , and u : p 9Σ, jq Ñ pR ˆ M,Jq is a J-
holomorphic curve satisfying

Epuq ă 8 and

ż

9Σ

u˚ω “ 0.

If 9Σ “ C, then u is constant. If 9Σ “ R ˆ S1, then u either is constant or is
biholomorphically equivalent to a trivial cylinder over a closed Reeb orbit.

Proof. Denote ξ “ ker λ and let

πξ : T pR ˆ Mq Ñ ξ

denote the projection along the subbundle spanned by Br (the unit vector field in
the R-direction) and the Reeb vector field R. Then since ω annihilates both Br and
R, for any local holomorphic coordinates ps, tq on a subset of 9Σ, the compatibility
of J |ξ with ω|ξ implies

u˚ωpBs, Btq “ ωpBsu, Btuq “ ωpBsu, JBsuq “ ωpπξBsu, JπξBsuq ě 0,

hence
ş

9Σ
u˚ω ě 0 for every J-holomorphic curve, and equality means that u is

everywhere tangent to the subbundle spanned by Br and R. This implies that im u

is contained in the image of some J-holomorphic plane of the form

uγ : C Ñ R ˆ M : s ` it ÞÑ ps, γptqq,
where γ : R Ñ M is a (not necessarily periodic) orbit of R. If γ is not periodic,
then uγ is embedded, hence there exists a unique (and necessarily holomorphic) map

Φ : p 9Σ, jq Ñ pC, iq such that u “ uγ ˝ Φ. If on the other hand γ is periodic with
minimal period T ą 0, then uγ descends to an embedding of the cylinder

ûγ : C{iTZ Ñ R ˆ M,

and we can view uγ as a covering map to this embedded cylinder. Now there exists

a unique holomorphic map Φ : 9Σ Ñ C{iTZ such that u “ ûγ ˝ Φ. If 9Σ “ C,
then π1pCq “ 0 implies that Φ can be lifted to a (necessarily holomorphic) map
rΦ : C Ñ C with uγ ˝ rΦ “ u. Relabeling symbols, we conclude that in general if
9Σ “ C, then u “ uγ ˝ Φ for a holomorphic map Φ : C Ñ C.

Let us consider all cases in which the factorzation u “ uγ ˝ Φ exists, where

Φ : p 9Σ, jq Ñ pC, iq is holomorphic and 9Σ “ ΣzΓ for a closed Riemann surface pΣ, jq.
We will now use the removable singularity theorem for Φ : 9Σ Ñ S2zt0u to show that
unless Φ is constant,

ş
9Σ
u˚ωf “ 8 for suitable choices of f P T . This integral can

be rewritten as

(9.9)

ż

9Σ

u˚ωf “
ż

9Σ

Φ˚u˚
γωf “

ż

9Σ

Φ˚d pfpsq dtq “
ż

9Σ

Φ˚ pf 1psq ds^ dtq
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since ωf “ d
`
fprqλ

˘
` ω and uγps, tq “ ps, γptqq. Since f 1 ą 0, f 1psq ds ^ dt is an

area form on C with infinite area.
We claim now that for suitable choices of f P T , one can find an area form Ω on

S2 “ CY t8u such that Ω ď f 1psq ds^ dt. To see this, let us change coordinates so
that 8 becomes 0: the diffeomorphism Ψ : C˚ Ñ C˚ : z ÞÑ 1{z is holomorphic and

thus satisfies BΨ
Bz̄ “ BsΨ

Bz “ 0, so we have

Ψ˚ pf 1psq ds ^ dtq “ ´ 1

2i
Ψ˚ pf 1psq dz ^ dz̄q “ ´ 1

2i
f 1pReΨq dΨ ^ dsΨ

“ ´ 1

2i
f 1pReΨq BΨ

Bz dz ^ BsΨ
Bz̄ dz̄

“ ´ 1

2i
f 1ps{|z|2q

ˆ
´ 1

z2

˙ˆ
´ 1

z̄2

˙
dz ^ dz̄

“ f 1ps{|z|2q
|z|4 ds ^ dt for z “ s ` it P Czt0u.

(9.10)

We need to show that this 2-form can be bounded away from 0 as z Ñ 0. Let us
choose f P T such that

(9.11) fp˘rq “ ˘
´
ǫ´ ǫ

2r

¯
for r ě 1

and extend f arbitrarily to r´1, 1s such that f 1 ą 0. We can then find a constant
c ą 0 such that f 1 satisfies

f 1prq ě min
!
c,

ǫ

2r2

)
for all r P R.

Plugging this into (9.10) gives

Ψ˚ pf 1psq ds^ dtq ě min

"
c

|z|4 ,
ǫ

2s2

*
ds ^ dt,

which clearly blows up as |z| Ñ 0, proving the claim.
With this established, we observe that for any number C ą 0, the fact that

f 1psq ds^ dt has infinite area implies we can choose an area form Ω on S2 with

Ω ď f 1psq ds ^ dt on S2zt8u and

ż

S2

Ω ą C.

We now have two possibilities:

(1) If
ş

9Σ
Φ˚Ω ă 8, then Theorem 9.2 implies that the singularities of Φ :

9Σ Ñ C Ă S2 at Γ are all removable, i.e. Φ extends to a holomorphic map
pΣ, jq Ñ pS2, iq, which has a well-defined mapping degree k ě 0. Then
ż

9Σ

u˚ωf “
ż

9Σ

Φ˚ pf 1psq ds^ dtq ě
ż

9Σ

Φ˚Ω “
ż

Σ

Φ˚Ω “ k

ż

S2

Ω ą kC.

Since C ą 0 can be chosen arbitrarily large, this implies
ş

9Σ
u˚ωf “ 8 unless

k “ 0, meaning Φ is constant.
(2) If

ş
9Σ
Φ˚Ω “ 8 (meaning there is an essential singularity, cf. Exercise 9.5),

then since Φ˚ pf 1psq ds^ dtq ě Φ˚Ω, (9.9) implies
ş
C
u˚ωf “ 8.
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Since u is constant whenever Φ is, this completes the proof for 9Σ “ C.
If 9Σ “ R ˆ S1, then it remains to deal with the case where the factorization

u “ uγ ˝Φ does not exist because γ is periodic. If the minimal period is T ą 0, then
let us in this case redefine uγ as an embedded J-holomorphic trivial cylinder

uγ : R ˆ S1 Ñ R ˆ M : ps, tq ÞÑ pTs, γpT tqq.
Since the new uγ is embedded, we can now write u “ uγ ˝Φ for a unique holomorphic
map Φ : R ˆ S1 Ñ R ˆ S1. Identifying R ˆ S1 biholomorphically with S2zt0,8u,
we claim that Φ extends to a holomorphic map S2 Ñ S2. Indeed, by the removable
singularity theorem, this is true if and only if

ş
RˆS1 Φ

˚Ω ă 8 for some area form

Ω on S2. Notice that u˚
γωf “ T 2 ¨ f 1pTsq ds ^ dt, defines an area form on R ˆ S1

with finite area for any f P T since
ş8

´8 f
1psq ds ă 8; this is equivalent to the

observation that trivial cylinders always have finite energy. Using the biholomorphic
map ps, tq ÞÑ e2πps`itq to identify RˆS1 with C˚ “ S2zt0,8u and using coordinates
z “ x ` iy on the latter, another computation along the lines of (9.10) gives

u˚
γωf “ T 2

4π2

f 1 ` T
2π

log |z|
˘

|z|2 dx^ dy for z “ x` iy P C˚.

Now suppose f P T is chosen as in (9.11). Then one can check that the positive
function in front of dx^ dy in the above formula goes to `8 as |z| Ñ 0; this means
that one can find an area form Ω on C with Ω ď u˚

γωf on C˚. The singularity at

`8 P S2 can be handled in a similar way, thus we can find an area form Ω on S2

such that Ω ď u˚
γωf on R ˆ S1. Now since Epuq ă 8, we have
ż

RˆS1

Φ˚Ω ď
ż

RˆS1

Φ˚u˚
γωf “

ż

RˆS1

u˚ωf ă 8,

so by Theorem 9.2, Φ has a holomorphic extension S2 Ñ S2, which is then a map
of degree k ě 0 with Φ´1pt0,8uq Ă t0,8u. If k “ 0 then Φ is constant, and so
is u. Otherwise, Φ is surjective and thus hits both 0 and 8, but it can only do this
at either 0 or 8, thus it either fixes both or interchanges them. After composing
with a biholomorphic map of S2 preserving R ˆ S1, we may assume without loss of
generality that Φp0q “ 0 and Φp8q “ 8. This makes Φ a polynomial with only one
zero, hence as a map on CY t8u, Φpzq “ czk for some c P C˚. Up to biholomorphic
equivalence, Φpzq is then zk, which appears in cylindrical coordinates as the map
ps, tq ÞÑ pks, ktq, so u is now the trivial cylinder

ups, tq “ uγpks, ktq “ pkTs, γpkT tqq
over the k-fold cover of γ. �

Remark 9.12. It may be useful for some applications to observe that Lemma 9.11
does not require M to be compact. In contrast, the compactness arguments in this
lecture almost always depend on the assumption that W and M˘ are compact—
without this, one would need add some explicit assumption to guarantee local C0-
bounds on sequences of holomorphic curves, e.g. the assumption in Theorem 9.2
that upDzt0uq is contained in a compact subset.
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Before continuing, it is worth noting that neither of the two definitions of energy

stated above (one for curves in xW and the other for symplectizations) is unique,
i.e. each can be tweaked in various ways such that the results of this section still
hold. Indeed, the original definitions appearing in [Hof93,BEH`03] are slightly
different, but equivalent to these. The next lemma illustrates one further example
of this freedom, which will be useful in some of the arguments below.

Lemma 9.13. Given a stable Hamiltonian structure H “ pω, λq on M , a suffi-
ciently small constant ǫ ą 0 as in (9.6), and J P J pHq, consider the alternative

notion of energy for J-holomorphic curves u : p 9Σ, jq Ñ pR ˆ M,Jq defined by

E0puq “ sup
fPT0

ż

9Σ

u˚ωf

where ωf “ d pfprqλq ` ω and

T0 “
 
f P C8pR, pa, bqq

ˇ̌
f 1 ą 0

(

for some constants ´ǫ ď a ă b ď ǫ. Then if Epuq denotes the energy as written in
Remark 9.9, there exists a constant c ą 0, depending on the data a, b, ǫ and H but
not on u, such that

cEpuq ď E0puq ď Epuq.
Proof. The second of the two inequalities is immediate since T0 Ă T . For the

first inequality, note that since ǫ ą 0 is small, we can assume there exists a constant
c ą 1 such that for every X P T pR ˆ Mq and every κ P r´ǫ, ǫs,

(9.12)
1

c
pω ` κ dλqpX, JXq ď ωpX, JXq ď cpω ` κ dλqpX, JXq.

This uses (9.6) and the fact that dλ annihilates kerω. Now suppose f P T , choose

a constant δ P p0, b´ as and define rf P T0 by

rfprq “ δ

2ǫ
fprq ` a` b

2
.

Then rf 1prq “ δ
2ǫ
f 1prq, and given a J-holomorphic curve u : 9Σ Ñ R ˆ M , we can

write ωf “ ω ` fprq dλ` f 1prq dr ^ λ and use (9.12) to estimate
ż

9Σ

u˚ωf “
ż

9Σ

u˚ pω ` fprq dλq `
ż

9Σ

u˚ pf 1prq dr ^ λq

ď c

ż

9Σ

u˚ω ` 2ǫ

δ

ż

9Σ

u˚
´
rf 1prq dr ^ λ

¯

ď c2
ż

9Σ

u˚
´
ω ` rfprq dλ

¯
` 2ǫ

δ

ż

9Σ

u˚
´
rf 1prq dr ^ λ

¯
.

If c2 ě 2ǫ
b´a , then we can choose δ :“ 2ǫ{c2 ď b´ a and rewrite the last expression as

c2
ż

9Σ

u˚
´
ω ` rfprq dλ

¯
` 2ǫ

δ

ż

9Σ

u˚
´
rf 1prq dr ^ λ

¯

“ c2
ż

9Σ

u˚
´
ω ` rfprq dλ` rf 1prq dr ^ λ

¯
“ c2

ż

9Σ

u˚ω rf ď c2E0puq.
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On the other hand if c2 ă 2ǫ
b´a , we can set δ :“ b ´ a and write

c2
ż

9Σ

u˚
´
ω ` rfprq dλ

¯
` 2ǫ

δ

ż

9Σ

u˚
´
rf 1prq dr ^ λ

¯

ď 2ǫ

b´ a

ż

9Σ

u˚
´
ω ` rfprq dλ` rf 1prq dr ^ λ

¯

“ 2ǫ

b´ a

ż

9Σ

u˚ω rf ď 2ǫ

b´ a
E0puq.

�

With this preparation out of the way, we now begin in earnest with the proof

of Theorem 9.10. Assume u : 9D Ñ xW is a J-holomorphic punctured disk satisfying
Epuq ă 8. Using the maps ϕ˘ : Z˘ Ñ 9D defined in (9.7), we shall write

u˘ :“ u ˝ ϕ˘ : Z˘ Ñ xW
and observe that these reparametrizations have no impact on the energy, i.e.

Epu˘q “ sup
fPT ph,r0q

ż

Z˘

pu ˝ ϕ˘q˚ωf “ sup
fPT ph,r0q

ż

9D

u˚ωf “ Epuq.

Fix a Riemannian metric on xW that is translation-invariant on the cylindrical ends,
and fix the standard metric on the half-cylinders Z˘. We will use these metrics
implicitly whenever referring to quantities such as |du˘pzq|.

Lemma 9.14. There exists a constant C ą 0 such that |du`ps, tq| ď C for all
ps, tq P Z`.

Proof. We use a bubbling argument as in the proof of Lemma 9.3. Suppose the
contrary, so there exists a sequence zk “ psk, tkq P Z` with Rk :“ |du`pzkq| Ñ 8.
Choose a sequence ǫk ą 0 with ǫk Ñ 0 but ǫkRk Ñ 8, and using Lemma 9.4, assume
without loss of generality that

|du`pzq| ď 2Rk for all z P Dǫkpzkq.
Define a rescaled sequence of J-holomorphic disks by

vk : DǫkRk
Ñ xW : z ÞÑ u ˝ ϕ`pzk ` z{Rkq.

These satisfy |dvk| ď 2 on their domains, but they are not necessarily C1-bounded
since their images may escape to infinity. We distinguish three possibilities, at least
one of which must hold:

Case 1: vkp0q has a bounded subsequence.

Then the corresponding subsequence of vk : DǫkRk
Ñ xW is uniformly C1-bounded

on every compact subset and thus (by Proposition 9.1) has a further subsequence
convergent in C8

locpCq to a J-holomorphic plane

v8 : C Ñ xW
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with |dv8p0q| “ limkÑ8 |dvkp0q| “ 1. But by the same argument we used in the
proof of Lemma 9.3, the fact that

ş
Z`
u˚

`ωf ă 8 for any choice of f P T ph, r0q
implies ż

C

v˚
8ωf “ 0,

hence v8 is constant, and this is a contradiction.
Case 2: vkp0q has a subsequence diverging to t`8u ˆ M`.

Restricting to this subsequence, suppose

vkp0q P trku ˆ M`,

so rk Ñ 8, and assume without loss of generality that rk ą r0 for all k. Let
R̃k P p0, ǫkRks for each k denote the largest radius such that vkpDR̃k

q Ă pr0,8qˆM`.

Then R̃k Ñ 8 since |dvk| is bounded. Now using the R-translation maps τr defined
in (9.8), define

ṽk :“ τ´rk ˝ vk|D
R̃k

: DR̃k
Ñ R ˆ M`.

Since we’re using a translation-invariant metric on rr0,8q ˆ M`, ṽk is now a uni-
formly C1

loc-bounded sequence of maps into R ˆ M`. Proposition 9.1 thus provides
a subsequence convergent in C8

locpCq to a plane

v8 : C Ñ R ˆ M`,

which is J`-holomorphic, where J` P J pH`q denotes the restriction of J to rr0,8qˆ
M`, extended over R ˆ M` by R-invariance. We claim,

(9.13) Epv8q ă 8 and

ż

C

v˚
8ω` “ 0,

where Epv8q is now defined as in Remark 9.9. By Lemma 9.13, the first part of the
claim will follow if we can fix a constant a P p´ǫ, ǫq and establish a uniform bound

ż

C

v˚
8Ω

`
f ď C,

with Ω`
f :“ ω` ` d

`
fprqλ`

˘
, for all smooth and strictly increasing functions f :

R Ñ pa, ǫq. For convenience in the following, we shall assume a ą hpr0q. Now if f
is such a function, then for any R ą 0,

ż

DR

v˚
8Ω

`
f “ lim

kÑ8

ż

DR

v˚
kτ

˚
´rkΩ

`
f “ lim

kÑ8

ż

DR

v˚
kΩ

`
fk
,

where fkprq :“ fpr ´ rkq. Notice that the dependence of the last integral on the
function fk is limited to the interval pr0,8q Ă R in its domain since vkpDRq Ă
pr0,8q ˆ M`. Then since f ą a ą hpr0q by assumption, there exists for each k a
function hk P T ph, r0q that matches fk outside some neighborhood of p´8, r0s and
thus satisfiesż

DR

v˚
kΩ

`
fk

“
ż

DR

v˚
kωhk ď

ż

DǫkRk

v˚
kωhk “

ż

Dǫk
pzkq

u˚
`ωhk ď

ż

Z`

u˚
`ωhk ď Epuq.



Lectures on Symplectic Field Theory 249

This is true for every R ą 0 and thus proves the first part of (9.13). To establish the
second part, fix R ą 0 again and pick any f P T ph, r0q. Observe that since we can
assume (after perhaps passing to a subsequence) the disks Dǫkpzkq are all disjoint,

0 “ lim
kÑ8

ż

Dǫk
pzkq

u˚
`ωf “ lim

kÑ8

ż

DǫkRk

v˚
kωf “ lim

kÑ8

ż

DǫkRk

ṽ˚
kτ

˚
rk
ωf

ě lim
kÑ8

ż

DR

ṽ˚
kτ

˚
rk
ωf “ lim

kÑ8

ż

DR

ṽ˚
kΩ

`
fk
,

where now fkprq :“ fpr ` rkq. Writing Ω`
fk

“ ω` ` d
`
fkprqλ`

˘
“ ω` ` fkprq dλ` `

f 1
kprq dr ^ λ`, we can choose f such that f 1prq “ f 1pr ` rkq Ñ 0 as k Ñ 8,
so the third term contributes nothing to the integral. For the second term, let
f` :“ limkÑ8 fkprq “ limrÑ8 fprq, so the calculation above becomes

0 ě
ż

DR

v˚
8 pω` ` f` dλ`q .

Now observe that since f` P r´ǫ, ǫs, condition (9.6) implies that the 2-form ω` `
f` dλ` is nondegenerate on ξ`, and it also annihilates Br and R`, so the vanishing of
this integral implies that v8 is everywhere tangent to Br and R` over DR. But R ą 0
was arbitrary, so this is true on the whole plane, which is equivalent to

ş
C
v˚

8ω` “ 0.
With the claim established, we apply Lemma 9.11 and conclude that v8 is constant,
contradicting the fact that |dv8p0q| “ 1.

Case 3: vkp0q has a subsequence diverging to t´8u ˆ M´.
This is simply the mirror image of case 2: writing the restriction of J to p´8,´r0sˆ
M´ as J´, one can follow the same bubbling argument but translate up and instead
of down, giving rise to a limiting nonconstant J´-holomorphic plane v8 : C Ñ
RˆM´ that has finite energy but

ş
C
v˚

8ω´ “ 0, in contradiction to Lemma 9.11. �

Consider now a sequence sk Ñ 8 and construct the J-holomorphic half-cylinders

uk : r´sk,8q ˆ S1 Ñ xW : ps, tq ÞÑ u`ps ` sk, tq.

The derivatives |duk| are uniformly bounded due to Lemma 9.14, though again, uk
might fail to be uniformly bounded in C0. We distinguish three cases.

Case 1: ukp0, 0q has a bounded subsequence.
Then the corresponding subsequence of uk is uniformly C1-bounded on compact
subsets and thus has a further subsequence converging in C8

locpR ˆ S1q to a J-
holomorphic cylinder

u8 : R ˆ S1 Ñ xW.

For any f P T ph, r0q and any c ą 0, we have
ż

r´c,csˆS1

u˚
8ωf “ lim

kÑ8

ż

r´c,csˆS1

u˚
kωf ď lim

kÑ8

ż

r´sk{2,8qˆS1

u˚
kωf

“ lim
kÑ8

ż

rsk{2,8qˆS1

u˚
`ωf “ 0

(9.14)
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since
ş
Z`
u˚

`ωf ă 8. It follows that
ş
RˆS1 u

˚
8ωf “ 0, so u8 is a constant map to

some point p P xW , implying that after passing to a subsequence of sk,

u`psk, ¨q Ñ p in C8pS1,xW q as k Ñ 8.
Case 2: ukp0, 0q has a subsequence diverging to t`8u ˆ M`.

Passing to the corresponding subsequence of uk, suppose

ukp0, 0q P trku ˆ M`,

so rk Ñ 8. Since the derivatives |duk| are uniformly bounded, we can then find a
sequence of intervals r´R´

k , R
`
k s Ă r´sk,8q such that

ukpr´R´
k , R

`
k s ˆ S1q Ă rr0,8q ˆ M` and R˘

k Ñ 8.

Now the translated sequence

τ´rk ˝ uk|r´R´
k
,R`

k
sˆS1 : r´R´

k , R
`
k s ˆ S1 Ñ R ˆ M`

is uniformly C1-bounded on compact subsets and thus has a subsequence coverging
in C8

loc to a J`-holomorphic cylinder

u8 : R ˆ S1 Ñ R ˆ M`,

where J` again denotes the restriction of J to rr0,8q ˆM`, extended over RˆM`
by R-translation. We claim that this cylinder satisfies

Epu8q ă 8 and

ż

RˆS1

u˚
8ω` “ 0.

The proof of this should be an easy exercise if you understood the proofs of (9.13)
and (9.14) above, so I will leave it as such. Lemma 9.11 now implies that u8 is
either constant or is a reparametrization of a trivial cylinder

uγ : R ˆ S1 Ñ R ˆ M` : ps, tq ÞÑ pTs, γpT tqq
for some Reeb orbit γ : R{TZ Ñ M` with period T ą 0. More precisely, all the
biholomorphic reparametrizations of R ˆ S1 are of the form ps, tq ÞÑ p˘s ` a,˘t `
bq, thus after shifting the parametrization of γ, we can write u8 without loss of
generality in the form

(9.15) u8ps, tq “ p˘Ts ` a, γp˘T tqq
for some constant a P R and a choice of signs to be determined below (see Lemma 9.18).

Case 3: ukp0, 0q has a subsequence diverging to t´8u ˆ M´.
Writing J´ :“ J |p´8,´r0sˆM´ P J pH´q and imitating the argument for case 2, we
suppose ukp0, 0q P t´rku ˆ M´ with rk Ñ 8 and obtain a subsequence for which
τrk ˝ uk converges in C8

locpR ˆ S1q to a J´-holomorphic cylinder u8 : R ˆ S1 Ñ
RˆM´, where u8 is either a constant or takes the form (9.15) for some orbit Reeb
γ : R{TZ Ñ M´ of period T ą 0.

Here is one easy consequence of the discussion so far. Use the Riemannian metric

on xW to define a metric distC0p¨, ¨q on the space of continuous loops S1 Ñ xW .
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Lemma 9.15. Given δ ą 0, there exists s0 ě 0 such that for every s ě s0, the

loop u`ps, ¨q : S1 Ñ xW satisfies

distC0pu`ps, ¨q, ℓq ă δ,

where ℓ : S1 Ñ xW either is constant or is a loop of the form ℓptq “ pr, γp˘T tqq in
rr0,8q ˆM` or p´8, r0s ˆM´ for some constant r P R and Reeb orbit γ : R{TZ Ñ
M˘ of period T ą 0.

Proof. If not, then there exists a sequence sk Ñ 8 such that each of the loops
u`psk, ¨q lies at C0-distance at least δ away from any loop of the above form. How-
ever, the preceding discussion then gives a subsequence for which upsk, ¨q becomes
arbitrarily C8-close to such a loop, so this is a contradiction. �

Lemma 9.16. If u : 9D Ñ xW is not bounded, then it is proper.

Proof. We use the monotonicity lemma. Suppose there exists a sequence
psk, tkq P Z` such that u`psk, tkq diverges to t`8u ˆM`. This implies sk Ñ 8, and
we claim then that for every R ě r0, there exists s0 ě 0 such that

u`pps0,8q ˆ S1q Ă pR,8q ˆ M`.

If not, then we find R ě r0 and a sequence ps1
k, t

1
kq P Z` with s1

k Ñ 8 such
that u`ps1

k, t
1
kq R pR,8q ˆ M` for every k. By continuity, we are free to suppose

u`ps1
k, t

1
kq P tRu ˆM` for all k since Lemma 9.15 implies u`ptsku ˆS1q Ă p2R,8q ˆ

M` for k sufficiently large. Using Lemma 9.15 again, we also have

u`pts1
ku ˆ S1q Ă pR ´ 1, R` 1q ˆ M`

for all k large. Assuming 2R ą R`2 without loss of generality, we can therefore find
infinitely many pairwise disjoint annuli of the form rs1

k, sjs ˆ S1 Ă Z` containing
open sets that u maps properly to small balls centered at points in tR ` 2u ˆ M`.
Choosing any f P T ph, r0q, the monotonicity lemma implies that each of these
contributes at least some fixed amount to

ş
Z`
u˚

`ωf , contradicting the assumption

that Epuq ă 8.2

A similar argument works if u`psk, tkq diverges to t´8u ˆM´, proving that for
every R ě r0, there exists s0 ě 0 with

u`pps0,8q ˆ S1q Ă p´8,´Rq ˆ M´.

�

If u is bounded, then the singularity at 0 is removable by Theorem 9.2. If not,
then Lemma 9.16 implies that it maps neighborhoods of the puncture to neighbor-
hoods of either t`8u ˆ M` or t´8u ˆ M´, and we shall refer to the puncture as
positive or negative accordingly.

Lemma 9.17. If the puncture is positive/negative, then the limit

Q :“ lim
sÑ8

ż

S1

u`ps, ¨q˚λ˘ P R

2The fact that xW is noncompact is not a problem for this application of the monotonicity

lemma, as we are only using it in the compact subset W 2R Ă xW .
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exists.

Proof. If the puncture is positive, fix s0 ě 0 such that u`prs0,8q ˆ S1q Ă
rr0,8q ˆ M`. Then by Stokes’ theorem, it suffices to show that the integralş

rs0,8qˆS1 u
˚
`dλ` exists, which is true if

(9.16)

ż

rs0,8qˆS1

ˇ̌
u˚

`dλ`
ˇ̌

ă 8.

We claim first that
ş

rs0,8qˆS1 u
˚
`ω` ă 8. Indeed, for any s ą s0 and f P T ph, r0q,

we have

Epuq ě
ż

rs0,ssˆS1

u˚
`ωf “

ż

rs0,ssˆS1

u˚
`ω` `

ż

rs0,ssˆS1

u˚
`d pfprqλ`q .

Applying Stokes’ theorem, the second term becomes the sum of some number not
dependent on s and the integral

ż

S1

u`ps, ¨q˚ pfprqλ`q “
ż

S1

rf ˝ u`ps, ¨qs u`ps, ¨q˚λ`,

which is bounded as s Ñ 8 since f and |du`| are both bounded. This proves thatş
rs0,ssˆS1 u

˚
`ω` is also bounded as s Ñ 8, and since u˚

`ω` ě 0, the claim follows.

Now observe that since dλ` annihilates the kernel of ω` and the latter tames J
on ξ`, there exists a constant c ą 0 such that |u˚

`dλ`| ď c|u˚
`ω`|, implying (9.16).

An analogous argument works if the puncture is negative. �

The number Q P R defined in the above lemma matches what we referred to in
the statement of Theorem 9.10 as the charge of the puncture.

Lemma 9.18. If the puncture is nonremovable and Q ‰ 0, then the puncture is
positive/negative if and only if Q ą 0 or Q ă 0 respectively. In either case, given
any sequence sk Ñ 8 with u`psk, 0q P t˘rku ˆ M˘, one can find a sequence Rk P
r0, sks with Rk Ñ 8 such that u` maps rsk ´Rk,8q ˆ S1 into the positive/negative
cylindrical end for every k, and the sequence of half-cylinders

uk : r´Rk,8q ˆ S1 Ñ R ˆ M` or uk : p´8, Rks ˆ S1 Ñ R ˆ M´

defined by ukps, tq “ τ¯rk ˝u˘ps˘sk, tq has a subsequence convergent in C8
locpRˆS1q

to a J˘-holomorphic cylinder of the form

u8 : R ˆ S1 Ñ R ˆ M˘ : ps, tq ÞÑ pTs ` a, γpT tqq
for some constant a P R and Reeb orbit γ : R{TZ Ñ M˘ with period T :“ ˘Q.

Proof. Assume the puncture is either positive or negative and Q ‰ 0. In the
discussion preceding Lemma 9.15, we showed that the sequence u1ps, tq :“ τ¯rk ˝
u`ps ` sk, tq defined on r´Rk,8q ˆ S1 has a subsequence convergent in C8

loc to a
J˘-holomorphic cylinder u1

8 : R ˆ S1 Ñ R ˆ M˘ which is either constant or of the
form

(9.17) u1
8ps, tq “ pσTs ` a, γpσT tqq
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for some a P R, σ “ ˘1 and a Reeb orbit γ : R{TZ Ñ M˘ of period T ą 0. We
then have

0 ‰ Q “ lim
sÑ8

ż

S1

u`ps, ¨q˚λ˘ “ lim
kÑ8

ż

S1

u1
kp0, ¨q˚λ˘ “

ż

S1

u1
8p0, ¨q˚λ˘,

so u1
8 cannot be constant, and from (9.17) we deduce Q “ σT , hence u1

8ps, tq “
pQs ` a, γpQtqq. Writing u`ps, tq “ puRps, tq, uMps, tqq P R ˆ M˘ for s sufficiently
large, it follows that every sequence sk Ñ 8 admits a subsequence for which

BsuRpsk, ¨q Ñ Q in C8pS1,Rq,
and consequently BsuRps, ¨q Ñ Q in C8pS1,Rq as s Ñ 8. This proves that the sign
of Q matches the sign of the puncture whenever Q ‰ 0. The stated formula for u8
now follows by adjusting all the appropriate signs in the case Q ă 0. �

Lemma 9.19. If the puncture is nonremovable, then Q ‰ 0.

Proof. Assume on the contrary that u is a proper map, say with a positive
puncture, but Q “ 0. In this case, the argument of the previous lemma shows that
the limiting map u8 : R ˆ S1 Ñ R ˆ M` will always be constant, thus for every
sequence sk Ñ 8, there exists a point p P M` such that u`psk, 0q P trku ˆM` with
rk Ñ 8 and

τ´rk ˝ u`psk, ¨q Ñ p0, pq P R ˆ M` in C8pS1,R ˆ M`q as k Ñ 8.
In particular, this implies that all derivatives of u` decay to 0 as s Ñ 8. Intuitively,
this should suggest to you that portions of u` near infinity will have improbably
small symplectic area, perhaps violating the monotonicity lemma—this will turn out
to be true, but we have to be a bit clever with our argument since u` is unbounded.
We will make this argument precise by translating pieces of u` downward so that
we only compute its symplectic area in r0, 2s ˆ M`. Fix a function f : R Ñ p´ǫ, ǫq
with f 1 ą 0 and set Ω`

f “ ω` ` d pfprqλ`q.
Given a small number δ ą 0, we can find s0 ě 0 such that |du`ps, tq| ă δ for all

s ě s0 and each of the loops u`ps, ¨q for s ě s0 is δ-close to a constant in C1pS1q.
Assume u`ps0, 0q P tRuˆM` and choose s1 ą s0 such that u`ps1, 0q P tR`2uˆM`,
which is possible since u`ps, tq Ñ t`8u ˆ M` as s Ñ 8. Now consider the J`-
holomorphic annulus

vδ :“ τ´R ˝ u`|rs0,s1sˆS1 : rs0, s1s ˆ S1 Ñ R ˆ M`.

We claim that
ş

rs0,s1sˆS1 v
˚
δΩ

`
f can be made arbitrarily small by choosing δ suitably

small. Indeed, we can use Stokes’ theorem to write this integral asż

rs0,s1sˆS1

v˚
δΩ

`
f “

ż

rs0,s1sˆS1

v˚
δω` `

ż

rs0,s1sˆS1

v˚
δ d pfprqλ`q

“
ż

rs0,s1sˆS1

v˚
δω` `

ż

S1

rvδps1, ¨q˚ pfprqλ`q ´ vδps0, ¨q˚ pfprqλ`qs .

The second term is small because fprq is bounded and |vδps, ¨q˚λ`| is small in pro-
portion to |dvδps, tq| “ |du`ps, tq| for s ě s0. For the first term, observe that since
both of the loops vδpsi, ¨q for i “ 0, 1 are nearly constant, they are contractible and
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can be filled in with disks v̄i : D Ñ R ˆ M` for which
ˇ̌ş
D
v̄˚
i ω`

ˇ̌
may be assumed

arbitrarily small. Moreover, since all of the loops vδps, ¨q are similarly contractible,
the union of these two disks with the annulus vδ defines a closed cycle in M` that is
trivial in H2pM`q, hence the integral of the closed 2-form ω` over this cycle vanishes,
implying ż

rs0,s1sˆS1

v˚
δω` “

ż

D

v̄˚
1ω` ´

ż

D

v̄˚
0ω`,

which is therefore arbitrarily small, and this proves the claim.
To finish, notice that since vδ maps its boundary components to small neighbor-

hoods of t0u ˆ M` and t2u ˆ M`, one can fix a suitable choice of radius r1 ą 0
such that vδ must pass through a point in p P t1u ˆ M` for which the boundary of
vδ is outside the ball Br1ppq. The monotonicity lemma then bounds the symplectic
area of vδ from below by a constant times r21, but since we can also make this area
arbitrarily small by choosing δ smaller, this is a contradiction.

As usual, the case of a negative puncture can be handled similarly. �

We’ve now proved every statement in Theorem 9.10 up to the final detail about
the case where the asymptotic orbit is nondegenerate or Morse-Bott. The com-
plete proof of this part requires delicate analytical results from [HWZ96,HWZ01,
HWZ96,Bou02], but we can explain the first step for the nondegenerate case.
In the following, we say that a closed Reeb orbit γ : R{TZ Ñ M˘ is isolated if,
after rescaling the domain to write it as an element of C8pS1,M˘q, there exists
a neighborhood γ P U Ă C8pS1,M˘q such that all closed Reeb orbits in U are
reparametrizations of γ.

Lemma 9.20. Suppose the puncture is nonremovable, write

u`ps, tq “ puRps, tq, uMps, tqq P R ˆ M˘

for s ě 0 sufficiently large, and suppose sk Ñ 8 is a sequence and γ : R{TZ Ñ M˘
is a Reeb orbit such that

uMpsk, ¨q Ñ γpT ¨q in C8pS1,M˘q.
If γ is isolated, then for every neighborhood U Ă C8pS1,M˘q of the set of parametriza-
tions tγp¨ ` θq | θ P S1u, we have uMps, ¨q P U for all sufficiently large s.

Proof. Note first that if γ is isolated, then its image admits a neighborhood
im γ Ă V Ă M˘ such that no point in Vz im γ is contained in another Reeb orbit of
period T . Indeed, we could otherwise find a sequence of T -periodic Reeb orbits pass-
ing through a sequence of points in Vz im γ that converge to a point in im γ. Since
their derivatives are determined by the Reeb vector field and are therefore bounded,
the Arzelà-Ascoli theorem then gives a subsequence of these orbits converging to a
reparametrization of γ, contradicting the assumption that γ is isolated.

Arguing by contradiction, suppose now that there exists a sequence s1
k Ñ 8

with uMpsk, ¨q R U for all k. We can nonetheless restrict to a subsequence for which
uMps1

k, ¨q converges to some Reeb orbit γ̃ : R{TZ Ñ M˘. Then γ̃ is disjoint from γ,
and by continuity, one can find a sequence s2

k Ñ 8 for which each uMps2
k, 0q lies in

the region V some fixed distance away from im γ. There must then be a subsequence
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for which uMps2
k, ¨q converges to another T -periodic orbit, but this is impossible since

no such orbits exist in Vz im γ. �

9.3. Degenerations of holomorphic curves

To motivate the SFT compactness theorem, we shall now discuss three examples
of phenomena that can prevent a sequence of holomorphic curves from having a
compact subsequence. The theorem will then tell us that these three things are, in
essence, the only things that can go wrong.

Throughout this section and the next, assume Jk Ñ J P Jτpωh, r0,H`,H´q
is a C8-convergent sequence of tame almost complex structures on the completed

cobordism xW . More generally, one can also allow the data ω, h and H˘ to vary
in C8-convergent sequences, but let’s not clutter the notation too much. We shall
denote the restrictions of J to the cylindrical ends by

J` :“ J |rr0,8qˆM` P J pH`q, J´ :“ J |p´8,´r0sˆM´ P J pH´q.
Suppose

uk :“ rpΣk, jk,Γ`
k ,Γ

´
k ,Θk, ukqs P Mg,mpJk, Ak,γ`,γ´q

is a sequence of Jk-holomorphic curves in xW with fixed genus g ě 0 and m ě 0
marked points, varying relative homology classes Ak P H2pW, γ̄` Y γ̄

´q and fixed
collections of asymptotic orbits γ

˘ “ pγ˘
1 , . . . , γ

˘
m˘q. Observe that the energies

Epukq depend only on the orbits γ˘ and relative homology classes Ak, so in partic-
ular, Epukq is uniformly bounded whenever the relative homology class is also fixed.
The fundamental question of this section is:

Question. If Epukq is uniformly bounded and no subsequence of uk converges
to an element of Mg,mpJ,A,γ`,γ´q for any A P H2pW, γ̄` Y γ̄

´q, what can happen?

9.3.1. Bubbling. Suppose the pointed Riemann surfaces pΣk, jk,Γ`
k YΓ´

k YΘkq
form a convergent sequence, meaning we can assume after biholomorphic reparamet-
rization that the surfaces Σk “ Σ are all identical with identical sets of punctures
Γ˘
k “ Γ˘ and marked points Θk “ Θ, while their complex structures are C8-

convergent
jk Ñ j P J pΣq.

Suppose additionally that there exists a point ζ0 P 9Σ such that ukpζ0q P xW is
contained in a compact subset for all k, and that for some choice of Riemannian

metrics on 9Σ “ ΣzΓ and xW that are translation-invariant on the cylindrical ends of

both, the maps uk : 9Σ Ñ xW are locally C1-bounded outside some finite subset

Γ1 “ tζ1, . . . , ζNu Ă 9Σ,

i.e. for every compact set K Ă 9ΣzΓ1, there exists a constant CK ą 0 independent
of k such that

|duk| ď CK on K.

Then Proposition 9.1 gives a subsequence that converges in C8
locp 9ΣzΓ1q to a J-

holomorphic curve

u8 : 9ΣzΓ1 Ñ xW
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with Epu8q ď lim supEpukq ă 8, thus all the punctures Γ` Y Γ´ Y Γ1 of u8 are
either removable or positively or negatively asymptotic to Reeb orbits. We cannot
be sure that the asymptotic behavior of u8 at Γ˘ is the same as for uk, but let’s
assume this for now (§9.3.2 below discusses some things that can happen if this does
not hold). Then to complete the picture, we need to understand not only what u8
is doing at the additional punctures Γ1, but also what is happening to uk near these
points as its first derivative blows up. For this we can apply the familiar rescaling
trick: choose for each ζi a sequence zik Ñ ζi such that |dukpzikq| “: Rk Ñ 8, along
with a sequence ǫk Ñ 0 with ǫkRk Ñ 8, and using Lemma 9.4, assume without loss
of generality that |dukpzq| ď 2Rk for all z in the ǫk-ball about z

i
k. For convenience,

we can choose a holomorphic coordinate system identifying a neighborhood of ζi
with D Ă C and placing ζi at the origin, so z

i
k Ñ 0 in these coordinates, and assume

without loss of generality that they identify our chosen metric near ζi with the
Euclidean metric. Now setting

vikpzq “ ukpzik ` z{Rkq for z P DǫkRk

gives a sequence of Jk-holomorphic maps vik : DǫkRk
Ñ xW whose energies and first

derivatives are both uniformly bounded. As in the arguments of §2, we now have
three possibilities:

‚ If ukpzikq has a bounded subsequence, then the corresponding subsequence

of vik converges in C
8
locpCq to a J-holomorphic plane vi8 : C Ñ xW with finite

energy.
‚ If ukpzikq has a subsequence diverging to t˘8u ˆ M˘, then translating vik
by the R-action produces a limiting finite-energy plane vi8 in the posi-
tive/negative symplectization R ˆ M˘.

Viewing C as the punctured sphere S2zt8u, the singularity of vi8 at 8 may be
removable, in which case vi8 extends to a J-holomorphic sphere and we say that uk
has “bubbled off a sphere” at ζi. Alternatively, vi8 may be positively or negatively
asymptotic to a Reeb orbit at 8.

Figure 9.2 shows two scenarios that could occur for a sequence in which |duk|
blows up at three points Γ1 “ tζ1, ζ2, ζ3u. Both scenarios show u8 with ζ1 and ζ2
as removable singularities and ζ3 as a negative puncture, but the behavior of the
various vi8 reveals a wide spectrum of possibilities. In the lower-left picture, the

points ukpz1kq are bounded and bubble off a sphere v18 : S2 Ñ xW . The picture shows
that v18 passes through u8pζ1q at some point; this does not follow from our argument
so far, but in this situation one can use a more careful analysis of uk near ζ1 to show
that it must be true, i.e. “bubbles connect”. At ζ3, we have ukpz3kq Ñ t´8u ˆ M´
and v38 is a plane in RˆM´ with a positive puncture asymptotic to the same orbit
as ζ3; the coincidence of these orbits is another detail that does not follow from the
analysis above but turns out to be true in the general picture. The situation at
ζ2 allows two different interpretations: v28 could be the plane with negative end in
R ˆM`, meaning ukpz2kq Ñ t`8u ˆ M`, and the picture then shows an additional

plane in xW with a positive end approaching the same asymptotic orbit as v28 as well
as a point passing through u8pζ2q. One would need to choose a different rescaled
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sequence near ζ2 to find this extra plane, but as we will see, the SFT compactness
theorem dictates that some such object must be there. Alternatively, ukpz2kq could

also be bounded at ζ2, in which case v28 must be the plane in xW with positive
end, and the extra plane above this is something that one could find via a different
choice of rescaled sequence. In general, the range of actual possibilities can involve
arbitrarily many additional curves that could be discovered via different choices of
rescaled sequences: e.g. there could be entire “bubble trees” as shown in the lower-
right picture, where each vi8 is only one of several curves that arise as limits of
different parametrizations of uk near ζi. One good place to read about the analysis
of bubble trees is [HWZ03, §4].

Exercise 9.21. Fill in the gaps previously left in the proof of Proposition 7.9
regarding the properness of the action of DiffpΣ,Θq on J pΣq. Concretely, consider a
closed connected surface Σ with two C8-convergent sequences of complex structures
jν Ñ j and j1

ν Ñ j1, along with a sequence of biholomorphic maps ϕν : pΣ, j1
νq Ñ

pΣ, jνq.
(a) Prove that if Σ has positive genus, then there can be no bubbling, hence

ϕν has a C8-convergent subsequence whose limit is a biholomorphic map
ϕ : pΣ, j1q Ñ pΣ, jq. Hint: The universal cover of Σ is contractible, so
π2pΣq “ 0.

(b) Prove that if Σ “ S2, then bubbling can occur, but at no more than one
point, i.e. there exists a point ζ P S2 such that ϕν is uniformly C1-bounded
on all compact subsets of S2ztζu. Show moreover that if |dϕν | really does
blow up along some sequence approaching ζ , then a subsequence of ϕν
converges in C8

locpS2ztζuq to a constant, and derive a contradiction from
this if there is a set of at least three points Θ Ă S2 that are fixed by
every ϕν . Hint: Choose an area form Ω on S2 and look at

ş
K
ϕ˚
νΩ for

compact subsets K Ă S2ztζu as ν Ñ 8.

9.3.2. Breaking. Figure 9.2 already shows some phenomena that could be in-
terpreted as “breaking” in the Floer-theoretic sense, but breaking can also happen
when no derivatives are blowing up, simply due to the fact that our domains are
noncompact. Figures 9.3 and 9.4 show three such scenarios, where we assume again

that jk Ñ j and 9Σ “ ΣzΓ and xW carry Riemannian metrics that are translation-
invariant on the cylindrical ends such that

|duk| ď C everywhere on 9Σ

for some constant C ą 0 independent of k. This is a stronger condition than we

had in §9.3.1, and if there exists a point ζ0 P 9Σ such that ukpζ0q P xW is bounded, it

implies that uk has a subsequence converging in C8
locp 9Σq to a J-holomorphic map

u8 : 9Σ Ñ xW
with Epu8q ď lim supEpukq ă 8. Convergence in C8

loc is, however, not very strong:
there may in general be no relation between the asymptotic behavior of u8 and
uk at corresponding punctures, e.g. the top scenario in Figure 9.3 shows a case in
which a negative puncture of uk becomes a removable singularity of u8. Whenever
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Figure 9.2. Two possible pictures of spheres and/or planes that
can bubble off when the first derivative blows up near three points.

this happens, there must be more to the story: in this example, one can choose
holomorphic cylindrical coordinates ps, tq P p´8, 0s ˆ S1 Ă 9Σ near the negative
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puncture of uk and find a sequence sk Ñ 8 such that the sequence of half-cylinders

p´8, sks ˆ S1 Ñ xW : ps, tq ÞÑ ukps ´ sk, tq
is uniformly C1-bounded and thus converges in C8

locpR ˆ S1q to a finite-energy J-

holomorphic cylinder v´ : R ˆ S1 Ñ xW . In the picture, v´ turns out to have a
removable singularity at `8 mapping to the same point as the removable singularity
of u8, and its negative puncture approaches the same orbit as the negative puncture
of uk.

More complicated things can happen in general: the bottom scenario in this same
figure shows a case where all three singularities of u8 are removable, thus it extends
to a closed curve, while at one of the positive cylindrical ends r0,8q ˆ S1 Ă 9Σ of
uk, we can find a sequence sk Ñ 8 such that the half-cylinders

r´sk,8q ˆ S1 Ñ xW : ps, tq ÞÑ ukps ` sk, tq
are uniformly C1-bounded and converge in C8

locpRˆS1q to a J-holomorphic cylinder

v1` : R ˆ S1 Ñ xW with one removable singularity and one positive puncture. At
the other positive end, we can perform the same trick in two distinct ways for two
sequences sk Ñ 8, one diverging faster than the other: the result is a pair of J-

holomorphic cylinders v2`, v
3
` : R ˆ S1 Ñ xW , the former with both singularities

removable (thus forming a holomorphic sphere in the picture), and the latter with
one removable singularity and one positive puncture.

It can get weirder. Remember that xW is also noncompact!
In each of the above scenarios, we tacitly assumed that all of the various se-

quences obtained by reparametrizing portions of uk were locally C0-bounded, thus

all of the limits were curves in xW . But it may also happen that some of these se-
quences are C0

loc-bounded while others locally diverge toward t˘8u ˆ M˘; in fact,
two such sequences that both diverge toward, say, t`8u ˆ M`, might even locally
diverge infinitely far from each other, meaning one of them approaches t`8u ˆM`
quantitatively faster than the other. This phenomenon leads to the notion of limiting
curves with multiple levels.

In Figure 9.4, we see a scenario in which uk satisfies the same conditions as above,
except that instead of ukpζ0q being bounded, it diverges to t`8u ˆ M`. It follows

that after applying suitable R-translations, a subsequence converges in C8
locp 9Σq to a

J`-holomorphic curve

u8 : 9Σ Ñ R ˆ M`

with finite energy. In the example, all three of its punctures are nonremovable, but
two of them approach orbits that have nothing to do with the asymptotic orbits
of uk. Now observe that since uk has a negative cylindrical end p´8, 0s ˆ S1 Ă 9Σ,
one can necessarily find a sequence sk Ñ 8 such that ukp´sk, 0q is bounded, and
the sequence of half-cylinders

p´8, sks ˆ S1 Ñ xW : ps, tq ÞÑ ukps ´ sk, tq
is then uniformly C1-bounded and thus has a subsequence convergent in C8

locpRˆS1q
to a finite-energy J-holomorphic cylinder v0 : R ˆ S1 Ñ xW . In the picture, v0 has
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p

uk

uk

uk u8

u8

v1` v2`

v3`

v´

v´

Figure 9.3. Even with fixed conformal structures on the domains
and without bubbling, a sequence of punctured holomorphic curves in
xW can break to produce multiple curves in xW with extra removable
punctures. The picture shows two such scenarios.

both a positive and a negative puncture, but its negative end again approaches a
different Reeb orbit from the negative ends of uk, so one can deduce that there
must be still more happening near ´8: there exists another sequence s1

k Ñ 8 with
s1
k ´ sk Ñ 8 such that suitable R-translations of the half-cylinders

p´8, sks ˆ S1 Ñ p´8,´r0s ˆ M´ : ps, tq ÞÑ ukps ´ s1
k, tq

define uniformly C1-bounded maps into RˆM´, giving a subsequence that converges
in C8

locpR ˆ S1q to a finite-energy J´-holomorphic cylinder

v´ : R ˆ S1 Ñ R ˆ M´.

Finally, the fact that u8 has a positive asymptotic orbit different from those of uk
indicates that something more must also be happening near `8: in the example,
one of the positive ends r0,8q ˆ S1 Ă 9Σ admits a sequence sk Ñ 8 such that
ukpsk, 0q P trku ˆ M` for some rk Ñ 8, and suitable R-translations of

r´sk,8q ˆ S1 Ñ rr0,8q ˆ M` : ps, tq ÞÑ ukps ` sk, tq

become a uniformly C1-bounded sequence of half-cylinders in R ˆ M`, with a sub-
sequence converging in C8

locpR ˆ S1q to a finite-energy J`-holomorphic cylinder

v2` : R ˆ S1 Ñ R ˆ M`
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xW

xW
xW

R ˆ M`

R ˆ M`

R ˆ M´

uk

uk

u8

v1` v2`

v0

v´

Figure 9.4. Different portions of a breaking sequence of curves may

also become infinitely far apart in the limit, so that some live in xW
while others live in the symplectization of M` or M´.

that connects the errant asymptotic orbit of u8 to the corresponding orbit of uk. One
can now perform the same trick at the other positive end of 9Σ, as there necessarily
also exists a sequence s1

k Ñ 8 in this end such that ukps1
k, 0q P trku ˆ M` for

the same sequence rk Ñ 8 as in the above discussion. The resulting limit curve
v1` : R ˆ S1 Ñ R ˆ M` however is not guaranteed to be interesting: in the picture,
it turns out to be a trivial cylinder.

The type of degeneration shown in Figure 9.4 happens whenever the sequence uk
does interesting things in multiple regions of its domain that are sent increasingly

far away from each other in the image. The usual picture of xW that collapses the
cylindrical ends to a finite size therefore becomes increasingly inadequate for visu-
alizing uk as k Ñ 8: the middle picture in Figure 9.4 deals with this by expanding
the scale of the cylindrical ends so that the convergence to upper and lower levels
becomes visible.

9.3.3. The Deligne-Mumford space of Riemann surfaces. We next need
to relax the assumption that the pointed Riemann surfaces pΣk, jk,Γ`

k Y Γ´
k Y Θkq

converge. Recall that for integers g ě 0 and ℓ ě 0, the moduli space of pointed
Riemann surfaces is the space of equivalence classes

Mg,ℓ “ tpΣ, j,Θqu
L

„,
where pΣ, jq is a closed connected Riemann surface of genus g, Θ Ă Σ is an or-
dered set of ℓ distinct points, and pΣ, j,Θq „ pΣ1, j1,Θ1q whenever there exists a
biholomorphic map ϕ : pΣ, jq Ñ pΣ1, j1q taking Θ to Θ1 with the ordering preserved.



262 Chris Wendl

This space is fairly easy to understand in the finitely many cases with 2g ` ℓ ă 3,
e.g. M0,ℓ is a one-point space for each ℓ ď 3. We say that pΣ, j,Θq is stable
whenever χpΣzΘq ă 0, which means 2g ` ℓ ě 3. In the stable case, one can show
that every pointed Riemann surface has a finite automorphism group (see Proposi-
tion 7.9), and Mg,ℓ is a smooth orbifold of dimension 6g´ 6` 2ℓ. It is generally not
compact, but it admits a natural compactification

Mg,ℓ Ą Mg,ℓ,

known as the Deligne-Mumford compactification. We shall now give a sketch
of this construction from the perspective of hyperbolic geometry; for more details,
see [Hum97,SS92].

We recall first the following standard result.

Theorem 9.22 (Uniformization theorem). Every simply connected Riemann
surface is biholomorphically equivalent to either the Riemann sphere S2 “ CY t8u,
the complex plane C or the upper half plane H “ tIm z ą 0u Ă C.

The uniformization theorem implies that every Riemann surface can be presented
as a quotient of either pS2, iq, pC, iq or pH, iq by some freely acting discrete group

of biholomorphic transformations. The only punctured surface 9Σ “ ΣzΘ that has
S2 as its universal cover is S2 itself. It is almost as easy to see which surfaces are
covered by C, as the only biholomorphic transformations on pC, iq with no fixed
points are the translations, so every freely acting discrete subgroup of AutpC, iq is
either trivial, a cyclic group of translations or a lattice. The resulting quotients are,
respectively, pC, iq, pR ˆ S1, iq – pCzt0u, iq and the unpunctured tori pT 2, jq. All
stable pointed Riemann surfaces are thus quotients of pH, iq.

Proposition 9.23. There exists on pH, iq a complete Riemannian metric gP of
constant curvature ´1 that defines the same conformal structure as i and has the
property that all conformal transformations on pH, iq are also isometries of pH, gP q.

Proof. We define gP at z “ x ` iy P H by

gP “ 1

y2
gE,

where gE is the Euclidean metric. The conformal transformations on pH, iq are given
by fractional linear transformations

AutpH, iq “
"
ϕpzq “ az ` b

cz ` d

ˇ̌
ˇ a, b, c, d P R, ad ´ bc “ 1

*N
t˘1u

“ SLp2,Rq{t˘1u “: PSLp2,Rq,
and one can check that each of these defines an isometry with respect to gP . One
can also compute that gP has curvature ´1, and the geodesics of gP are precisely
the lines and semicircles that meet R orthogonally, parametrized so that they exist
for all forward and backward time, thus gP is complete. For more details on all of
this, the book by Hummel [Hum97] is highly recommended. �

By lifting to universal covers, this implies the following.
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Corollary 9.24. For every pointed Riemann surface pΣ, j,Θq with χpΣzΘq ă
0, the punctured Riemann surface pΣzΘ, jq admits a complete Riemannian metric
gj of constant curvature ´1 that defines the same conformal structure as j, and has
the property that all biholomorphic transformations on pΣzΘ, jq are also isometries
of pΣzΘ, gjq. �

The metric gj in this corollary is often called the Poincaré metric, and it is
uniquely determined by j. Its existence is in fact equivalent to the “stable case” of
the uniformization theorem: indeed, the constant negative curvatuve of pΣzΘ, gjq
implies on the one hand that it is locally isometric to pH, gP q, and also that any two
points in its universal cover can be connected by a unique geodesic with respect to
the lift of gj. This is enough information to construct a global isometry between
pH, gP q and the universal cover of pΣzΘ, gjq by starting from one point and following
geodesics. For an analytical proof of Corollary 9.24 in the case Θ “ H without
assuming Theorem 9.22, see [Tro92].

Every nontrivial class in π1p 9Σq contains a unique geodesic for gj. Now suppose

C Ă 9Σ is a union of disjoint embedded geodesics such that each connected com-
ponent of 9ΣzC has the homotopy type of a disk with two holes. The components
are then called singular pairs of pants, and the result is called a pair-of-pants
decomposition of p 9Σ, jq. Two examples for the case g “ 1 and ℓ “ 3 are shown in
Figure 9.5.

A pair-of-pants decomposition for pΣ, j,Θq gives rise to a local parametrization
of Mg,ℓ near rpΣ, j,Θqs, known as the Fenchel-Nielsen coordinates. These consist
of two parameters that can be associated to each of the geodesics γ Ă Σ in the
decomposition, namely the length ℓpγq ą 0 of the geodesic and a twist parameter
θpγq P S1, which describes how the two neighboring pairs of pants are glued together
along γ. Note that by computing Euler characteristics, there are always exactly
´χpΣzΘq “ 2g ´ 2 ` ℓ pairs of pants in a decomposition, so that the total number
of geodesics involved is r3p2g ´ 2 ` ℓq ´ ℓs {2 “ 3g´ 3` ℓ, thus one can read off the
formula dimMg,ℓ “ 6g ´ 6 ` 2ℓ from this geometric picture.

One can also see the noncompactness of Mg,ℓ in this picture quite concretely:
the twist parameters belong to a compact space, but each length parameter can
potentially shrink to 0 or blow up to 8 as j (and hence gj) is deformed. It turns out
that the latter possibility is an illusion, but one may need to switch to a different
pair-of-pants decomposition to see why:

Theorem. For every pair of integers g ě 0 and ℓ ě 0 with 2g ` ℓ ě 3, there
exists a constant C “ Cpg, ℓq ą 0 such that every rpΣ, j,Θqs P Mg,ℓ admits a pair-
of-pants decomposition in which all geodesics bounding the pairs of pants have length
at most C.

This theorem implies that from a hyperbolic perspective, the only meaningful
way for stable pointed Riemann surfaces to degenerate is when some of the bounding
geodesics in a pair-of-pants decomposition shrink to length zero. Figure 9.6 shows
several examples of degenerate Riemann surfaces that can arise in this way for g “ 1
and ℓ “ 3, giving elements of the space that we will now define as M1,3.
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“

““

“

Figure 9.5. Two distinct pair-of-pants decompositions for the same
genus 1 Riemann surface with three marked points. The decomposi-
tions are shown from two perspectives: the pictures at the right are
meant to give a more accurate impression of the Poincaré metric,
which becomes singular and forms a cusp at each marked point.

Definition 9.25. A nodal Riemann surface with ℓ ě 0 marked points and
N ě 0 nodes is a tuple pS, j,Θ,∆q consisting of:

‚ A closed but not necessarily connected Riemann surface pS, jq;
‚ An ordered set of ℓ points Θ Ă S;
‚ An unordered set of 2N points ∆ Ă SzΘ equipped with an involution
σ : ∆ Ñ ∆. Each pair tz, σpzqu for z P ∆ is referred to as a node.

Let pS denote the closed surface obtained by performing connected sums on S at
each node tz`, z´u Ă ∆. We then say that pS, j,Θ,∆q is connected if and only if
pS is connected, and the genus of pS is called the arithmetic genus of pS, j,Θ,∆q.
We say that pS, j,Θ,∆q is stable if every connected component of SzpΘ Y ∆q has
negative Euler characteristic. Finally, two nodal Riemann surfaces pS, j,Θ,∆q and
pS 1, j1,Θ1,∆1q are considered equivalent if there exists a biholomorphic map ϕ :
pS, jq Ñ pS 1, j1q taking Θ to Θ1 with the ordering preserved and taking ∆ to ∆1 such
that nodes are mapped to nodes.

The nodes tz`, z´u Ă ∆ are typically represented in pictures as self-intersections
of S, cf. Figure 9.6. We can think of the stable nodal surfaces as precisely those
which admit (possibly singular) pair-of-pants decompositions. All nodal Riemann
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Figure 9.6. Starting from each of the pair-of-pants decompositions
for the g “ 1 and ℓ “ 3 case from Figure 9.5, shrinking geodesic
lengths to zero produces various examples of stable nodal Riemann
surfaces belonging to M1,3.

surfaces we consider will be assumed connected in the sense defined above unless
otherwise noted; note that S itself can nonetheless be disconnected, as is the case
in four out of the six nodal surfaces shown in Figure 9.6.

We now introduce some further terminology and notation that will be useful in
the next section as well. Whenever 9Σ “ ΣzΓ is obtained by puncturing a Riemann
surface pΣ, jq at finitely many points Γ Ă Σ, we shall define the circle compacti-
fication

sΣ :“ 9Σ Y
ď

zPΓ
δz,
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where for each z P Γ, the circle δz is defined as a “half-projectivization” of the
tangent space at z:

δz :“ pTzΣzt0uq
M
R˚

`,

with the positive real numbers R˚
` acting by scalar multiplication. To understand

the topology of sΣ, one can equivalently define it by choosing holomorphic cylindrical
coordinates r0,8q ˆ S1 Ă 9Σ near each z, and replacing the open half-cylinder with
r0,8s ˆ S1, where δz is now the circle at infinity t8u ˆ S1. There is no natural
choice of global smooth structure on sΣ, but it is homeomorphic to an oriented surface
with boundary and carries both smooth and conformal structures on its interior, due
to the obvious identification

9Σ “ sΣz
ď

zPΓ
δz Ă sΣ.

The conformal structure of Σ at each z P Γ does induce on each of the circles δz an
orthogonal structure, meaning a preferred class of homeomorphisms to S1 that
are all related to each other by rotations. One can therefore speak of orthogonal
maps δz Ñ δz1 for z, z1 P Γ, which are always homeomorphisms and can either
preserve or reverse orientation.

Now if pS, j,Θ,∆q is a nodal Riemann surface, we let 9S “ Sz∆ and form the
circle compactification S, which has the topology of a compact oriented surface
with boundary. Given a node tz`, z´u Ă ∆, a decoration for tz`, z´u is a choice
of orientation reversing orthogonal map

Φ : δz` Ñ δz´ .

We say that pS, j,Θ,∆q is a decorated nodal surface if it is equipped with a
choice of decoration Φ for every node, or partially decorated if Φ is defined for
some subset of the nodes. A partial decoration Φ gives rise to another compact
oriented surface

pSΦ :“ S
L

„,
where the equivalence relation identifies δz` with δz´ via Φ for each decorated node
tz`, z´u Ă ∆. Note that if every node is decorated, then pSΦ has the topology of a
closed connected and oriented surface whose genus defines the arithmetic genus of
pS, j,Θ,∆q according to Definition 9.25. We shall denote the collection of special

circles in pSΦ where boundray components δz` , δz´ Ă BS have been identified by

CΦ Ă pSΦ.

Since pSΦzpB pSΦ Y CΦq has a natural identification with 9S, it inherits smooth and

conformal structures which degenerate along CΦ and B pSΦ. We will say that two
partially decorated nodal Riemann surfaces pS, j,Θ,∆,Φq and pS 1, j1,Θ1,∆1,Φ1q are
equivalent if pS, j,Θ,∆q and pS 1, j1,Θ1,∆1q are equivalent via a biholomorphic map

ϕ : pS, jq Ñ pS 1, j1q that extends continuously from 9S Ñ 9S 1 to a homeomorphism
pSΦ Ñ pS 1

Φ1.
Now if 2g ` ℓ ě 3, define Mg,ℓ as the set of equivalence classes of stable nodal

Riemann surfaces with ℓ marked points and arithmetic genus g. There is a natural
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inclusion

Mg,ℓ Ă Mg,ℓ

by regarding each pointed Riemann surface pΣ, j,Θq as a nodal Riemann surface
pΣ, j,Θ,∆q with ∆ “ H. The most important property of Mg,ℓ is that it admits
the structure of a compact metrizable topological space for which the inclusion
Mg,ℓ ãÑ Mg,ℓ is continuous onto an open subset. Rather than formulating all of
this in precise terms, let us state the main corollary that is important to know in
practice.

Theorem 9.26. Fix g ě 0 and ℓ ě 0 with 2g ` ℓ ě 3. Then for any sequence
rpΣk, jk,Θkqs P Mg,ℓ, there exists a stable nodal Riemann surface rpS, j,Θ,∆qs P
Mg,ℓ such that after restricting to a subsequence,

rpΣk, jk,Θkqs Ñ rpS, j,Θ,∆qs
in the following sense: pS, j,Θ,∆q admits a decoration Φ such that for sufficiently
large k, there are homeomorphisms

ϕ : pSΦ Ñ Σk,

smooth outside of CΦ, which map Θ to Θk preserving the ordering and satisfy

ϕ˚jk Ñ j in C8
locppSΦzC∆q.

As one might gather from the above statement, one could just as well define a
compact metrizable topology on the space of equivalence classes of decorated nodal
Riemann surfaces and then characterize the topology of Mg,ℓ via the natural pro-
jection that forgets the decorations.

Exercise 9.27. The space M0,4 has a natural identification with S2zt0, 1,8u,
defined by choosing the unique identification of any 4-pointed Riemann sphere
pS2, j, pz1, z2, z3, z4qq with C Y t8u such that z1, z2, z3 are identified with 0, 1,8
respectively, while z4 is sent to some point in S2zt0, 1,8u. Show that this extends
continuously to an identification of M0,4 with S2. What do the three nodal curves

in M0,4zM0,4 look like in terms of pair-of-pants decompositions?

9.4. The SFT compactness theorem

We now introduce the natural compactification of Mg,mpJ,A,γ`,γ´q.

9.4.1. Nodal curves. A punctured J-holomorphic nodal curve in pxW,Jq
with m ě 0 marked points consists of the data pS, j,Γ`,Γ´,Θ,∆, uq, where

‚ pS, j,ΓYΘ,∆q is a nodal Riemann surface, with Γ “ Γ` YΓ´ and #Θ “ m;

‚ u : p 9S, jq Ñ pxW,Jq for 9S :“ SzΓ is an asymptotically cylindrical J-
holomorphic map with positive punctures Γ` and negative punctures Γ´

such that for each node tz`, z´u Ă ∆, upz`q “ upz´q.
Equivalence of two nodal curves

pS0, j0,Γ
`
0 ,Γ

´
0 ,Θ0,∆0, u0q „ pS1, j1,Γ

`
1 ,Γ

´
1 ,Θ1,∆1, u1q
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is defined as the existence of an equivalence of nodal Riemann surfaces

ϕ : pS0, j0,Γ
`
0 Y Γ´

0 Y Θ0,∆0q Ñ pS1, j1,Γ
`
1 Y Γ´

1 Y Θ1,∆1q

such that u0 “ u1 ˝ ϕ. We say that pS, j,Γ`,Γ´,Θ,∆, uq is connected if and
only if the nodal Riemann surface pS, j,Γ Y Θ,∆q is connected, and its arith-
metic genus is then defined to be the arithmetic genus of the latter. We say that
pS, j,Γ`,Γ´,Θ,∆, uq is stable if every connected component of SzpΓ Y Θ Y ∆q on
which u is constant has negative Euler characteristic. Note that the underlying
nodal Riemann surface pS, j,Γ Y Θ,∆q need not be stable in general.

Nodal curves are sometimes also referred to as holomorphic buildings of height 1.
These are the objects that form the Gromov compactification ofMg,mpJ,Aq whenW
is a closed symplectic manifold. One can now roughly imagine how the compactness
theorem in that setting is proved: given a converging sequence of almost complex
structures Jk Ñ J and a sequence rpΣk, jk,Θk, ukqs P Mg,mpJk, Akq with uniformly
bounded energy, we can first add some auxiliary marked points if necessary to assume
that 2g`m ě 3. Now a subsequence of the domains rpΣk, jk,Θkqs P Mg,m converges
to an element of the Deligne-Mumford space rpS, j,Θ,∆qs P Mg,m. Concretely,
this means that for large k, our sequence in Mg,mpJk, Akq admits representatives
pΣ, j1

k,Θ, u
1
kq, with Σ a fixed surface with fixed marked points Θ Ă Σ, and pS, j,Θ,∆q

admits decorations Φ so that one can identify pSΦ with Σ and find

j1
k Ñ j in C8

locpΣzCq

for some collection of disjoint circles C Ă Σ. The connected components of pΣzC, jq
are then biholomorphically equivalent to the connected components of pSz∆, jq,
and if the newly reparametrized maps u1

k : Σ Ñ W are uniformly C1
loc-bounded

on ΣzC, then a subsequence converges in C8
locpΣzCq to a limiting finite-energy J-

holomorphic map u8 : pSz∆, jq Ñ pW,Jq, whose singularities at ∆ are removable.
In particularly nice cases, this may be the end of the story, and our subsequence
of rpΣk, jk,Θk, ukqs P Mg,mpJk, Akq converges to the nodal curve rpS, j,Θ,∆, u8qs;
in particular the domain rpS, j,Θ,∆qs in this case is stable and is thus an element
of Mg,m. But more complicated things can also happen, e.g. u1

k might not be C1-
bounded, in which case there is bubbling. The bubbles that arise in this setting
will be planes with removable punctures, i.e. spheres, so they produce extra domain
components with nonnegative Euler characteristic, but since they are never con-
stant, the limiting nodal curve is still considered stable. Similarly, since ΣzC is not
compact, there can also be breaking as in Figure 9.3, producing more non-stable
domain components—but again, the limiting map on these components will never
be constant.

9.4.2. Holomorphic buildings. Only a small subset of the phenomena ob-
served in §9.3 can be described via nodal curves: we’ve seen that in general, we also
have to allow “broken” curves with multiple “levels”. This notion can be formalized
as follows.
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Given integers g,m,N`, N´ ě 0, a holomorphic building of height N´|1|N`
with arithmetic genus g and m marked points is a tuple

u “ pS, j,Γ`,Γ´,Θ,∆nd,∆br, L,Φ, uq,
with the various data defined as follows:

‚ The domain pS, j,Γ Y Θ,∆nd Y ∆brq is a connected but not necessarily
stable nodal Riemann surface of arithmetic genus g, where Γ “ Γ` Y Γ´,
#Θ “ m, and the involution on ∆nd Y ∆br is assumed to preserve the
subsets ∆nd and ∆br. Matched pairs in these subsets are called the nodes
and breaking pairs respectively of u. The marked points of u are the
points in Θ, while Γ` and Γ´ are its positive and negative punctures
respectively.

‚ The level structure is a locally constant function

L : S Ñ t´N´, . . . ,´1, 0, 1, . . . , N`u
that attains every value in t´N´, . . . , N`u except possibly 0, and satisfies:
(1) Lpz`q “ Lpz´q for each node tz`, z´u Ă ∆nd;
(2) Each breaking pair tz`, z´u Ă ∆br can be labelled such that Lpz`q ´

Lpz´q “ 1;
(3) LpΓ`q “ tN`u and LpΓ´q “ t´N´u.

‚ The decoration is a choice of orientation-reversing orthogonal map

δz`
ΦÝÑ δz´

for each breaking pair tz`, z´u Ă ∆br.
‚ The map is an asymptotically cylindrical pseudoholomorphic curve

u : p 9S :“ SzpΓ Y ∆brq, jq Ñ
ž

NPt´N´,...,N`u
pxWN , JNq,

where

pxWN , JNq :“

$
’&
’%

pR ˆ M`, J`q for N P t1, . . . , N`u,
pxW,Jq for N “ 0,

pR ˆ M´, J´q for N P t´N´, . . . ,´1u,

and u sends 9S X L´1pNq into xWN for each N , with positive punctures at
Γ` and negative punctures at Γ´. Moreover,

upz`q “ upz´q for every node tz`, z´u Ă ∆nd,

and for each breaking pair tz`, z´u Ă ∆br labelled with Lpz`q ´Lpz´q “ 1,
u has a positive puncture at z´ and a negative puncture at z` asymptotic
to the same orbit, such that if u` : δz` Ñ M˘ and u´ : δz´ Ñ M˘ denote
the induced asymptotic parametrizations of the orbit, then

u` “ u´ ˝ Φ : δz` Ñ M˘.

The following additional notation and terminology for the building u will be
useful to keep in mind. For each N P t´N´, . . . , 0, . . . , N`u, denote

9SN :“
`
SzpΓ Y ∆brq

˘
X L´1pNq,
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and denote the restriction of u to this subset by

uN : 9SN Ñ

$
’&
’%

R ˆ M` if N ą 0,
xW if N “ 0,

R ˆ M´ if N ă 0.

Including ΘXL´1pNq and ∆nd XL´1pNq in the data defines uN as a (generally dis-
connected) nodal curve with marked points, whose positive punctures are in bijective
correspondence with the negative punctures of uN`1 if N ă N`. We call uN the
Nth level of u, and call it an upper or lower level if N ą 0 or N ă 0 respectively,

and the main level if N “ 0. By convention, every holomorphic building in xW has

exactly one main level (which lives in xW itself) and arbitrary nonnegative numbers
of upper and lower levels (which live in the symplectizations RˆM˘). One slightly
subtle detail is that it is possible for the main level to be empty, meaning 0 is not in
the image of the level function L. The requirement that L should attain every other
value from ´L´ to L` is a convention to ensure that upper and lower levels are not
empty, so e.g. if a building has an empty main level and no lower levels, then the
lowest nonempty upper level is always labelled 1 instead of something arbitrary.

The positive punctures of the topmost level of u are Γ`, and the negative punc-
tures of the bottommost level are Γ´, so these give rise to lists of positive/negative
asymptotic orbits γ˘ “ pγ˘

1 , . . . , γ
˘
k˘

q inM˘. There is also a relative homology class

rus P H2pW, γ̄` Y γ̄
´q.

To define this, notice that the its definition in §6.4 for smooth curves u : 9Σ Ñ xW can

be reformulated in the following way: there is a retraction π : xW Ñ W that collapses
each cylindrical end toM˘ Ă BW , and since u is asymptotically cylindrical, the map
π ˝ u : 9Σ Ñ W extends to a continuous map on the circle compactification,

ū : sΣ Ñ W,

whose relative homology class is rus. The conditions on nodes and breaking orbits
allow us to perform a similar trick for the building u, using the map

π :
ž

NPt´N´,...,N`u

xWN Ñ W

which acts as the identity on W but collapses cylindrical ends of xW to BW and
similarly collapses each copy of RˆM˘ to M˘ Ă BW . Extending the decorations Φ
arbitrarily to decorations of the nodes ∆nd, one can then take the circle compactifi-
cation of 9S :“ SzpΓY∆nd Y∆brq and glue matching boundary components together

along Φ to form a compact surface with boundary SΦ such that π ˝ u : 9S Ñ W

extends to a continuous map
ū : SΦ Ñ W.

Its relative homology class defines rus P H2pW, γ̄` Y γ̄
´q.

We say that the building u is stable if two properties hold:

(1) Every connected component of SzpΓYΘY∆nd Y∆brq on which the map u
is constant has negative Euler characteristic;
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(2) There is no N P t´N´, . . . , N`u for which the Nth level consists entirely
of a disjoint union of trivial cylinders without any marked points or nodes.

An equivalence between two holomorphic buildings

ui “ pSi, ji,Γ`
i ,Γ

´
i ,Θi,∆

nd
i ,∆

br
i , Li,Φi, uiq, i “ 0, 1

is defined as an equivalence of partially decorated nodal Riemann surfaces

pS0, j0,Γ0 Y Θ0,∆
nd
0 Y ∆br

0 ,Φ0q ϕÝÑ pS1, j1,Γ1 Y Θ1,∆
nd
1 Y ∆br

1 ,Φ1q
such that ϕpΓ˘

0 q “ Γ˘
1 , ϕpΘ0q “ Θ1, ϕp∆nd

0 q “ ∆nd
1 , ϕp∆br

0 q “ ∆br
1 , L1 ˝ϕ “ L0, and

u01 ˝ ϕ “ u00,

while

uN1 ˝ ϕ “ uN0 up to R-translation for each N ‰ 0.

Given lists of orbits γ˘ and a relative homology class A, the set of equivalence

classes of stable holomorphic buildings in pxW,Jq with arithmetic genus g and m

marked points, positively/negatively asymptotic to γ
˘ and homologous to A will be

denoted by

Mg,mpJ,A,γ`,γ´q.
Observe that for any A ‰ 0, there is a natural inclusion Mg,mpJ,A,γ`,γ´q Ă
Mg,mpJ,A,γ`,γ´q defined by regarding J-holomorphic curves inMg,mpJ,A,γ`,γ´q
as buildings with no upper or lower levels and no nodes. Such buildings are always
stable if A ‰ 0 because they are not constant.

9.4.3. Convergence. For a general definition of the topology of the compact-
ified moduli space Mg,mpJ,A,γ`,γ´q and the proof that it is both compact and
metrizable, we refer to [BEH`03] or the more comprehensive treatment in [Abb14].
We will refer to this topology as the SFT topology; in the literature it is some-
times also called the Gromov-Hofer topology. The following statement contains all
the details about it that one usually needs to know in practice (see Figure 9.7).

Theorem 9.28. Fix integers g ě 0 and m ě 0, assume all Reeb orbits in
pM,H`q and pM,H´q are nondegenerate and that Jk Ñ J in Jτpωh, r0,H`,H´q.
Then for any sequence

rpΣk, jk,Γ`
k ,Γ

´
k ,Θk, ukqs P Mg,mpJk, Ak,γ`,γ´q

of nonconstant Jk-holomorphic curves in xW with uniformly bounded energy Epukq,
there exists a stable holomorphic building

ru8s “ rpS, j,Γ`,Γ´,Θ,∆nd,∆br, L,Φ, u8qs P Mg,mpJ,A,γ`,γ´q
such that after restricting to a subsequence, rpΣk, jk,Γ`

k ,Γ
´
k ,Θk, ukqs Ñ ru8s in

the following sense. The decorations Φ at ∆br can be extended to decorations at

∆nd so that if pSΦ denotes the closed oriented topological 2-manifold obtained from
Szp∆ndY∆brq by gluing circle compactifications along Φ, then for k sufficiently large,
there exist homeomorphisms

ϕk : pSΦ Ñ Σk
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that are smooth outside of CΦ, map Γ` YΓ´ YΘ to Γ`
k YΓ´

k YΘk with the ordering
preserved, and satisfy

ϕ˚
kjk Ñ j in C8

locppSΦzCΦq.
Moreover for N “ t´N´, . . . , 0, . . . , Nu, let

vNk :“ uk ˝ ϕk| :SN
: :SN Ñ xW,

with :SN :“
`
SzpΓ Y ∆nd Y ∆brq

˘
X L´1pNq regarded as a subset of pSΦzCΦ. Then:

(1) v0k Ñ uN8 in C8
locp :SN ,xW q;

(2) For each ˘N ą 0, vNk has image in the positive/negative cylindrical end for
all k sufficiently large, and there exists a sequence rNk Ñ ˘8 such that the
resulting R-translations converge:

τ´rN
k

˝ vNk Ñ uN8 in C8
locp :SN ,R ˆ M˘q.

The rates of divergence of the sequences rNk Ñ ˘8 are related by

rN`1
k ´ rNk Ñ `8 for all N ă N`.

Finally, let SΦ denote the compact topological surface with boundary defined as the

circle compactification of pSΦzΓ, and let sΣk denote the circle compactification of
9Σk :“ ΣkzpΓ`

k Y Γ´
k q. Then for all k large, ϕk extends to a continuous map

sϕk : SΦ Ñ sΣk
such that

ūk ˝ sϕk Ñ ū8 in C0pSΦ,W q.
Remark 9.29. The theorem is also true under the more general hypothesis

that the Reeb vector fields are Morse-Bott. In this case, one can also allow the
asymptotic Reeb orbits of the sequence to vary, as long as the sum of their periods is
uniformly bounded—such a bound plays the role of an energy bound and guarantees
a convergent subsequence of orbits via the Arzelà-Ascoli theorem.

Remark 9.30. Stability of the limit in Theorem 9.28 is guaranteed for the same
reasons as in our discussion of Gromov compactness in §9.4.1: stable domains de-
generate to stable nodal domains as geodesics in pair-of-pants decompositions shrink
to zero length, while bubbling and breaking produce additional domain components
that are not stable but on which the maps are never trivial. Moreover, stability guar-
antees the uniqueness of the limiting building for any convergent sequence, i.e. it is
the reason why Mg,mpJ,A,γ`,γ´q is a Hausdorff space. Indeed, if uk converges to a
stable building u8, then under the notion of convergence described in the theorem,
it will also converge to a building u1

8 constructed out of u8 by adding to S an extra
spherical component, attaching it to the rest by a single node and extending the map
u8 to be constant on the extra component. One can also insert extra levels into
u8 that consist only of trivial cylinders, and uk will still converge to the resulting
building. But these modifications produce buildings that are not stable and thus
are not elements of Mg,mpJ,A,γ`,γ´q.
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p
p

xW xW

R ˆ M`

R ˆ M´

R ˆ M´

R ˆ M´

M`

M´

Figure 9.7. Convergence to a building with arithmetic genus 2, one
upper level and three lower levels.

9.4.4. Symplectizations, stretching and so forth. A few minor modifica-
tions to the above discussion are necessary to compactify the moduli space of curves
in a symplectization pRˆM,Jq for J P J pHq. It is possible to view this as a special
case of a completed symplectic cobordism, but this perspective produces a certain
amount of extraneous data that is not meaningful. The key observation is that in
the presence of an R-action, one should really compactify Mg,mpJ,A,γ`,γ´q

L
R

instead of Mg,mpJ,A,γ`,γ´q. The compactification Mg,mpJ,A,γ`,γ´q then con-
sists of holomorphic buildings as defined in §9.4.2, but since all levels live in the
same symplectization R ˆ M , there is no longer a distinguished main level or any
meaningful notion of upper vs. lower levels; the level structure is simply a function
L : S Ñ t1, . . . , Nu for some N P N, and equivalence of buildings must permit R-
translations within each level. For these reasons, the SFT compactness theorem in
symplectizations has a few qualitative differences, but is still very much analogous
to Theorem 9.28.

To complete the picture, we should mention one more type of compactness theo-
rem that appears in [BEH`03], which is colloquially described as stretching the
neck. The geometric idea is as follows: suppose pW,Ωq is a closed symplectic
manifold and M Ă W is a stable hypersurface that separates W into two pieces
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W “ W´ YM W`, with an induced stable Hamiltonian structure H “ pω, λq that
orients M as the boundary of W´.

3 A neighborhood of M in pW,Ωq can then be
identified symplectically with

pNǫ, ωǫq :“ pp´ǫ, ǫq ˆ M, dprλq ` ωq
for sufficiently small ǫ ą 0. The idea now is to replace Nǫ with larger collars of the
form

pNT , ωT q :“ pp´T, T q ˆ M, d pfprqλq ` ωq ,
with C0-small functions f chosen with f 1 ą 0 so that the collar can be glued in
smoothly to replace pNǫ, ωǫq. These functions are equivalent to choices of diffeomor-
phisms p´T, T q Ñ p´ǫ, ǫq, which then give rise to symplectomorphisms

(9.18) pNT , ωT q –ÝÑ pNǫ, ωǫq Ă pW,Ωq,
and we consider pseudoholomorphic curves in the family of closed symplectic mani-
folds pWT ,ΩT q obtained by deleting pNǫ, ωǫq from pW,Ωq and replacing it by pNT , ωT q.
While (9.18) implies that these manifolds are all symplectomorphic, they admit nat-
ural families of tame almost complex structures that exhibit distinctive behavior as
T Ñ 8. Indeed, if we fix J P JτpW,Ωq such that its restriction to pNǫ, ωǫq belongs
to J pHq, then for every T ě ǫ, the same recipe gives rise to a tame almost com-
plex structure JT P Jτ pWT ,ΩT q that matches J on the complement of NT and also
belongs to J pHq on NT . This family degenerates as T Ñ 8, i.e. pushing each JT
forward through the symplectomorphism pWT ,ΩT q – pW,Ωq produces a family in
Jτ pW,Ωq that has no well-defined limit as T Ñ 8. Now given a sequence Tk Ñ 8
and a corresponding degenerating sequence Jk P JτpWTk ,ΩTkq as described above, a
sequence uk of Jk-holomorphic curves with bounded energy has a subsequence con-
vergent to yet another form of holomorphic building, this time involving a bottom

level in xW´ :“ W´ YM pr0,8q ˆ Mq with positive punctures approaching orbits
in M , some finite number of middle levels that live in the symplectization of M ,

and a top level that lives in xW` :“ pp´8, 0s ˆ Mq YM W` with negative punctures
approaching M .

A very popular example for applications arises from Lagrangian submanifolds
L Ă W . By the Weinstein neighborhood theorem, L always has a neighborhood
W´ symplectomorphic to a neighborhood of the zero-section in T ˚L, so M :“ BW´
is a contact-type hypersurface contactomorphic to the unit cotangent bundle of L.
Stretching the neck then yields T ˚L as the completion ofW´, and W zL as the com-

pletion of W` :“ W zW̊´. This construction has often been used in order to study
Lagrangian submanifolds via SFT-type methods, see e.g. [EGH00, Theorem 1.7.5]
and [Eva10,CM18].

3The assumption that M Ă W separates W is inessential, but makes certain details in this
discussion more convenient.
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We’ve now developed enough of the technical machinery of holomorphic curves
to be able to give a rigorous construction of the most basic version of SFT and apply
it to a problem in contact topology.

10.1. Contact structures on T3 and Giroux torsion

As a motivating goal in this lecture, we will prove a result about the classification
of contact structures on T3 “ S1 ˆ S1 ˆ S1. Denote the three global coordinates on
T3 valued in S1 “ R{Z by pρ, φ, θq, and for any k P N, consider the contact structure

ξk :“ kerαk, where αk :“ cosp2πkρq dθ ` sinp2πkρq dφ.
It is an easy exercise to verify that these all satisfy the contact condition αk^dαk ą 0;
see Figure 10.1 for a visual representation. The following result is originally due to
Giroux [Gir94] and Kanda [Kan97].

Theorem 10.1. For each pair of positive integers k ‰ ℓ, the contact manifolds
pT3, ξkq and pT3, ξℓq are not contactomorphic.

One of the reasons this result is interesting is that it cannot be proved using
any so-called “classical” invariants, i.e. invariants coming from algebraic topology.
An example of a classical invariant would be the Euler class of the oriented vector
bundle ξk Ñ T3, or anything else that depends only on the isomorphism class of this

275
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ρ

φ

θ

Figure 10.1. The contact structures ξk on T3 can be constructed
by gluing k copies of the same model r0, 1sˆT2 to each other cyclically.

bundle. The following observation shows that such invariants will never distinguish
ξk from ξℓ.

Proposition 10.2. For every k, ℓ P N, ξk and ξℓ are homotopic through a smooth
family of oriented 2-plane fields on T3.

Proof. In fact, all the ξk can be deformed smoothly to ker dρ, via the homotopy

ker rp1 ´ sqαk ` s dρs , s P r0, 1s.
�

Remark 10.3. One can check in fact that the 1-form in the homotopy given
above is contact for every s P r0, 1q, so Gray’s stability theorem implies that every
ξk is isotopic to an arbitrarily small perturbation of the foliation ker dρ. In [Gir94],
Giroux used this observation to show that all of them are what we now call weakly
symplectically fillable. If ker dρ were also contact, then Gray’s theorem would imply
that ξk and ξℓ are always isotopic. Thus Theorem 10.1 indicates the impossibility
of modifying a homotopy from ξk to ξℓ into one that passes only through contact
structures.

Let us place this discussion in a larger context. Using the coordinates pρ, φ, θq
on R ˆ T2, a pair of smooth functions f, g : R Ñ R gives rise to a contact form

α “ fpρq dθ ` gpρq dφ
whenever the function Dpρq :“ fpρqg1pρq ´f 1pρqgpρq is everywhere positive. Indeed,
we have α ^ dα “ Dpρq dρ ^ dφ ^ dθ, and one easily derives a similar formula for
the Reeb vector field,

Rα “ 1

Dpρq rg1pρq Bθ ´ f 1pρq Bφs .

The condition D ą 0 means geometrically that the path pf, gq : R Ñ R2 winds
counterclockwise around the origin with its angular coordinate strictly increasing.
The simplest special case is the contact form

αGT :“ cosp2πρq dθ ` sinp2πρq dφ,
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which matches the formula for α1 on T3 given above. Let ξGT :“ kerαGT on RˆT2.

Definition 10.4. The Giroux torsion GTpM, ξq P N Y t0,8u of a contact
3-manifold pM, ξq is the supremum of the set of positive integers k such that there
exists a contact embedding

`
r0, ks ˆ T2, ξGT

˘
ãÑ pM, ξq.

We write GTpM, ξq “ 0 if no such embedding exists for any k, and GTpM, ξq “ 8
if it exists for all k.

Example 10.5. The tori pT3, ξkq for k P N are contactomorphic to pRˆT2, ξGTq{kZ,
with kZ acting by translation of the ρ-coordinate. Thus GTpT3, ξkq ě k ´ 1.

A 2-torus T Ă pM, ξq embedded in a contact 3-manifold is called pre-Lagrangian
if a neighborhood of T in pM, ξq admits a contactomorphism to a neighborhood of
t0u ˆT2 in pRˆT2, ξGTq, identifying T with t0u ˆT2. The neighborhood in RˆT2

can be arbitrarily small, thus the existence of a pre-Lagrangian torus does not imply
GTpM, ξq ą 0; in fact, pre-Lagrangian tori always exist in abundance, e.g. as bound-
aries of neighborhoods of transverse knots (using the contact model provided by the
transverse neighborhood theorem). But given any pre-Lagrangian torus T Ă pM, ξq,
one can make a local modification of ξ near T to produce a new contact structure (up
to isotopy) with positive Giroux torsion. Define pM 1, ξ1q from pM, ξq by replacing
the small neighborhood pp´ǫ, ǫq ˆT2, ξGTq with pp´ǫ, 1` ǫq ˆT2, ξGTq, then identify
M 1 withM by a choice of compactly supported diffeomorphism p´ǫ, 1`ǫq Ñ p´ǫ, ǫq.
There is now an obvious contact embedding of pr0, 1s ˆ T2, ξGTq into pM, ξ1q, hence
GTpM, ξ1q ě 1. Moreover, one can adapt the proof of Prop. 10.2 above to show
that ξ1 is homotopic to ξ through a smooth family of oriented 2-plane fields. The
operation changing ξ to ξ1 is known as a Lutz twist along T . In this language, we
see that for each k P N, pT3, ξk`1q is obtained from pT3, ξkq by performing a Lutz
twist along t0u ˆ T2.

The invariant GTpM, ξq is easy to define, but hard to compute in general. The
natural guess,

GTpT3, ξkq “ k ´ 1,

turns out to be correct, as was shown in [Gir00], so this is one way to prove
Theorem 10.1, but not the approach we will take. The following example shows
that one must in any case be careful with such guesses.

Example 10.6. For each k P N, define a model of S1 ˆ S2 by

S1 ˆ S2 –
`
r0, k ` 1{2s ˆ T2

˘ L
„

where the equivalence relation identifies pρ, φ, θq „ pρ, φ1, θq for ρ P t0, k ` 1{2u and
every θ, φ, φ1 P S1. Near ρ “ 0 and ρ “ k ` 1{2, this means thinking of pρ, φq as
polar coordinates, so the two subsets tρ “ 0u and tρ “ k`1{2u become circles of the
form S1 ˆ tconstu embedded in S1 ˆ S2. Since the φ-coordinate is singular at these
two circles, the contact form αGT needs to be modified slightly in this region before
it will descend to a smooth contact form on S1 ˆS2: this can be done by a C0-small
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modification of the form fpρq dθ ` gpρq dφ, and the resulting contact structure is
then uniquely determined up to isotopy. We shall call this contact manifold

pS1 ˆ S2, ξkq.
Now observe that for each k P N, pS1 ˆ S2, ξk`1q is obtained from pS1 ˆ S2, ξkq by
a Lutz twist. However, both contact manifolds are also overtwisted: a contact
3-manifold pM, ξq is overtwisted whenever it contains an embedded closed 2-disk
D Ă M such that T pBDq Ă ξ but TD|BD&ξ. (Exercise: find a disk with this
property in pS1 ˆ S2, ξkq!) Eliashberg’s flexibility theorem for overtwisted contact
structures [Eli89] implies that whenever ξ and ξ1 are two contact structures on a
closed 3-manifold that are both overtwisted and are homotopic as oriented 2-plane
fields, they are actually isotopic. As a consequence, the contact structures ξk on
S1 ˆ S2 defined above for every k P N are all isotopic to each other. As tends to be
the case with most interesting h-principles, the isotopy is very hard to see concretely,
but it must exist.

Exercise 10.7. Show that if pM, ξq is a closed overtwisted contact 3-manifold,
then GTpM, ξq “ 8.

In contrast to the S1 ˆS2 example above, the contact manifolds pT3, ξkq are not
overtwisted, they are tight—in fact, the classification of contact structures on T3

by Giroux [Gir94,Gir99,Gir00] and Kanda [Kan97] states that these are all of
the tight contact structures on T3 up to contactomorphism. We will use cylindrical
contact homology to show that they are not contactomorphic to each other. The
reader should keep Example 10.6 in mind and try to spot the reason why the same
argument cannot work for pS1 ˆ S2, ξkq.

Remark 10.8. It has been conjectured that the converse of Exercise 10.7 might
also hold, so every closed tight contact 3-manifold would have finite Giroux torsion.
This conjecture is wide open.

10.2. Definition of cylindrical contact homology

10.2.1. Preliminary remarks. Cylindrical contact homology is the natural
“first attempt” at using holomorphic curves in symplectizations to define a Floer-
type invariant of contact manifolds pM, ξq. The idea is to define a chain complex
generated by Reeb orbits inM and a differential B that counts holomorphic cylinders
in R ˆ M . We saw already in §1.5 some pretty good reasons why this idea cannot
work in general: in order to prove B2 “ 0, we need to be able to identify the space
of rigid “broken” holomorphic cylinders (these are what is counted by B2) with the
boundary of the compactified 1-dimensional space of index 2 cylinders (up to R-
translation). But this compactified boundary has more than just broken cylinders
in it, see Figure 10.2. In order to define cylindrical contact homology, one must
therefore restrict to situations in which complicated pictures like Figure 10.2 cannot
occur. The first useful remark in this direction is that since we are working with
a stable Hamiltonian structure of the form pdα, αq for a contact form α, a certain
subset of the scenarios allowed by the SFT compactness theorem can be excluded
immediately. Indeed:
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Figure 10.2. A family of holomorphic cylinders can converge in
the SFT topology to buildings that include more complicated curves
than cylinders—this is why cylindrical contact homology is not well
defined for all contact manifolds.

Proposition 10.9. If J P J pαq and u : p 9Σ, jq Ñ pR ˆ M,Jq is a noncon-
stant asymptotically cylindrical J-holomorphic curve, then u has at least one positive
puncture.

Let us give two proofs of this result, since both contain useful ideas. As prepara-
tion for the first proof, recall the definition of energy for curves in symplectizations
of contact manifolds that we wrote down in Lecture 1:

Epuq :“ sup
fPT

ż

9Σ

u˚dpefprq αq,

where
T :“

 
f P C8pR, p´1, 1qq

ˇ̌
f 1 ą 0

(
.

This formula is not identical to the definition of energy used in Lecture 9, but it
is equivalent in the sense that any uniform bounds on one imply similar uniform
bounds on the other.

First proof of Proposition 10.9. Denote the positive and negative punc-
tures of u : 9Σ Ñ R ˆ M by Γ` and Γ´ respectively, and suppose u is asymptotic
at z P Γ˘ to the orbit γz with period Tz ą 0. Choose any f P T and denote
f˘ :“ limrÑ˘8 fprq P r´1, 1s. Since dpefprq αq tames J P J pαq and u is not con-
stant, Stokes’ theorem gives

(10.1) 0 ă Epuq “ ef`
ÿ

zPΓ`

Tz ´ ef´
ÿ

zPΓ´

Tz,

hence Γ` cannot be empty. �

Remark 10.10. The proof via Stokes’ theorem works just as well if instead of
R ˆ M , u lives in the completion of an exact symplectic cobordism pW,ωq with
concave boundary pM´, ξ´ “ kerα´q and convex boundary pM`, ξ` “ kerα`q.
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Recall that this means BW “ ´M´
š
M`, and ω “ dλ for a globally-defined 1-form

λ P Ω1pW q that restricts to positive contact forms λ|TM˘ “ α˘. As in Lecture 1, we
will write

J pW,ω, α`, α´q Ă J pxW q
for the space of almost complex structures J on xW :“ pp´8, 0s ˆ M´q YM´ W YM`

pr0,8q ˆ M`q that are compatible with ω on W and belong to J pα˘q on the cylin-

drical ends. The energy of a J-holomorphic curve u : p 9Σ, jq Ñ pxW,Jq is then

Epuq :“ sup
fPT

ż

9Σ

u˚dλf ,

where T :“ tf P C8pR, p´1, 1qq | f 1 ą 0 and fprq “ r near r “ 0u and

λf :“

$
’&
’%

efprqα` on r0,8q ˆ M`,

λ on W,

efprqα´ on p´8, 0s ˆ M´.

The above proof now generalizes verbatim to show that umust always have a positive
puncture. Notice that in both settings, the argument also gives a uniform bound
for the energy in terms of the periods of the positive asymptotic orbits.

Remark 10.11. We can also prove Prop. 10.9 using the fact that u˚dα ě 0 for
any u : p 9Σ, jq Ñ pR ˆ M,Jq with J P J pαq. Indeed, Stokes’ theorem then gives

(10.2) 0 ď
ż

9Σ

u˚dα “
ÿ

zPΓ`

Tz ´
ÿ

zPΓ´

Tz.

The quantity
ş

9Σ
u˚dα is sometimes called the contact area of u. This version of

the argument however does not easily generalize to arbitrary exact cobordisms.

The second proof is based on the maximum principle for subharmonic functions.

Proposition 10.12. Suppose J P J pαq and u “ puR, uMq : p 9Σ, jq Ñ pRˆM,Jq
is J-holomorphic, where 9Σ has no boundary. Then uR : 9Σ Ñ R has no local maxima.

Proof. In any local holomorphic coordinates ps, tq on a region in 9Σ, the non-
linear Cauchy-Riemann equation for u is equivalent to the system of equations

BsuR ´ αpBtuMq “ 0,

BtuR ` αpBsuMq “ 0,

πξ BsuM ` Jπξ BtuM “ 0,

where πξ : TM Ñ ξ denotes the projection along the Reeb vector field. This gives

´∆uR “ ´B2
suR ´ B2

t uR “ ´Bs rαpBtuMqs ` Bt rαpBsuMqs
“ ´dαpBsuM , BtuMq “ ´dαpπξBsuM , JπξBsuMq ď 0

since J |ξ is tamed by dα|ξ, hence uR is subharmonic. The result thus follows from
the maximum principle, see e.g. [Eva98]. �
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Second proof of Proposition 10.9. If u “ puR, uMq : 9Σ Ñ R ˆ M has

no positive puncture then uR : 9Σ Ñ R is a proper function bounded above, and
therefore has a local maximum, contradicting Proposition 10.12. �

Remark 10.13. The proof via the maximum principle does not generalize to
arbitrary exact cobordisms pW, dλq, but it does work in Stein cobordisms, i.e. if λf
and J are related by λf “ ´dF ˝J for some plurisubharmonic function F : xW Ñ R,

then F ˝ u : 9Σ Ñ R is subharmonic (cf. [CE12]).

With these preliminaries understood, the next two exercises reveal one natural
setting in which breaking of cylinders can be kept under control. Both exercises are
essentially combinatorial.

Exercise 10.14. Suppose u is a stable J-holomorphic building in a completed

symplectic cobordism xW with the following properties:

(1) u has arithmetic genus 0 and exactly one positive puncture;
(2) Every connected component of u has at least one positive puncture.

Show that u has no nodes, and all of its connected components have exactly one
positive puncture.

Exercise 10.15. Suppose that in addition to the conditions of Exercise 10.14,
u has exactly one negative puncture and no connected component of u is a plane.
Show that every level of u then consists of a single cylinder with one positive and
one negative end.

Exercise 10.15 makes it reasonable to define a Floer-type theory counting only
cylinders in any setting where planes can be excluded, for instance because the Reeb
vector field has no contractible orbits. This is not always possible, e.g. Hofer [Hof93]
proved that on overtwisted contact manifolds, there is always a plane (which is why
the Weinstein conjecture holds). So the invariant we construct will not be defined
in such settings, but it happens to be ideally suited to the study of pT3, ξkq.

10.2.2. A compactness result for cylinders. Fix a closed contact manifold
pM, ξq of dimension 2n´ 1 and a primitive homotopy class of loops h P rS1,Ms. By
primitive, we mean that h is not equal to Nh1 for any h1 P rS1,Ms and an integer
N ą 1, and this assumption will be crucial for technical reasons in the following.1

Given a contact form α for ξ, let
Phpαq

denote the set of closed Reeb orbits homotopic to h, where two Reeb orbits are
identified if they differ only by parametrization.

Definition 10.16. Given a contact manifold pM, ξq and a homotopy class h P
rS1,Ms, we will say that a contact form α for ξ is h-admissible if:

1It is to be expected that cylindrical contact homology can be defined also for non-primitive
homotopy classes, but this would require more sophisticated methods to address transversality
problems. The assumption that h is primitive allows us to assume that all holomorphic curves in
the discussion are somewhere injective, hence they are always regular if J is generic.
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(1) All orbits in Phpαq are nondegenerate;
(2) There are no contractible closed Reeb orbits.

Similarly, we will say that pM, ξq is h-admissible if a contact form with the above
properties exists.

Definition 10.17. Given h P rS1,Ms and an h-admissible contact form α on
pM, ξq, we will say that an almost complex structure J P J pαq is h-regular if every
J-holomorphic cylinder in RˆM with a positive and a negative end both asymptotic
to orbits in Phpαq is Fredholm regular.

Proposition 10.18. If h P rS1,Ms is a primitive homotopy class of loops and
α is h-admissible on pM, ξq, then the space of h-regular almost complex structures
is comeager in J pαq.

Proof. Since h is primitive, the asymptotic orbits for the relevant holomorphic
cylinders cannot be multiply covered, hence all of these cylinders are somewhere
injective. The result therefore follows from the standard transversality results proved
in Lecture 8 for somewhere injective curves in symplectizations. �

Proposition 10.19. Given an h-admissible contact form α, an h-regular almost
complex structure J P J pαq and an orbit γ P Phpαq, suppose uk is a sequence of
J-holomorphic cylinders in RˆM with one positive puncture at γ and one negative
puncture. Then uk has a subsequence convergent in the SFT topology to a broken
J-holomorphic cylinder, i.e. a stable building u8 whose levels u18, . . . , u

N`
8 are each

cylinders with one positive and one negative puncture. Moreover, each level satisfies
indpuN8q ě 1, thus for large k in the convergent subsequence,

indpukq “
Nÿ̀

N“1

indpuN8q ě N`.

Proof. Let’s start with some bad news: the standard SFT compactness the-
orem is not applicable in this situation, because we have not assumed that α is
nondegenerate, nor even Morse Bott—there is no assumption at all about Reeb or-
bits in homotopy classes other than h and 0. This fairly loose set of hypotheses is
very convenient in applications, as nondegeneracy of a contact form is generally a
quite difficult condition to check. The price we pay is that we will have to prove
compactness manually instead of applying the big theorem (see Remark 10.20). For-
tunately, it is not that hard: the crucial point is that in the situation at hand, there
can be no bubbling at all.

Indeed, we claim that the given sequence uk : pR ˆ S1, iq Ñ pR ˆ M,Jq must
satisfy a uniform bound

|duk| ď C

with respect to any translation-invariant Riemannian metrics on RˆS1 and RˆM .
To see this, note first that since all the uk have the same positive asymptotic orbit γ,
their energies are uniformly bounded via (10.1). Thus if |dukpzkq| Ñ 8 for some
sequence zk P R ˆ S1, we can perform the usual rescaling trick from Lecture 9 and
deduce the existence of a nonconstant finite-energy plane v8 : C Ñ R ˆ M . Its
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singularity at 8 cannot be removable since this would produce a nonconstant J-
holomorphic sphere, violating Proposition 10.9. It follows that v8 is asymptotic to a
Reeb orbit at 8, but this is also impossible since α does not admit any contractible
orbits, and the claim is thus proved.

Suppose now that γ has period T` ą 0, and observe that by nondegeneracy and
the Arzelà-Ascoli theorem, the set

Phpα, T`q :“
 
γ P Phpαq

ˇ̌
γ has period at most T`

(

is finite. Let

Ahpαq,Ahpα, T`q Ă p0,8q
denote the set of all periods of orbits in Phpαq and Phpα, T`q respectively. By
(10.2), the negative asymptotic orbit of each uk is in Phpα, T`q, so we can take a
subsequence and assume that these are all the same orbit; call it γ´ P Phpα, T`q and
its period T´ P Ahpα, T`q. If T´ “ T` then (10.2) implies u˚

kdα ” 0 for all k, and
it follows that uk is the trivial cylinder over γ, so the sequence trivially converges.
Assume therefore T´ ă T`. Then since u˚

kdα ě 0, Stokes’ theorem implies that for
each k, the function

R Ñ R : s ÞÑ
ż

S1

ukps, ¨q˚α

is increasing and is a surjective map onto pT´, T`q. The uniform bound on the
derivatives implies that for any sequences sk, rk P R with ukpsk, 0q P trku ˆ M , the
sequence2

vk : R ˆ S1 Ñ R ˆ M : ps, tq ÞÑ τ´rk ˝ ukps ` sk, tq
has a subsequence convergent in C8

locpR ˆ S1q to some finite-energy J-holomorphic
cylinder

v8 : R ˆ S1 Ñ R ˆ M,

which necessarily satisfies
ż

S1

v8ps, ¨q˚α “ lim
kÑ8

ż

S1

ukps ` sk, ¨q˚α P rT´, T`s

for every s P R. This proves that v8 is nonconstant, with a positive puncture at
s “ 8 and negative puncture at s “ ´8, and both of its asymptotic orbits are
in Phpα, T`q.3 If v8 is not a trivial cylinder, then it therefore satisfies

ż

RˆS1

v˚
8dα ě δ,

where δ is any positive number less than the smallest distance between neighboring
elements of Ahpα, T`q.

Let us call a sequence sk P R nontrivial whenever the limiting cylinder v8
obtained by the above procedure is not a trivial cylinder, and call two such sequences

2Recall from Lecture 9 that we denote the R-translation action on RˆM by τcpr, xq :“ pr`c, xq.
3For an alternative argument that v8 must have a positive puncture at s “ 8 and negative at

s “ ´8, see Figure 10.3.
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sk and s1
k compatible if sk ´ s1

k is not bounded. We claim now that if s1k, . . . , s
m
k is a

collection of nontrivial sequences that are all compatible with each other, then

m ă 2pT` ´ T´q
δ

.

Indeed, we can assume after ordering our collection appropriately and restricting to
a subsequence that sN`1

k ´sNk Ñ 8 for each N “ 1, . . . , m´1, and let vN8 : RˆS1 Ñ
R ˆ M denote the limits of the corresponding convergent subsequences. Then we
can find R ą 0 such that ż

r´R,RsˆS1

pvN8q˚dα ą δ

2

and thus ż

rsN
k

´R,sN
k

`RsˆS1

u˚
kdα ą δ

2

for each N “ 1, . . . , m for sufficiently large k. But these domains are also all disjoint
for sufficiently large k, implying

T` ´ T´ “
ż

RˆS1

u˚
kdα ě

mÿ

N“1

ż

rsN
k

´R,sN
k

`RsˆS1

u˚
kdα ą δm

2
.

We’ve shown that there exists a maximal collection of nontrivial sequences
s1k, . . . , s

N`
k P R satisfying sN`1

k ´ sNk Ñ 8 for each N , such that if ukpsNk , 0q P
trNk u ˆ M , then after restricting to a subsequence, the cylinders

vNk ps, tq :“ τ´rN
k

˝ ukps ` sNk , tq

each converge in C8
locpR ˆ S1q as k Ñ 8 to a nontrivial J-holomorphic cylinder

uN8 : R ˆ S1 Ñ R ˆ M . Let γ˘
N denote the asymptotic orbit of uN8 at s “ ˘8. We

claim,

γ`
N “ γ´

N`1 for each N “ 1, . . . , N` ´ 1.

If γ`
N ‰ γ´

N`1 for some N , choose a neighborhood U Ă M of the image of γ`
N that

does not intersect any other orbit in Phpα, T`q. Then since each uk is continuous,
there must exist a sequence s1

k P R with

s1
k ´ sNk Ñ 8 and sN`1

k ´ s1
k Ñ 8

such that ukps1
k, 0q lies in U for all k but stays a positive distance away from the

image of γ`
N . A subsequence of ps, tq ÞÑ ukps ` s1

k, tq then converges after suitable
R-translations to a cylinder u1

8 : R ˆ S1 Ñ R ˆ M that cannot be trivial since
u1

8p0, 0q is not contained in any orbit in Phpα, T`q. This contradicts the assumption

that our collection s1k, . . . , s
N`
k is maximal. A similar argument shows

γ´
1 “ γ´ and γ`

N` “ γ,

so the curves u18, . . . , u
N`
8 form the levels of a stable holomorphic building u8. A

similar argument by contradiction also shows that the sequence uk must converge
in the SFT topology to u8.
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Figure 10.3. A degenerating sequence of holomorphic cylinders
uk : R ˆ S1 Ñ R ˆM cannot have a limiting level with a puncture of
the “wrong” sign unless uk violates the maximum principle for large k.

Finally, note that since all the breaking orbits in u8 are homotopic to h and J
is h-regular, the levels uN8 are Fredholm regular. Since all of them also come in 1-
parameter families of distinct curves related by the R-action, this implies indpuN8q ě
1 for each N “ 1, . . . , N`. �

Remark 10.20. Nondegeneracy or Morse-Bott conditions are required for sev-
eral reasons in the proof of SFT compactness, and indeed, the theorem is not true
in general without some such assumption. One can see this by considering what
happens to a sequence uk of Jk-holomorphic curves where Jk Ñ J8 is compatible
with a sequence of nondegenerate contact forms αk converging to one that is only
Morse-Bott. A compactness theorem for this scenario is proved in [Bou02], but it
requires more general limiting objects than holomorphic buildings. On the other
hand, it is useful for certain kinds of applications to know when one can do without
nondegeneracy assumptions and prove compactness anyway. There are two main ad-
vantages to knowing that all Reeb orbits are nondegenerate or belong to Morse-Bott
families:

(1) It implies that the set of all periods of closed orbits, the so-called action
spectrum of α, is a discrete subset of p0,8q; in fact, for any T ą 0, the
set of all periods less than T is finite. Using the relations (10.1) and (10.2),
this implies lower bounds on the possible energies of limiting components
and thus helps show that only finitely many such components can arise.

(2) Curves asymptotic to nondegenerate or Morse-Bott orbits also satisfy ex-
ponential convergence estimates such as in §6.5 and [HWZ96,HWZ01,
HWZ96,Bou02]. Similar asymptotic estimates yield a result about “long
cylinders with small area” (see [HWZ02] and [BEH`03, Prop. 5.7]) which
helps in proving that neighboring levels connect to each other along break-
ing orbits.
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Our situation in Proposition 10.19 was simple enough to avoid using the “long
cylinder” lemma, and we did use the discreteness of the action spectrum, but only
needed it for orbits in Phpαq since we were able to rule out bubbling in the first
step. An alternative would have been to assume that all orbits (in all homotopy
classes) with period up to the period of γ are nondegenerate: then (10.2) implies
that degenerate orbits never play any role in the main arguments of [BEH`03], so
the big theorem becomes safe to use.

10.2.3. The chain complex. We now define a Z2-graded chain complex with
coefficients in Z2 and generators xγy for γ P Phpαq, i.e.

CCh
˚ pM,αq :“

à
γPPhpαq

Z2.

The degree of each generator xγy P CCh
˚ pM,αq is defined by

|xγy| “ n ´ 3 ` µCZpγq P Z2,

where µCZpγq P Z2 denotes the parity of the Conley-Zehnder index with respect to
any choice of trivialization. The choice to write n´ 3 in front of this is a convention
that will make no difference at all in this lecture, but it is consistent with a Z-
grading that we will be able to define under suitable assumptions in Lecture 12. To
define the differential on CCh

˚ pM,αq, choose an h-regular almost complex structure
J P J pαq. Given Reeb orbits γ`, γ´ P Phpαq and a number I P Z, let

MIpJ, γ`, γ´q

denote the space of all R-equivalence classes of index I holomorphic cylinders in
pRˆM,Jq asymptotic to γ˘ at ˘8, i.e. the union of the spaces M0,0pJ,A, γ`, γ´q{R
for all relative homology classes A such that vir-dimM0,0pJ,A, γ`, γ´q “ I. Since
J is h-regular, all the curves in MIpJ, γ`, γ´q are Fredholm regular, so if I ě 1,
MIpJ, γ`, γ´q is a smooth manifold with

dimMIpJ, γ`, γ´q “ I ´ 1.

Similarly, M0pJ, γ`, γ´q only contains trivial cylinders and is thus empty unless
γ` “ γ´, andMIpJ, γ`, γ´q is always empty for I ă 0. In particular, M1pJ, γ`, γ´q
is a discrete set whenever γ` ‰ γ´, and by Proposition 10.19, it is also compact,
hence finite. We can therefore define

Bxγy “
ÿ

γ1PPhpαq
#2M

1pJ, γ, γ1qxγ1y,

where for any set X , we denote by #2X the cardinality ofX modulo 2. The operator
B has odd degree with respect to the grading since every index 1 holomorphic cylinder
u with asymptotic orbits γ` and γ´ satisfies

indpuq “ 1 “ µτCZpγ`q ´ µτCZpγ´q

for suitable choices of the trivialization τ .
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10.2.4. The homology. Following the standard Floer theoretic prescription,

the relation B2 “ 0 should arise by viewing the compactification M
2pJ, γ`, γ´q for

each γ`, γ´ P Phpαq as a compact 1-manifold whose boundary is identified with the

set of rigid broken cylinders, as these are what is counted by B2. Here M
2pJ, γ`, γ´q

is defined as the closure of M2pJ, γ`, γ´q in the space of all J-holomorphic buildings
in R ˆ M modulo R-translation. Proposition 10.19 gives a natural inclusion

M
2pJ, γ`, γ´qzM2pJ, γ`, γ´q Ă

ž

γ0PPhpαq
M1pJ, γ`, γ0q ˆ M1pJ, γ0, γ´q.

We therefore need an inclusion in the other direction, and for this we need to say
a word about gluing. We have not had time to discuss gluing in earnest in this
book, and we will not do so now either, but the basic idea should be familiar from
Floer homology: given u` P M1pJ, γ`, γ0q and u´ P M1pJ, γ0, γ´q, one would
like to show that there exists a unique (up to R-translation) one-parameter family
tuR P M2pJ, γ`, γ´quRPrR0,8q such that uR converges as R Ñ 8 to the building
u8 with bottom level u´ and top level u`. One starts by constructing a family of
preglued maps

ũR : R ˆ S1 Ñ R ˆ M,

meaning a smooth family of maps which converge in the SFT topology as R Ñ 8 to
u8 but are only approximately J-holomorphic. More precisely, fix parametrizations
of u´ and u` and a parametrization of the orbit γ0 : R{TZ Ñ M such that

u`ps, tq “ exppTs,γ0pTtqq h`ps, tq for s ! 0,

u´ps, tq “ exppTs,γ0pTtqq h´ps, tq for s " 0,

where h˘ are vector fields along the trivial cylinder satisfying limsÑ¯8 h˘ps, tq “ 0.
By interpolating between suitable reparametrizations of h` and h´, one can now
define ũR such that

ũRps, tq “ τ2RT ˝ u`ps ´ 2R, tq for s ě R,

ũRps, tq « pTs, γ0pT tqq for s P r´R,Rs,
ũRps, tq “ τ´2RT ˝ u´ps ` 2R, tq for s ď ´R,

B̄J ũR Ñ 0 as R Ñ 8.

Given regularity of u` and u´, one can now use a quantitative version of the implicit
function theorem (cf. [MS12, §3.5]) to show that a distinguished J-holomorphic
cylinder uR close to ũR exists for all R sufficiently large. For a more detailed synopsis
of the analysis involved, see [Nel13, Chapter 7], and [AD14, Chapters 9 and 13]
for the analogous story in Floer homology. The result is:

Proposition 10.21. For an h-admissible α, an h-regular J P J pαq and any two

orbits γ`, γ´ P Phpαq, the space M
2pJ, γ`, γ´q admits the structure of a compact

1-dimensional manifold with boundary, where its boundary points can be identified
naturally with

š
γ0PPhpαq M

1pJ, γ`, γ0q ˆ M1pJ, γ0, γ´q. �

Corollary 10.22. The homomorphism B : CCh
˚ pM,αq Ñ CCh

˚´1pM,αq satis-
fies B2 “ 0. �
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We shall denote the homology of this chain complex by

HCh
˚ pM,α, Jq :“ H˚

`
CCh

˚ pM,αq, B
˘
.

The goal of the rest of this section is to prove that up to natural isomorphisms,
HCh

˚ pM,α, Jq depends on pM, ξq and h but not on the auxiliary data α and J .

10.2.5. Chain maps. For any constant c ą 0, there is an obvious bijection
between the generators of CCh

˚ pM,αq and CCh
˚ pM, cαq, as the rescaling changes

periods of orbits but not the set of closed orbits itself. Moreover, if J P J pαq and
Jc P J pcαq are defined to match on ξ, then there is a biholomorphic diffeomorphism

pR ˆ M,Jq Ñ pR ˆ M,Jcq : pr, xq ÞÑ pcr, xq,
thus giving a bijective correspondence between the moduli spaces of J-holomorphic
and Jc-holomorphic curves. It follows that our bijection of chain complexes is also
a chain map and therefore defines a canonical isomorphism

(10.3) HCh
˚ pM,α, Jq “ HCh

˚ pM, cα, Jcq.
Next suppose α´ and α` are two distinct contact forms for ξ, hence

α˘ “ ef˘α

for some fixed contact form α and a pair of smooth functions f˘ : M Ñ R. After
rescaling α` by a constant, we are free to assume f` ą f´ everywhere. Fix h-regular
almost complex structures J˘ P J pα˘q and let

B˘ : CCh
˚ pM,α˘q Ñ CCh

˚´1pM,α˘q
denote the resulting differentials on the two chain complexes. The region

W :“
 

pr, xq P R ˆ M
ˇ̌
f´pxq ď r ď f`pxq

(

now defines an exact symplectic cobordism from pM, ξq to itself: more precisely,
setting

M˘ :“
 

pf˘pxq, xq P W
ˇ̌
x P M

(

gives BW “ ´M´
š
M`, and the Liouville form λ :“ erα satisfies λ|TM˘ “ α˘.

Choose a generic dλ-compatible almost complex structure J on the completion xW
that restricts to J˘ on the cylindrical ends. Now given γ` P Phpα`q and γ´ P Phpα´q
and a number I P Z, we shall denote by

MIpJ, γ`, γ´q
the union of the spaces M0,0pJ,A, γ`, γ´q for all relative homology classes A such
that vir-dimM0,0pJ,A, γ`, γ´q “ I. Note that we are not dividing by any R-action
here since J need not be R-invariant. Since γ˘ are still guaranteed to be simply
covered, curves in MIpJ, γ`, γ´q are again always somewhere injective and therefore
regular, hence MIpJ, γ`, γ´q is a smooth manifold with

dimMIpJ, γ`, γ´q “ I

if I ě 0, and MIpJ, γ`, γ´q “ H for I ă 0. The compactification M
IpJ, γ`, γ´q is

described via the following straightforward generalization of Proposition 10.19:
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Proposition 10.23. For J as described above, suppose uk is a sequence of J-

holomorphic cylinders in xW with one positive puncture at an orbit γ P Phpα`q and
one negative puncture. Then uk has a subsequence convergent in the SFT topology
to a broken J-holomorphic cylinder, i.e. a stable building u8 whose levels uN8 for
N “ ´N´, . . . ,´1, 0, 1, . . . , N` are each cylinders with one positive and one negative

puncture, living in R ˆ M˘ for ˘N ą 0 and xW for N “ 0. Moreover, the levels
satisfy indpu08q ě 0 and indpuN8q ě 1 for N ‰ 0, thus for large k in the convergent
subsequence,

indpukq “
Nÿ̀

N“´N´

indpuN8q ě N´ ` N`.

�

It follows that the set M0pJ, γ`, γ´q is always finite, and we use this to define a
map

ΦJ : CCh
˚ pM,α`q Ñ CCh

˚ pM,α´q : xγy ÞÑ
ÿ

γ1PPhpα´q
#2M

0pJ, γ, γ1qxγ1y.

This map preserves degrees since it counts index 0 curves, and we claim that it is a
chain map:

ΦJ ˝ B` “ B´ ˝ ΦJ .

This follows from the fact that by Proposition 10.23 (in conjunction with a corre-

sponding gluing theorem), M
1pJ, γ`, γ´q is a compact 1-manifold whose boundary

consists of two types of broken cylinders, depending whether the index 1 curve
appears in an upper or lower level:

BM1pJ, γ`, γ´q “
ž

γ0PPhpα`q

`
M1pJ`, γ

`, γ0q ˆ M0pJ, γ0, γ´q
˘

Y
ž

γ0PPhpα´q

`
M0pJ, γ`, γ0q ˆ M1pJ´, γ0, γ

´q
˘
.

Counting broken cylinders of the first type gives the coefficient in front of xγ´y in
ΦJ ˝ B`pxγ`yq, and the second type gives B´ ˝ ΦJpxγ`yq.

It follows that ΦJ descends to a homomorphism

(10.4) ΦJ : HCh
˚ pM,α`, J`q Ñ HCh

˚ pM,α´, J´q.

10.2.6. Chain homotopies. We claim that the map ΦJ in (10.4) does not
depend on J . To see this, suppose J0 and J1 are two generic choices of compatible

almost complex structures on xW that both match J˘ on the cylindrical ends. The
space of almost complex structures with these properties is contractible, so we can
find a smooth path

tJsusPr0,1s

connecting them. For I P Z, consider the parametric moduli space

MIptJsu, γ`, γ´q :“
 

ps, uq
ˇ̌
s P r0, 1s, u P MIpJs, γ`, γ´q

(
.
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As we observed in Remark 8.7, a generic choice of the homotopy tJsu makesMIptJsuq
a smooth manifold with

dimMIptJsu, γ`, γ´q “ I ` 1

whenever I ě ´1, and MIptJsu, γ`, γ´q “ H when I ă ´1. Adapting Propo-
sition 10.23 to allow for a converging sequence of almost complex structures, it
implies that M´1ptJsu, γ`, γ´q is compact and thus finite, so we can use it to define
a homomorphism of odd degree by

H : CCh
˚ pM,α`q Ñ CCh

˚`1pM,α´q : xγy ÞÑ
ÿ

γ1PPhpα´q
#M´1ptJsu, γ, γ1qxγ1y.

We claim that this is a chain homotopy between ΦJ0 and ΦJ1 , i.e.

ΦJ1 ´ ΦJ0 “ B´ ˝ H ` H ˝ B`.

This follows by looking at the boundary of the compactified 1-dimensional space

M
0ptJsu, γ`, γ´q, which consists of four types of objects:

(1) Pairs p0, uq with u P M0pJ0, γ`, γ´q, which are counted by ΦJ0 .
(2) Pairs p1, uq with u P M0pJ1, γ`, γ´q, which are counted by ΦJ1 .
(3) Pairs ps,uq with u a broken cylinder with upper level u` P M1pJ`, γ

`, γ0q
and main level u0 P M´1pJs, γ0, γ´q for some s P p0, 1q; these are counted
by H ˝ B`.

(4) Pairs ps,uq with u a broken cylinder with lower level u´ P M1pJ´, γ0, γ
´q

and main level u0 P M´1pJs, γ`, γ0q for some s P p0, 1q; these are counted
by B´ ˝ H .

The sum ΦJ0 ` ΦJ1 ` B´ ˝ H ` H ˝ B` therefore counts (modulo 2) the boundary
points of a compact 1-manifold, so it vanishes.

Since the action of ΦJ on homology no longer depends on J , we will denote it
from now on by

Φ : HCh
˚ pM,α`, J`q Ñ HCh

˚ pM,α´, J´q.
It is well defined for any pair of h-admissible contact forms α˘ and h-regular J˘ P
J pα˘q since one can first rescale α` to assume α˘ “ ef˘α with f` ą f´, using the
canonical isomorphism (10.3).

10.2.7. Proof of invariance. We claim that for any h-admissible α and h-
regular J P J pαq, the cobordism map

Φ : HCh
˚ pM,α, Jq Ñ HCh

˚ pM,α, Jq
is the identity. Indeed, the literal meaning of this statement is that for any c ą 1,
the composition of the canonical isomorphism (10.3) with the map

Φ : HCh
˚ pM, cα, Jcq Ñ HCh

˚ pM,α, Jq
defined by counting index 0 cylinders in a trivial cobordism from pM,α, Jq to
pM, cα, Jcq is the identity. Writing c “ ea for a ą 0, the Liouville cobordism in
question is simply

pW, dλq “ pr0, as ˆ M, dperαqq,
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and one can choose a compatible almost complex structure on this which matches
J and Jc on ξ while taking Br to gprqRα for a suitable function g with gprq “ 1
near r “ 0 and gprq “ 1{c near r “ a. The resulting almost complex manifold
is biholomorphically diffeomorphic to the usual symplectization pR ˆ M,Jq, so our
count of index 0 cylinders is equivalent to the count of such cylinders in pRˆM,Jq.
The latter are simply the trivial cylinders, all of which are Fredholm regular, so
counting these defines the identity map on the chain complex.

Finally, we need to show that for any three h-admissible pairs pαi, Jiq with i “
0, 1, 2, the cobordism maps Φij : HC

h
˚ pM,αj, Jjq Ñ HCh

˚ pM,αi, Jiq satisfy

(10.5) Φ21 ˝ Φ10 “ Φ20.

We will only sketch this part: the idea is to use a stretching construction. After
rescaling, suppose without loss of generality that αi “ efiα with f2 ą f1 ą f0. Then
the cobordism

W20 :“
 

pr, xq
ˇ̌
f0pxq ď r ď f2pxq

(

contains a contact-type hypersurface

M1 :“
 

pf1pxq, xq
ˇ̌
x P M

(
Ă W20.

As described in §9.4.4, one can now choose a sequence of compatible almost com-

plex structures tJN20uNPN on xW20 that are fixed outside a neighborhood of M1 but
degenerate in this neighborhood as N Ñ 8, equivalent to replacing a small tubu-
lar neighborhood of M1 with increasingly large collars r´N,Ns ˆ M in which JN20
belongs to J pα1q. The resulting chain maps

ΦJN
20
: CCh

˚ pM,α2, J2q Ñ CCh
˚ pM,α0, J0q

are chain homotopic for all N , but as N Ñ 8, the index 0 cylinders counted by
these maps converge to buildings with two levels, the top one an index 0 cylinder
in the completion of a cobordism from pM,α1, J1q to pM,α2, J2q, while the bottom
one also has index 0 and lives in a cobordism from pM,α0, J0q to pM,α1, J1q. The
composition Φ21 ˝ Φ10 counts these broken cylinders, so this proves (10.5).

In particular, we conclude now that each of the cobordism maps

Φ : HCh
˚ pM,α`, J`q Ñ HCh

˚ pM,α´, J´q
is an isomorphism, since composing it with a cobordism map in the opposite di-
rection must give the identity. The isomorphism class of HCh

˚ pM,α, Jq is therefore
independent of the auxiliary data pα, Jq, and will be denoted by

HCh
˚ pM, ξq.

This is the cylindrical contact homology of pM, ξq in the homotopy class h. It
is defined for any primitive homotopy class h P rS1,Ms and closed contact manifold
that is h-admissible in the sense of Definition 10.16. It is also invariant under
contactomorphisms in the following sense:

Proposition 10.24. Suppose ϕ : pM0, ξ0q Ñ pM1, ξ1q is a contactomorphism
with ϕ˚h0 “ h1, where h0 P rS1,Ms is a primitive homotopy class of loops, and
pM1, ξ1q is h1-admissible. Then pM0, ξ0q is h0-admissible, and HCh0

˚ pM0, ξ0q –
HCh1

˚ pM1, ξ1q.
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Proof. Given an h1-admissible contact form α1 on pM1, ξ1q and an h1-regular
J1 P J pα1q, the contact form α0 :“ ϕ˚α1 on M0 is h0-admissible since ϕ defines a
bijection from Ph0pα0q to Ph1pα1q and also a bijection between the sets of contractible
Reeb orbits for α0 and α1. Since ϕ˚ξ0 “ ξ1, α0 is a contact form for pM0, ξ0q, hence
the latter is h0-admissible. The diffeomorphism rϕ :“ Id ˆ ϕ : R ˆ M0 Ñ R ˆ M1

then maps Br to Br, Rα0
to Rα1

and ξ0 to ξ1, thus J0 :“ rϕ˚J1 P J pα0q, so rϕ defines
a biholomorphic map pR ˆ M0, J0q Ñ pR ˆ M1, J1q and thus a bijection between
the sets of holomorphic cylinders in each. It follows that J0 is h0-regular, and the
bijection Ph0pα0q Ñ Ph1pα1q defines an isomorphism between the chain complexes
defining HCh0

˚ pM0, α0, J0q and HCh1
˚ pM1, α1, J1q. �

10.3. Computing HC˚pT3, ξkq
10.3.1. The Morse-Bott setup. The contact form αk on T3 defined at the

beginning of this lecture has Reeb vector field

Rkpρ, φ, θq “ cosp2πkρq Bθ ` sinp2πkρq Bφ.
Its Reeb orbits therefore preserve each of the tori tρuˆT2 and define linear foliations
on them. In particular, none of the closed orbits are contractible, though all of
them are also degenerate, as they all come in S1-parametrized families foliating
tconstu ˆ T2. For certain homotopy classes h P rS1,T3s, this yields a very easy
computation of HCh

˚ pT3, ξkq, namely whenever h contains no periodic orbits:

Theorem 10.25. Suppose h P rS1,T3s is any primitive homotopy class of loops
such that the projection p : T3 Ñ S1 : pρ, φ, θq ÞÑ ρ satisfies p˚h ‰ 0 P rS1, S1s. Then
αk is h-admissible and the resulting contact homology HCh

˚ pT3, ξkq is trivial. �

Now for the interesting part. Every primitive class h P rS1,T3s not covered
by Theorem 10.25 contains closed orbits of Rk, all of them degenerate since they
come in S1-parametrized families foliating the tori tconstu ˆ T2. This makes it not
immediately clear whether pT3, ξkq is h-admissible, though the following observation
in conjunction with Proposition 10.24 shows that if HCh

˚ pT3, ξkq can be defined, it
will be the same for all the homotopy classes under consideration.

Lemma 10.26. Suppose h0, h1 P rS1,T3s are primitive homotopy classes that are
both mapped to the trivial class under the projection T3 Ñ S1 : pρ, φ, θq ÞÑ ρ. Then
there exists a contactomorphism ϕ : pT3, ξkq Ñ pT3, ξkq satisfying ϕ˚h0 “ h1.

Proof. We can represent hi for i “ 0, 1 by loops of the form γiptq “ p0, βiptqq P
S1 ˆ T2, where the loops βi : S

1 Ñ T2 are embedded and thus represent generators

of π1pT2q “ Z2. One can thus find a matrix

ˆ
m n

p q

˙
P SLp2,Zq such that the

diffeomorphism

ϕ : T3 Ñ T3 : pρ, φ, θq ÞÑ pρ,mφ ` nθ, pφ ` qθq
satisfies ϕ˚h0 “ h1. We have

ϕ˚αk “ rq cosp2πkρq ` n sinp2πkρqs dθ ` rp cosp2πkρq ` m sinp2πkρqs dφ
“: F pρq dθ ` Gpρq dφ.
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The loop pF,Gq : S1 Ñ R2 satisfies
ˆ
F pρq
Gpρq

˙
“
ˆ
q n

p m

˙ˆ
cosp2πkρq
sinp2πkρq

˙
,

where

ˆ
q n

p m

˙
P SLp2,Zq, thus pF,Gq winds k times about the origin. Any choice

of homotopy from pF,Gq to pcosp2πkρq, sinp2πkρqq through loops pFs, Gsq : S1 Ñ R2

winding k times about the origin with positive rotational velocity then gives rise to
a homotopy from ϕ˚αk to αk through contact forms Fspρq dθ ` Gspρq dφ. Gray’s
stability theorem therefore yields a contactomorphism ψ : pT3, ξkq Ñ pT3, kerϕ˚αkq
with ψ smoothly isotopic to the identity. The map ϕ˝ψ is thus a contactomorphism
of pT3, ξkq with pϕ ˝ ψq˚h0 “ ϕ˚ψ˚h0 “ ϕ˚h0 “ h1. �

In light of the lemma, we are free from now on to restrict our attention to the
particular homotopy class

h :“ rt ÞÑ p0, 0, tqs,
which is the homotopy class of the 1-periodic orbits foliating the k tori

Tm :“ tm{ku ˆ T2, m “ 0, . . . , k ´ 1

since Rkpm{k, φ, θq “ Bθ. Though the orbits on these tori are degenerate, it is not
hard to show that they all satisfy the Morse-Bott condition; in fact, αk is a Morse-
Bott contact form. We will explain a self-contained computation of HCh

˚ pT3, ξkq in
the next two sections without using the Morse-Bott condition—but first, it seems
worthwhile to sketch how one can guess the answer using Morse-Bott data.

Bourgeois’s thesis [Bou02] gives a prescription for calculating contact homology
in Morse-Bott settings, i.e. for deducing what orbits and what holomorphic curves
will appear under certain standard ways of perturbing the Morse-Bott contact form
to make it nondegenerate. Notice first that the only orbits in Phpαkq are the ones
that foliate the k tori T0, . . . , Tk´1, and they all have period 1. By (10.2), it follows
that for any J P J pαkq, there can be no nontrivial J-holomorphic cylinders connect-
ing two orbits in Phpαkq. This makes the calculation of HCh

˚ pT3, ξkq sound trivial,
but of course there is more to the story since αk is not admissible; indeed, the chain
complex CC˚pT3, αkq is not even well defined. The prescription in [Bou02] now
gives the following. Each of the families of orbits in T0, . . . , Tk´1 is parametrized
by S1, and by a standard perturbation technique, any choice of a Morse function
fm : S1 Ñ R for m “ 0, . . . , k ´ 1 yields a contact form α1

k that is C8-close to αk,
matches it outside a neighborhood of Tm, but has a nondegenerate Reeb orbit on Tm
for each critical point of fm, while every other closed orbit in the perturbed region
can be assumed to have arbitrarily large period. Moreover, there is a corresponding
perturbation from J P J pαkq to J 1 P J pα1

kq such that every gradient flow line of the
function fm : S1 Ñ R gives rise to a J 1-holomorphic cylinder in R ˆ T3 connecting
the corresponding nondegenerate Reeb orbits along Tm. In the present situation,
since no J-holomorphic cylinders of the relevant type exist before the perturbation,
the only ones after the perturbation are those that come from gradient flow lines.

Now imagine performing a similar perturbation near every T0, . . . , Tk´1, using
Morse functions f0, . . . , fk´1 : S1 Ñ R that each have exactly two critical points.
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For the perturbed contact form α1
k, Phpα1

kq now consists of exactly 2k orbits

γ˘
0 , . . . , γ

˘
k´1 P Phpα1

kq,

where we denote by γ`
m and γ´

m the orbits on Tm corresponding to the maximum
and minimum of fm respectively. For the obvious choice of trivialization τ for the
contact bundle along γ˘

m, one can relate the Conley-Zehnder indices to the Morse
indices of the corresponding critical points, giving

µτCZpγ`
mq “ 0, µτCZpγ´

mq “ 1, m “ 0, . . . , k ´ 1.

Moreover, the two gradient flow lines connecting maximum and minimum for each
fm give rise two exactly two holomorphic cylinders in M1pJ 1, γ´

m, γ
`
mq for each m “

0, . . . , k ´ 1, and these are all the curves that are counted for the differential on
CCh

˚ pT3, α1
k, J

1q. Counting modulo 2, we thus have

Bxγ˘
my “ 0 for all m “ 0, . . . , k ´ 1,

implying

HCh
˚ pT3, α1

k, J
1q “

#
Zk2 ˚ “ odd,

Zk2 ˚ “ even.

Let us state this as a theorem.

Theorem 10.27. Suppose h P rS1,T3s is a primitive homotopy class that maps
to the trivial class under the projection T3 Ñ S1 : pρ, φ, θq ÞÑ ρ. Then pT3, ξkq is
h-admissible and

HCh
˚ pT3, ξkq –

#
Zk2 ˚ “ odd,

Zk2 ˚ “ even.

Theorem 10.1 is an immediate corollary of this: indeed, if ϕ : pT3, ξkq Ñ pT3, ξℓq
is a contactomorphism, choose any h P rS1,T3s for which Theorem 10.27 applies,
and let h0 :“ ϕ˚h P rS1,T3s. Then HCh

˚ pT3, ξℓq – Z2ℓ
2 implies via Proposition 10.24

that HCh0
˚ pT3, ξkq – Z2ℓ

2 . But Theorems 10.25 and 10.27 imply that the latter is
also either 0 or Z2k

2 , hence k “ ℓ.

10.3.2. A digression on the Floer equation. In preparation for giving a self-
contained proof of Theorem 10.27, we now explain a general procedure for relating
holomorphic cylinders in a symplectization to solutions of the Floer equation. This
idea is loosely inspired by arguments in [EKP06].

To motivate what follows, notice that on a neighborhood of T0 “ t0u ˆ T2 Ă
pT3, ξkq, we can write

αk “ cosp2πkρq pdθ ` βq ,
where β :“ tanp2πkρq dφ defines a Liouville form on the annulus Ak :“ r´1{8k, 1{8ksˆ
S1 with coordinates pρ, φq. This makes the neighborhood AkˆS1 Ă pT3, ξkq a special
case of the following general construction.
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Definition 10.28. Suppose V is a 2n-dimensional manifold with an exact sym-
plectic form dβ. The contact manifold pV ˆ S1, kerpdθ ` βqq is then called the
contactization of pV, βq.4 Here θ denotes the coordinate on the S1 factor.

It’s easy to check that dθ ` β is indeed a contact form on V ˆ S1 whenever dβ
is symplectic on V : the latter means pdβqn ą 0 on V , so

pdθ ` βq ^ rdpdθ ` βqsn “ pdθ ` βq ^ pdβqn “ dθ ^ pdβqn ą 0.

Now here’s a cute trick one can play with contactizations. For the rest of this
subsection, assume

pV, dβq
is an arbitrary compact 2n-dimensional exact symplectic manifold with boundary.
Fix a smooth function

H : V ˆ S1 Ñ R,

which we shall think of in the following as a time-dependent Hamiltonian Hθ :“
Hp¨, θq : V Ñ R on pV, dβq. The 2-form on V ˆ S1 defined by

ω “ dβ ` dθ ^ dH “ dpβ ´ H dθq
is then fiberwise symplectic, meaning its restriction to each of the fibers of the
projection map V ˆS1 Ñ S1 is symplectic. We claim that for every ǫ ą 0 sufficiently
small,

λǫ :“ dθ ` ǫpβ ´ H dθq
defines a contact form on V ˆ S1. This is a variation on the construction that was
used by Thurston and Winkelnkemper [TW75] to define contact forms out of open
book decompositions, and the proof is simple enough: since dλǫ “ ǫω, we just need
to check that λǫ ^ ωn ą 0 for ǫ ą 0 sufficiently small, and indeed,

λǫ ^ ωn “ dθ ^ pdβqn ` ǫpβ ´ H dθq ^ ωn ą 0

since the first term is a volume form and ǫ is small. To see the relation between λǫ
and the contactization, we can write

λǫ “ p1 ´ ǫHq dθ ` ǫβ “ p1 ´ ǫHq
ˆ
dθ ` ǫ

1 ´ ǫH
β

˙

and observe that ǫ
1´ǫHβ is also a Liouville form on V whenever H is θ-independent

and ǫ ą 0 is sufficiently small.
The Reeb vector fields Rǫ for λǫ vary with ǫ, but their directions do not, since

dλǫ “ ǫω has the same kernel for every ǫ. Moreover, while λǫ ceases to be a contact
form when ǫ Ñ 0, the Reeb vector fields still have a well-defined limit: they converge
as ǫ Ñ 0 to the unique vector field R0 satisfying

dθpR0q ” 1 and ωpR0, ¨q ” 0.

The latter can be written more explicitly as

R0 “ Bθ ` Xθ,

4Elsewhere in the literature, the contactization is also often defined as V ˆR instead of V ˆS1.
The usage here is consistent with [MNW13].
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where Xθ is the time-dependent Hamiltonian vector field determined by Hθ, i.e. via
the condition

dβpXθ, ¨q “ ´dHθ.

As one can easily compute, the reason for this nice behavior as ǫ Ñ 0 is that the Rǫ

are also the Reeb vector fields for a smooth family of stable Hamiltonian structures:

Proposition 10.29. The pairs Hǫ :“ pω, λǫq for ǫ ě 0 sufficiently small define a
smooth family of stable Hamiltonian structures whose Reeb vector fields are Rǫ. �

We shall write the hyperplane distributions induced by Hǫ as

Ξǫ :“ ker λǫ Ă T pV ˆ S1q.
These are contact structures for ǫ ą 0 small, and the space J pHǫq of R-invariant
almost complex structures on R ˆ pV ˆ S1q compatible with Hǫ is then identical
to J pλǫq. On the other hand for ǫ “ 0, Ξ0 “ ker dθ is a foliation, namely it is the
vertical subbundle of the trivial fibration V ˆ S1 Ñ S1. We have seen H0 before: it
is a variation on the “Floer-type” stable Hamiltonian structure that was considered
in §6.3.2. Its closed Reeb orbits in the homotopy class of γ : S1 Ñ V ˆ S1 : t ÞÑ
pconst, tq are all of the form γptq “ pxptq, tq where x : S1 Ñ V is a contractible
1-periodic orbit of Xθ. Moreover, suppose J P J pH0q, which is equivalent to a
choice of compatible complex structure on the symplectic bundle pΞ0, ω|Ξ0

q, or in
other words, an S1-parametrized family of dβ-compatible almost complex structures
tJθuθPS1 on V . Then if

u “ pf, v, gq : R ˆ S1 Ñ R ˆ pV ˆ S1q
is a J-holomorphic cylinder asymptotic at t˘8u ˆ S1 to two orbits of the form
described above, the nonlinear Cauchy-Riemann equation for u turns out to imply
that pf, gq : RˆS1 Ñ RˆS1 is a holomorphic map with degree 1 sending t˘8uˆS1

to t˘8uˆS1, and we can therefore choose a unique biholomorphic reparametrization
of u so that pf, gq becomes the identity map. Having done this, the equation satisfied
by v : R ˆ S1 Ñ V is now

Bsv ` JtpvqpBtv ´ Xtpvqq “ 0,

in other words, the Floer equation for the data tJθuθPS1 and tHθuθPS1.
To complete the analogy, notice that since ω is exact, we can write down a

natural symplectic action functional with respect to each Hǫ as

Aǫ : C
8pS1, V ˆ S1q Ñ R : γ ÞÑ

ż

S1

γ˚pβ ´ H dθq.

For loops of the form γptq “ pxptq, tq with x : S1 Ñ V contractible, this reduces
(give or take a sign—see Remark 10.31) to the usual formula for the Floer action
functional

(10.6) AHpγq “
ż

S1

x˚β ´
ż

S1

Hpxptqq dt “
ż

D

x̄˚dβ ´
ż

S1

Hpxptqq dt,

where x̄ : D Ñ V is any map satisfying x̄|BD “ x. Stokes’ theorem gives an easy
relation between the action and the so-called ω-energy if u : RˆS1 Ñ Rˆ pV ˆS1q
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is a J-holomorphic curve for J P J pHǫq and is positively/negatively asymptotic to
orbits γ˘ : S1 Ñ V ˆ S1 at s “ ˘8: we have

0 ď
ż

RˆS1

u˚ω “ Aǫpγ`q ´ Aǫpγ´q.

If ups, tq “ ps, vps, tq, tq, then the left hand side is identical to the definition of energy
in Floer homology, namely

EHpvq :“
ż

RˆS1

dβpBsv, Btv ´ Xtpvqq ds^ dt “
ż

RˆS1

dβpBsv, JtpvqBsvq ds^ dt,

thus giving the familiar relation

(10.7) EHpvq “ AHpγ`q ´ AHpγ´q.
To relate this to the usual notion of energy with respect to a stable Hamiltonian
structure, we write the usual formula

Eǫpuq :“ sup
ϕPT

ż

9Σ

u˚ “d
`
ϕprqλǫ

˘
` ω

‰
,

with T :“
 
ϕ P C8pR, p´ǫ0, ǫ0qq

ˇ̌
ϕ1 ą 0

(
for some constant ǫ0 ą 0 sufficiently

small. Notice first that for any fixed ǫ, Stokes’ theorem gives a bound for Eǫpuq in
terms of the asymptotic orbits of u since ω is exact. Finally, in the case ǫ “ 0 with
ups, tq “ ps, vps, tq, tq, we find

E0puq “ sup
ϕPT

ż

RˆS1

ϕ1psq ds^ dt`
ż

RˆS1

u˚ω “ 2ǫ0 ` EHpvq,

so bounds on E0puq are equivalent to bounds on the Floer homological energy EHpvq.
The basic fact that Floer trajectories v : RˆS1 Ñ V with EHpvq ă 8 are asymptotic
to contractible 1-periodic Hamiltonian orbits can now be regarded as a corollary of
our Theorem 9.8.

The above discussion gives a one-to-one correspondence between a certain mod-
uli space of unparametrized J-holomorphic cylinders in R ˆ pV ˆ S1q and the mod-
uli space of Floer trajectories between contractible 1-periodic orbits in pV, dβq with
Hamiltonian function H . If we can adequately understand the moduli space of Floer
trajectories—in particular if we can classify them and prove that they are regular—
then the idea will be to extend this classification via the implicit function theorem to
any Jǫ P J pλǫq sufficiently close to J for ǫ ą 0 small. As the reader may be aware,
classifying Floer trajectories is also not easy in general, but it does become easy
under certain conditions. Simple examples of contractible 1-periodic Hamiltonian
orbits are furnished by the constant loops γptq “ x at critical points x P CritpHq,
and for each such orbit, γ˚Ξ0 has a canonical homotopy class of unitary trivializa-
tions, the so-called constant trivialization. The following fundamental result is
commonly used in proving the isomorphism from Hamiltonian Floer homology to
singular homology.

Theorem 10.30. Suppose H : V Ñ R is a smooth Morse function with no
critical points on the boundary, J is a fixed dβ-compatible almost complex structure
on V , and the gradient flow of H with respect to the metric dβp¨, J ¨q is Morse-Smale
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and transverse to BV . Given c ą 0, let Hc :“ cH : V Ñ R, with Hamiltonian vector
field XHc “ cXH , and consider the stable Hamiltonian structure

Hc
0 :“ pdβ ` dθ ^ dHc, dθq

on V ˆ S1 with induced Reeb vector field Rc
0 “ Bθ ` XHc. Then for all c ą 0

sufficiently small, the following statements hold.

(1) The 1-periodic Rc
0-orbit γx : S1 Ñ V ˆ S1 : t ÞÑ px, tq arising from any

critical point x P CritpHq is nondegenerate, and its Conley-Zehnder index
relative to the constant trivialization τ is related to the Morse index indpxq P
t0, . . . , 2nu by

(10.8) µτCZpγxq “ n ´ indpxq.
(2) Any trajectory γ : R Ñ V satisfying the negative gradient flow equation

9γ “ ´∇Hcpγq gives rise to a Fredholm regular solution v : R ˆ S1 Ñ V :
ps, tq ÞÑ γpsq of the time-independent Floer equation

(10.9) Bsv ` JpvqpBtv ´ XHcpvqq “ 0,

and the virtual dimensions of the spaces of Floer trajectories near v and
gradient flow trajectories near γ are the same.

(3) Every 1-periodic orbit of XHc in V̊ is a constant loop at a critical point
of H.

(4) Every finite-energy solution v : RˆS1 Ñ V̊ of (10.9) is of the form vps, tq “
γpsq for some negative gradient flow trajectory γ : R Ñ V .

Proof. The following proof is based on arguments in [SZ92], see in particular
Theorem 7.3.

For the first statement, let γptq “ px, tq for x P CritpHq and recall from Lecture 3
the formula for the asymptotic operator of a 1-periodic orbit,

Aγ : Γpγ˚Ξ0q Ñ Γpγ˚Ξ0q : η ÞÑ ´J p∇tη ´ ∇ηR
c
0q ,

where ∇ is any symmetric connection on V ˆS1. Identifying Γpγ˚Ξ0q in the natural
way with C8pS1, TxV q, using the trivial connection and writing Rc

0pz, θq “ Bθ `
XHcpzq “ Bθ ` cJpzq∇Hpzq, Aγ becomes the operator

Aγ “ ´JBt ´ c∇2Hpxq
on C8pS1, TxV q, where ∇2Hpxq : TxV Ñ TxV denotes the Hessian of H at x.
Choosing a unitary basis for TxV identifies this with ´J0Bt´ cS for some symmetric

2n-by-2n matrix S and the standard complex structure J0 “
ˆ
0 ´1

1 0

˙
, so kerAγ

corresponds to the space of 1-periodic solutions to 9η “ Bη for B :“ cJ0S. The
Morse condition implies that S is nonsingular, thus so is B, but it is also small since
c is small. We claim that if c is small enough to satisfy

}B} ă 1

2π
,
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then all 1-periodic solutions η to 9η “ Bη are constant. To see this, let us complexify
and regard η as a loop in C2n and B as a complex-linear map on C2n. We can then
write the smooth loops 9η, :η : S1 Ñ C2n as Fourier series

9ηptq “
ÿ

kPZ
e2πiktak, :ηptq “

ÿ

kPZ
e2πikt ¨ 2πikak, where ak “

ż

S1

9ηptqe´2πikt P C2n.

Since a0 “
ş
S1 9ηptq dt “ 0, Parseval’s identity then implies

} 9η}2L2 “
ÿ

kPZ
|ak|2 “ 1

p2πq2
ÿ

k‰0

p2πq2|ak|2 ď 1

p2πq2
ÿ

kPZ
|2πikak|2 “ 1

p2πq2 }:η}2L2,

thus plugging in the derivative of the equation 9η “ Bη gives

} 9η}L2 ď 1

2π
}:η}L2 “ 1

2π
}B 9η}L2 ď }B}

2π
} 9η}L2 .

If }B} ă 2π, then this inequality gives a contradiction unless 9η ” 0, proving the
claim.5 Since S is nonsingular, it follows that Aγ has only the trivial eigenfunction,
hence γ is nondegenerate.

To calculate µτCZpγq, suppose S˘ denotes a pair of nonsingular symmetric matri-
ces defining asymptotic operators A˘ “ ´J0Bt ´ cS˘, and choose a path tSsusPr´1,1s
of symmetric matrices connecting S˘1 :“ S˘. For c ą 0 sufficiently small, the
claim in the previous paragraph identifies the kernel of As :“ ´J0Bt ´ cSs for each
s P r´1, 1s with ker Ss as a space of constant solutions. Similarly, λ P R is an eigen-
value of Aγ if and only if the kernel of ´J0Bt ´ pcS ` λq is nontrivial, which for |λ|
sufficiently small holds if and only if ´λ is an eigenvalue of cS. This implies that
eigenvalues of the family tAsusPr´1,1s change signs precisely when eigenvalues of the
family tSsusPr´1,1s change signs in the opposite direction, giving a relation between
spectral flows

µspecpA´,A`q “ ´µspecpS´, S`q
as long as c ą 0 is sufficiently small. Denoting the maximal negative-definite sub-
space of S˘ by E´pS˘q, this relation implies

dimE´pS`q ´ dimE´pS´q “ µCZpA´q ´ µCZpA`q.
Now suppose S` is a coordinate expression for the Hessian∇2Hpxq, hence dimE´pS`q “
indpxq and µCZpA`q “ µτCZpγq. Choosing S´ “

ˆ
1 0
0 ´1

˙
then gives dimE´pS´q “

n and µCZpA´q “ 0 by definition, so µτCZpγq “ n ´ indpxq follows.
The second statement follows in a similar manner by writing down and compar-

ing the linearized operators for the Floer equation and the negative gradient flow
equation. Let’s leave this as an exercise.

For the third statement, suppose we have a sequence ck Ñ 0 and a sequence of
loops xk : S

1 Ñ V̊ satisfying 9xk “ XHck pxkq “ ckXHpxkq. Pick a number c ą 0 small

5The claim is a linear version of a more general dynamical phenomenon: for an autonomous
dynamical system defined via a C1-small vector field on a compact manifold, all 1-periodic solutions
are constant. This fact can be cited as naive motivation for the Arnol′d conjecture on symplectic
fixed points; see for instance [HZ94, Chapter 5, Prop. 17 and P. 200].
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enough for part (1) of the theorem to hold, choose a sequence of integers Nk P N

such that
Nkck Ñ c,

and consider the loops yk : S
1 Ñ V̊ : t ÞÑ xkpNktq. These satisfy

9yk “ NkckXHpykq,
and since XH is C8-bounded on V and Nkck is also bounded, the Arzelà-Ascoli
theorem provides a subsequence with

yk Ñ y8 in C8pS1, V q,
where y8 : S1 Ñ V satisfies 9y8 “ XHcpy8q for Hc :“ cH : V Ñ R. But y8 is also
constant: indeed, since ykpt`1{Nkq “ ykptq and Nk Ñ 8, we can find for any t P S1

a sequence qk P Z satisfying qk{Nk Ñ t, so

(10.10) y8ptq “ lim
kÑ8

ykpqk{Nkq “ lim
kÑ8

ykp0q “ y8p0q.

Since the constant orbit y8 is nondegenerate by part (1) of the theorem, there can
only be one sequence of solutions to 9yk “ XHNkck pykq converging to y8, and we
conclude that yk is also constant for all k sufficiently large.

We will now use a similar trick to prove the fourth statement in the theorem.
We shall work under the additional assumption that

(10.11) | indpxq ´ indpyq| ď 1 for all pairs x, y P CritpHq,
which suffices for the application in §10.3.3 below.6

Suppose to the contrary that there exists a sequence of positive numbers ck Ñ 0
with finite-energy solutions vk : R ˆ S1 Ñ V̊ of the equation Bsvk ` JpvkqpBtvk ´
XHck pvkqq “ 0, where each vkps, tq is not t-independent. By part (3) of the theorem,
we can restrict to a subsequence and assume each vk for large k is asymptotic to
a fixed pair of critical points x˘ “ limsÑ˘8 vkps, ¨q P CritpHq, and x` ‰ x´ since
vk would otherwise by constant and therefore t-independent. Choose a sequence
Nk P N with

Nk Ñ 8 and Nkck Ñ c,

where c ą 0 is chosen sufficiently small for the first three statements in the theorem
to hold. Define wk : R ˆ S1 Ñ V by

wkps, tq “ vkpNks,Nktq.
Then wk satisfies another time-independent Floer equation,

(10.12) Bswk ` Jpwkq pBtwk ´ XHNkck pwkqq “ 0,

where the Hamiltonian functions HNkck converge to Hc. The standard compactness
theorem for Floer trajectories should now imply that a subsequence of wk converges
to a broken Floer trajectory whose levels will be t-independent. Since the setting
may seem a bit nonstandard, here are some details.

The sequence wk is uniformly C0-bounded since V is compact. We claim that
it is also C1-bounded. If not, then there is a sequence zk “ psk, tkq P R ˆ S1 with

6Lifting this assumption requires gluing, whereas we shall only need the usual implicit function
theorem for Fredholm regular solutions of the Floer equation.
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|dwkpzkq| “: Rk Ñ 8, and we can use the usual rescaling trick from Lecture 9 to
define a sequence

fk : DǫkRk
Ñ V : z ÞÑ wkpzk ` z{Rkq

for a suitable sequence ǫk Ñ 0 with ǫkRk Ñ 8 and |dwkpzq| ď 2Rk for all z P Dǫkpzkq.
The latter implies that fk satisfies a local C1-bound independent of k, and since

Bsfk ` JpfkqBtfk “ 1

Rk

JpfkqXHNkck pfkq Ñ 0 as k Ñ 8,

elliptic regularity (Theorem 2.24) and the Arzelà-Ascoli theorem provide a subse-
quence for which fk converges in C8

locpC, V q to a J-holomorphic plane f8 : C Ñ V ,
which is nonconstant since

|df8p0q| “ lim
kÑ8

|dfkp0q| “ 1.

Since vk and therefore wk are all asymptotic to fixed constant orbits x˘, we have a
uniform bound on the Floer energies of wk,

EHNkck pwkq “ AHNkck px`q ´ AHNkck px´q “ Nkck rHpx´q ´ Hpx`qs ,(10.13)

where the right hand side is bounded since Nkck Ñ c. Using change of variables and
the fact that dβpBsfk, Jpfkq Bsfkq ě 0, this implies a uniform bound

ż

DǫkRk

dβpBsfk,Jpfkq Bsfkq ds^ dt “
ż

Dǫk
pzkq

dβpBswk, Jpwkq Bswkq ds^ dt

ď
ż

RˆS1

dβpBswk, Jpwkq Bswkq ds^ dt “ EHNkck pwkq ď C,

thusż

C

f˚
8dβ “

ż

C

dβpBsf8, Btf8q ds^ dt “
ż

C

dβpBsf8, Jpf8q Bsf8q ds^ dt ă 8.

The removable singularity theorem now extends f8 to a nonconstant J-holomorphic
sphere f8 : S2 Ñ V , but this violates Stokes’ theorem since J is tamed by an exact
symplectic form.

We’ve now shown that the sequence wk : R ˆ S1 Ñ V is uniformly C1-bounded,
and it has bounded energy due to (10.13). Pick any sequence sk P R and consider
the sequence of translated Floer trajectories

rwkps, tq :“ wkps ` sk, tq.
These are also uniformly C1-bounded, so by elliptic regularity again, a subsequence
converges in C8

locpR ˆ S1q to a map w8 : R ˆ S1 Ñ V satisfying

Bsw8 ` Jpw8q pBtw8 ´ XHcpw8qq “ 0,

and it has finite energy EHcpw8q ă 8 due to (10.13), implying that w8 is asymptotic
to a pair of 1-periodic orbits of XHc as s Ñ ˘8. By the same argument used in
(10.10) above, w8 is also t-independent. It follows that w8ps, tq “ γ8psq for some

nonconstant gradient flow trajectory γ8 : R Ñ V̊ . Depending on the choice of
sequence sk, this trajectory may or may not be constant, but we can always choose
sk to guarantee that γ8 is not constant: indeed, since each wk is asymptotic to two
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separate critical points at ˘8, sk P R can be chosen such that wkpsk, 0q stays a
fixed distance away from every critical point of H , and then

w8p0, 0q “ lim
kÑ8

wkpsk, 0q R CritpHcq.

One can now adapt the argument of Proposition 10.19 to find various sequences sk P
R that yield potentially separate limiting trajectories forming the levels of a broken
trajectory, which is the limit of wk in the Floer topology. But since all the levels
are t-independent and the gradient flow of Hc is Morse-Smale, condition (10.11)
implies that the most complicated (and therefore the only) limit possible involves
a single level w8ps, tq “ γpsq, which is a gradient flow trajectory between critical
points whose Morse indices differ by 1. This trajectory is Fredholm regular and has
index 1 due to part (2) of the theorem, thus by the implicit function theorem, the
only solutions to (10.12) that can converge to w8 are the obvious reparametrizations
of γ, i.e. they are also t-independent. This is a contradiction. �

Remark 10.31 (sign conventions). You may notice with some horror that (10.8)
differs by a sign from what is stated in [SZ92]. The mundane reason for this is that
the Conley-Zehnder index defined in [SZ92] also differs from ours by a sign (see
Remark 3.69). On a deeper level, one can relate this discrepancy to the fact that
while Floer homology is traditionally defined in terms of a negative gradient flow
for the action functional, SFT is based on a positive gradient flow—this is also why
the action functional in (10.6) differs by a sign from what we saw in Lecture 1, and
why the Floer homological formula for asymptotic operators (Exercise 3.3) lacks the
initial minus sign that appears in its SFT analogue (see Remark 3.7).

Returning now to the familyHǫ, choose c ą 0 sufficiently small for Theorem 10.30
to hold and define a modified family of stable Hamiltonian structures on V ˆ S1 by

Hc
ǫ “ pωc, λcǫq,

where

ωc :“ dβ ` dθ ^ dHc and λcǫ :“ dθ ` ǫpβ ´ Hc dθq.
Denote the induced hyperplane distributions and Reeb vector fields by Ξcǫ and Rc

ǫ

respectively. We have only changed the Hamiltonian H by rescaling, so all previous
statements aboutHǫ also apply toH

c
ǫ, in particular λcǫ is contact and J pHc

ǫq “ J pλcǫq
for all ǫ ą 0 sufficiently small, though the upper bound for the allowed range of ǫ
may now depend on c. Once c ą 0 is fixed by the requirements of Theorem 10.30,
we are still free to take ǫ ą 0 as small as we like.

Theorem 10.32. Assume the same hypotheses as in Theorem 10.30, including
(10.11), and denote the unique extension of J to an R-invariant almost complex
structure in J pHc

0q by J0. Given c ą 0 sufficiently small and any smooth family of
compatible R-invariant almost complex structures Jǫ P J pHc

ǫq matching J0 at ǫ “ 0,
there exists ǫ0 ą 0 such that every critical point x P CritpHq gives rise to a smooth
family of nondegenerate closed Rc

ǫ-orbits

xǫ : S1 Ñ V ˆ S1 ǫ P r0, ǫ0s
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with x0ptq “ px, tq, and every gradient flow trajectory γ : R Ñ V for H gives rise to
a smooth family of Fredholm regular Jǫ-holomorphic cylinders

uǫγ : R ˆ S1 Ñ R ˆ pV ˆ S1q ǫ P r0, ǫ0s
with u0γps, tq “ ps, γpcsq, tq. Moreover, for all ǫ P r0, ǫ0s, every closed Rc

ǫ-orbit homo-
topic to t ÞÑ pconst, tq belongs to one of the families xǫ up to parametrization, and
every Jǫ-holomorphic cylinder with a positive and a negative end asymptotic to orbits
of this type belongs to one of the families uǫγ, up to biholomorphic parametrization.

Proof. The first part is immediate from the implicit function theorem since the
orbits x0ptq “ px, tq are nondegenerate and the curves u0γps, tq “ ps, γpcsq, tq are Fred-
holm regular by Theorem 10.30. For the uniqueness statement, observe that if ǫk Ñ 0
and γk is a sequence of Rc

ǫk
-orbits in the relevant homotopy class, then their periods

are uniformly bounded, so Arzelà-Ascoli gives a subsequence convergent to a closed
Rc

0-orbit, which is a nondegenerate orbit of the form x0ptq “ px, tq for x P CritpHq
by Theorem 10.30, thus sequences converging to this orbit are unique by the implicit
function theorem. A similar argument proves uniqueness of Jǫ-holomorphic cylin-
ders: if ǫk Ñ 0 and uk is a Jǫk-holomorphic sequence, then first by the uniqueness
of the orbits, we can extract a subsequence for which all uk are asymptotic at both
ends to orbits in fixed families xǫk˘ converging to x0˘ptq “ px˘, tq as k Ñ 8. Since
ω is exact, Stokes’ theorem then gives a uniform bound on the energies Eǫkpukq.
Since all Rc

0-orbits in the relevant homotopy class are nondegenerate and none are
contractible, one can now prove as in Proposition 10.19 that uk has a subsequence
convergent to a finite-energy stable J0-holomorphic building u8 consisting only of
cylinders. Its levels are asymptotic to orbits of the form xptq “ px, tq for x P CritpHq,
thus they can be parametrized as ps, tq ÞÑ ps, vps, tq, tq for v : RˆS1 Ñ V satisfying
the Hc-Floer equation, hence vps, tq “ γpcsq by Theorem 10.30. Now since ∇H is
Morse-Smale and indices of critical points can only differ by at most 1, the building
u8 can have at most one nontrivial level u8ps, tq “ ps, γpcsq, tq, implying uk Ñ u8.
Since u8 is Fredholm regular, the implicit function theorem does the rest. �

10.3.3. Admissible data for pT3, ξkq. We now complete the computation of
the cylindrical contact homology HCh

˚ pT3, ξkq. We can assume via Lemma 10.26
that h is the homotopy class of the orbits in the special set of tori

Tm “ tm{ku ˆ T2 Ă T3, m “ 0, . . . , k ´ 1.

Let’s focus for now on the case k “ 1, as the general case will simply be a k-fold
cover of this. Thanks to the Morse-Bott discussion in §10.3.1, we know what we’re
looking for: we want an h-admissible contact form α for pT3, ξ1q such that Phpαq
contains exactly two orbits, both in T0 Ă T3, along with an h-regular J P J pαq such
that the differential on CCh

˚ pT3, αq counts exactly two J-holomorphic cylinders that
connect the two orbits in T0. Let A denote the annulus

A “ r´1, 1s ˆ S1 “ r´1, 1s ˆ pR{Zq
with coordinates pρ, φq. This will play the role of the Liouville manifold pV, dβq from
the previous section, and we set

β :“ ρ dφ.
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ρ “ 0 ρ “ 1
2ρ “ ´1

2
ρ “ 1ρ “ ´1

φ “ 0

φ “ 0

φ “ 1
2

S1

R

x0

x0

x1

Figure 10.4. The gradient flow of the Hamiltonian H : A Ñ R

For the Hamiltonian H : A Ñ R, choose a Morse function with the following prop-
erties (see Figure 10.4):

(1) H has a minimum at x0 “ p0, 0q, an index 1 critical point at x1 “ p0, 1{2q,
and no other critical points;

(2) Hpρ, φq “ |ρ| for 1{2 ď |ρ| ď 1;
(3) The gradient flow of H with respect to the standard Euclidean metric on

r´1, 1s ˆ S1 is Morse-Smale.

Fix a number c ą 0 sufficiently small so that Theorem 10.30 applies for Floer
trajectories of Hc :“ cH in A, and since it will turn out to be useful in Lemma 10.33
below, assume without loss of generality

c P Q.

Then following the prescription described above, we consider the family of stable
Hamiltonian structures Hc

ǫ “ pωc, λcǫq on A ˆ S1 for ǫ ě 0 small, where

λcǫ “ p1 ´ ǫcHq dθ ` ǫρ dφ, ωc “ dρ^ dφ ` c dθ ^ dH,

with induced Reeb vector fields Rc
ǫ and hyperplane distributions Ξcǫ :“ ker λcǫ.

Choose Jǫ P J pHc
ǫq to be any smooth family such that J0|Ξc

0
matches the stan-

dard complex structure on A defined by J0Bρ “ Bφ. Then for all ǫ ą 0 sufficiently
small, Theorems 10.30 and 10.32 give a complete classification of all closed Rc

ǫ-orbits
in A ˆ S1 homotopic to t ÞÑ p0, 0, tq, as well as a classification of all Jǫ-holomorphic
cylinders asymptotic to them. Up to parametrization, there are exactly two such
orbits,

γǫi : S
1 Ñ A ˆ S1, i “ 0, 1,

which correspond to the Morse critical points x0 and x1 and thus by (10.8) have
Conley-Zehnder indices

µτCZpγǫi q “ 1 ´ indpxiq “ 1 ´ i P t0, 1u
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relative to the constant trivialization τ . There are also exactly two Jǫ-holomorphic
cylinders

uǫ˘ : R ˆ S1 Ñ R ˆ pA ˆ S1q,
corresponding to the two negative gradient flow lines that descend from x1 to x0,
thus the uǫ˘ are index 1 curves with a negative end approaching γǫ1 and a positive
end approaching γǫ0. If we can suitably embed this model into pT3, ξ1q and show that
all the orbits and curves needing to be counted are contained in the model, then we
will have a complete description of HCh

˚ pT3, ξ1q, with two generators xγǫ0y and xγǫ1y,
of even and odd degree respectively, satisfying

Bxγǫ0y “ 2xγǫ1y “ 0 and Bxγǫ1y “ 0

since the former counts two curves and the latter counts none.

Lemma 10.33. For any ǫ ą 0 sufficiently small, there exists a contact embedding
of

pA ˆ S1, ker λcǫq ãÑ pT3, ξ1q
identifying the homotopy class of the loops t ÞÑ p0, 0, tq in AˆS1 with h. Moreover,
the contact form λcǫ and almost complex structure Jǫ P J pHc

ǫq can then be extended to
an h-admissible contact form α on pT3, ξ1q and an h-regular almost complex structure
J P J pαq such that γǫ0 and γǫ1 are the only orbits in Phpαq, and all J-holomorphic
cylinders with a positive and a negative end asymptotic to either of these orbits are
contained in the interior of A ˆ S1.

Proof. We’ve chosen β and H so that in the region 1{2 ď |ρ| ď 1,

α :“ λcǫ “ p1 ´ ǫc|ρ|q dθ ` ǫρ dφ “: fpρq dθ ` gpρq dφ,

so the Reeb vector field on this region has the form 1
Dpρq pg1pρq Bθ ´ f 1pρq Bφq with

D :“ fg1 ´ f 1g. Notice that

f 1pρq
g1pρq “ ¯ǫc

ǫ
“ ¯c,

and we assumed c P Q, so the Reeb orbits in this region are all periodic. Next, pick
a large number N " 1 and extend α to a contact form on r´N,Ns ˆ S1 ˆ S1 via
the same formula. Now extend the path pf, gq : r1{2, Ns Ñ R2 to R such that it
has period 2N ` 2, satisfies pfp´ρq, gp´ρqq “ pfpρq,´gpρqq, and winds once around
the origin over the interval r´N ´ 1, N ` 1s, with positive angular velocity (see
Figure 10.5). This gives rise to a contact form α on

T3
N :“

´
R

M
p2N ` 2qZ

¯
ˆ S1 ˆ S1

which matches λcǫ in the region |ρ| ď 1 and takes the form fpρq dθ` gpρq dφ outside
of that region. We claim in fact that α is also globally homotopic to fpρq dθ`gpρq dφ
through a family of contact forms. To see this, one need only homotop H in the
region |ρ| ď 1{2 to a Morse-Bott function that depends only on the ρ-coordinate;
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f

g

ρ “ 1{2

ρ “ ´1{2

ρ “ N

ρ “ ´N

ρ “ N ` 1

ρ “ ´N ´ 1

f 1{g1 “ ´c P Q

f 1{g1 “ c P Q

ρ “ 0

Figure 10.5. The periodic path pf, gq : r´N ´ 1, N ` 1s Ñ R2 in
the proof of Lemma 10.33.

the contact condition holds for all Hamiltonians in this homotopy as long as ǫ ą 0
is sufficiently small. With this understood, the obvious diffeomorphism

T3
N Ñ T3 : pρ, φ, θq ÞÑ

ˆ
ρ

2N ` 2
, φ, θ

˙

pushes kerα forward to a contact structure isotopic to one of the form F pρq dθ `
Gpρq dφ for a loop pF,Gq : S1 Ñ R2 winding once around the origin, so taking a
homotopy of this loop to pcosp2πρq, sinp2πρqq and applying Gray’s stability theorem
produces a contactomorphism

pT3
N , kerαq Ñ pT3, ξ1q

that is isotopic to the above diffeomorphism.
The construction clearly guarantees that no closed Reeb orbit of α outside AˆS1

is homotopic to the preferred class h, and there are also no contractible orbits, so
α is an h-admissible contact form on T3

N . Choose any extension of Jǫ to some
J P J pαq on T3

N . We claim now that if N is chosen sufficiently large, then no
J-holomorphic cylinder in R ˆ T3

N with one positive end at either of the orbits γǫi
can ever venture outside the region Rˆ p´1{2, 1{2q ˆT2. Suppose in particular that
u is such a curve and its image intersects R ˆ t1{2u ˆ T2. Since the entire region
r1{2, Ns ˆ T2 is foliated by closed Reeb orbits, we can define Υ to be the set of
Reeb orbits γ in that region for which the image of u intersects R ˆ γ. This is a
closed subset of the connected topological space of all Reeb orbits in r1{2, Ns ˆ T2:
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indeed, if γk P Υ is a sequence converging to some orbit γ8, then upzkq P R ˆ γk
for some sequence zk P R ˆ S1, which must be contained in a compact subset since
the asymptotic orbits of u lie outside of r1{2, Ns ˆ T2, hence zk has a convergent
subsequence zk Ñ z8 P R ˆ S1 with upz8q P R ˆ γ8, proving γ8 P Υ. We claim
that Υ is also an open subset of the space of orbits in r1{2, Ns ˆ T2. This follows
from positivity of intersections, as every R ˆ γ is also a J-holomorphic curve: if
upzq P R ˆ γ, then for every other closed orbit γ1 close enough to γ, there is a point
z1 P R ˆ S1 near z with upz1q P R ˆ γ1. This proves that, in fact, u passes through
R ˆ γ for every orbit γ in the region r1{2, Ns ˆ T2. We will now use this to show
that if N is sufficiently large, the contact area of u will be larger than is allowed by
Stokes’ theorem.

Let us write

ups, tq “ prps, tq, ρps, tq, φps, tq, θps, tqq P R ˆ
`
R
L

p2N ` 2qZ
˘

ˆ S1 ˆ S1

and choose two points ρ1 P r1{2, 1s and ρ2 P rN´1, Ns which are both regular values
of the function ρ : R ˆ S1 Ñ R{p2N ` 2qZ. The intersections of u with the orbits
in r1{2, Ns ˆ T2 imply that the function ρps, tq attains every value in r1{2, Ns, and
since the asymptotic limits of u lie outside this region,

U :“ ρ´1prρ1, ρ2sq Ă R ˆ S1

is then a nonempty and compact smooth submanifold with boundary

BU “ ´C1

ž
C2,

where Ci :“ ρ´1pρiq for i “ 1, 2. Restricting u to the multicurves Ci then gives a
pair of smooth maps

wi : Ci Ñ T2 : ps, tq ÞÑ pφps, tq, θps, tqq, i “ 1, 2,

which are homologous to each other. Denote the generators of H1pT2q corresponding
to the φ- and θ-coordinates by ℓφ and ℓθ respectively, and suppose rwis “ mℓφ `nℓθ
for m,n P Z. The key observation now is that the restriction of α to each of the
tori tρiu ˆ T2 is a closed 1-form, thus for each i “ 1, 2,

ş
Ci
u˚α depends only on

the homology class mℓφ ` nℓθ P H1pT2q and not any further on the maps wi. In
particular, ż

Ci

u˚α “ fpρiqn` gpρiqm

for i “ 1, 2. We now compute,ż

U

u˚dα “
ż

C2

u˚α ´
ż

C1

u˚α “ nrfpρ2q ´ fpρ1qs ` mrgpρ2q ´ gpρ1qs

“ nrp1 ´ ǫcρ2q ´ p1 ´ ǫcρ1qs ` mrǫρ2 ´ ǫρ1s
“ ǫpρ2 ´ ρ1qpm´ ncq

This integral has to be positive since u˚dα ě 0 and u is not a trivial cylinder, thus
m ´ nc ą 0. Moreover, c was assumed rational, so if c “ p{q for some p, q P N, we
have

m´ nc “ 1

q
pmq ´ npq ě 1

q
,
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implying ż

RˆS1

u˚dα ě
ż

U

u˚dα ě ǫ

q
pρ2 ´ ρ1q ě ǫpN ´ 2q

q
.

Having chosen c (which determines q) and ǫ in advance, we are free to make N as
large as we like. But by (10.2),

ş
RˆS1 u

˚dα cannot be any larger than the period
of its positive asymptotic orbit, which does not depend on N . So this gives a
contradiction, proving that u cannot touch the region tρ ě 1{2u. The mirror image
of this argument shows that u also cannot touch the region tρ ď ´1{2u. �

With Lemma 10.33 in hand, the calculation of HCh
˚ pT3

N , α, Jq for sufficiently
large N is straightforward: there is one odd generator and one even generator, with
a trivial differential, giving

HCh
˚ pT3, ξ1q –

#
Z2 ˚ “ odd,

Z2 ˚ “ even.

This calculation can now be extended to pT3, ξkq by a cheap trick: using the contac-
tomorphism pT3

N , kerαq Ñ pT3, ξ1q, let us identify T3
N with T3 and write α “ Fα1

for some function F : T3 Ñ p0,8q. Then the k-fold covering map

Φk : T
3 Ñ T3 : pρ, φ, θq ÞÑ pkρ, φ, θq

maps the homotopy class h to itself and pulls back ξ1 to ξk, so Φ˚
kα is a contact form

for ξk. It is also h-admissible: indeed, Φ˚
kα admits no contractible orbits since they

would project down to contractible orbits on pT3, αq, and every orbit in PhpΦ˚
kαq

projects to one in Phpαq, hence they are all nondegenerate. The almost complex
structure Φ˚

kJ P J pΦ˚
kαq then makes the map IdˆΦk : pRˆT3,Φ˚

kJq Ñ pRˆT3, Jq
holomorphic, so every Φ˚

kJ-holomorphic cylinder counted by HCh
˚ pT3,Φ˚

kα,Φ
˚
kJq

projects to a J-holomorphic cylinder counted by HCh
˚ pT3, α, Jq, and conversely,

each orbit in Phpαq and each J-holomorphic cylinder has exactly k lifts to the cover.
The generators of CCh

˚ pT3,Φ˚
kαq thus consist of 2k orbits, k odd and k even, with

2k connecting Φ˚
kJ-holomorphic cylinders that cancel each other in pairs, giving a

trivial differential. In summary:

HCh
˚ pT3, ξkq –

#
Zk2 ˚ “ odd,

Zk2 ˚ “ even.

Remark 10.34. The method of this lecture for proving existence and uniqueness
of the holomorphic curves in the chain complex for HCh

˚ pT3, ξkq is not the only
approach possible. The Morse-Bott technique from [Bou02] was mentioned already
in §10.3.1 and is used quite often in practice; a higher-dimensional analogue of
the same computation using the Morse-Bott method may be found in [MNW13,
Theorem 9.10(4)]. Alternatively, one can use the same nondegenerate data as in
our computation but simplify the uniqueness proof by using intersection theory; we
will take this approach to compute other SFT invariants of contact 3-manifolds in
Lecture 16. For a higher-dimensional computation that combines intersection theory
with the Floer-theoretic approach of §10.3.2, see [Mora,Morb].
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11.1. Gluing maps and coherence

This lecture will be concerned with orienting the moduli spaces

MpJq :“ Mg,mpJ,A,γ`,γ´q
of J-holomorphic curves in a completed symplectic cobordism xW , in cases where
they are smooth. We assume as usual that all Reeb orbits are nondegenerate so
that the usual linearized Cauchy-Riemann operators are Fredholm.

For SFT and other Floer-type theories, it is not enough to know that each
component of MpJq is orientable—relations like B2 “ 0 rely on having certain
compatibility conditions between the orientations on different components. The
point is that whenever a space of broken curves is meant to be interpreted as the
boundary of some other compactified moduli space, we need to make sure that it
carries the boundary orientation. This compatibility is what is known as coherence,
and in order to define it properly, we need to return to the subject of gluing.

Our discussion of gluing in Lecture 10 was fairly simple because it was limited
to somewhere injective holomorphic cylinders that could only break along simply
covered Reeb orbits. Recall however that more general holomorphic buildings carry
a certain amount of extra structure that was not relevant in that simple case. Even
in a building u that has only two nontrivial levels u´ and u`, the breaking punctures
carry decorations : i.e. if tz`, z´u is a breaking pair in u, then the decoration defines
an orientation-reversing orthogonal map

δz`
ΦÝÑ δz´

between the two “circles at infinity” δz˘ associated to the punctures z˘ (see §9.3.3).
This extra information is uniquely determined if the breaking orbit is simply covered,
but at a multiply covered breaking orbit there is ambiguity, and the decoration

309
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cannot be deduced from knowledge of u´ and u` alone. We therefore need to
consider moduli spaces of curves with a bit of extra structure.

For each Reeb orbit γ in M` or M´, choose a point on its image

pγ P im γ Ă M˘.

For a J-holomorphic curve u : p 9Σ “ ΣzpΓ` Y Γ´q, jq Ñ pxW,Jq with a puncture
z P Γ˘ asymptotic to γ, an asymptotic marker is a choice of a ray ℓ Ă TzΣ such
that

lim
tÑ0`

upcptqq “ p˘8, pγq

for any smooth path cptq P Σ with cp0q “ z and 0 ‰ 9cp0q P ℓ. If γ has covering
multiplicity m P N, then there are exactly m choices of asymptotic markers at z,
related to each other by the action on TzΣ by the mth roots of unity. We shall
denote

M$pJq :“ M$
g,mpJ,A,γ`,γ´q :“

 
pΣ, j,Γ`,Γ´,Θ, u, ℓq

(L
„,

where pΣ, j,Γ`,Γ´,Θ, uq represents an element of Mg,mpJ,A,γ`,γ´q, ℓ denotes an
assignment of asymptotic markers to every puncture z P Γ˘, and

pΣ0, j0,Γ
`
0 ,Γ

´
0 ,Θ0, u0, ℓ0q „ pΣ1, j1,Γ

`
1 ,Γ

´
1 ,Θ1, u1, ℓ1q

means the existence of a biholomorphic map ψ : pΣ0, j0q Ñ pΣ1, j1q which defines
an equivalence of pΣ0, j0,Γ

`
0 ,Γ

´
0 ,Θ0, u0q with pΣ1, j1,Γ

`
1 ,Γ

´
1 ,Θ1, u1q and satisfies

ψ˚ℓ0 “ ℓ1. There is a natural surjection

M$pJq Ñ MpJq
defined by forgetting the markers. We will say that an element u P M$pJq is
Fredholm regular whenever its image under the map to MpJq is regular. Let

M$,regpJq “ M$,reg
g,m pJ,A,γ`,γ´q Ă M$pJq

denote the open subset consisting of Fredholm regular curves with asymptotic mark-
ers. Note that components of MpJq and M$pJq consisting of closed curves are
identical spaces; components with punctures have the following simple relationship
to each other.

Proposition 11.1. Each component of M$,regpJq consisting of curves with at
least one puncture admits the structure of a smooth manifold, whose dimension on
each connected component matches that of MregpJq. Moreover, the natural map

M$,regpJq Ñ MregpJq
is smooth, and the preimage of a curve u P MregpJq with asymptotic orbits tγzuzPΓ
of covering multiplicities tκzuzPΓ contains exactly

ś
zPΓ κz

|Autpuq|
distinct elements.
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Proof. The smooth structure of M$,regpJq arises from a small modification
of the same argument we used in Lecture 7 for MregpJq. Recall that in order to

describe a neighborhood of a curve in MregpJq represented by a map u0 : p 9Σ, j0q Ñ
pxW,Jq whose domain has punctures Γ Ă Σ, marked points Θ Ă 9Σ :“ ΣzΓ and
automorphism groupG :“ AutpΣ, j0,ΓYΘq, we chose aG-invariant Teichmüller slice
T Ă J pΣq through j0 and defined the smooth section B̄J : T ˆBk,p,δ Ñ Ek´1,p,δ whose

zero-set consists of the pairs pj, uq such that u : p 9Σ, jq Ñ pxW,Jq is J-holomorphic.
Fredholm regularity implies that a neighborhood of pj0, u0q in B̄´1

J p0q is a smooth
finite-dimensional submanifold of T ˆBk,p,δ, and G acts smoothly and properly (but
possibly not freely) on B̄´1

J p0q by ψ ¨ pj, uq :“ pψ˚j, u ˝ ψq for ψ P G, so that the
natural map B̄´1

J p0q{G Ñ MpJq is a local homeomorphism near u0. To include
asymptotic markers in this picture, we observe that there is a natural finite covering
map

ĂM Ñ B̄´1
J p0q,

where the elements of ĂM are tuples pj, u, ℓq where pj, uq P B̄´1
J p0q and ℓ denotes an

assignment of asymptotic markers to each puncture of u : p 9Σ, jq Ñ pxW,Jq. We

can therefore regard ĂM as a smooth finite-dimensional manifold by pulling back the

smooth structure of B̄´1
J p0q, and G then also acts smoothly and properly on ĂM by

ψ ¨ pj, u, ℓq :“ pψ˚j, u ˝ ψ, pψ´1q˚ℓq.
We claim however that this action is also free. Indeed, if ψ ¨ pj, u, ℓq “ pj, u, ℓq, then
ψ P Autpuq, and the finiteness of Autpuq then implies that ψ is a biholomorphic map
fixing Γ and satisfying ψk ” Id for some k P N. Choosing aG-invariant neighborhood
U Ă Σ of some puncture ζ P Γ, the Riemann mapping theorem permits us to
identify U biholomorphically with the unit disk in C so that ζ becomes the origin,
and ψ on this neighborhood must then be a rotation, specifically a map of the form
z ÞÑ e2πim{k for some m P t1, . . . , ku. The cases m ‰ k are impossible since ψ would
then change the asymptotic marker at ζ , thus ψ can only be the identity map on U .

Unique continuation then implies ψ ” Id, proving the claim. The quotient ĂM{G is
therefore a smooth manifold, with the same dimension as the orbifold B̄´1

J p0q{G.
Finally, if u : p 9Σ “ ΣzΓ, jq Ñ pxW,Jq represents an element of MpJq with

asymptotic orbits tγzuzPΓ, then the number of possible choices of asymptotic markers
is precisely

ś
zPΓ κz. However, not all of these produce inequivalent elements of

M$pJq: indeed, the previous paragraph shows that Autpuq acts freely on the set
of all choices of markers, so that the total number of inequivalent choices is as
stated. �

Suppose u` and u´ are two (possibly disconnected and/or nodal) holomorphic
curves, with asymptotic markers, such that the number of negative punctures of u`
equals the number of positive punctures of u´, and the asymptotic orbit of u` at
its ith negative puncture matches that of u´ at its ith positive puncture for every i.
Then the pair pu´, u`q naturally determines a holomorphic building: indeed, the
breaking punctures admit unique decorations determined by identifying the markers
on u` with the markers at corresponding punctures of u´.
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Let us now consider a concrete example of a gluing scenario. Figure 11.1 shows
the degeneration of a sequence of curves in M3,4pJ,Ak, pγ4, γ5q,γ´q to a building
u P M3,4pJ,A ` B ` C, pγ4, γ5q,γ´q with one main level and one upper level. The
main level is a connected curve uA P M1,2pJ,A, pγ1, γ2, γ3q,γ´q, and the upper level
consists of two connected curves

uB P M1,1pJ`, B, γ4, pγ1, γ2qq, uC P M0,1pJ`, C, γ5, γ3q.
One can endow each of these curves with asymptotic markers compatible with the
decoration of u; this is a non-unique choice, but e.g. if one chooses markers for uA
arbitrarily, then the markers at the negative punctures of uB and uC are uniquely
determined. Now if all three curves are Fredholm regular, then a substantial general-
ization of the gluing procedure outlined in Lecture 10 provides open neighborhoods
U$
A and U$

BC ,

uA P U$
A Ă M$

1,2pJ,A, pγ1, γ2, γ3q,γ´q,

rpuB, uCqs P U$
BC Ă

`
M$

1,1pJ`, B, γ4, pγ1, γ2qq ˆ M$
0,1pJ`, C, γ5, γ3q

˘M
R

which are smooth manifolds of dimensions

dimU$
A “ vir-dimM1,2pJ,A, pγ1, γ2, γ3q,γ´q,

dimU$
BC “ vir-dimM1,1pJ`, B, γ4, pγ1, γ2qq ` vir-dimM0,1pJ`, C, γ5, γ3q ´ 1,

along with a smooth embedding

(11.1) Ψ : rR0,8q ˆ U$
A ˆ U$

BC ãÑ M$
3,4pJ,A ` B ` C, pγ4, γ5q,γ´q,

defined for R0 " 1. This is an example of a gluing map: it has the property that
for any u P U$

A and v P U$
BC , ΨpR, u, vq converges in the SFT topology as R Ñ 8

to the unique building (with asymptotic markers) having main level u and upper
level v, and moreover, every sequence of smooth curves degenerating in this way is
eventually in the image of Ψ.

In analogous ways one can define gluing maps for buildings with a main level and
a lower level, or more than two levels, or multiple levels in a symplectization (always
dividing symplectization levels by the R-action). It’s important to notice that in all
such scenarios, the domain and target of the gluing map have the same dimension,
e.g. the dimension of both sides of (11.1) is the sum of the virtual dimensions of the
three moduli spaces concerned.

Definition 11.2. A set of orientations for the connected components of M$pJq
and M$pJ˘q is called coherent if all gluing maps are orientation preserving.

Stated in this way, this definition is based on the pretense that we never have to
worry about non-regular curves in any components of M$pJq, and that is of course
false—sometimes regularity cannot be achieved, in particular for multiply covered
curves. As we’ll see though in §11.4, the question of orientations can be reframed in
a way that completely disjoins it from the question of regularity, thus we will later
be able to state a more general version of the above definition that is independent of
regularity (see Definition 11.17). The main result whose proof we will outline near
the end of this lecture is then:
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uA

uB

uC

γ
´

γ
´

γ1 γ2 γ3

γ4 γ4γ5 γ5

xW
xW

R ˆ M`

Figure 11.1. The degeneration scenario behind the gluing map (11.1)

Theorem 11.3. Coherent orientations exist.

But there is also some bad news. The space M$pJq with asymptotic markers
is not actually the space we want to orient. In fact, even the usual moduli space
MpJq has a certain amount of extra information in it that we’d rather not keep
track of when we don’t have to, for instance the ordering of the punctures. Can we
forget this information without forgetting the orientation of the moduli space? Not
always:

Proposition 11.4. Suppose pγ` “ pγ`
1 , . . . , γ

`
k`

q, and qγ` is a similar ordered list

of Reeb orbits obtained from pγ` by exchanging γ`
j with γ`

k for some 1 ď j ă k ď k`.
Then for any choice of coherent orientations, the natural map

M$
g,mpJ,A, pγ`

,γ´q Ñ M$
g,mpJ,A, qγ`

,γ´q

defined by permuting the corresponding punctures z`
j , z

`
k P Γ` along with their as-

ymptotic markers is orientation reversing if and only if the numbers

n´ 3 ` µCZpγ`
i q

for i “ j, k are both odd. A similar statement holds for permutations of negative
punctures.

This result is the reason for the super-commutative algebra that we will see in
the next lecture. What about forgetting the markers? It turns out that we can
sometimes do that as well, but again not always.



314 Chris Wendl

Proposition 11.5. Suppose M$
g,mpJ,A,γ`,γ´q Ñ M$

g,mpJ,A,γ`,γ´q is the

map defined by multiplying the asymptotic marker by e2πi{m at one of the punctures
for which the asymptotic orbit is an m-fold cover γm of a simple orbit γ. For any
choice of coherent orientations, this map reverses orientation if and only if m is
even and µCZpγmq ´ µCZpγq is odd.

Note that in both of the above propositions, only the odd/even parity of the
Conley-Zehnder indices matters, so there is no need to choose trivializations. Propo-
sition 11.5 motivates one of the more mysterious technical definitions in SFT.

Definition 11.6. A closed nondegenerate Reeb orbit γ is called a bad orbit if
it is an m-fold cover of some simple orbit γ1 where m is even and µCZpγq ´ µCZpγ1q
is odd. Orbits that are not bad are called good.

The upshot is that coherent orientations can be defined on the union of all
components Mg,mpJ,A,γ`,γ´q for which all of the orbits in the lists γ` and γ

´ are
good. This does not mean that moduli spaces involving bad orbits cannot be dealt
with—in fact, such moduli spaces have the convenient property that the number of
distinct choices of asymptotic markers is always even, and every such choice can be
cancelled by an alternative choice that induces the opposite orientation. For this
reason, while bad orbits certainly can appear in breaking of holomorphic curves, we
will see that they do not need to serve as generators of SFT.

Example 11.7. The following thought-experiment produces at first glance an
apparent counterexample to Proposition 11.5. Working in a symplectization pR ˆ
M,Jq with J P J pHq for some stable Hamiltonian structure H on a p2n ´ 1q-
manifold M , suppose u : p 9Σ, jq Ñ pR ˆ M,Jq represents a Fredholm regular curve
in a moduli space M$

g,0pJ,A, γ2,Hq of virtual dimension 1, where u has exactly
one puncture, asymptotic to a bad orbit γ2, which is necessarily a double cover
of some other orbit γ. Suppose also that u itself is a double cover of some curve
v : p 9Σ1, j1q Ñ pR ˆM,Jq asymptotic to γ. Since u has only one puncture, it cannot
be a cover of a trivial cylinder, thus it is not invariant under the R-action. Meanwhile
the regularity assumption and indpuq “ 1 imply via the implicit function theorem
from Lecture 7 that a neighborhood of u inM$

g,0pJ,A, γ2,Hq is a smooth 1-manifold,

so it follows that the component of M$
g,0pJ,A, γ2,Hq containing u consists only of

the R-translations of u, and it is diffeomorphic to R. But since u is a double cover
of v, it also has a nontrivial automorphism, which must necessarily act by a 180-
degree rotation on a neighborhood of the puncture, implying that it changes the
asymptotic marker. In other words, the two possible choices of asymptotic marker
for u at its unique puncture are related to each other by a biholomorphic map,
so they define equivalent elements of M$

g,0pJ,A, γ2,Hq. It follows that the map

M$
g,0pJ,A, γ2,Hq Ñ M$

g,0pJ,A, γ2,Hq considered in Proposition 11.5 acts as the
identity map on the component containing u. Clearly, the identity map is never
orientation reversing.

Where did we go wrong? It turns out that the particular set of assumptions we
adopted in this example can never actually be satisfied all at once—in particular,
this is one situation in which transversality for multiply covered curves really is
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impossible. To see this, note first that if u is Fredholm regular, then the curve v that
it covers must also be regular—one can prove this by splitting the linearized Cauchy-
Riemann operator for u into symmetric and antisymmetric factors determined by
the automorphism group Autpuq “ Z2, where the symmetric factor is equivalent to
the linearized operator for v (cf. [Wen]). Since v also cannot be invariant under
the R-action, the orbifold in which it lives contains a 1-dimensional family of R-
translations of v, implying indpvq ě 1. But compare the indices of v and u: for
some choice of trivialization τ along γ, we have

indpvq “ pn´ 3qχp 9Σ1q ` 2cτ1pv˚ξq ` µτCZpγq, and

indpuq “ pn´ 3qχp 9Σq ` 2cτ1pu˚ξq ` µτCZpγ2q “ 1.

Since 9Σ and 9Σ1 each have exactly one puncture, their Euler characteristics are both
odd, but the assumption that γ2 is a bad orbit implies that µτCZpγ2q ´µτCZpγq is also
odd, thus indpvq must be even and therefore satisfies indpvq ě 2. If this holds, then
there exists at least a smooth 2-parameter family of curves near v, and one can then
take double covers of these curves to find a smooth 2-parameter family of curves
near u, contradicting the conclusion that M$

g,0pJ,A, γ2,Hq is a 1-manifold near u.
The only way out of this paradox is to remember that since u is multiply cov-

ered, the results of Lecture 8 provide no guarantee that it can ever be assumed
Fredholm regular, no matter how generically J P J pHq is chosen. The impossibility
of transversality for the curve in this example does not mean that such curves can
generally be ignored, but rather that more sophisticated methods are needed for
understanding how to count them (or avoid them) in SFT. We will discuss this issue
further in §12.4.

11.2. Permutations of punctures and bad orbits

Before addressing the actual construction of coherent orientations, we can al-
ready give heuristic proofs of Propositions 11.4 and 11.5. They are not fully rigor-
ous because they are based on the same pretense as Definition 11.2, namely that
all curves we ever have to worry about (including multiple covers) are regular. But
we will be able to turn these into precise arguments in §11.7, after discussing the
determinant line bundle.

Heuristic proof of Proposition 11.4. To simplify the notation, suppose
pγ` consists of only two orbits, so pγ` “ pγ1, γ2q and qγ` “ pγ2, γ1q. Consider the
gluing scenario shown in Figure 11.2, where u P M$

g,mpJ,A, pγ1, γ2q,γ´q needs to be
glued to a disjoint union of two planes

uB P M$
0,0pJ`, B,H, γ1q, uC P M$

0,0pJ`, C,H, γ2q.
You might object that there’s no guarantee that such planes must exist in RˆM`,
e.g. the orbits γ1 and γ2 might not even be contractible. This concern is valid so
far as it goes, but it misses the point: since we’re talking about gluing rather than

compactness, we do not need any seriously global information about xW and M`,
as the gluing process doesn’t depend on anything outside a small neighborhood of
the curves we’re considering. Thus we are free to change the global structure of
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M` elsewhere so that the planes uB and uC will exist.1 If you still can’t imagine
how one might do this, try not to worry about it and just think of Figure 11.2 as a
thought-experiment: it’s a situation that certainly does sometimes happen, so when
it does, let’s see what it implies about orientations.

Assuming all three curves in the picture are regular, there will be smooth open
neighborhoods

u P U12 Ă M$
g,mpJ,A, pγ1, γ2q,γ´q

rpuB, uCqs P UBC Ă
`
M$

0,0pJ`, B,H, γ1q ˆ M$
0,0pJ`, C,H, γ2q

˘M
R

and a gluing map

ΨBC : rR0,8q ˆ U12 ˆ UBC ãÑ M$
g,mpJ,A` B ` C,H,γ´q,

which must be orientation preserving by assumption. But reversing the order of the
productM$

0,0pJ`, B,H, γ1qˆM$
0,0pJ`, C,H, γ2q and letting u1 P M$

g,mpJ,A, pγ2, γ1q,γ´q
denote the image of u under the map that switches the order of its positive punc-
tures, there are also smooth open neighborhoods

u1 P U21 Ă M$
g,mpJ,A, pγ2, γ1q,γ´q

rpuC , uBqs P UCB Ă
`
M$

0,0pJ`, C,H, γ2q ˆ M$
0,0pJ`, B,H, γ1q

˘M
R

and a gluing map

ΨCB : rR0,8q ˆ U21 ˆ UCB ãÑ M$
g,mpJ,A` B ` C,H,γ´q.

If both of these gluing maps preserve orientation, then the effect on orientations of
the map from M$

g,mpJ,A, pγ1, γ2q,γ´q to M$
g,mpJ,A, pγ2, γ1q,γ´q defined by inter-

changing the positive punctures must be the same as that of the map

M$
0,0pJ`, B,H, γ1q ˆ M$

0,0pJ`, C,H, γ2q Ñ M$
0,0pJ`, C,H, γ2q ˆ M$

0,0pJ`, B,H, γ1q
puB, uCq ÞÑ puC , uBq.

The latter is orientation reversing if and only if both moduli spaces of planes are
odd dimensional, which means n ´ 3 ` µCZpγiq is odd for i “ 1, 2. �

Heuristic proof of Proposition 11.5. Let us reuse the thought-experiment
of Figure 11.2, but with different details in focus. Suppose γ1 in the picture is an
m-fold covered orbit γm, where γ is simply covered, and suppose that uB is also an
m-fold cover, taking the form

uBpzq “ vpzmq
for a somewhere injective plane v P M0,0pJ`, B0,H, γq. We’re going to assume
again that all curves in the discussion are regular, including the multiple cover uB;
while this doesn’t sound very plausible, we will see once the determinant line bundle

1Of course by the maximum principle, planes with only negative ends will not exist in RˆM`

if this is the symplectization of a contact manifold. But we could also change the contact data to
a stable Hamiltonian structure for which such planes are allowed.
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uB uC

u

γ
´

γ
´

γ1 γ2

xW

xW

R ˆ M`

Figure 11.2. The gluing thought-experiment used for proving
Propositions 11.4 and 11.5.

enters the picture in §11.4 that it is an irrelevant detail. Now, uB has a cyclic
automorphism group

AutpuBq “ Zm Ă Up1q
which acts freely on the set of m choices of asymptotic marker for uB. Then if we
act with the same element of Zm on uB and on the corresponding asymptotic marker
for u, the building is unchanged, as it has the same decoration. Coherence therefore
implies that the effect on orientations of the map from M$

g,mpJ,A, pγ1, γ2q,γ´q to it-
self defined by acting with the canonical generator of Zm Ă Up1q on the marker at γ1
is the same as the effect of the map M$

0,0pJ`, mB0,H, γmq Ñ M$
0,0pJ`, mB0,H, γmq

defined by composing uB : C Ñ R ˆ M` with ψpzq :“ e2πi{mz.
The derivative of this map from M$

0,0pJ`, mB0,H, γmq to itself at uB defines a
linear self-map

Ψ : TuBM0,0pJ`, mB0,H, γmq Ñ TuBM0,0pJ`, mB0,H, γmq
with Ψm “ 1. The latter implies that Ψ cannot reverse orientation if m is odd. If
m is even, observe that the representation theory of Zm gives a decomposition

TuBM0,0pJ`, mB0,H, γmq “ V1 ‘ V´1 ‘ Vrot,

where Ψ acts on V˘1 as ˘1, and Vrot is a direct sum of real 2-dimensional subspaces
on which Ψ acts by rotations (and therefore preserves orientations). Thus Ψ reverses
the orientation of TuBM0,0pJ`, mB0,H, γmq if and only if dimV´1 is odd. As we
will review in the next section, TuBM0,0pJ`, mB0,H, γmq is a space of holomorphic
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sections of u˚
BT pR ˆ M`q modulo a subspace defined via the linearized automor-

phisms of C, so V1 consists of precisely those sections η that satisfy η “ η ˝ ψ,
meaning they are m-fold covers of sections of v˚T pRˆM`q. This defines a bijective
correspondence between V1 and TvM0,0pJ`, B0,H, γq, so

dimV´1 “ dimM0,0pJ`, mB0,H, γmq ´ dimM0,0pJ`, B0,H, γq (mod 2).

The result then comes from plugging in the dimension formulas for these two moduli
spaces. �

11.3. Orienting moduli spaces in general

We now discuss concretely what is involved in orienting a moduli space of J-
holomorphic curves.

Recall from Lecture 7 that whenever a curve u0 : p 9Σ “ ΣzΓ, j0q Ñ pxW,Jq with

marked points Θ Ă 9Σ is Fredholm regular, a neighborhood of u0 in MpJq can be
identified with

B̄´1
J p0q

L
G,

where G “ AutpΣ, j0,Γ Y Θq and B̄J is the smooth Fredholm section

T ˆ Bk,p,δ Ñ Ek´1,p,δ : pj, uq ÞÑ du ` Jpuq ˝ du ˝ j,
defined on the product of a G-invariant Teichmüller slice T through pj0,ΓYΘq with
a Banach manifold Bk,p,δ of W k,p-smooth maps 9Σ Ñ xW satisfying an exponential
decay condition at the cylindrical ends. Here G acts on B̄´1

J p0q by

(11.2) G ˆ B̄´1
J p0q Ñ B̄´1

J p0q : pϕ, pj, uqq ÞÑ pϕ˚j, u ˝ ϕq.
Regularity means that the linearization DB̄Jpj0, u0q : Tj0T ‘ Tu0B

k,p,δ Ñ Ek´1,p,δ
pj0,u0q is

surjective, and the implicit function theorem then gives a natural identification

Tu0MpJq “ kerDB̄Jpj0, u0q
L
autpΣ, j0,Γ Y Θq,

where autpΣ, j0,ΓYΘq denotes the Lie algebra of G, which acts on kerDB̄Jpj0, u0q by
differentiating (11.2).2 This action actually defines an inclusion of autpΣ, j0,ΓY Θq
into kerDB̄Jpj0, u0q whenever u0 is not constant, thus we can regard autpΣ, j0,ΓYΘq
as a subspace of kerDB̄Jpj0, u0q.

As outlined in the proof of Proposition 11.1, the space M$pJq with asymptotic
markers admits a similar local description: here one only needs to replace B̄´1

J p0q
with a finite cover that includes information about asymptotic markers, and the
action of G on the cover becomes free.

We now make a useful observation about the spaces autpΣ, j0,Γ Y Θq and Tj0T :
namely, they both carry natural complex structures and are thus canonically ori-
ented. This follows from the fact that both the automorphism group G and the
Teichmüller space T pΣ,ΓYΘq “ J pΣq

L
Diff0pΣ,ΓYΘq are naturally complex man-

ifolds. On the linearized level, one way to see it is via the fact—discussed previously
in §7.3.1—that autpΣ, j0,Γ Y Θq and Trj0sT pΣ,Γ Y Θq have natural identifications

2The presence of autpΣ, j0,Γ Y Θq in this discussion is only relevant in the finite set of “non-

stable” cases where χp 9ΣzΘq ě 0, since otherwise G is finite and thus autpΣ, j0,Γ Y Θq is trivial.
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with the kernel and cokernel respectively of the canonical linear Cauchy-Riemann
type operator on pΣ, j0q,
(11.3) DId : W k,p

ΓYΘpTΣq Ñ W k´1,ppEndCpTΣqq,
which is the linearization at Id : Σ Ñ Σ of the nonlinear operator that detects
holomorphic maps pΣ, j0q Ñ pΣ, j0q. This operator is equivalent to the operator
that defines the holomorphic structure of TΣ, thus it is complex linear. To handle
the punctures and marked points, one needs to restrict the nonlinear operator to the
space of W k,p-smooth maps Σ Ñ Σ that fix every point in Γ Y Θ, thus the domain
of the linearization becomes the finite-codimensional subspace

W
k,p
ΓYΘpTΣq :“

 
X P W k,ppTΣq

ˇ̌
X|ΓYΘ “ 0

(
.

This subspace is still complex, thus so is (11.3), and its kernel and cokernel inherit
natural complex structures.

The complex structure on autpΣ, j0,Γ Y Θq means that defining an orientation
on the tangent space Tu0M

$pJq is equivalent to defining one on kerDB̄Jpj0, u0q. The
latter operator takes the form

DB̄Jpj0, u0q : Tj0T ‘ Tu0B
k,p,δ Ñ Ek´1,p,δ

pj0,u0q : py, ηq ÞÑ Jpu0q ˝ du0 ˝ y ` Du0η,

where Du0 : W k,p,δpu˚
0T

xW q ‘ VΓ Ñ W k´1,p,δpHomCpT 9Σ, u˚
0T

xW qq is the usual lin-
earized Cauchy-Riemann operator at u0, with VΓ denoting a complex p#Γq-dimensional
space of smooth sections that are constant near infinity. The remarks above and the
fact that u0 is J-holomorphic imply that the first term in this operator,

Tj0T Ñ Ek´1,p,δ
pj0,u0q : y ÞÑ Jpu0q ˝ du0 ˝ y

is a complex-linear map. Now if Du0 happens also to be a complex-linear map, then
we are done, because kerDB̄Jpj0, u0q will then be a complex vector space and inherit
a natural orientation.

In general, Du0 is not complex linear, though it does have a complex-linear part,

DC
u0
η :“ 1

2
pDu0η ´ JDu0pJηqq ,

which is also a Cauchy-Riemann type operator. The space of all Cauchy-Riemann
type operators on a fixed vector bundle is affine, so one can interpolate from Du0

to DC
u0

through a path of Cauchy-Riemann type operators, though they may not all
be Fredholm—this depends on the asymptotic operators at the punctures. In the
special case however where there are no punctures, one can easily imagine making
use of this idea: if 9Σ “ Σ is a closed surface, then the obvious homotopy from Du0

to its complex-linear part yields a homotopy from DB̄Jpj0, u0q to its complex-linear
part, and if every operator along this homotopy happens to be surjective, then the
canonical orientation defined on the kernel of the complex-linear operator determines
an orientation on kerDB̄Jpj0, u0q.

There are two obvious problems with the above discussion:

(1) We have no way to ensure that every operator in the homotopy from
DB̄Jpj0, u0q to its complex-linear part is surjective;
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(2) If there are punctures, then we cannot even expect every operator in this
homotopy to be Fredholm.

The first problem motivates the desire to define a notion of orientations for a
Fredholm operator T that does not require T to be surjective but reduces to the
usual notion of orienting kerT whenever it is. The solution to this problem is
the determinant line bundle, which we will discuss in the next section. With this
object in hand, the above discussion for the case of closed curves can be made
rigorous, so that all smooth moduli spaces of closed J-holomorphic curves inherit
canonical orientations. One of the advantages of using the determinant line bundle
is that the question of orientations becomes entirely disjoined from the question of
transversality: if one can orient the determinant line bundle then moduli spaces of
regular curves inherit orientations, but orienting the determinant bundle does not
require knowing in advance whether the curves are regular.

The second problem is obviously significant because in the punctured case, mod-
uli spaces of J-holomorphic curves sometimes have odd real dimension, making it
clearly impossible to homotop DB̄Jpj0, u0q through Fredholm operators to one that
is complex linear. The solution in this case will be to define orientations algorithmi-
cally via the coherence condition, and we will describe a suitable algorithm for this
in §11.6.

11.4. The determinant line bundle

Fix real Banach spaces X and Y and let FredRpX, Y q denote the space of real-
linear Fredholm operators, viewed as an open subset of the Banach space LRpX, Y q
of all bounded linear operators. We’ll use the following notation throughout: if V
is an n-dimensional real vector space, then the top-dimensional exterior power of V
is denoted by

ΛmaxV :“ ΛnV.

This 1-dimensional real vector space is spanned by any wedge product of the form
v1 ^ . . .^ vn where pv1, . . . , vnq is a basis of V . Denoting the dual space of V by V ˚,
note that there is a canonical isomorphism pΛmaxV q˚ “ ΛmaxV ˚. If dimV “ 0, then
we adopt the convention ΛmaxV “ R.

Definition 11.8. Given T P FredRpX, Y q, the determinant line of T is the
real 1-dimensional vector space

detpTq “ pΛmax kerTq b pΛmax cokerTq˚
.

The union of these vector spaces defines the set

detpX, Y q :“ tpT, vq | T P FredRpX, Y q, v P detpTqu ,
and for a subset U Ă FredRpX, Y q, we will denote by detpX, Y q|U Ă detpX, Y q the
preimage of U under the projection detpX, Y q Ñ FredRpX, Y q : pT, vq ÞÑ T.

Recall that the set U Ă FredRpX, Y q of surjective Fredholm operators X Ñ Y

is open, and tpT, vq P U ˆ X | v P kerTu forms a smooth finite-rank subbundle of
the trivial Banach space bundle U ˆ X (see Proposition 3.23). For T P U , we have
detpTq “ Λmax kerT, so it follows that detpX, Y q|U has a natural smooth vector
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bundle structure. Our main goal in this section is to prove that the latter is true
for the space of all Fredholm operators, not just the surjective ones:

Theorem 11.9. The natural vector bundle structure of detpX, Y q over the space
of surjective Fredholm operators extends over FredRpX, Y q to define a smooth vector

bundle detpX, Y q πÝÑ FredRpX, Y q of real rank 1 such that π´1pTq “ detpTq for
each T P FredRpX, Y q.

If T P FredRpX, Y q is surjective, an orientation of detpTq is equivalent to an
orientation of kerT. More generally, an orientation of detpTq is equivalent to an
orientation of kerT ‘ cokerT. If T is an isomorphism, then detpTq is simply R, in
which case an orientation of detpTq can be called positive or negative depending
on whether it matches the canonical orientation of R.

To construct local trivializations of detpX, Y q Ñ FredRpX, Y q, we start with the
special case where X and Y are both finite dimensional. Here every linear map is
Fredholm, including the zero map, and its determinant is simply ΛmaxXbpΛmaxY q˚.
It will be convenient to use the following notation: if V is a real 1-dimensional vector
space, we define the (nonlinear) bijection

V zt0u Ñ V ˚zt0u : v ÞÑ v˚ such that v˚pvq “ 1.

Lemma 11.10. Suppose X and Y are real finite-dimensional vector spaces. Then
for every T P LRpX, Y q, there exists a canonical isomorphism

ΨT : pΛmax kerTq b pΛmax cokerTq˚ –ÝÑ pΛmaxXq b pΛmaxY q˚,

uniquely characterized by the condition that for any nonzero elements k P Λmax kerT,
c P Λmax cokerT and any linearly independent set v1, . . . , vq P X spanning a subspace
complementary to kerT Ă X,

(11.4) ΨTpk b c˚q “ pk ^ v1 ^ . . .^ vqq b pc ^ Tv1 ^ . . .^ Tvqq˚.

Here the product c^Tv1 ^ . . .^Tvq P ΛmaxY is defined by choosing any complement
C Ă Y of imT and identifying c P Λmax cokerT with an element of ΛmaxC Ă
ΛdimCY via the natural isomorphism C

–Ñ cokerT arising from the restriction of
the quotient projection Y Ñ Y { imT, and this product is independent of choices.

Proof. Assume dimX “ n, dimY “ m, dim kerT “ k and dim cokerT “ ℓ,
so indpTq “ k ´ ℓ “ n ´ m, thus n ´ k “ m ´ ℓ, and the latter is also q in (11.4).
The vectors Tv1, . . . ,Tvq thus form a basis of imT. We show first that the product
c ^ Tv1 ^ . . . ^ Tvq P ΛmaxY is independent of the choice of complement C Ă Y

for imT. Indeed, choose a basis c1, . . . , cℓ of cokerT and let rc1, . . . ,rcℓ P C denote
the image of this basis under the natural isomorphism of cokerT to some choice
of complement C Ă Y . Changing the complement would then change each rci by
vectors in imT, and since Tv1, . . . ,Tvq is a basis of imT, this does not change
rc1 ^ . . .rcℓ ^ Tv1 ^ . . .^ Tvq.

For the same reason, the product k ^ v1 ^ . . . ^ vq P ΛmaxX depends only on
k P Λmax kerT and v :“ rv1s ^ . . . ^ rvqs P ΛmaxpX{ kerTq. To see that the stated
formula for ΨTpk b c˚q is independent of the choice of v ‰ 0 P ΛmaxpX{ kerTq,
observe that replacing v by λv for some λ P Rzt0u replaces Tv :“ Tv1 ^ . . .^Tvq P
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ΛmaxpimTq by λTv, so c ^ Tv becomes λc ^ Tv and pc ^ Tvq˚ therefore becomes
1
λ

pc ^ Tvq˚, giving

pk ^ λvq b pc ^ Tpλvqq˚ “ λpk ^ vq b 1

λ
pc ^ Tvq˚ “ pk ^ vq b pc ^ Tvq˚.

This proves that the formula (11.4) is independent of choices. It is also bilinear with
respect to k and c˚ and is nontrivial, thus it is an isomorphism. �

Exercise 11.11. This exercise establishes a naturality property for the isomor-
phism ΨT in Lemma 11.10. Fix Banach space isomorphisms ϕ P LRpX,X 1q and
ψ P LRpY 1, Y q and, for a given T1 P FredRpX 1, Y 1q, let T :“ ψT1ϕ P FredRpX, Y q.
Then ϕ and ψ also define isomorphisms

kerT
ϕÑ kerT1, imT1 ψÑ imT, cokerT1 ψÑ cokerT,

which determine corresponding isomorphisms ϕ˚ : Λmax kerT Ñ Λmax kerT1 and
ψ˚ : ΛmaxpcokerTq˚ Ñ ΛmaxpcokerT1q˚. Prove that if the Banach spaces in this
discussion are finite dimensional, then the following diagram commutes:

detpTq ΛmaxX b pΛmaxY q˚

detpT1q ΛmaxX 1 b pΛmaxY 1q˚

ΨT

ϕ˚bψ˚ ϕ˚bψ˚

Ψ
T1

A second naturality property of the isomorphism in Lemma 11.10 concerns direct
sums. If Ti P FredRpXi, Yiq for i “ 1, 2, then T1 ‘ T2 is in FredRpX1 ‘X2, Y1 ‘ Y2q,
and the canonical isomorphisms

kerpT1 ‘ T2q “ kerT1 ‘ kerT2,

pcokerpT1 ‘ T2qq˚ “ pcokerT1q˚ ‘ pcokerT2q˚

give rise to a canonical isomorphism

detpT1q b detpT2q Ñ detpT1 ‘ T2q
pk1 b c˚

1q b pk2 b c˚
2q ÞÑ p´1qpdim kerT2qpdim cokerT1qpk1 ^ k2q b pc˚

1 ^ c˚
2q.

(11.5)

The sign in this formula is related to the reordering of k2 P Λmax kerT2 and c˚
1 P

pΛmax cokerT1q˚, and is necessary in order for the result of the following exercise to
hold.

Exercise 11.12. Show that if X1, X2, Y1, Y2 are finite dimensional, then the
diagram

detpT1q b detpT2q ΛmaxX1 b pΛmaxY1q˚ b ΛmaxX2 b pΛmaxY2q˚

detpT1 ‘ T2q ΛmaxpX1 ‘ X2q b pΛmaxpY1 ‘ Y2qq˚

ΨT1
bΨT2

ΨT1‘T2

commutes, where the vertical arrows represent the canonical map (11.5), the one at

the right defined in terms of the Fredholm operators X1
0Ñ Y1 and X2

0Ñ Y2.
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The bundle structure of detpX, Y q can now be understood via the following
construction from §3.3.1. Given T0 P FredRpX, Y q, write X “ VT0

‘ KT0
and

Y “ WT0
‘ CT0

where KT0
“ kerT0, CT0

– cokerT0, WT0
“ imT0 and T0|VT0

:
VT0

Ñ WT0
is an isomorphism. We use these splittings to write any other operator

T P FredRpX, Y q as

T “
ˆ
AT BT

CT DT

˙
: VT0

‘ KT0
Ñ WT0

‘ CT0
,

and let U Ă FredRpX, Y q denote an open neighborhood of T0 such that the block
AT : V Ñ W is invertible for all T P U . This gives rise to a pair of smooth maps

U Ñ LRpVT0
‘ KT0

q “ LRpXq : T ÞÑ FT :“
ˆ
1 ´A´1

T BT

0 1

˙
,

and

U Ñ LRpWT0
‘ CT0

q “ LRpY q : T ÞÑ GT :“
ˆ

1 0
´CTA

´1
T 1

˙

such that FT and GT are invertible for every T P U and satisfy

(11.6) GTTFT “
ˆ
AT 0
0 ΦT

˙
P FredRpVT0

‘ KT0
,WT0

‘ CT0
q,

where we write
ΦT :“ DT ´ CTA

´1
T BT P LRpKT0

, CT0
q.

This shows in particular that FT maps ker ΦT Ă KT0
isomorphically to kerT, while

GT maps imT isomorphically toWT0
‘ imΦT and thus descends to an isomorphism

of cokerT to coker ΦT. Using this construction, we can define splittings of the trivial
Banach space bundles UˆX and UˆY into direct sums of smooth subbundles V ‘K
and W ‘ C respectively, with fibers

VT :“ FTpVT0
q, KT :“ FTpKT0

q, WT :“ G´1
T pWT0

q, CT :“ G´1
T pCT0

q,
such that for all T P U ,

kerT Ă KT imT Ą WT, TpVTq Ă WT and TpKTq Ă CT.

We will refer to any collection pU , V,K,W,Cq consisting of a neighborhood U Ă
FredRpX, Y q of T0 and subbundles V,K Ă U ˆX and W,C Ă U ˆY constructed in
the above manner as a reduction of FredRpX, Y q near T0. Note that a reduction
is uniquely determined on some neighborhood of T0 by the choice of complements
VT0

Ă X for kerT0 and CT0
Ă Y for imT0.

A reduction pU , V,K,W,Cq nearT0 determines a smooth vector bundle structure
on detpX, Y q|U as follows. Let us write T|VT “ T8 P FredRpVT,WTq and T|KT

“
Tred P FredRpKT, CTq, noting that by (11.6), T8 is conjugate to the isomorphism
AT : VT0

Ñ WT0
, so that detpT8q “ R, and this isomorphism is canonical, i.e. it

does not depend on any choices. The natural isomorphisms in (11.4) and (11.5)
therefore give rise to a chain of natural isomorphisms

detpTq “ detpT8 ‘ Tredq –ÐÝ detpT8q b detpTredq “ R b detpTredq

“ detpTredq Ψ
TredÝÑ ΛmaxKT b pΛmaxCTq˚.
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Since K and C are smooth subbundles of the trivial bundles U ˆ X and U ˆ Y

respectively, the right hand side is now the fiber of a smooth vector bundle ΛmaxKb
pΛmaxCq˚ over U , so this family of isomorphisms determines a vector bundle struc-
ture on detpX, Y q|U . One can use the naturality properties to show that any two
reductions determine smoothly isomorphic bundle structures on the region where
they overlap.

Exercise 11.13. Show that if X and Y are complex Banach spaces, then
the restriction of detpX, Y q to the subspace of complex-linear Fredholm operators
FredCpX, Y q Ă FredRpX, Y q admits a canonical orientation compatible with the
complex structures of kerT and cokerT for each T P FredCpX, Y q. Show also
that whenever T P FredCpX, Y q is an isomorphism, the resulting orientation of
detpTq “ R is positive.

The orientation of detpTq for T P FredCpX, Y q described in Exercise 11.13 is
called the complex orientation.

11.5. Determinant bundles of moduli spaces

Combining ideas from the previous two sections, let

detpJq Ñ M$pJq
denote the topological line bundle that associates to any u P M$

g,mpJ,A,γ`,γ´q the
determinant line of the Fredholm operator

Du : W
k,p,δpu˚TxW q ‘ VΓ Ñ W k´1,p,δpHomCpT 9Σ, u˚TxW qq.

One can construct local trivializations for this bundle using Theorem 11.9 and any
choice of local trivializations for the Banach space bundles TBk,p,δ and Ek´1,p,δ.

Proposition 11.14. Any orientation of detpJq Ñ M$pJq canonically deter-
mines an orientation of M$,regpJq.

Proof. As explained in §11.3, an orientation of M$,regpJq near a particular

curve u0 : p 9Σ, j0q Ñ pxW,Jq is equivalent to a continuously varying choice of orien-
tations for the kernels

kerDB̄Jpj, uq Ă TjT ‘ TuB
k,p,δ

for all pj, uq P B̄´1
J p0q, where T is a Teichmüller slice through pj0,Γ Y Θq. The

operator DB̄Jpj, uq is of the form

Lpy, ηq :“ Jpuq ˝ du ˝ y ` Duη

and thus is homotopic through Fredholm operators to

L0py, ηq :“ Duη,

namely via the homotopy Lspy, ηq :“ sJpuq ˝ du ˝ y ` Duη for s P r0, 1s. The kernel
and cokernel of L0 are TjT ‘kerDu and cokerDu respectively, and since TjT carries
a complex structure, the orientation of detpDuq naturally determines an orientation
of detpL0q. Using the homotopy Ls, this determines orientations of detpDB̄Jpj, uqq
and thus orientations of kerDB̄Jpj, uq for all pj, uq near pj0, u0q, and this orientation
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does not depend on the choice of Teichmüller slice since the operators Du also do
not. �

From now on, when we speak of an orientation of M$pJq, we will actually
mean an orientation of the bundle detpJq Ñ M$pJq. The above proposition implies
that this is equivalent to what we want in applications, but one advantage of talking
about detpJq is that there is no need to limit the discussion to curves that are
regular, i.e. the notion of an orientation of M$pJq now makes sense even though
M$pJq is not globally a smooth object.

Proposition 11.15. Suppose all Reeb orbits in γ
˘ are nondegenerate and have

the property that their asymptotic operators are complex linear. ThenM$
g,mpJ,A,γ`,γ´q

admits a natural orientation, known as the complex orientation.

Proof. Having complex-linear asymptotic operators implies that the obvious
homotopy from each Cauchy-Riemann operator Du to its complex-linear part does
not change the asymptotic operators and is therefore a homotopy through Fred-
holm operators. We therefore have a continuously varying homotopy of each of the
relevant fibers of detpJq to the determinant bundle over a family of complex-linear
operators, which inherit the complex orientation described in Exercise 11.13. �

Proposition 11.15 applies in particular to all moduli spaces of closed J-holomorphic
curves, and thus solves the orientation problem in that case.

11.6. An algorithm for coherent orientations

We now briefly describe the construction of coherent orientations due to Bour-
geois and Mohnke [BM04]. A slightly different construction is sketched in [EGH00],
but the Bourgeois-Mohnke construction has become the standard.

Recall from Lecture 4 the notion of an asymptotically Hermitian vector bundle
pE, Jq over a punctured Riemann surface p 9Σ, jq. Here p 9Σ, jq is endowed with the

extra structure of fixed cylindrical ends p 9Uz , jq – pZ˘, iq for each puncture z P Γ˘,
which determines a choice of asymptotic markers. Likewise, the bundle E comes
with an asymptotic bundle pEz, Jz, ωzq Ñ S1 associated to each puncture, carrying
compatible complex and symplectic structures. We shall now endow E with a bit

more structure that is always naturally present in the case E “ u˚TxW : namely,
assume each of the asymptotic bundles comes with a splitting

(11.7) pEz, Jz, ωzq “ pC ‘ pEz, i‘ pJz, ω0 ‘ pωzq,
where ω0 is the standard symplectic structure on the trivial complex line bundle

pC, iq over S1, and p pEz, pJz, pωzq Ñ S1 is another Hermitian bundle. Fix a choice

tAzuzPΓ of nondegenerate asymptotic operators on each of the bundles p pEz, pJz, pωzq,
and define the topological space

CRpE, tAzuzPΓq
to consist of all Cauchy-Riemann type operators on E that are asymptotic at the
punctures z P Γ to the asymptotic operators

p´iBtq ‘ Az : ΓpC ‘ pEzq Ñ ΓpC ‘ pEzq.
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This is an affine space, so it is contractible, and if δ ą 0 is sufficiently small
and VΓ Ă ΓpEq denotes a complex p#Γq-dimensional space of smooth sections
that take constant values in C ‘ t0u Ă Ez near each puncture z, then every
D P CRpE, tAzuzPΓq determines a Fredholm operator

D : W k,p,δpEq ‘ VΓ Ñ W k´1,p,δpHomCpTΣ, Eqq.
It follows that a choice of orientation of the determinant line for any one of these
operators determines an orientation for all of them. The point of this construction
is that every u P M$pJq determines an operator Du belonging to a space of this
form.

We now construct a gluing operation for Cauchy-Riemann operators that lin-
earizes the gluing maps described in §11.1. Suppose pEi, J iq Ñ p 9Σi “ ΣizΓi, jiq for
i “ 0, 1 is a pair of asymptotically Hermitian bundles of the same rank, endowed
with asymptotic splittings as in (11.7) and asymptotic operators tAzuzPΓi

, and that
there exists a pair of punctures z0 P Γ`

0 and z1 P Γ´
1 such that some unitary bundle

isomorphism
pE1
z1

–ÝÑ pE0
z0

identifies Az1 with Az0. Note that such an isomorphism is uniquely determined up
to homotopy whenever it exists. For R ą 0, we can define a family of glued Riemann
surfaces

p 9ΣR “ ΣRzΓR, jRq
by cutting off the ends pR,8q ˆ S1 Ă 9Uz0 and p´8,´Rq ˆ S1 Ă 9Uz1 and gluing

tRu ˆ S1 Ă 9Σ0 to t´Ru ˆ S1 Ă 9Σ1. The glued Riemann surface contains an
annulus biholomorphic to pr´R,Rs ˆ S1, iq in place of the infinite cylindrical ends

at the punctures z0 and z1. The unitary isomorphism pE1
z1

Ñ pE0
z0

then determines
an isomorphism E1

z1
Ñ E0

z0
via the splitting (11.7) and hence an asymptotically

Hermitian bundle
pER, JRq Ñ p 9ΣR, JRq.

Using cutoff functions in the neck r´R,Rs ˆ S1, any Cauchy-Riemann operators
Di P CRpEi, tAzuzPΓi

q for i “ 0, 1 now determine a family of operators

DR P CRpER, tAzuzPΓR
q

uniquely up to homotopy. Analogously to the gluing maps in §11.1, one can ar-
range this construction so that the operators DR converge in some sense to the pair
pD0,D1q as R Ñ 8, which has the following consequence:

Lemma 11.16 ([BM04, Corollary 7]). For R ą 0 sufficiently large, there is a
natural isomorphism

detpD0q b detpD1q Ñ detpDRq
that is defined up to homotopy. �

Up to some additional direct sums and quotients by finite-dimensional complex
vector spaces, this isomorphism should be understood as the linearization of a glu-
ing map between moduli spaces, generalized to a setting in which the holomorphic
curves involved need not be regular. To orient M$pJq coherently, it now suffices to
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choose orientations for the operators in CRpE, tAzuzPΓq that vary continuously un-
der deformations of j and E and are preserved by the isomorphisms of Lemma 11.16.
This motivates the following generalization of Definition 11.2.

Definition 11.17. A system of coherent orientations is an assignment to
each asymptotically Hermitian bundle pE, Jq Ñ p 9Σ, jq with asymptotic splittings as
in (11.7) and asymptotic operators tAzuzPΓ of an orientation for the determinant
line of each D P CRpE, tAzuq, such that these orientations vary continuously with
D as well as the data j and J , and such that the isomorphisms in Lemma 11.16 are
always orientation preserving.

The prescription of [BM04] to construct such systems is now as follows.

(1) For any trivial bundle E over 9Σ “ C with 8 as a negative puncture and any
asymptotic operator A8, choose an arbitrary continuous family of orien-
tations for the operators in CRpE, tA8uq, subject only to the requirement
that these should match the complex orientation whenever A8 is complex
linear.

(2) For any trivial bundle E´ over 9Σ “ C with 8 as a positive puncture, any
asymptotic operator A8 and any D´ P CRpE´, tA8uq, let E` denote the
trivial bundle over C with a negative puncture as in step (1), choose any
D` P CRpE`, tA8uq and construct the resulting family of glued operators

DR P CRpERq,

where the ER are trivial bundles over S2. Since S2 has no punctures, DR

has a natural complex orientation, so define the orientation of D´ to be
the one that is compatible via Lemma 11.16 with this and the orientation
chosen for D` in step (1).

(3) For an arbitrary pE, Jq Ñ p 9Σ, jq, glue positive and negative planes to 9Σ to

produce a bundle over a closed surface pΣ, and define the orientation of any
D P CRpE, tAzuzPΓq to be compatible via Lemma 11.16 with the choices in

steps (1) and (2) and the complex orientation for operators over pΣ.
It should be easy to convince yourself that if we now vary the bundle pE, Jq Ñ

p 9Σ, jq or the operators on this bundle (but not the asymptotic operators!) contin-
uously, the capping procedure described in step (3) above produces a continuous
family of Cauchy-Riemann type operators on bundles over closed Riemann surfaces.
Since these all carry the complex orientation, the resulting orientations of the orig-
inal operators vary continuously. It is similarly clear from the construction that
any Cauchy-Riemann operator whose asymptotic operators are all complex linear
will end up with the complex orientation. Bourgeois and Mohnke use this fact to
prove that any system of orientations constructed in this way is compatible with
all possible linear gluing maps arising from Lemma 11.16. The idea is to reduce
it to the complex-linear case by gluing cylinders to the ends of any asymptotically
Hermitian bundle so that the asymptotic operators can be changed at will; see
[BM04, Proposition 8].
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11.7. Permutations and bad orbits revisited

The heuristic proofs in §11.2 can now be made precise in the following way.
Suppose D P CRpE, tAzuzPΓq, and D1 is the same operator after interchanging

two of the punctures in Γ. Imagine gluing pE, Jq Ñ p 9Σ, jq to trivial bundles E1 and
E2 over planes in order to cap off the two punctures that are being interchanged,
and choose Cauchy-Riemann operators D1 and D2 on these planes to form a glued
operator on the capped surface. This capping procedure is done one plane at a time,
and the order of the two punctures determines which plane is glued first. Compati-
bility with the isomorphisms of Lemma 11.16 then dictates that the orientations of
detpDq and detpD1q match if and only if the orientations of detpD1q b detpD2q and
detpD2qbdetpD1q match. Since orientations of detpDiq for i “ 1, 2 are equivalent to
orientations of kerDi ‘ cokerDi, reversing the order of the tensor product changes
orientations if and only if both of these direct sums are odd dimensional, which
means indpD1q and indpD2q are both odd. If the bundles have complex rank n and
the asymptotic operators are Ai for k “ 1, 2, we have

indpDiq “ nχpCq ˘ µCZpp´iBt ‘ Aiq ˘ δq “ n´ 1 ˘ µCZpAiq,
which matches n ´ 3 ` µCZpAiq modulo 2. This proves Proposition 11.4.

Similarly for Proposition 11.5, we consider the action of the generator ψ P Zm

on detpDq where ψ rotates the cylindrical end by 1{m at some puncture where the
trivialized asymptotic operatorA is of the form ´iBt´Spmtq for a loop of symmetric
matrices Sptq. Capping off this puncture with a plane carrying a Cauchy-Riemann
operator D8, coherence dictates that the same transformation must act the same
way on the orientation of detpD8q. Since ψm “ 1, ψ cannot reverse this orientation
if m is odd. To understand the case of m even, note first that we are free to
choose D8 so that it is an m-fold cover, meaning it is related to the branched cover
ϕ : C Ñ C : z ÞÑ zm by

D8pη ˝ ϕq “ ϕ˚ pD8η

for some other Cauchy-Riemann operator pD8, which is asymptotic to pA :“ ´iBt ´
Sptq. Now the group Zm generated by ψ acts on kerD8 and cokerD8, so represen-
tation theory tells us

kerD8 “ V1 ‘ V´1 ‘ Vrot

cokerD8 “ W1 ‘ W´1 ‘ Wrot,

where ψ acts on V˘1 and W˘1 as ˘1 and acts as orientation-preserving rotations on
Vrot and Wrot. It follows that ψ reverses the orientation of kerD8 ‘ cokerD8 if and
only if dimV´1 ´dimW´1 is odd. Now observe that there are natural isomorphisms

V1 “ ker pD8, W1 “ coker pD8,

hence
dimV´1 ´ dimW´1 “ indpD8q ´ indppD8q (mod 2).

This difference in Fredholm indices is precisely µCZpAq ´ µCZppAq up to a sign, and
this completes the proof of Proposition 11.5.
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It is time to begin deriving algebraic consequences from the analytical results of
the previous lectures. We saw the simplest possible example of this in Lecture 10,
where the behavior of holomorphic cylinders in symplectizations of contact mani-
folds without contractible Reeb orbits led to a rudimentary version of cylindrical
contact homology HC˚pM, ξq with Z2 coefficients. Unfortunately, the condition on
contractible orbits means that this version of HC˚pM, ξq cannot always be defined,
and even when it can, it only counts cylinders—we would only expect it to capture
a small fragment of the information contained in more general moduli spaces of
holomorphic curves. Extracting information from these general moduli spaces will
require enlarging our algebraic notion of what a Floer-type theory can look like.

12.1. Some important caveats on transversality

For most of this and the next lecture, we fix the following fantastically optimistic
assumption:

Assumption 12.1 (science fiction). One can choose suitably compatible almost
complex structures so that all pseudoholomorphic curves are Fredholm regular.

This assumption held in Lecture 10 for the curves we were interested in, because
they were all guaranteed for topological reasons to be somewhere injective. It can
also be shown to hold under some very restrictive conditions on Conley-Zehnder

329
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indices in dimension three, see [Nel15,Nel20]. Both of those are very lucky situ-
ations, and as we’ve discussed before, the assumption cannot generally be achieved
merely by perturbing J generically—it must sometimes fail for curves that are mul-
tiply covered, and such curves always exist (see §12.4 for more on this). The only
way in reality to ensure something like Assumption 12.1 is to perturb the nonlin-
ear Cauchy-Riemann equation more abstractly, e.g. by replacing B̄Ju “ 0 with an
inhomogeneous equation of the form

B̄Ju “ ν

for a generic perturbation ν. This is the standard technique in certain versions of
Gromov-Witten theory (see e.g. [RT95,RT97]), and we will outline the main ideas
in §12.4.3. Alternatively, one can allow J to depend generically on points in the
domain rather than just points in the target, as in [MS12, §7.3]. Both approaches
eliminate the initial problem with multiple covers, but they both also run into seri-
ous and subtle difficulties concerning the relationship between MpJq and the strata
of its compactification MpJq. As observed in [Sal99, §5], the presence of natural
symmetries in MpJq makes it necessary for any sufficiently general abstract pertur-
bation scheme to involve multivalued perturbations, and it is important for these
perturbations to be “coherent” in a sense analogous to our discussion of orientations
in the previous lecture. These notions have not yet all been developed in a sufficiently
consistent and general way to give a rigorous definition of SFT, though there has
been much progress: this is the main objective of the long-running polyfold project
initiated by Hofer-Wysocki-Zehnder [Hof06]. More recently, a quite different and
much more topological approach was introduced by Pardon [Par19] specifically for
contact homology, and an approach to general SFT based on Kuranishi structures
has been proposed by Ishikawa [Ish].

For most of this lecture we will ignore these subtleties and simply adopt As-
sumption 12.1 as a convenient fiction, thus pretending that all components of MpJq
are smooth orbifolds of the correct dimension and all gluing maps are smooth. All
“theorems” stated under this assumption should be read with the caveat that they
are only true in a fictional world in which the assumption holds. Even if it is a
fiction, one can get quite far with this point of view: it is still possible not only
to deduce the essential structure of what we assume will someday be a rigorously
defined polyfold-based SFT, but also to infer the existence of certain contact in-
variants that have interesting rigorous applications requiring only well-established
techniques, e.g. the cobordism obstructions discovered in [LW11].

12.2. Auxiliary data, grading and supercommutativity

The goal is to define an invariant of closed p2n ´ 1q-dimensional contact mani-
folds pM, ξq with closed nondegenerate Reeb orbits as generators and a Floer-type
differential counting J-holomorphic curves in the symplectization pR ˆ M, dperαqq.
The auxiliary data we choose must obviously therefore include a nondegenerate con-
tact form α and a generic J P J pαq, for which we shall suppose Assumption 12.1
holds. For convenience, we will also assume throughout most of this lecture:

Assumption 12.2. H1pMq is torsion free.
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This is needed mainly in order to be able to define an integer grading, though
without this assumption, it is still always possible to define a Z2-grading—see §12.7.1
for more on what to do when Assumption 12.2 does not hold. We now supplement
the auxiliary data pα, Jq with the following additional choices:

(1) Coherent orientations as in Lecture 11 for the moduli spaces M$pJq with
asymptotic markers.

(2) A collection of reference curves

S1 – C1, . . . , Cr Ă M

whose homology classes form a basis of H1pMq.
(3) A unitary trivialization of ξ along each of the reference curves C1, . . . , Cr,

denoted collectively by τ .
(4) A spanning surface Cγ for each periodic Reeb orbit γ: this is a smooth

map of a compact and oriented surface with boundary into M such that

BCγ “
ÿ

i

mirCis ´ rγs

in the sense of singular 2-chains, where mi P Z are the unique coefficients
with rγs “ ř

imirCis P H1pMq.
These choices determine the following. To any collections of Reeb orbits γ

˘ “
pγ˘

1 , . . . , γ
˘
k˘

q and any relative homology class A P H2pM, γ̄` Y γ̄
´q with BA “ř

irγ`
i s ´ ř

jrγ´
j s, we can now associate a cycle in absolute homology,

A `
ÿ

i

Cγ`
i

´
ÿ

j

Cγ´
j

P H2pMq.

Indeed, the boundary of this real 2-chain is a sum of linear combinations of the
reference curves Ci, which add up to zero because

ř
irγ`

i s and ř
jrγ´

j s are homolo-
gous. We shall abuse notation and use this correspondence to associate the absolute
homology class

rus P H2pMq
to any asymptotically cylindrical holomorphic curve u in R ˆ M . Adapting the
previous notation,

Mg,mpJ,A,γ`,γ´q
for A P H2pMq will now denote a moduli space of curves whose relative homology
classes glue to the chosen capping surfaces to form A.

Secondly, the chosen trivializations τ along the reference curves can be pulled
back and extended over every capping surface Cγ , giving trivializations of ξ along
every orbit γ uniquely up to homotopy. We shall define

µCZpγq P Z

from now on to mean the Conley-Zehnder index of γ relative to this trivialization.

Exercise 12.3. Show that if H1pMq has no torsion and u : 9Σ Ñ R ˆ M is
asymptotically cylindrical, then its relative first Chern number with respect to the
trivializations τ described above satisfies

cτ1pu˚T pR ˆ Mqq “ c1prusq,
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where c1prusq denotes the evaluation of c1pξq P H2pMq on rus P H2pMq.

By Exercise 12.3, the index of a curve u : p 9Σ “ ΣzΓ, jq Ñ pR ˆ M,Jq with
rus “ A P H2pMq and asymptotic orbits tγzuzPΓ˘ can now be written as

(12.1) indpuq “ ´χp 9Σq ` 2c1pAq `
ÿ

zPΓ`

µCZpγzq ´
ÿ

zPΓ´

µCZpγzq.

In order to keep track of homology classes of holomorphic curves algebraically,
we can define our theory to have coefficients in the group ring QrH2pMqs, or more
generally,

R :“ QrH2pMq{Gs
for a given subgroup G Ă H2pMq. Elements of R will be written as finite sums

ÿ

i

cie
Ai P R, ci P Q, Ai P H2pMq{G,

where the multiplicative structure of the group ring is derived from the additive
structure of H2pMq{G by eAeB :“ eA`B. The most common examples of G are
H2pMq and the trivial subgroup, giving R “ Q or R “ QrH2pMqs respectively. We
will see a geometrically meaningful example in between these two extremes in the
next lecture.

Finally, we define certain formal variables which have degrees in Z or Z2N for
some N P N, and will serve as generators in our graded algebra. To each closed
Reeb orbit γ we associate two variables, qγ, pγ, whose integer-valued degrees are

|qγ | “ n´ 3 ` µCZpγq, |pγ| “ n´ 3 ´ µCZpγq.
To remember these numbers, think of the index of a J-holomorphic plane u positively
or negatively asymptotic to γ, with rus “ 0.

We also assign an integer grading to the group ring QrH2pMqs such that rational
numbers have degree 0 and

|eA| “ ´2c1pAq, for A P H2pMq.
If c1pAq “ 0 for every A P G, in particular if c1pξq “ 0, then this descends to an
integer grading on the ring R “ QrH2pMq{Gs. Otherwise, R inherits a Z2N -grading,
where

N :“ min
 
c1pAq ą 0

ˇ̌
A P G

(
.

A Z2-grading is well defined in every case.
The algebra will include one additional formal variable ~, which is defined to

have degree

|~| “ 2pn´ 3q.
The degrees of ~ and the pγ and qγ variables should all be interpreted modulo 2N
if c1pξq|G ‰ 0.

The algebra of SFT uses monomials in the variables pγ and qγ respectively to
encode sets of positive and negative asymptotic orbits of holomorphic curves, while
the group ring R “ QrH2pMq{Gs is used to keep track of the homology classes of
such curves, and powers of ~ are used to keep track of their genus. More precisely,
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given g ě 0, A P H2pMq and ordered lists of Reeb orbits γ
˘ “ pγ˘

1 , . . . , γ
˘
k˘

q, we
encode the moduli space Mg,0pJ,A,γ`,γ´q formally via the product

(12.2) eA~g´1qγ
´
pγ

`
:“ eA~g´1qγ´

1
. . . qγ´

k´
pγ`

1
. . . pγ`

k`
,

where we are abusing notation by identifying A with its equivalence class inH2pMq{G
if G is nontrivial. Notice that according to the above definitions, this expression has
degree

|eA~g´1qγ
´
pγ

` | “ |eA| ` pg ´ 1q|~| `
kÿ́

i“1

“
pn´ 3q ` µCZpγ´

i q
‰

`
kÿ̀

i“1

“
pn ´ 3q ´ µCZpγ`

i q
‰

“ ´2c1pAq ` p2g ´ 2 ` k` ` k´qpn ´ 3q ´
kÿ̀

i“1

µCZpγ`
i q `

kÿ́

i“1

µCZpγ´
i q

“ ´ vir-dimMg,0pJ,A,γ`,γ´q,

(12.3)

interpreted modulo 2N if c1pξq|G ‰ 0. The orientation results in Lecture 11 suggest
introducing a supercommutativity relation for the variables qγ and pγ : defining the
graded commutator bracket by

(12.4) rF,Gs :“ FG´ p´1q|F ||G|GF,

we define a relation on the set of all monomials of the form qγ
´
pγ

`
by setting

(12.5) rqγ1 , qγ2s “ rpγ1, pγ2s “ 0

for all pairs of orbits γ1 and γ2. As a consequence, permuting the orbits in the lists
γ

˘ changes the sign of the monomial (12.2) if and only if it changes the orientation
of the corresponding moduli space. In particular, any product that includes multiple
copies of an odd generator qγ or pγ is identified with 0. This accounts for the fact that
any rigid moduli space Mg,0pJ,A,γ`,γ´q with two copies of γ among its positive or
negative asymptotic orbits contains zero curves when counted with the correct signs:
every curve is cancelled by a curve that looks identical except for a permutation of
two of its punctures.

12.3. The definition of H and commutators

To write down the SFT generating function, let

MσpJq :“ MpJq
L

„
denote the space of equivalence classes where two curves are considered equivalent
if they have parametrizations that differ only in the ordering of the punctures. This
space is in some sense more geometrically natural than MpJq or M$pJq, but due to
the orientation results in the previous lecture, less convenient for technical reasons.
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Given u : p 9Σ, jq Ñ pR ˆ M,Jq representing a nonconstant element of MσpJq with
no marked points, it is natural to define

Autσpuq Ă AutpΣ, jq
as the (necessarily finite) group of biholomorphic transformations ϕ : pΣ, jq Ñ pΣ, jq
satisfying u “ u ˝ ϕ; in particular, elements of Autσpuq are allowed to permute the
punctures, so Autσpuq is generally a larger group than the usual Autpuq. For k P Z,
let

Mσ
kpJq Ă MσpJq

denote the subset consisting of index k curves that have no marked points and whose
asymptotic orbits are all good (see Definition 11.6 in Lecture 11).

We now define the SFT generating function as a formal power series

(12.6) H “
ÿ

uPMσ
1

pJq{R

ǫpuq
|Autσpuq|~

g´1eAqγ
´
pγ

`
,

where the terms of each monomial are determined by u P Mσ
1pJq as follows:

‚ g is the genus of u;
‚ A is the equivalence class of rus P H2pMq in H2pMq{G;
‚ γ

˘ “ pγ˘
1 , . . . , γ

˘
k˘

q are the asymptotic orbits of u after arbitrarily fixing
orderings of its positive and negative punctures;

‚ ǫpuq P t1,´1u is determined by the chosen coherent orientations on M$pJq.
Specifically, given the chosen ordering of the punctures and an arbitrary
choice of asymptotic markers at each puncture, u determines a 1-dimensional
connected component of M$pJq, and we define ǫpuq “ `1 if and only if the
coherent orientation of M$pJq matches its tautological orientation deter-
mined by the R-action.

Note that while both ǫpuq and the corresponding monomial qγ
´
pγ

`
depend on a

choice of orderings of the punctures, their product does not depend on this choice.
Moreover, ǫpuq does not depend on the choice of asymptotic markers since curves
with bad asymptotic orbits are excluded from Mσ

1pJq. Since every monomial in H
corresponds to a holomorphic curve of index 1, (12.3) implies

|H| “ ´1.

There are various combinatorially more elaborate ways to rewrite H. For any
Reeb orbit γ, let

κγ :“ covpγq P N

denote its covering multiplicity, and for a finite list of orbits γ “ pγ1, . . . , γkq, let

κγ :“
kź

i“1

κγi .

Given u P MσpJq with k˘ ě 0 positive/negative punctures asymptotic to the set

of orbits γ
˘ “ pγ1˘, . . . , γk˘

˘ q, there are k`!k´!κγ`κγ´ ways to order the punctures
and choose asymptotic markers, but some of them are equivalent since (by an easy
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variation on Proposition 11.1) the finite group Autσpuq acts freely on this set of
choices. As a result, (12.6) is the same as

(12.7) H “
ÿ

uPM$
1

pJq{R

ǫpuq
k`!k´!κγ`κγ´

~g´1eAqγ
´
pγ

`
,

where M$
1pJq denotes the space of all (see Remark 12.5 below for some important

commentary about the word “all”) index 1 curves without marked points in M$pJq,
and the rest of the mononomial is determined by the condition that u belongs to
M$

g,0pJ,A,γ`,γ´q, with no need for any arbitrary choices. Another way of writing
this is

(12.8) H “
ÿ

g,A,γ`,γ´

#
`
M$

g,0pJ,A,γ`,γ´q
L
R
˘

k`!k´!κγ`κγ´
~g´1eAqγ

´
pγ

`
,

where the sum ranges over all integers g ě 0, homology classes A P H2pMq and or-
dered tuples of Reeb orbits γ˘ “ pγ˘

1 , . . . , γ
˘
k˘

q for which vir-dimM$
g,0pJ,A,γ`,γ´q “

1, and #
`
M$

g,0pJ,A,γ`,γ´q
L
R
˘
is the signed count of connected components in

M$
g,0pJ,A,γ`,γ´q. For fixed g and γ

˘, the union of these spaces for all A P H2pMq
is finite due to SFT compactness, as the energy of curves in pRˆM, dpetαqq is com-
puted by integrating exact symplectic forms and thus (by Stokes) admits a uniform
upper bound in terms of γ`. For this reason, (12.8) defines a formal power series
in the p variables and in ~, with coefficients that are polynomials in the q variables
and the group ring R.

Remark 12.4. The formulas (12.6) and (12.7) for H are predicated on the
explicit assumption that all J-holomorphic curves are Fredholm regular, and some
modification is required for the reality in which this assumption cannot always hold.
We will sketch in §12.4.3 how (12.8) can be defined without this assumption, but
the count #

`
M$

g,0pJ,A,γ`,γ´q
L
R
˘
appearing in this formula will require a more

general interpretation in which it may sometimes be a rational number, not an
integer.

Remark 12.5. We played a slightly sneaky trick in writing down (12.7) and
(12.8): these summations do not exclude bad orbits, whereas (12.6) was a sum over
curves u that are not asymptotic to any bad orbits—a necessary exclusion in that
case because ǫpuq would otherwise depend on choices of asymptotic markers. The
reason bad orbits are allowed in (12.8) is that their total contribution adds up to zero.
Indeed, bad orbits are always multiple covers with even multiplicity, so whenever
u P M$pJq has a puncture approaching a bad orbit with multiplicity 2m, there are
2m ´ 1 other elements of M$pJq that differ only by adjustment of the marker at
that one puncture, and by Proposition 11.5, half of these cancel out the other half
in the signed count.1 For similar reasons related to Proposition 11.4, (12.8) will not

1There is one caveat: if Autpuq is nontrivial, then not all of these 2m curves are inequivalent
elements of M$pJq, which is fine if the equivalence classes still cancel in pairs, but one can imagine
scenarios as in Example 11.7, where two choices of asymptotic markers defining different signs
ǫpuq give the same element of M$pJq. This is nonsense, but it takes some effort to see why. The
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contain any terms with multiple factors of any odd generator qγ or pγ, even though
curves with multiple ends asymptotic to γ sometimes exist.

Remark 12.6. Readers famliar with Floer homology may see a resemblance
between the group ring R “ QrH2pMq{Gs and the Novikov rings that often appear
in Floer homology, though R is not a Novikov ring since it only allows finite sums.
In Floer homology, the Novikov ring sometimes must be included because counts of
curves may fail to be finite, though they only do so if the energies of those curves
blow up. The situation above is somewhat different: since the symplectization is an
exact symplectic manifold, Stokes’ theorem implies that energy cannot blow up if
the positive asymptotic orbits are fixed, and one therefore obtains well-defined curve
counts no matter the choice of the coefficient ring R. The use of the group ring is
convenient however for two reasons: first, without it one cannot always define an
integer grading, and second, different choices of coefficients can sometimes be used
to detect different geometric phenomena via SFT. We will see an example of the
latter in Lecture 13.

The compactness and gluing theory of SFT is encoded algebraically by viewing H
as an element on a noncommutative operator algebra determined by the commutator
relations

rpγ, qγs “ κγ~

rpγ, qγ1s “ 0 if γ ‰ γ1.
(12.9)

Here r , s again denotes the graded commutator (12.4), so “commuting” generators
actually anticommute whenever they are both odd. The rest of the multiplicative
structure of this algebra is determined by requiring all elements of R and powers
of ~ (all of which are even generators) to commute with everything, meaning all
operators are Rrr~ss-linear.

One concrete representation of this operator algebra is as follows: let A denote
the graded supercommutative unital algebra over R generated by the set 

qγ
ˇ̌
γ a good Reeb orbit

(
.

The ring of formal power series Arr~ss is then an Rrr~ss-module. Define each of
the generators qγ to be Rrr~ss-linear operators on Arr~ss via multiplication from the
left, and define pγ : Arr~ss Ñ Arr~ss by

(12.10) pγ “ κγ~
B

Bqγ
.

Here the Rrr~ss-linear partial derivative operator is defined via

B
Bqγ

qγ “ 1,
B

Bqγ
qγ1 “ 0 for γ ‰ γ1

main reason is the observation in Example 11.7 that scenarios of this type are incompatible with
the assumption that all curves are Fredholm regular. This may seem an unconvincing explanation
in light of the unreasonable optimism of our transversality assumption, but as we will outline in
§12.4.3, regularity really can be achieved for all curves using multivalued inhomogeneous pertur-
bations, so in that context, a similar argument rules out unwanted automorphisms without having
to rely on science fiction.
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and the graded Leibniz rule

B
Bqγ

pFGq “ BF
Bqγ

G ` p´1q|qγ ||F |F
BG
Bqγ

for all homogeneous elements F,G P Arr~ss.
Exercise 12.7. Check that the operator pγ : Arr~ss Ñ Arr~ss defined above has

the correct degree and satisfies the commutation relations (12.5) and (12.9).

Notice that while H contains terms of order ´1 in ~, every term also contains
at least one pγ variable since all index 1 holomorphic curves in pRˆM, dpetαqq have
at least one positive puncture. The substitution (12.10) thus produces a differential
operator in which every term contains a nonnegative power of ~, giving a well-defined
Rrr~ss-linear operator

DSFT : Arr~ss HÝÑ Arr~ss.
The following may be regarded as the fundamental theorem of SFT.

Theorem 12.8. H2 “ 0.

We will discuss in §12.6 how this relation follows from the compactness and
gluing theory of punctured holomorphic curves, and we will use it in Lecture 13 to
define various Floer-type contact invariants. The first and most obvious of these is
the homology

HSFT
˚ pM, ξq :“ H˚pArr~ss,DSFTq,

which will turn out to be an invariant of pM, ξq in the sense that any two choices
of α, J and the other auxiliary data described in §12.2 gives rise to a functorial
isomorphism between the two graded homology groups. Notice that while Arr~ss is
an algebra, its product structure does not descend to HSFT

˚ pM, ξq since DSFT is not a
derivation—indeed, it is a formal sum of differential operators of all orders, not just
order one. In the next lecture we will discuss various ways to produce homological
invariants out of H with nicer algebraic structures.

On the other hand, it is fairly easy to understand the geometric meaning of the
complex pArr~ss,DSFTq in Floer-theoretic terms. Each individual curve u P Mσ

1pJq
with genus g, homology class A P H2pMq and asymptotic orbits γ˘ “ pγ˘

1 , . . . , γ
˘
k˘

q
contributes to DSFT the differential operator

ǫpuq
|Autσpuq|κγ`~g`k`´1eAqγ´

1
. . . qγ´

k´

B
Bqγ`

1

. . .
B

Bqγ`
k`

.

Applying this operator to a monomial qγ1 . . . qγm P Arr~ss that does not contain all of
the generators qγ`

1
, . . . , qγ`

k`
will produce zero, and its effect on a product that does

contain all of these generators will be to eliminate them and multiply qγ´
1
. . . qγ´

k´
by

whatever remains, plus some combinatorial factors and signs that may arise from
differentiating by the same qγ more than once. Ignoring the combinatorics and
signs for the moment, this operation on qγ1 . . . qγm has a geometric interpretation:
it counts all potentially disconnected J-holomorphic curves of index 1 (i.e. disjoint
unions of u with trivial cylinders) that have γ1, . . . , γm as their positive asymptotic
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γ1 γ2 γ3 γ4 γ5 γ6

γ7 γ8

u

Figure 12.1. Counting disjoint unions of index 1 curves u P
M2,0pJ,A, pγ3, γ4, γ5q, pγ7, γ8qq with some trivial cylinders contributes
a multiple of ~4eAqγ1qγ2qγ7qγ8qγ6 to DSFTpqγ1qγ2qγ3qγ4qγ5qγ6q.

orbits; see Figure 12.1. In other words, the action of DSFT on each monomial qγ for
γ “ pγ1, . . . , γmq is determined by a formula of the form

(12.11) DSFTq
γ “

8ÿ

g“0

ÿ

APH2pMq

ÿ

γ1

mÿ

k“1

~g`k´1eAngpγ,γ 1, kqqγ1
,

where ngpγ,γ1, kq is a product of some combinatorial factors with a signed count of
generally disconnected index 1 holomorphic curves of genus g and homology class A
with positive ends at γ and negative ends at γ 1, such that the nontrivial connected
component has exactly k positive ends. The presence of the combinatorial factors
hidden in ngpγ,γ 1, kq is a slightly subtle point which we will try to clarify in the
following sections.

12.4. Interlude: Orbifolds and branched manifolds

12.4.1. How to count zeroes in an orbifold. As in all versions of Floer
theory, the proof that H2 “ 0 is based on the idea that certain moduli spaces
are compact oriented 1-dimensional manifolds with boundary, and the signed count
of their boundary points is therefore zero. We must be careful of course because,
strictly speaking, MpJq is not a manifold, even when Assumption 12.1 holds—it
is an orbifold, with the possibility of singularities at multiply covered curves with
nontrivial automorphism groups. On the other hand, if we exclude curves with
bad asymptotic orbits, then it is an oriented orbifold, and oriented 1-dimensional
orbifolds happen to be very simple objects: since smooth finite group actions on
R cannot be nontrivial without reversing orientation, all oriented 1-dimensional
orbifolds are actually manifolds, so that the standard classification of compact 1-
manifolds should apply and lead to the simple formula

“#BM1pJq “ 0.”

I have placed this formula in quotation marks for a reason. The reality of the
situation is somewhat more complicated.

This is in fact where it becomes important to remember that Assumption 12.1
in its stated form is really not just science fiction, but fantasy : transversality is
sometimes impossible to achieve for multiple covers, and we must therefore at least
have a sensible back-up plan for such cases. To see the problem, remember that our
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local structure theorem for MpJq was proved by identifying it in a neighborhood of

any curve u0 : p 9Σ, j0q Ñ pR ˆ M,Jq with a set of the form

B̄´1
J p0q

L
G,

where B̄J : T ˆBk,p,δ Ñ Ek´1,p,δ is a smooth section of a Banach space bundle Ek´1,p,δ

over the product of a Teichmüller slice T with a Banach manifold Bk,p,δ of maps
9Σ Ñ RˆM , and G is the group of automorphisms of the domain of u0, whose action
on the base2

G ˆ pT ˆ Bk,p,δq Ñ T ˆ Bk,p,δ : pψ, pj, uqq ÞÑ pψ˚j, u ˝ ψq
preserves B̄´1

J p0q. In fact, the action of G on T ˆBk,p,δ is covered by a natural action
on the bundle Ek´1,p,δ, and the reason for it preserving the zero set is that B̄J is an
equivariant section,

B̄Jpψ˚j, u ˝ ψq “ ψ˚B̄Jpj, uq.
If G is finite, then another way to say this is that B̄J is a smooth Fredholm section
of the infinite-dimensional orbibundle Ek´1,p,δ{G over the orbifold pT ˆ Bk,p,δq{G,
whose isotropy group at pj0, u0q is Autpu0q. This section is transverse to the zero-
section if and only if the usual regularity condition holds, making B̄´1

J p0q{G a suborb-
ifold of pT ˆ Bk,p,δq{G whose isotropy group at pj0, u0q is some quotient of Autpu0q.

Remark 12.9. Most sensible definitions of the term “orbifold” (cf. [ALR07,
Dav,FO99]) require local models of the form U{G, where U is a G-invariant open
subset of a vector space on which the finite group G acts smoothly and effectively—
the latter condition is necessary in order to have isotropy groups that are well-
defined up to isomorphism at every point. In the above example, G acts effectively
on T ˆ Bk,p,δ but might have a nontrivial subgroup H Ă G of transformations that
fix every element of B̄´1

J p0q, in which case the G-action on B̄´1
J p0q can be replaced

by an effective action of G{H . The isotropy group of pj0, u0q P B̄´1
J p0q{G is then

Autpu0q{pAutpu0q X Hq.

Now to see just how unreasonably optimistic Assumption 12.1 is, notice that it’s
easy to think up examples of smooth orbibundles in which zeroes of sections can
never be regular if they have nontrivial isotropy:

Example 12.10. Let M denote the real 2-dimensional orbifold C{Z2, with Z2

acting on C via the involution z ÞÑ z̄, and define an orbibundle E Ñ M as the
quotient of the trivial complex line bundle C ˆ C Ñ C by the Z2-action generated
by the involution pz, vq ÞÑ pz̄,´vq. A smooth function f : C Ñ C then represents
a section f P ΓpEq if and only if it satisfies fpz̄q “ ´fpzq for all z. The zero set of
f therefore is guaranteed to contain the 1-dimensional submanifold R Ă M , so that
Bxfpx` iyq|y“0 “ 0 and the zeroes along R can therefore never be regular.

2If G is a Lie group of positive dimension, then this discussion should be taken with a grain
of salt since, as mentioned in §7.4 (see the discussion preceding Lemma 7.29), the action of G on
T ˆ Bk,p,δ is not differentiable. There is no problem however if G is finite, e.g. if the underlying
Riemann surface is stable, which is true outside of finitely many cases.
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Example 12.11. Let M “ C{Z2 with Z2 acting as the antipodal map, and
consider the trivial complex line bundle E “ M ˆ C “ pC ˆ Cq{Z2, where in this
case the Z2 action identifies pz, vq with p´z, vq. A smooth function f : C Ñ C then
represents a section of E if and only if f is even, implying dfp0q “ 0, thus for any
choice of function f that has a zero at the origin, this zero cannot be regular. In
contrast to Example 12.10, it is possible in this case to perturb f generically to a
section that is transverse to the zero-section, but the zero set of such a perturbation
can never contain 0 P M .

Continuing with this example for a moment, let us observe that while a zero at
0 P M cannot be regular, it may still be isolated, and in this case we do know how
to assign it a Z-valued order. For instance, fpzq “ z2 defines a section of E Ñ M

with a zero of order 2 at 0. Notice however that if we perturb this to fǫpzq “ z2 ` ǫ

for ǫ ą 0 small, then fǫ has two simple zeroes at points near the origin, but they are
actually the same point in C{Z2, giving a count of only 1 zero. This means that if
we give the zero of f at the origin its full weight, then we are counting wrongly—
the resulting count will not be homotopy invariant. The correct algebraic count of
zeroes is evidently

(12.12) #f´1p0q :“
ÿ

zPf´1p0qĂM

ordpf ; zq
κz

P Q,

where ordpf ; zq P Z is the order of the zero (computed in the usual way as a winding
number, or in higher dimensions as the degree of a map of spheres, cf. [Mil97]), and
κz P N denotes the order of the isotropy group at z.

Exercise 12.12. Convince yourself that for any smooth oriented orbibundle
E Ñ M of real rank m over a compact, smooth and oriented m-dimensional orbifold
M without boundary, the count (12.12) gives the same result for any section with
isolated zeroes.3 Hint: The space of sections of an orbibundle is still a vector space,
so any two are homotopic. Since M and r0, 1s are both compact, it suffices to focus
on small perturbations of a single section in a single orbifold chart.

For a slightly different perspective on (12.12), consider the special case of a closed

orbifold that is the quotient of a closed manifold ĂM by an effective orientation-
preserving finite group action,

M “ ĂM{G.
Suppose rE Ñ ĂM is an oriented vector bundle with rank equal to dimM , and G also

acts on rE by orientation-preserving linear bundle maps that cover its action on ĂM ,
so the quotient

E “ rE{G Ñ M

is an orbibundle. A section f :M Ñ E is then equivalent to a G-equivariant section
rf : ĂM Ñ rE, and the signed count of zeroes

# rf´1p0q “
ÿ

zP rf´1p0qĂĂM

ordp rf ; zq P Z

3If you’re still not sure what an orbibundle is, a definition can be found in [FO99, Chapter 1].
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is of course the same for any section that has only isolated zeroes. It can also be
expressed in terms of f since any z P f´1p0q Ă M has exactly |G|{κz lifts to points

in rf´1p0q Ă ĂM , implying

# rf´1p0q “
ÿ

zPf´1p0qĂM

|G|
κz

ordpf ; zq,

and thus #f´1p0q “ 1
|G|#

rf´1p0q. The invariance of (12.12) is now an immediate

consequence of the invariance of # rf´1p0q, which follows from the standard argument
as in [Mil97].

12.4.2. Multivalued perturbations. If you enjoyed reading [Mil97] as much
as I did, then it may seem tempting to try proving invariance of (12.12) in general
by choosing a generic homotopy H : r0, 1s ˆM Ñ E between two generic sections f0
and f1 and showing that H´1p0q Ă r0, 1s ˆ M is a compact oriented 1-dimensional
orbifold with boundary. As we observed at the beginning of this section, H´1p0q is
then actually a manifold, so the signed count of its boundary points should be zero.
But this would give the wrong result: it would suggest that

ř
zPf´1p0qĂM ordpf ; zq

should be homotopy invariant, without the rational weights, and we’ve already seen
that this is not true. What is going on here? The answer is that the homotopy H
cannot in general be made transverse to the zero-section, now matter how generically
we perturb it! It is an illustration of the fundamental conflict between the notions
of genericity and equivariance.

Example 12.13. Let M “ C{Z2 as in Example 12.11, but define the complex
orbibundle E Ñ M by

E “ pC ˆ Cq
L

pz, vq „ p´z,´vq,
i.e. the Z2-action also acts antipodally on fibers. Now a smooth function f : C Ñ C

defines a section of E if and only if it is odd, hence all such sections have a zero at
the origin. Compare the two sections

f0px ` iyq “ x ` iy, f1px` iyq “ x3 ´ x` iy.

They have qualitatively the same behavior near infinity, meaning in particular that
they are homotopic through a family of sections whose zeroes are confined to some
compact subset, thus we expect the algebraic count of zeroes to be the same for both.
This is true if the count is defined by (12.12): we have #f´1

0 p0q “ #f´1
1 p0q “ 1

2
, in

particular the negative zero of f1 at the origin counts for ´1{2 while the positive
zero at p1, 0q „ p´1, 0q counts for 1. We see that the inclusion of the rational weights
1
κz

is crucial for this result. Notice that if H : r0, 1s ˆ M Ñ E is a homotopy of

sections fτ :“ Hpτ, ¨q from f0 to f1, then fτ p0q “ 0 for all τ , thus BτHpτ, 0q vanishes
and

D2Hpτ, 0q “ dfτ p0q.
But dfτ p0q cannot be an isomorphism for all τ P p0, 1q since df0p0q preserves orien-
tation while df1p0q reverses it: there must exist a parameter τ0 P p0, 1q for which
dfτ0p0q is singular (see Figure 12.2), making pτ0, 0q a critical zero of H . This is not
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ϕ0

ϕ1

ϕτ0

Figure 12.2. A family of odd functions ϕτ : R Ñ R defining a pos-
sible homotopy between the sections f0, f1 P ΓpEq in Example 12.13
via fτ px ` iyq :“ ϕτ pxq ` iy.

a problem that can be fixed by making H more generic—the homotopy will never
be transverse to the zero-section, no matter what we do.

The need to address issues of the type raised by Examples 12.10 and 12.13 leads
naturally to the notion of multisections as outlined in [Sal99, §5] and [FO99], and
this is a major feature of the analysis under development by Fish-Hofer-Wysocki-
Zehnder (see for example [HWZ10,FH]). In Example 12.13 for instance, one can
consider functions

g : C Ñ Sym2pCq :“ pC ˆ Cq
L

pz1, z2q „ pz2, z1q,
which can be regarded as doubly-valued sections of E Ñ M if g is Z2-equivariant
for the antipodal action of Z2 on the symmetric product Sym2pCq. Such a section is
considered single-valued at any point z where gpzq is of the form rpv, vqs, so one can
now imagine homotopies from g0pzq :“ rpf0pzq, f0pzqqs to g1pzq :“ rpf1pzq, f1pzqqs
through doubly-valued sections gτ : C Ñ Sym2pCq, the advantage being that gτ is
now allowed to take nonzero values of the form rpv,´vqs at the origin. Indeed, if f :
C Ñ C is an odd function, then for any constant c P C, gpzq :“ rpfpzq ` c, fpzq ´ cqs
defines an odd function C Ñ Sym2pCq and therefore also a well-defined multisection
of E.

We can now construct a homotopy of multisections with better properties than
the homotopy fτ “ Hpτ, ¨q in Example 12.13. Assume the homotopy in that example
is as depicted in Figure 12.2, and there is a subinterval rτ´, τ`s Ă p0, 1q such that
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fτ “ f0 for τ ď τ´ and fτ “ f1 for τ ě τ`. Choosing a smooth function β :
r0, 1s Ñ r0, 1s with compact support in p0, 1q such that β|rτ´,τ`s ” 1, we define
gτ : C Ñ Sym2pCq by

gτ pzq :“ rpfτ pzq ` βpτq, fτ pzq ´ βpτqqs.
The zero set of a multisection is defined to be the set of points at which any of its
branches vanishes, e.g. for gτ , we write g´1

τ p0q :“ f´1
τ pβpτqq Y f´1

τ p´βpτqq, and the
zero set of the homotopy is

rZ :“
 

pτ, zq P r0, 1s ˆ C
ˇ̌
fτ pzq “ βpτq or fτ pzq “ ´βpτq

(
.

We also associate to each point in g´1
τ p0q a rational weight, in this example namely

1{2 if the multisection has two branches but only one of them vanishes, and 1 if both

do. This produces the picture in Figure 12.3 (left) of rZ as a subset of r0, 1s ˆ C.
What we really want however is to view the zero set as a subset of the orbifold

r0, 1s ˆ M “ r0, 1s ˆ pC{Z2q, which gives the picture of Z :“ rZ{Z2 Ă r0, 1s ˆ M in
Figure 12.3 (right). Here it is appropriate to adjust the rational weights by dividing
by κz at any point with a nontrivial isotropy group, as e.g. some of the branching

phenomena in rZ no longer look like branching in Z, but are merely points at which
the local isotropy of the ambient orbifold changes. Finally, we observe that the
orbifold and orbibundle in this example both have natural orientations, thus so
do the zero sets; these orientations are indicated with arrows in Figure 12.3, and
they give rise to signs at each boundary point, which are shown multiplied by the
corresponding rational weights. You will notice that the sum of these signed rational
weights at BZ is zero.

What we have constructed in this example is known as a weighted branched
1-manifold with boundary. (For precise definitions of this notion, see [Sal99,
McD06].) It leads to a general proof of the invariance of #f´1p0q P Q for sections
f of an oriented orbibundle over a closed oriented orbifold: given any two sections f0
and f1 with isolated zeroes, the zero set of a generic multivalued homotopy between
them defines a compact oriented weighted branched 1-manifold that can be under-
stood as an oriented cobordism between f´1

0 p0q and f´1
1 p0q. One must then appeal

to a certain straightforward generalization (and corollary) of the classification of 1-
manifolds: if Z is a compact oriented weighted branched 1-manifold with boundary,
then the algebraic count (with signs and rational weights) of points in BZ is zero. A
complete proof of this statement may be found e.g. in [Sal99, Lemma 5.11]. Note
that this depends crucially on orientations—in contrast to ordinary 1-manifolds,
branched 1-manifolds need not be orientable in general, and there is no “mod 2
version” of the statement about the number of boundary points if orientations are
ignored. For this reason, the coherent orientations from Lecture 11 are an indispens-
able ingredient in any version of SFT for which curves with nontrivial automorphisms
cannot be excluded. The precise meaning of the formula

#BM1pJq “ 0

should now be understood in these terms: after applying a sufficiently generic multi-
valued perturbation of the nonlinear Cauchy-Riemann equation, M1pJq carries the
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τ “ τ´

τ “ τ`

τ “ 1

R Ă C

11 1

1

1

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2 1

2

1
2

´pf´1
0 p0qq

f´1
1 p1q

`1´1
2

´1
2

ZrZ

Figure 12.3. The zero set of a multivalued homotopy between two
sections of the orbibundle in Example 12.13. The picture at the left

shows rZ Ă r0, 1s ˆC, while the picture at the right shows its quotient
Z Ă r0, 1s ˆ M , together with orientations and rational weights.

structure of a compact oriented weighted branched 1-manifold with boundary, hence
the rational count of points in its boundary must vanish.

One can similarly use multivalued perturbations to define #f´1p0q for sections
of oriented orbibundles E over closed oriented orbifolds M on which transversal-
ity for single-valued sections is impossible. If rankE “ dimM , the zero set of a
generic multisection f P ΓpEq is an oriented weighted branched 0-manifold, which
means a discrete set of points with signs and rational weights attached to them.
As Figure 12.3 suggests, the sum of these signed rational numbers is the correct
homotopy-invariant definition of #f´1p0q and thus of the Euler number of such an
orbibundle. In general it is a rational number, not an integer.

12.4.3. The inhomogeneous Cauchy-Riemann equation. Let us now briefly
sketch how the rational count of index 1 curves

(12.13) #
`
M$

g,0pJ,A,γ`,γ´q
L
R
˘

P Q

appearing in the formula (12.8) for the SFT generating function H can be defined
without making unrealistic assumptions about transversality. As of this writing, no
definition with complete details has yet appeared in writing, though there exists
a considerable body of literature on polyfolds meant to prepare the way for this
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definition; see [FH] and the references therein. For our discussion, we will avoid the
difficult global aspects of this story and give only a local picture.

The functional-analytic setup from Lecture 7 identifies a neighborhood of any
curve rpΣ, j0,Γ`,Γ´,H, u0qs P Mg,0pJ,A,γ`,γ´q with a neighborhood of pj0, u0q
in B̄´1

J p0q{G for the nonlinear Cauchy-Riemann operator B̄J : T ˆ Bk,p,δ Ñ Ek´1,p,δ,

where Bk,p,δ is a Banach manifold of asymptotically cylindrical maps 9Σ Ñ xW and
T Ă J pΣq is a G-invariant Teichmüller slice through pj0,Γq, with G :“ AutpΣ, j0,Γq
acting on T ˆ Bk,p,δ by ψ ¨ pj, uq :“ pψ˚j, u ˝ ψq. In Lecture 8, we showed that
taking generic perturbations of J makes B̄J transverse to the zero-section along
the open set of pj, uq P B̄´1

J p0q such that u is somewhere injective. The set of
perturbations achieved in this way is, in fact, much smaller than the set of all
possible perturbations of the section B̄J : T ˆ Bk,p,δ Ñ Ek´1,p,δ; in particular, all
of them are G-equivariant. The latter is a condition we need to keep if we want a
moduli space that is geometrically meaningful, but it might still make life easier if
we perturb the section B̄J directly instead of perturbing J . This leads to the idea of
an inhomogeneous perturbation.

Ignoring equivariance for the moment, let us consider what happens if we replace
the section B̄J with

B̄J,ν :“ B̄J ´ ν

for a generic section ν : T ˆ Bk,p,δ Ñ Ek´1,p,δ, so that instead of looking for pairs
pj, uq such that u : p 9Σ, jq Ñ pRˆM,Jq is J-holomorphic, we are looking for solutions
pj, uq of the inhomogeneous nonlinear Cauchy-Riemann equation

du` Jpuq ˝ du ˝ j “ νpj, uq.
It is clear that B̄J ´ ν will be transverse to the zero-section for generic choices of the
section ν, but in practice, we also need ν to satisfy a few more conditions which make
this transversality result less obvious. One of those is that the linearization of B̄J ´ν

should be Fredholm on its zero set and have the same index as the linearization of
the unperturbed section B̄J , so that the implicit function theorem can still be used
to prove that B̄´1

J pνq is a smooth manifold of the correct dimension. This will be
true for instance if DB̄J,νpj, uq differs from DB̄Jpj, uq only be a zeroth-order operator

that decays to zero at infinity. To achieve this, let Ξ Ñ T ˆ 9ΣˆxW denote the vector
bundle with fibers

Ξpj,z,pq :“ HomC

`
pTz 9Σ, jq, pTpxW,Jq

˘
,

choose a section K P ΓpΞq that is compactly supported with respect to z P 9Σ and
define the section ν : T ˆ Bk,p,δ Ñ Ek´1,p,δ by

νpj, uqpzq :“ Kpj, z, upzqq.
The linearization of B̄J,ν at pj, uq P B̄´1

J,νp0q now takes the form

DB̄J,νpj, uqpy, ηq “ rJpuq ˝ du ˝ y ´ D1Kpj, z, uqys ` Dν
uη,

where

Dν
u :“ ∇η ` Jpuq ˝ ∇η ˝ j ` ∇ηJ ˝ du ˝ j ´ ∇ηK
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for any symmetric connection ∇ on xW . The second term here is a Cauchy-Riemann

type operator on u˚TxW , and the compact support ofK implies thatDν
u has the same

asymptotic behavior as in the unperturbed case, so that the Fredholm condition
still holds and the index is unchanged. If we also allow K to vary in a suitable
Banach manifold of sections of Ξ, say the space ΓǫpΞq of Cǫ-small perturbations of
some chosen Kref P ΓpΞq, and differentiate it in some direction pη,K 1q P TuBk,p,δ ‘
TKΓǫpΞq, we obtain the operator

W k,p,δpu˚TxW q ‘ TKΓǫpΞq Ñ W k´1,p,δpHomCpT 9Σ, u˚TxW qq
pη,K 1q ÞÑ Dν

uη ´ K 1pj, z, uq,
which is easily shown to be surjective by an argument similar to the proof of
Lemma 8.12. Indeed, for k “ 1, there must otherwise exist a nontrivial θ P
Lq,´δpHomCpT 9Σ, u˚TxW qq for 1

p
` 1

q
“ 1 such that

xDν
uη, θyL2 “ 0 for all η P W 1,p,δpu˚TxW q,

xK 1pj, z, uq, θyL2 “ 0 for all K 1 P TKΓǫpΞq.
The first relation implies that θ is a weak solution to a linear Cauchy-Riemann type
equation, so it is smooth and its zeroes are isolated. But it is then easy to find a
perturbation K 1 P TKΓǫpΞq for which the pointwise inner product of K 1pj, z, uq with
θ is positive in a neighborhood of some point z0 where θpz0q ‰ 0, and vanishes outside
such a neighborhood, giving a contradiction. The implicit function theorem now
implies the smoothness of a certain universal moduli space to which one can apply
the Sard-Smale theorem as in Lecture 8 and conclude that for generic K P ΓpΞq,
the section B̄J,ν is transverse to the zero-section everywhere.

The inhomogeneous perturbation gives us the freedom to avoid assuming that
u is somewhere injective, but we still cheated in the above argument by ignoring
the question of equivariance. For a generic K P ΓpΞq, the resulting section ν :
T ˆ Bk,p,δ Ñ Ek´1,p,δ is typically not G-equivariant unless K satisfies the additional
condition

K “ ϕ˚K for all ϕ P G, where pϕ˚Kqpj, z, xq :“ Kpϕ˚j, ϕpzq, xq ˝ dϕpzq.
Requiring this in the transversality argument above would have killed the argument:
it takes away our ability to choose K 1 at will near a specific point z0 P 9Σ without
also changing the inner product of K 1pj, z, uq with θ in other regions. This should
not be surprising, as it is just another example of the standard conflict between
transversality and equivariance.

But in this form, the problem is easy to solve with a multivalued perturba-
tion. Indeed, if G is finite,4 we can for any given K P ΓpΞq define a finite set
tK1, . . . , KNu Ă ΓpΞq as the G-orbit of K, i.e. the set of sections of the form
ϕ˚K P ΓpΞq for ϕ P G, and let tν1, . . . , νNu denote the corresponding set of sections
of the Banach space bundle Ek´1,p,δ Ñ T ˆ Bk,p,δ. After a generic perturbation of
K, we can assume each of the perturbations B̄J,νi for i “ 1, . . . , N is transverse to

4For an idea of what to do when dimG ą 0, see [Sal99, §5.3].
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the zero-section, and while the individual sections B̄J,νi are not G-equivariant, they
are equivariant as a collection, so that in particular their collective zero set

Nď

i“1

B̄´1
J,νi

p0q Ă T ˆ Bk,p,δ

isG-invariant. Associating to each element pj, uq in this set the weight λpj, uq :“ q{N
where q is the number of elements i P t1, . . . , Nu such that B̄J,νipj, uq “ 0, the
quotient of this zero set by G now acquires the structure of a finite-dimensional
weighted branched orbifold.

We can incorporate asymptotic markers into this picture the same way as in
Proposition 11.1: replace each of the finite-dimensional manifolds Mi :“ B̄´1

J,νi
p0q

with a finite cover ĂMi consisting of triples pj, u, ℓq, where pj, uq P B̄´1
J,νi

p0q and ℓ is a
choice of asymptotic markers at every puncture. Fixing coherent orientations for the
determinant line bundles of the Cauchy-Riemann type operators Dν

u now determines

orientations of the manifolds ĂMi, so that the quotient of
ŤN
i“1

ĂMi by G becomes
an oriented weighted branched orbifold. For the definition of the SFT generating
function H, we are only interested in spaces of virtual dimension 1 living in a
symplectization RˆM , in which case the orientation prevents orbifold singularities
from appearing, and we are left with an oriented weighted branched 1-manifold,
whose quotient by the R-action is then an oriented weighted branched 0-manifold.
The count (12.13) is now defined as the sum of the signed rational weights of all
points in this space.

We have oversimplified several aspects of this discussion. One point worth em-
phasizing is that what we’ve given above is a purely local description of a moduli
space of solutions to a perturbed equation—it depends on several choices such as a
Teichmüller slice through j0 and the parametrization of some curve u0 : p 9Σ, j0q Ñ
pxW,Jq. We have not given a global definition of this moduli space, which would be
necessary in order to give a proper definition of the count of perturbed solutions.
There are many subtle technical issues involved in formulating these notions globally
so that the result can be shown to be independent of choices. For an introduction
to this topic, see [FH].

Remark 12.14. Multivalued perturbations are not the only possible approach
to transversality problems in SFT, and easier methods are possible in some special
situations. One well-known example is the rational Gromov-Witten invariants of
semipositive symplectic manifolds: if one considers only closed holomorphic curves
of genus g “ 0 with m ě 3 marked points, then equivariance can be eliminated from
the picture because AutpS2, i,Θq is trivial whenever #Θ ě 3. It then suffices to take
single-valued inhomogeneous perturbations (as in [RT95]) or domain-dependent al-
most complex structures (as in [MS12]) to achieve transversality for all moduli
spaces, and the resulting curve counts are not just rational numbers, they are in-
tegers. The same technique can also be used without the assumption m ě 3, by
identifying the invariants for m ď 2 with invariants that count curves with 3 marked
points, 3 ´ m of which are required to satisfy an incidence condition in which the
evaluation map intersects a suitable cycle in the image. The curve count obtained in
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this way is, however, generally an overcount, as there may be multiple inequivalent
ways to introduce auxiliary marked points satisfying the incidence condition; the
count therefore needs to be divided by a combinatorial factor, producing a result
that is generally in Q rather than Z. The same thing happens in the more sophis-
ticated approach by Cieliebak-Mohnke [CM07] (see also Gerstenberger [Ger13]
for the higher-genus case), in which Donaldson hypersurfaces are used to define an
incidence condition satisfied by a generally very large number of auxiliary marked
points. This trick kills equivariance and thus eliminates the need for multivalued
perturbations, but the invariants are still in Q due to the combinatorics of auxiliary
marked points (see §12.7.3 for more on this). The Donaldson hypersurface tech-
nique has also been applied (with single-valued inhomogeneous perturbations) for
punctured holomorphic curves in [CM18].

We will not discuss multisections or weighted branched manifolds any further,
but the main takeaway from this discussion should be that defining an algebraic
count of objects that respect symmetries can often be done, even when achieving
transversality while respecting these symmetries is impossible, but the count one
obtains in this way is generally rational, not an integer. For the rest of this lecture,
we will return to the convenient fiction that transversality is always satisfied, but
you may want to keep in mind that the objects we describe as 0- or 1-dimensional
oriented manifolds are in general actually weighted branched manifolds.

12.5. Cylindrical contact homology revisited

Under an extra assumption on the complex pArr~ss,DSFTq, we can recover from
it a more general version of the cylindrical contact homology we saw in Lecture 10.
Suppose in particular that there are no index 1 holomorphic planes in R ˆ M , so
every term in ~H has at least one factor of either ~ or one of the qγ variables. Then

DSFT “
ÿ

γ,γ1,A

κγ

¨
˝ ÿ

uPM0,0pJ,A,γ,γ1q{R

ǫpuq
|Autpuq|e

Aqγ1
B

Bqγ

˛
‚` . . . ,

where the first sum is over all pairs of good Reeb orbits γ and γ1, and the ellipsis
is a sum of terms that all include at least a positive power of ~ or two qγ variables
or two partial derivatives. Let us abbreviate the spaces M0,0pJ,A, γ, γ1q{R of R-
equivalence classes of J-holomorphic cylinders by MApγ, γ1q, and notice that for
any u P MApγ, γ1q, the automorphism group is a cyclic group of order equal to the
covering multiplicity

|Autpuq| “ κu :“ covpuq P N.

Thus for any single generator qγ, we have

DSFTqγ “ BCCHqγ ` Op|q|2, ~q,
where

(12.14) BCCHqγ :“ κγ
ÿ

γ1,A

¨
˝ ÿ

uPMApγ,γ1q

ǫpuq
κu

˛
‚eAqγ1 .
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The fact that D2
SFT “ 0 thus implies

B2
CCH “ 0,

and the homology of the graded R-module generated by tqγ | γ goodu with differ-
ential BCCH is an obvious generalization of the cylindrical contact homology from
Lecture 10. What we saw there was a special case of this where the combinatorial
factor κγ{κu did not appear because we were restricting to a homotopy class in which
all orbits were simply covered, and all holomorphic cylinders were thus somewhere
injective.

The presence of the factor κγ{κu deserves further comment. According to the
above formula, we have

B2
CCHqγ “

ÿ

γ1,γ2,A,A1

ÿ

uPMApγ,γ1q

ÿ

vPMA1 pγ1,γ2q
eA`A1 κγκγ1ǫpuqǫpvq

κuκv
qγ2 ,

hence B2
CCH “ 0 holds if and only if for all A P H2pMq and all pairs of good orbits

γ`, γ´,

(12.15)
ÿ

γ0

ÿ

B`C“A

¨
˝ ÿ

pu,vqPMBpγ`,γ0qˆMCpγ0,γ´q

κγ0
κuκv

ǫpuqǫpvq

˛
‚“ 0.

If γ` and γ´ happen to be simply covered orbits, then u and v in this expression
always have trivial automorphism groups and it is clear what this sum means: every
such pair pu, vq P MBpγ`, γ0qˆMCpγ0, γ´q corresponds to exactly κγ0 distinct holo-
morphic buildings obtained by different choices of decoration, so (12.15) is the count
of boundary points of the compactified 1-dimensional manifold of index 2 cylinders
MApγ`, γ´q{R. This sum skips over all bad orbits γ0, but this is fine because when-
ever the breaking orbit is bad, there are evenly many choices of decoration such
that half of these choices cancel the other half when counted with the correct signs
(cf. Remark 12.5).

To understand why this formula is still correct in the presence of automorphisms,
let us outline two equivalent approaches.

The easiest option is to instead consider moduli spaces with asymptotic markers,
which never have automorphisms: removing unnecessary factors of κγ` and κγ´ then
transforms (12.15) into

ÿ

γ0

ÿ

B`C“A

1

κγ0
#M$

Bpγ`, γ0q ¨ #M$
Cpγ0, γ´q “ 0.

Now since each pair pu, vq P M$
Bpγ`, γ0qˆM$

Cpγ0, γ´q carries a canonical decoration
and thus determines a holomorphic building, the division by κγ0 accounts for the
fact that #M$

Bpγ`, γ0q ¨ #M$
Cpγ0, γ´q overcounts the set of broken cylinders from

γ` to γ´ with asymptotic markers at γ˘ by precisely this factor, as a simultaneous
adjustment of the marker at γ0 in both u P M$

Bpγ`, γ0q and v P M$
Cpγ0, γ´q produces

the same decoration and therefore the same building.
The following alternative perspective will be more useful when we generalize

beyond cylinders in the next section. We can directly count points in BMApγ`, γ´q,
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though as we saw in §12.4, rational weights should be included in the count whenever
there is isotropy. Let us write

MApγ`, γ´q “ M$
Apγ`, γ´q{G,

where G – Zκγ`
ˆ Zκγ´

is a finite group acting by adjustment of the asymptotic

markers. Since M
$

Apγ`, γ´q is a compact oriented 1-manifold with boundary un-
der Assumption 12.1, the signed count of its boundary points is 0. We can ignore
buildings broken along bad orbits in this count, since (by Remark 12.5) these al-
ways come in cancelling pairs. Let us now transform this into a count of buildings
pu|Φ|vq P BMApγ`, γ´q broken along good orbits γ0: here u P MBpγ`, γ0q and
v P MCpγ0, γ´q for some homology classes with B ` C “ A, and Φ is a decoration
which describes how to glue the ends of u and v at γ0. The automorphism group of
such a building is the subgroup

Autpu|Φ|vq Ă Autpuq ˆ Autpvq
consisting of all pairs pϕ, ψq P Autpuq ˆ Autpvq that define the same rotation at the
two punctures asymptotic to γ0; note that this group does not actually depend on
the decoration Φ. Since we’re talking about cylinders, we can be much more specific:
we have Autpuq “ Zκu and Autpvq “ Zκv , and if both are regarded as subgroups of
Up1q,

Autpu|Φ|vq “ Zκu X Zκv “ Zgcdpκu,κvq,

which is injected into AutpuqˆAutpvq by ψ ÞÑ pψ, ψq. The boundary of M
$

Apγ`, γ´q
can be understood likewise as a space of equivalence classes

rpu, vqs P
`
M$

Bpγ`, γ0q ˆ M$
Cpγ0, γ´q

˘ L
„,

where two such pairs are equivalent if their asymptotic markers at the ends as-
ymptotic to γ0 determine the same decoration. Now observe that the group G –
Zκγ`

ˆZκγ´
also acts on buildings in BM$

Apγ`, γ´q, and the stabilizer of this action

at pu, vq is Autpu|Φ|vq, hence each pu|Φ|vq P BMApγ`, γ´q gives rise to |G|
gcdpκu,κvq

terms in the count of BM$

Apγ`, γ´q, implying

(12.16)
ÿ

pu|Φ|vqPBMApγ`,γ´q

ǫpuqǫpvq
gcdpκu, κvq

“ 0.

Finally, notice that while each pair pu, vq P MBpγ`, γ0q ˆ MCpγ0, γ´q determines
buildings with κγ0 distinct choices of decoration, some of these buildings may be
equivalent: every pair of automorphisms pϕ, ψq P Autpuq ˆ Autpvq transforms a
building pu|Φ|vq by potentially changing the decoration Φ, thus producing an equiv-
alent building. This action on buildings is trivial if and only if pϕ, ψq P Autpu|Φ|vq,
hence every pair pu, vq P MBpγ`, γ0q ˆ MCpγ0, γ´q gives rise to exactly

κγ0ˇ̌
pAutpuq ˆ Autpvqq

L
Autpu|Φ|vq

ˇ̌ “ κγ0 gcdpκu, κvq
κuκv
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elements of BMApγ`, γ´q, so that (12.16) becomes

ÿ

γ0

ÿ

B`C“A

¨
˝ ÿ

pu,vqPMBpγ`,γ0qˆMCpγ0,γ´q

ǫpuqǫpvq
gcdpκu, κvq

κγ0 gcdpκu, κvq
κuκv

˛
‚

“
ÿ

γ0

ÿ

B`C“A

¨
˝ ÿ

pu,vqPMBpγ`,γ0qˆMCpγ0,γ´q

ǫpuqǫpvqκγ0
κuκv

˛
‚“ 0,

reproducing (12.15).

12.6. Combinatorics of gluing

Now let’s try to justify the formula H2 “ 0. The product of H with itself is the
formal sum over all pairs of index 1 curves u, v P Mσ

1 pJq{R of certain monomials:
in particular if these two curves respectively have genus gu and gv, homology classes
Au and Av, and asymptotic orbits γ˘

u and γ
˘
v , then the corresponding term in H2

is
ǫpuqǫpvq

|Autσpuq||Autσpvq|~
gu`gv´2eAu`Avqγ

´
u pγ

`
u qγ

´
v pγ

`
v .

Before we can add up all monomials of this form, we need to put all the q and p

variables in the same order: within each of the products qγ
´
u , pγ

`
u and so forth this is

simply a matter of permuting the variables and changing signs as appropriate, but
the interesting part is the product pγ

`
u qγ

´
v , for which we can apply the commutation

relations (12.9) to put all q variables before all p variables. Before discussing how
this works in general, let us consider a more specific example.

Assume γi for i “ 1, 2 are two specific orbits with n ´ 3 ` µCZpγiq even, so the
corresponding q and p variables have even degree, and suppose

γ
`
u “ pγ1, γ1, γ2q, γ

´
v “ pγ1, γ1q.

After applying the relation pγ1qγ1 “ qγ1pγ1 ` κγ1~ a total of five times, one obtains
the expansion

pγ1pγ1pγ2qγ1qγ1 “ q2γ1p
2
γ1
pγ2 ` 4κγ1~qγ1pγ1pγ2 ` 2κ2γ1~

2pγ2 ,

thus contributing a total of three terms to H2, namely the products of the factor
ǫpuqǫpvq

|Autpuq||Autpvq|e
Au`Av with each of the expressions

~gu`gv´2qγ
´
u q2γ1p

2
γ1
pγ2p

γ
`
v ,(12.17)

4κγ1~
gu`gv´1qγ

´
u qγ1pγ1pγ2p

γ
`
v ,(12.18)

2κ2γ1~
gu`gvqγ

´
u pγ2p

γ
`
v .(12.19)

As shown in Figure 12.4, this sum of three terms can be interpreted as the count of
all possible holomorphic buildings obtained by gluing v on top of u together with a
collection of trivial cylinders. Indeed, since γ

`
u and γ

´
v include two matching orbits

(which also happen to be the same one), there are several choices to be made:
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(1) The top-right picture shows what we might call the “stupid gluing,” in
which no ends of u are matched with any ends of v, but all are instead
glued to trivial cylinders, thus producing a disconnected building. This
possibility is encoded by (12.17), and we will see that in the total sum
forming H2, this term gets cancelled out by a similar term for the stupid
gluing of u on top of v.

(2) The lower-left picture shows the building obtained by gluing one end of
u to an end of v along the matching orbit γ1. This option is encoded
by (12.18), where the factor 4κγ1 appears because there are precisely 4κγ1
distinct buildings of this type: indeed, there are four choices of which end
of u should be glued to which end of v, and for each of these, a further κγ1
choices of the decoration. The arithmetic genus of the resulting building is
gu ` gv, as represented by the factor ~gu`gv´1.

(3) The lower-right picture is encoded by (12.19): here there are two choices of
bijections between the two pairs of punctures asymptotic to γ1, and taking
the choices of decoration at each breaking orbit into account, we obtain the
combinatorial factor 2κ2γ1 . The presence of two nontrivial breaking orbits
increases the arithmetic genus to gu`gv`1, as encoded in the factor ~gu`gv .

You may now be able to extrapolate from the above example why the commu-
tator algebra we’ve defined encodes gluing of holomorphic curves in the symplec-
tization and thus leads to the relation H2 “ 0. Think of the algorithm by which
you change qγ

´
u pγ

`
u qγ

´
v pγ

`
u into a sum of products with all q’s appearing before p’s:

for the first q you see appearing after a p, move it past each p for different orbits
(changing signs as necessary) until it encounters a p for the same orbit. Now you
replace pγqγ with p´1q|pγ||qγ |qγpγ `κγ~, turning one product into a sum of two. This
represents a choice between two options: either you move qγ past pγ and apply the
usual sign change, or you eliminate them both but replace them with the combina-
torial factor κγ and an extra ~. Then you continue this process until all q’s appear
before all p’s.

The key point is that the process of gluing v on top of u in all possible ways is
governed by exactly the same algorithm: first consider the disjoint union of the two
curves as a single disconnected curve, with its punctures ordered in the same way
in which their orbits appear in the monomial. Now reorder negative punctures of v
and positive punctures of u, changing orientations as appropriate, until you see two
such punctures next to each other approaching the same orbit γ. Here you have two
options: either glue them together, or don’t glue them but exchange their order. If
you exchange the order, then you may again have to change orientations (depending
on the parity of n ´ 3 ` µCZpγq), but if you glue, then you have κγ distinct choices
of decoration and will also increase the arithmetic genus of the eventual building
by 1. In this way, every individual term in the final expansion of qγ

´
u pγ

`
u qγ

´
v pγ

`
u

represents a particular choice of which positive of ends of u should or should not be
glued to which negative ends of v. Additional factors of ~ appear to keep track of
the increase in arithmetic genus, and covering multiplicities of the breaking orbits
also appear due to distinct choices of decorations. At the end these must still be
divided by orders of automorphism groups in order to avoid counting equivalent
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v

Figure 12.4. Three possible ways of gluing the curves u and v

along with trivial cylinders to form index 2 curves.

buildings separately. Fleshing out these details leads to the following explanation
for the relation H2 “ 0:

Proposition 12.15. Let BMσ

2 pJq denote the space of two-level holomorphic
buildings5 in MpJq that have total index 2 and no bad asymptotic or breaking orbits,
divided by the equivalence relation that forgets the order of the punctures. Then

H2 “
ÿ

uPBMσ
2 pJq

ǫpuq
|Autσpuq|~

g´1eAqγ
´
pγ

`
,

where the terms in each monomial are determined by u P BMσ

2pJq as follows:

(1) g is the arithmetic genus of u;
(2) A is the equivalence class of rus P H2pMq in H2pMq{G;
(3) γ

˘ “ pγ˘
1 , . . . , γ

˘
k˘

q are the asymptotic orbits of u after arbitrarily fixing
orderings of its positive and negative punctures;

5Recall from §9.4.4 that for a holomorphic building in a symplectization, each level is defined
only up to R-translation. Under our present transversality assumptions, both levels of each building
in BM

σ

2 pJq must have index 1, meaning each has a single index 1 component and possibly also

some trivial cylinders, thus BM
σ

2 pJq is a discrete (and therefore finite) space.
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(4) ǫpuq P t1,´1u is the boundary orientation at u determined by the chosen co-
herent orientations on M$pJq. Specifically, given the chosen ordering of the
punctures and an arbitrary choice of asymptotic markers at each puncture,
u determines a boundary point of a 1-dimensional connected component of

M
$pJq, and we define ǫpuq “ `1 if and only if the orientation of M

$pJq
at this point is outward.

Once again ǫpuq and qγ
´
pγ

`
change signs in the same way under any reordering

of the punctures, so their product is well defined, and there is no dependence on
choices of markers since bad orbits have been excluded.

Proof of Proposition 12.15. Our original formula for H gives rise to an
expansion

H2 “
ÿ

pu,vqPMσ
1

pJq{RˆMσ
1

pJq{R

ǫpuqǫpvq
|Autσpuq||Autσpvq|~

gu`gv´2eAu`Avqγ
´
u pγ

`
u qγ

´
v pγ

`
v .

As explained in the previous paragraph, the process of reordering pγ
`
u qγ

´
v to put all

q’s before p’s produces an expansion, each term of which can be identified with a
specific choice of which positive punctures of u should be glued to which negative
punctures of v. If k punctures are glued, then the resulting power of ~ is gu `
gv ´2`k, corresponding to the fact that the resulting building has arithmetic genus
gu`gv`k´1. We claim that the term for k “ 0 is cancelled out by the corresponding
term of H2 that has the roles of u and v reversed. To see this, imagine first the case
where u and v have no asymptotic orbits in common, hence no nontrivial gluings
are possible and all the q and p variables in the expression supercommute with each
other. Then since both curves have index 1, the monomials qγ

´
u pγ

`
u and qγ

´
v pγ

`
v must

both have odd degree, implying

qγ
´
u pγ

`
u qγ

´
v pγ

`
v “ ´qγ´

v pγ
`
v qγ

´
u pγ

`
u

and thus the desired cancelation. If u and v do have orbits in common, then the
result for the k “ 0 terms is still not any different from this: all signs still change
in the same way when applying rpγ, qγs “ κγ~ to change pγqγ into qγpγ, we simply
ignore the extra term κγ~ since it is only relevant for gluings with k ą 0. This
proves the claim, and consequently, that the expansion resulting from the curves u
and v has no term containing ~gu`gv´2.

The combinatorial factors can be explained as follows. The commutator expan-
sion for pγ

`
u qγ

´
v automatically produces combinatorial factors that count the different

possible gluings, but if u and v have automorphisms, then not all of these give in-
equivalent buildings. This part of the discussion is a straightforward extension of
what we did for cylindrical contact homology at the end of §12.5. Indeed, the actual
set of inequivalent buildings is the quotient of this larger set by an action of

pAutσpuq ˆ Autσpvqq
L
Autσpuq,

where for a building u formed by endowing the pair pu, vq with decorations, Autσpuq
denotes the subgroup consisting of pairs pϕ, ψq P Autσpuq ˆ Autσpvq that preserve
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pairs of breaking punctures along with their decorations. This is what changes the
factor 1

|Autσpuq||Autσpvq| into
1

|Autσpuq| as in the statement of the proposition. �

The theorem that H2 “ 0 now follows once you believe the propaganda from

§12.4, arguing that
ř

uPBMσ
2 pJq

ǫpuq
|Autσpuq| is the correct way to count the boundary

points of M
σ

2 pJq. As we did with cylindrical contact homology, one can also use

the obvious projection M
$pJq Ñ M

σpJq to reduce this to the fact that if the 1-

dimensional components of M
$pJq are manifolds (which is true if Assumption 12.1

holds), then the integer-valued signed count of their boundary points vanishes.

12.7. Some remarks on torsion, coefficients, and conventions

12.7.1. What if H1pMq has torsion? The main consequence for SFT ifH1pMq
has torsion is that one cannot define an integer grading, though there is always a
canonical Z2-grading.

6 The setup in §12.2 must now be modified as follows. The
reference curves

C1, . . . , Cr Ă M

are required to form a basis of H1pMq{torsion, so for every integral homology class
rγs, there is a unique collection of integers m1, . . . , mr such that rγs “ ř

imirCis P
H1pM ;Qq. Instead of spanning surfaces for each orbit, one can define spanning
chains Cγ, which are singular 2-chains with rational coefficients satisfying

BCγ “
ÿ

i

mirCis ´ rγs

for the aforementioned set of integersmi P Z. Note that Cγ must in general have non-
integral coefficients since

ř
imirCis and rγs might not be homologous in H1pM ;Zq,

so Cγ cannot always be represented by a smooth map of a surface. One consequence
of this is that the absolute homology class associated to an asymptotically cylindrical
holomorphic curve u : 9Σ Ñ R ˆ M will now be rational,

rus P H2pM ;Qq,
and we must therefore take G to be a linear subspace

G Ă H2pM ;Qq.
Another consequence is that we cannot use capping chains to transfer trivializations
from the reference curves to the orbits, so there is no natural way to define µCZpγq
as an integer. The easiest thing to do instead is to take the mod 2 Conley-Zehnder
index

µCZpγq P Z2

and define all degrees of generators as either even or odd with no further distinction.
In particular, we now have

|qγ | “ n ´ 3 ` µCZpγq P Z2, |pγ| “ n´ 3 ´ µCZpγq P Z2,

6In fact there is a bit more than a Z2-grading, see [EGH00, §2.9.1].
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while ~ and all elements of R “ QrH2pM ;Qq{Gs are even. With these modifications,
the rest of the discussion also becomes valid for the case where H1pMq has torsion,
and leads to Z2-graded contact invariants.

12.7.2. Combinatorial conventions. The combinatorial factors appearing in
our definition ofHmay at first look slightly different from what appears elsewhere in
the literature. Actually, most papers seem to agree on this detail, but various subtle
differences and ambiguities in notation mean that it sometimes requires intense
concentration to recognize this fact.

The original propaganda paper [EGH00] expresses everything in terms of moduli
spaces with asymptotic markers, and the formula forH in §2.2.3 of that paper (which
is expressed in a slightly more general form involving marked points) agrees with
our (12.8).

Cieliebak and Latschev [CL09, §2] write down the same formula in terms of mod-
uli spaces that have no asymptotic markers but remember the order of the punctures,
thus it includes some factorials that do not appear in (12.6) but is missing the κγ
terms of (12.8). The notation ngpΓ´,Γ`q used in [CL09] for curve counts must be
understood implicitly to include rational weights arising from automorphisms (or
multivalued perturbations, as the case may be).

My paper with Latschev [LW11] uses moduli spaces with asymptotic markers
and attempts to write down the same formula as in [EGH00,CL09], but gets it
slightly wrong due to some missing κγ terms that should appear in front of each B

Bqγ .

Mea culpa.
For cylindrical contact homology, the combinatorial factors in §12.5 also agree

with what appears in [Bou03]. As observed by Nelson [Nel13, Remark 8.3], there
are other conventions for BCCH that appear in the literature and lead to equivalent
theories: in particular it is possible to replace (12.14) with

BCCHqγ :“
ÿ

γ1,A

κγ1

¨
˝ ÿ

uPMApγ,γ1q

ǫpuq
κu

˛
‚eAqγ1 .

One can derive this from the same definition of H by applying a “change of co-
ordinates” to the algebra Arr~ss, or equivalently, by choosing a slightly different
representation of the operator algebra defined by the pγ and qγ variables. To avoid
confusion, let us write the generators of A as xγ instead of qγ , and then define the
operators qγ and pγ on Arr~ss by

qγ “ κγxγ , pγ “ ~
B

Bxγ
.

These operators still satisfy rpγ, qγs “ κγ~ and thus define an equivalent theory, but
the resulting differential operator DSFT on Arr~ss now includes extra factors of κγ
for the negative punctures instead of the positive punctures.

12.7.3. Coefficients: Q, Z or Z2? While we were able to use Z2 coefficients
for cylindrical contact homology in a primitive homotopy class in Lecture 10, a quick
glance at any version of the formula for H should make the reader very skeptical
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about doing this for more general versions of SFT. The existence of curves with
automorphisms means that H always contains terms with rational (but nonintegral)
coefficients. And this is only what is true in the fictional world of Assumption 12.1:
in the general version of the theory, we expect to have to replace expressions likeř
u

ǫpuq
|Autpuq| with counts of 0-dimensional branched manifolds with rational weights,

arising as zero sets of generic multisections.
As mentioned in Remark 12.14, there are various tricks available for avoiding

multivalued perturbations, but these typically also produce rational counts for com-
binatorial reasons. For instance, in the approach of Cieliebak-Mohnke [CM07] for
the rational Gromov-Witten invariants of a closed symplectic manifold pW 2n, ωq
with rωs P H2pW ;Qq, the invariants are defined by replacing the usual moduli
space M0,mpJ,Aq by a space M0,m`NpJ,A; Y q consisting of J-holomorphic spheres
u : S2 Ñ W with some large number of auxiliary marked points ζ1, . . . , ζN required
to satisfy the condition

upζiq P Y, i “ 1, . . . , N.

Here Y 2n´2 Ă W 2n is a J-holomorphic hypersurface with rY s “ D ¨ PDprωsq P
H2n´2pW q for some degree D P N, and the number of extra marked points is deter-
mined by

N “ A ¨ rY s “ Dxrωs, Ay,
so positivity of intersections implies that u only intersects Y at the auxiliary marked
points. These auxiliary points are convenient for technical reasons involving trans-
versality—their role is vaguely analogous to the way that asymptotic markers get
rid of isotropy in SFT—but they are not geometrically meaningful, as we’d actually
prefer to count curves in M0,mpJ,Aq. Every such curve has N intersections with Y ,
so accounting for permutations, it lifts to N ! distinct elements of M0,m`NpJ,A; Y q,
and the correct count is therefore obtained as an integer count of curves in the latter
space divided by N !. Perturbing to achieve transversality breaks the symmetry,
however, so there is no guarantee that counting curves in M0,m`NpJ,A; Y q will
produce a multiple of N !, and moreover, N could be arbitrarily large since one
needs to take hypersurfaces of arbitrarily large degree in order to show that the
invariants don’t depend on this choice. For these reasons, the resulting Gromov-
Witten invariants are rational numbers rather than integers, and their denominators
cannot be predicted or bounded.

The upshot of this discussion is that there is probably no hope of defining SFT
with integer coefficients in general, much less with Z2 coefficients, and the inclusion
of orientations in the picture is unavoidable.

The good news however is that whenever formulas like
ř
u

ǫpuq
|Autpuq| can be taken

literally as a count of curves, the chain complex pArr~ss,DSFTq can in fact be defined
with Z coefficients, and one can even reduce to a Z2 version in order to ignore signs.
A special case of this was observed for cylindrical contact homology in [Nel15, Re-
mark 1.5], and you may notice it already when you look at the formula (12.14) for
BCCH: the factor κγ{κu is always an integer since the multiplicity of a holomorphic
cylinder always divides the covering multiplicity of both its asymptotic orbits. Sur-
prisingly, something similar turns out to be true for the much larger chain complex
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of SFT. The following result is only a statement about a chain complex and makes
no claims about any chain maps between complexes defined via different choices of
α and J—one should therefore not expect it to imply anything interesting about
actual contact invariants, but it is included here mainly for the author’s amusement.

Proposition 12.16. If Assumption 12.1 holds then the rational coefficients
ngpγ,γ1, kq in the formula (12.11) for DSFTq

γ are all integers.

Corollary 12.17. Under Assumption 12.1, there exist well-defined chain com-
plexes

pAZrr~ss,DSFTq and pAZ2
rr~ss,DSFTq,

where for a general commutative ring R, AR denotes the graded supercommutative
unital algebra over RrH2pMq{Gs generated by the qγ variables for good Reeb orbits γ.
The differentials DSFT on AZrr~ss and AZ2

rr~ss are defined by the same formula as
on Arr~ss, where in the Z2 case we are free to set all signs ǫpuq equal to 1.

Proof of Proposition 12.16. We need to show that expressions of the form

κγ`

|Autσpuq|
B

Bqγ`
1

. . .
B

Bqγ`
k`

qγ

produce integer coefficients for every holomorphic curve u with asymptotic orbits
γ

˘ “ pγ˘
1 , . . . , γ

˘
k˘

q and every tuple γ “ pγ1, . . . , γmq. It suffices to consider the

special case γ “ γ
`, as the derivative in question is only nonzero on monomials

that are divisible by qγ
`
. Up to a sign change, we can reorder the orbits and write

γ
` in the form

γ
` “ pγ1, . . . , γ1loooomoooon

m1

, . . . , γN , . . . , γNlooooomooooon
mN

q

for some finite set of distinct orbits γ1, . . . , γN and numbers mi P N, i “ 1, . . . , N .
We then have

κγ`

|Autσpuq|
B

Bqγ`
1

. . .
B

Bqγ`
k`

qγ
` “

κm1

γ1
. . . κmN

γN

|Autσpuq|

ˆ B
Bqγ1

˙m1

. . .

ˆ B
BqγN

˙mN `
qm1

γ1
. . . qmN

γN

˘

“ ˘
κm1

γ1
. . . κmN

γN
m1! . . .mN !

|Autσpuq| .

(12.20)

We claim that this number is always an integer. Indeed, if Autσpuq is nontrivial, then
u : 9Σ Ñ R ˆ M is a multiple cover u “ v ˝ ϕ for some holomorphic branched cover
ϕ : pΣ, jq Ñ pΣ1, j1q and somewhere injective curve v : p 9Σ1 “ Σ1zΓ1, j1q Ñ pRˆM,Jq.
Automorphisms ψ P Autσpuq thus define biholomorphic maps on pΣ, jq that permute
each of the sets of punctures asymptotic to the same orbit. Given any puncture
z P Γ where u is asymptotic to γi, the Autσpuq-orbit of z consists of ℓ ď mi other
punctures also asymptotic to γi, and its stabilizer is a cyclic subgroup of order
k “ |Autσpuq|{ℓ, acting on a neighborhood of z by biholomorphic rotations. It
follows that κγi is divisible by k, hence

κγiℓ

|Autσpuq| P N,
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and (12.20) is a multiple of this. �

Remark 12.18. Since 1 “ ´1 in AZ2
, anticommuting elements of AZ2

rr~ss ac-
tually commute, so unless one imposes extra algebraic conditions in the case of Z2

coefficients, higher powers of odd generators pγ and qγ do not vanish. Nonetheless,
these powers still do not appear inH, so the complex pAZ2

rr~ss,DSFTq ignores curves
with multiple ends approaching an orbit of odd degree (and also bad orbits, for that
matter).
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In the previous lecture, we introduced an operator algebra defined via the su-
percommutators rpγ, qγs “ κγ~, then we defined the SFT generating function

H “
ÿ

uPMσ
1

pJq{R

ǫpuq
|Autσpuq|~

g´1eAqγ
´
pγ

`

and proved (modulo transversality) thatH2 “ 0. The generating function is a formal
power series whose coefficients are rational counts of holomorphic curves, and these
counts are strongly dependent on the choices of contact form α, almost complex
structure J P J pαq and further auxiliary data such as coherent orientations. Thus
in contrast to Gromov-Witten theory, the generating function does not define an
invariant, but one can follow the standard prescription of Floer-type theories and
define invariants via homology. We saw that for the natural representation Arr~ss of
the operator algebra defined by setting pγ “ κγ~

B
Bqγ , H defines a differential operator

DSFT : Arr~ss Ñ Arr~ss with D2
SFT “ 0. One of our goals in this lecture will be to

explain (again modulo transversality) why the resulting homology

HSFT
˚ pM, ξ;Rq “ H˚pArr~ss,DSFTq

is an invariant of the contact structure. We will then use it to define simpler nu-
merical invariants that detect symplectic fillability properties of contact manifolds.

But first, Arr~ss is not the only possible representation of the operator algebra
of SFT: other choices lead to different invariants with different algebraic structures.
Let’s begin by describing the original hierarchy of contact invariants that were out-
lined in [EGH00].

361
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Remark 13.1. We will continue in this lecture under the convenient fiction of
Assumption 12.1 that choosing J generically suffices to achieve transversality for all
holomorphic curves, with only occasional remarks on what needs to be modified in
the cold hard reality where multiple covers cannot be ignored. All theorems stated
in this lecture should therefore be understood with the caveat that they refer to
objects whose complete definitions remain work in progress (see e.g. [FH]).

We will also continue to assume for simplicity that H1pMq has no torsion, and
the same assumption is made about cobordisms in §13.2.2. Only minor changes
are necessary if this condition is lifted, e.g. one could then replace all instances of
H1pMq with H1pM ;Qq and assume always that the grading is Z2; see §12.7.1.

13.1. The Eliashberg-Givental-Hofer package

In the following, pM, ξq is a p2n ´ 1q-dimensional closed contact manifold with
a contact form α and almost complex structure J P J pαq for which the usual
optimistic transversality condition (Assumption 12.1) is assumed to hold. We fix
also the auxiliary data described in §12.2, plus a choice of subgroup G Ă H2pMq
which determines the coefficient ring

R “ QrH2pMq{Gs.
Each of the differential graded algebras described below then carries the same grad-
ing that was described in that lecture, i.e. there is always at least a Z2-grading, and
it lifts to Z if H1pMq is torsion free and c1pξq|G “ 0, or possibly Z2N if N P N is the
smallest possible value for c1pAq with A P G.

13.1.1. Full SFT as a Weyl superalgebra. We start with some seemingly
trivial algebraic observations. First, the relation H2 “ 0 is equivalent to

rH,Hs “ 0.

Remember that r , s is a super -commutator, so rF,Fs “ 0 holds automatically for
operators F with even degree, but H is odd, and for odd operators the commutator
is defined by rF,Gs “ FG ` GF, hence rH,Hs “ 2H2. Formally speaking r , s is a
super Lie bracket and thus satisfies the “super Jacobi identity”:

(13.1)
“
F, rG,Ks

‰
` p´1q|F||G|`|F||K|“G, rK,Fs

‰
` p´1q|F||K|`|G||K|“K, rF,Gs

‰
“ 0.

In order to create a homology theory out of H, we don’t absolutely need to find a
representation of the entire operator algebra: it suffices to find a representation of
the induced super Lie algebra. Indeed, suppose V is a graded Rrr~ss-module and
L is a linear grading-preserving map that associates to operators F (expressed as
power series functions of p’s, q’s and ~ with coefficients in R) an Rrr~ss-linear map

LF : V Ñ V

such that
LrF,Gs “ LFLG ´ p´1q|F||G|LGLF

for every pair of operators F,G. Then the Rrr~ss-linear map LH : V Ñ V satisfies

L2
H “ 1

2
rLH, LHs “ 1

2
LrH,Hs “ 0,



Lectures on Symplectic Field Theory 363

hence pV, LHq is a chain complex. The complex pArr~ss,DSFTq was a special case of
this, in which we represented the super Lie algebra via a faithful representation of
the whole operator algebra.

Exercise 13.2. Verify (13.1).

Remark 13.3 (supersymmetric sign rules). To see where the signs in (13.1)
come from, it suffices to know the following basic rule of superalgebra: for any
pair of Z2-graded vector spaces V and W , the natural “commutation” isomorphism
c : V b W Ñ W b V is defined on homogeneous elements by

cpv b wq “ p´1q|v||w|w b v.

For any permutation of a finite tuple of Z2-graded vector spaces, one can derive the
appropriate isomorphism from this: in particular the cyclic permutation isomor-
phism σ : X b Y b Z Ñ Y b Z b X takes the form

σ “ p1 b c23q ˝ pc12 b 1q : x b y b z ÞÑ p´1q|x||y|`|x||z|y b z b x.

Writing the Jacobi identity as r¨, r¨, ¨ss ˝ p1 ` σ ` σ2q “ 0 then produces (13.1). In
this sense, it only differs from the usual Jacobi identity in being based on a different
definition of the commutation isomorphism V b W Ñ W b V . For more on this
perspective, see [Var04, §3.1].

Now here is a different kind of example, where the representation does not respect
the product structure of the operator algebra but does respect its Lie bracket. Let
W denote the graded unital algebra consisting of formal power series

ÿ

γ,k

fγ,kpqq~kpγ ,

where the sum ranges over all integers k ě 0 and all ordered sets γ “ pγ1, . . . , γmq
of good Reeb orbits for m ě 0, and the fγ,k are polynomial functions of the qγ
variables, with coefficients in R. Note that the case of the empty set of orbits is
included here, which means pγ “ 1. The multiplicative structure of W is defined
via the usual (super)commutation relations, and its elements can be interpreted as
operators. If we now associate to each F P W the Rrr~ss-linear map

DF : W Ñ W : G ÞÑ rF,Gs,
then the Jacobi identity (13.1) implies

DrF,Gs “ DFDG ´ p´1q|F||G|DGDF.

This is just the graded version of the standard adjoint representation of a Lie algebra.
The only problem in applying this idea to define a differential

(13.2) DH : W Ñ W : F ÞÑ rH,Fs
is that H is not technically an element of W: indeed, H contains terms of order ´1
in ~, thus

H P 1

~
W.
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On the other hand, the failure of supercommutativity in W is a “phenomenon of
order ~,” i.e. since every nontrivial commutator contains a factor of ~, we have

rF,Gs “ Op~q for all F,G P W.

Here and in the following we use the symbol

Op~kq
to denote any element of the form ~kF for F P W. As a consequence, rH,Fs P W

whenever F P W, hence (13.2) is well defined, and the Jacobi identity now implies

D2
H “ 0.

The homology of the resulting chain complex gives another version of what is often
called full SFT,

HW
˚ pM, ξ;Rq :“ H˚pW, DHq.

A proof (modulo transversality) that this defines a contact invariant is outlined in
[EGH00, §2], but it is algebraically somewhat more involved than forHSFT

˚ pM, ξ;Rq,
so I will skip it since I don’t have any applications of HW

˚ pM, ξ;Rq in mind. As far
as I am aware, no contact-topological applications of this invariant or computations
of it (outside the trivial case—see §13.1.4 below) have yet appeared in the literature.
This is a pity, because HW

˚ pM, ξ;Rq actually has much more algebraic structure than
HSFT

˚ pM, ξ;Rq. Indeed, using the identities

rF,GKs “ rF,GsK ` p´1q|F||G|GrF,Ks,
rFG,Ks “ FrG,Ks ` p´1q|G||K|rF,KsG,

(13.3)

one sees that DH : W Ñ W satisfies a graded Leibniz rule,

DHpFGq “ pDHFqG ` p´1q|F|FDHG.

It follows thatDH : W Ñ W is also a derivation with respect to the bracket structure
on W, i.e.

DHrF,Gs “ rDHF,Gs ` p´1q|F|rF, DHGs
for all F,G P W. As a consequence, the product and bracket structures on W

descend to HW
˚ pM, ξ;Rq, giving it the structure of a Weyl superalgebra.

As a matter of interest, we observe that pW, DHq, as with pArr~ss,DSFTq in the
previous lecture, can be defined with Z or Z2 coefficients whenever the transversality

results are good enough to take the usual expression
ř
u

ǫpuq
|Autσpuq| literally as a count

of holomorphic curves. This result is of limited interest since it cannot hold in gen-
eral cases where transversality for multiple covers is impossible without multivalued
perturbations—nonetheless I find it amusing.1

Proposition 13.4. If Assumption 12.1 in Lecture 12 holds, then DH is also well
defined if the ring R “ QrH2pMq{Gs is replaced by ZrH2pMq{Gs or Z2rH2pMq{Gs.

1The same arguments used to define SFT chain complexes over the integers can also be applied
to the chain maps involved in the proof of invariance (see §13.3.1), so the SFT invariants should
be defined over the integers if transversality can be achieved for multiple covers. There are known
situations however in which this cannot hold: even if the chain complexes are well defined over Z,
invariance may hold only over Q, due to the failure of transversality in cobordisms. See [Hut].
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Proof. Since DH is a derivation, it suffices to check that for every good Reeb
orbit γ, DHqγ and DHpγ are each sums of monomials of the form ceA~kqγ

´
pγ

`
with

coefficients c P Z. Suppose u P M1pJq is an index 1 holomorphic curve with positive
and/or negative asymptotic orbits

γ
˘ “ pγ˘

1 , . . . , γ
˘
1looooomooooon

m˘
1

, . . . , γ˘
k˘
, . . . , γ˘

k˘looooomooooon
m˘

k˘

q,

where γ˘
i ‰ γ˘

j for i ‰ j. We can assume all the orbits γ˘
i are good and thatm˘

i “ 1

whenever n ´ 3 ` µCZpγ˘
i q is odd. Up to a sign and factors of eA and ~ which are

not relevant to this discussion, u then contributes a monomial

Hu :“
1

|Autσpuq|q
m´

1

γ´
1

. . . q
m´

k´
γ´
k´
p
m`

1

γ`
1

. . . p
m`

k`
γ`
k`

to H. The commutator rHu, qγs vanishes unless γ is one of the orbits γ`
1 , . . . , γ

`
k`
,

so suppose γ “ γ`
k`
. If n ´ 3 ` µCZpγq is odd, then m :“ m`

k`
“ 1, and (13.3) with

rpγ, qγs “ κγ~ implies

rHu, qγs “ 1

|Autσpuq|

„
q
m´

1

γ´
1

. . . q
m´

k´
γ´
k´
p
m`

1

γ`
1

. . . p
m`

k`´1

γ`
k`´1

pγ, qγ



“ κγ

|Autσpuq|~q
m´

1

γ´
1

. . . q
m´

k´
γ´
k´
p
m`

1

γ`
1

. . . p
m`

k`´1

γ`
k`´1

.

The fraction in front of this expression is an integer since u can have only one
end asymptotic to γ, and κγ is thus divisible by the covering multiplicity of u. If
n´ 3 ` µCZpγq is even, then we generalize this calculation by using (13.3) to write

rpmγ , qγs “ mκγ~p
m´1
γ ,

so then,

rHu, qγs “ 1

|Autσpuq|

„
q
m´

1

γ´
1

. . . q
m´

k´
γ´
k´
p
m`

1

γ`
1

. . . p
m`

k`´1

γ`
k`´1

pmγ , qγ



“ κγm

|Autσpuq|~q
m´

1

γ´
1

. . . q
m´

k´
γ´
k´
p
m`

1

γ`
1

. . . p
m`

k`´1

γ`
k`´1

pm´1
γ .

To see that κγm

|Autσpuq| is always an integer, recall from our proof of Prop. 12.16 in

the previous lecture that transformations in Autσpuq permute each of the sets of
punctures that are asymptotic to the same Reeb orbit. Suppose the set of positive
punctures of u asymptotic to γ is partitioned by the Autσpuq-action into N subsets,
each consisting of ℓ1, . . . , ℓN punctures, where ℓ1 ` . . .` ℓN “ m. If z is a puncture
in the ith of these subsets, then its stabilizer is a cyclic subgroup of order ki acting
on a neighborhood of z by biholomorphic rotations, where kiℓi “ |Autσpuq|. Each
of these orders ki necessarily divides the multiplicity κγ, so we can write kiai “ κγ
for some ai P N. Putting all this together, we have

κγm “
Nÿ

i“1

κγℓi “
Nÿ

i“1

kiaiℓi “ |Autσpuq|
Nÿ

i“1

ai.
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Following this same procedure, you should now be able to verify on your own
that the coefficient appearing in rHu, pγs is also always an integer. The existence
of a chain complex with Z2 coefficients follows from this simply by projecting Z

to Z2. �

13.1.2. The semiclassical limit: rational SFT. The idea of rational sym-
plectic field theory (RSFT) is to extract as much information as possible from genus
zero holomorphic curves but ignore curves of higher genus. The algebra of SFT
provides a fairly obvious mechanism for this: RSFT should be what SFT becomes
in the “limit as ~ Ñ 0,” i.e. the classical approximation to a quantum theory. Let

P :“ W
L
~W,

so P is a graded unital algebra generated by the pγ and qγ variables and the co-
efficient ring R, but it does not include ~ as a generator. Since all commutators
in W are in ~W, the product structure of P is supercommutative. Let us use the
distinction between capital and lowercase letters to denote the quotient projection

W Ñ P : F ÞÑ f .

We will make an exception for the letter “H”: recall that H is not an element of W
since its genus zero terms have order ´1 in ~, but ~H P W, so we will define

h “
ÿ

u

ǫpuq
|Autσpuq|e

Aqγ
´
pγ

` P P

to be the image of ~H under the projection. The sum in this expression ranges over
all R-equivalence classes of index 1 curves with genus zero and good asymptotic
orbits, so h will serve as the generating function of RSFT. To encode gluing of genus
zero terms, note first that the commutator operation would not be appropriate since
it prodcues terms for every possible gluing of two curves, including those which glue
genus zero curves along more than one breaking orbit to produce buildings with
positive arithmetic genus. We need instead to have an algebraic operation on P

that encodes gluing along only one breaking orbit at a time.
You already know what to expect if you’ve ever taken a quantum mechanics

course: in the “classical limit,” commutators become Poisson brackets. To express
this properly, we need to make a distinction between differential operators operating
from the left or the right: let

ÝÝÑB
Bqγ

: W Ñ W

denote the usual operator B
Bqγ , which was previously defined on Arr~ss but has an

obvious extension to W such that

ÝÝÑB
Bqγ

pγ1 “ 0 for all γ1. This operator satisfies the

graded Leibniz rule

ÝÝÑB
Bqγ

pFGq “
˜ÝÝÑB

Bqγ
F

¸
G ` p´1q|qγ||F|F

˜ÝÝÑB
Bqγ

G

¸
.
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The related operator
ÐÝÝB
Bqγ

: W Ñ W : F ÞÑ F

ÐÝÝB
Bqγ

is defined exactly the same way on individual variables pγ and qγ , but satisfies a
slightly different Leibniz rule,

pFGq
ÐÝÝB
Bqγ

“ F

˜
G

ÐÝÝB
Bqγ

¸
` p´1q|qγ||G|

˜
F

ÐÝÝB
Bqγ

¸
G.

The point of writing

ÐÝÝB
Bqγ

so that it acts from the right is to obey the usual conventions

of superalgebra: signs change whenever the order of two odd elements (or operators)
is interchanged. Partial derivatives with respect to pγ can be defined analogously
on W. With this notation in hand, the graded Poisson bracket on W is defined
by

(13.4) tF,Gu “
ÿ

γ

κγ

˜
F

ÐÝÝB
Bpγ

ÝÝÑB
Bqγ

G ´ p´1q|F||G|G

ÐÝÝB
Bpγ

ÝÝÑB
Bqγ

F

¸
,

where the sum ranges over all good Reeb orbits. In the same manner, the differential
operators and the bracket t , u can also be defined on P.

It is easy to check that t , u on W almost satisfies a version of (13.3): we have

tF,GKu “ tF,GuK ` p´1q|F||G|GtF,Ku ` Op~q,
tFG,Ku “ FtG,Ku ` p´1q|G||K|tF,KuG ` Op~q

(13.5)

for all F,G,K P W. The extra terms denoted by Op~q arise from the fact that
in proving (13.5), we must sometimes reorder products FG by writing them as
p´1q|F||G|GF ` rF,Gs, where rF,Gs “ Op~q. Since the terms with ~ disappear in
P, the relations become exact in P:

tf , gku “ tf , guk ` p´1q|f ||g|gtf ,ku,
tfg,ku “ ftg,ku ` p´1q|g||k|tf ,kug

(13.6)

for all f , g,k P P.

Proposition 13.5. For all F,G P W,

rF,Gs “ ~tf , gu ` Op~2q,
and t , u satisfies the conditions of a super Lie bracket on P.

Remark 13.6. In formulas like the one in the above proposition, we interpret
tf , gu P P as an element of W via any choice of R-linear inclusion P ãÑ W that acts
as the identity on the generators pγ , qγ. There is ambiguity in this choice due to the
noncommutativity of W, but the ambiguity is in ~W and thus makes no difference
to the formula.
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Proof of Proposition 13.5. The formula is easily checked when F and G
are individual variables of the form pγ or qγ ; in fact the extra term Op~2q can be
omitted in these cases. The case where F and G are general monomials follows from
this via (13.3) and (13.5) using induction on the number of variables in the product.
This implies the general case via bilinearity.

Given the formula, the condition tf , gu ` p´1q|f ||g|tg, fu “ 0 and the Poisson
version of the super Jacobi identity (13.1) follow from the corresponding properties
of r , s. �

The proposition implies that our genus zero generating function h P P satisfies
0 “ ~2rH,Hs “ r~H, ~Hs “ ~th,hu ` Op~2q, thus

th,hu “ 0.

This relation can be interpreted as the count of boundary points of all 1-dimensional
moduli spaces of genus zero curves: indeed, any pair of genus zero curves u, v P
Mσ

1 pJq{R contributes to th,hu a term of the form

ÿ

γ

κγ

|Autσpuq||Autσpvq|e
Au`Avqγ

´
u

˜
pγ

`
u

ÐÝÝB
Bpγ

¸˜ÝÝÑB
Bqγ

qγ
´
v

¸
pγ

`
v ,

plus a corresponding term with the roles of u and v reversed. This sums all the mono-
mials that one can construct by cancelling one pγ variable from u with a matching
qγ variable from v, in other words, constructing a building by gluing v on top of u
along one matching Reeb orbit.

The graded Jacobi identity will again imply that any representation of the super
Lie algebra pP, t , uq gives rise to a chain complex with h as its differential. For
example we can take the adjoint representation,

P Ñ EndRpPq : f ÞÑ df , dfg :“ tf , gu,
which satisfies dtf ,gu “ dfdg ´ p´1q|f ||g|dgdf due to the Jacobi identity. Then d2h “ 0
since h has odd degree and th,hu “ 0, and the homology of rational SFT is
defined as

HRSFT
˚ pM, ξ;Rq :“ H˚pP, dhq.

We again refer to [EGH00] for an argument that HRSFT
˚ pM, ξ;Rq is an invariant

of the contact structure. Notice that Proposition 13.5 yields a simple relationship
between the chain complexes pW, DHq and pP, dhq, namely

(13.7) DHF “ dhf ` Op~q,
where dhf is interpreted as an element of W via Remark 13.6. In other words, the
projection W Ñ P : F Ñ f is a chain map. Moreover, dH is a derivation on P with
respect to both the product and the Poisson bracket: this follows via Proposition 13.5
and (13.7) from the fact that DH satisfies the corresponding properties on W. We
conclude that HRSFT

˚ pM, ξ;Rq inherits the structure of a Poisson superalgebra, and
the map

HW
˚ pM, ξ;Rq Ñ HRSFT

˚ pM, ξ;Rq
induced by the chain map pW, DHq Ñ pP, dhq is both an algebra homomorphism
and a homomorphism of graded super Lie algebras.
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13.1.3. The contact homology algebra. Contact homology is the most pop-
ular tool in the SFT package and was probably the first to be understood beyond the
more straightforward cylindrical theory. In situations where cylindrical contact ho-
mology cannot be defined due to bubbling of holomorphic planes, the next simplest
thing one can do is to define a theory that counts genus zero curves with one positive
end but arbitrary numbers of negative ends (cf. Exercise 10.14 in Lecture 10).

The proper algebraic setting for such a theory turns out to be the algebra A
generated by the qγ variables, and it can be derived from RSFT by setting all pγ
variables to zero. Using the obvious inclusion A ãÑ P, define BCH : A Ñ A by

BCHf “ dhf |p“0.

We can thus write dhf “ BCHf ` Oppq, where
Oppkq

will be used generally to denote any formal sum consisting exclusively of terms of
the form pγ1 . . . pγkf for f P P. Now observe that for any good orbit γ,

dhpγ “ th, pγu “ ´p´1q|pγ|
ÿ

γ1

˜
pγ

ÐÝÝB
Bpγ1

¸˜ÝÝÑB
Bqγ1

h

¸
“ ´p´1q|pγ | Bh

Bqγ
“ Oppq

since every term in h has at least one p variable. It follows that dh pOppqq “ Oppq,
so the fact that d2h “ 0 implies B2

CH “ 0, and contact homology is defined as

HC˚pM, ξ;Rq :“ H˚pA, BCHq.
Since dh is a derivation on P, the formula dhf “ BCHf ` Oppq implies that BCH is
likewise a derivation on A, so HC˚pM, ξ;Rq has the structure of a graded super-
commutative algebra with unit. Moreover, the projection P Ñ A : f ÞÑ f |p“0 is a
chain map, giving rise to an algebra homomorphism

HRSFT
˚ pM, ξ;Rq Ñ HC˚pM, ξ;Rq.

The invariance of HC˚pM, ξ;Rq will follow from the invariance of HSFT
˚ pM, ξ;Rq, to

be discussed in §13.3.1 below.
To interpret BCH, we can separate the part of h that is linear in p variables,

writing

h “
ÿ

γ

hγpqqpγ ` Opp2q,

where for each good Reeb orbit γ, hγpqq denotes a polynomial in q variables with
coefficients in R. Since elements f P A have no dependence on p variables, we then
have

dhf “ th, fu “
ÿ

γ

κγ

˜
h

ÐÝÝB
Bpγ

¸˜ÝÝÑB
Bqγ

f

¸
“
ÿ

γ

κγhγ
Bf
Bqγ

` Oppq,

hence

BCHf “
ÿ

γ

κγhγ
Bf
Bqγ

.
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In particular, BCH acts on each generator qγ P A as

BCHqγ “ κγhγ “
ÿ

u

ǫpuqκγ
Autσpuqe

Aqγ
´
,

where the sum is over all R-equivalence classes of index 1 J-holomorphic curves
u with genus zero, one positive end at γ, negative ends at good orbits γ

´, and
homology class A P H2pMq{G.

13.1.4. Algebraic overtwistedness. Even the simplest of the three differen-
tial graded algebras described above is too large to compute in most cases. The
major exception is the case of overtwisted contact manifolds.

Theorem 13.7. If pM, ξq is overtwisted, then HC˚pM, ξ;Rq “ 0 for all choices
of the coefficient ring R.

Remark 13.8. If X is an algebra with unit, then saying X “ 0 is equivalent to
saying that 1 “ 0 in X .

The notion of overtwisted contact structures in dimension three was introduced
by Eliashberg in [Eli89], who proved that they are flexible in the sense that their
classification up to isotopy reduces to the purely obstruction-theoretic classification
of oriented 2-plane fields up to homotopy. This means in effect that an overtwisted
contact structure carries no distinctly contact geometric information, so it should
not be surprising when “interesting” contact invariants such as HC˚pM, ξq vanish.
The three-dimensional case of Theorem 13.7 seems to have been among the earliest
insights about SFT: its first appearance in the literature was in [Eli98], and a proof
later appeared in a paper by Mei-Lin Yau [Yau06], which includes a brief appendix
sketching Eliashberg’s original proof. We will discuss Eliashberg’s proof in detail in
Lecture 16.

The definitive higher-dimensional notion of overtwistedness was introduced much
more recently by Borman-Eliashberg-Murphy [BEM15], following earlier steps in
this direction by Niederkrüger [Nie06] and others. There are now two known proofs
of Theorem 13.7 in higher dimensions: the first uses the fact that since overtwisted
contact manifolds are flexible, they always admit an embedding of a plastikstufe,
which implies vanishing of contact homology by an unpublished result of Bourgeois
and Niederkrüger (see [Bou09, Theorem 4.10] for a sketch of the argument). The
second argument appeals to an even more recent result of Casals-Murphy-Presas
[CMP19] showing that pM, ξq is overtwisted if and only if it is supported by a neg-
atively stabilized open book, in which case HC˚pM, ξq “ 0 was proven by Bourgeois
and van Koert [BvK10].

It is not known whether the vanishing of contact homology characterizes over-
twistedness, i.e. there are not yet any examples of tight contact manifolds with
HC˚pM, ξq “ 0. I will go out on a limb and say that such examples seem unlikely to
exist in dimension three but are much more likely in higher dimensions; in fact var-
ious candidates are known [MNW13,CDvK16], but we do not yet have adequate
methods to prove that any of them are tight. The lack of known counterexamples
has nonetheless given rise to the following definition.



Lectures on Symplectic Field Theory 371

Definition 13.9. A closed contact manifold pM, ξq is algebraically over-
twisted if HC˚pM, ξ;Rq “ 0 for every choice of the coefficient ring R.

Remark 13.10. The coefficient ring is not always mentioned in statements of the
above definition, but it should be. We will see in §13.3.2 below that this detail makes
a difference to issues like symplectic filling obstructions. Note that for any nested
pair of subgroups G Ă G1 Ă H2pMq, the natural projection H2pMq{G1 Ñ H2pMq{G
induces an algebra homomorphism

HC˚pM, ξ;QrH2pMq{G1sq Ñ HC˚pM, ξ;QrH2pMq{Gsq.
Since algebra homomorphisms necessarily map 1 ÞÑ 1 and 0 ÞÑ 0, the target of
this map must vanish whenever its domain does, so for checking Definition 13.9, it
suffices to check the case R “ QrH2pMqs.

We’ve seen above that there exist algebra homomorphisms

(13.8) HW
˚ pM, ξ;Rq Ñ HRSFT

˚ pM, ξ;Rq Ñ HC˚pM, ξ;Rq,
thus the vanishing of either of the algebras HW

˚ pM, ξ;Rq or HRSFT
˚ pM, ξ;Rq with

all coefficient rings R is another sufficient condition for algebraic overtwistedness.
Bourgeois and Niederkrüger observed that, in fact, these conditions are also neces-
sary:

Theorem 13.11 ([BN10]). For any coefficient ring R, the following conditions
are equivalent:

(1) HC˚pM, ξ;Rq “ 0,
(2) HRSFT

˚ pM, ξ;Rq “ 0,
(3) HSFT

˚ pM, ξ;Rq “ 0.

Proof. The implications (3) ñ (2) ñ (1) are immediate from the algebra ho-
momorphisms (13.8), thus it will suffice to prove (1) ñ (3). Suppose 1 “ 0 P
HC˚pM, ξ;Rq, which means BCHf “ 1 for some f P A. Using the obvious inclusion
A ãÑ W, this means

DHf “ 1 ´ G,

where G “ Opp, ~q, i.e. G is a sum of terms that all contain at least one pγ variable
or a power of ~. It follows that Gk “ Oppk, ~kq for all k P N, and the infinite sum

8ÿ

k“0

Gk

is therefore an element ofW, as the coefficient in front of any fixed monomial ~kpγ in
this sum is a polynomial function of the q variables. This sum is then a multiplicative
inverse of 1 ´ G, and since

0 “ D2
Hf “ 0 “ ´DHG,

it also satisfies DH pp1 ´ Gq´1q “ 0. Using the fact that DH is a derivation, we
therefore have

DH

`
p1 ´ Gq´1f

˘
“ p1 ´ Gq´1p1 ´ Gq “ 1,

implying 1 “ 0 P HSFT
˚ pM, ξ;Rq. �



372 Chris Wendl

13.2. SFT generating functions for cobordisms

All invariance proofs in SFT are based on a generating function analogous to
H that counts index 0 holomorphic curves in symplectic cobordisms. The basic
definition is a straightforward extension of what we saw in Lecture 12, but there
is an added wrinkle due to the fact that, in general, one must include disconnected
curves in the count.

13.2.1. Weak, strong and stable cobordisms. First some remarks about
the category we are working in. Since the stated purpose of SFT is to define invari-
ants of contact structures, we have been working since Lecture 12 with symplectiza-
tions of contact manifolds rather than more general stable Hamiltonian structures.
We’ve made use of this restriction on several occasions, namely so that we can
assume:

(1) All nontrivial holomorphic curves in RˆM have at least one positive punc-
ture;

(2) The energy of a holomorphic curve in R ˆ M can be bounded in terms of
its positive asymptotic orbits.

It will be useful however for certain applications to permit a slightly wider class of
stable Hamiltonian structure. Recall that a hypersurface V in an almost complex
manifold pW,Jq is called pseudoconvex if the maximal complex subbundle

ξ :“ TV X JpTV q Ă TV

defines a contact structure on V whose canonical conformal symplectic bundle struc-
ture tames J |ξ. For example, if α is a contact form onM and J P J pαq, then each of
the hypersurfaces tconstuˆM is pseudoconvex in pRˆM,Jq. The contact structure
ξ induces an orientation on the hypersurface V ; if V comes with its own orientation
(e.g. as a boundary component of W ), then we call it pseudoconvex if ξ is a positive
contact structure with respect to this orientation, and pseudoconcave otherwise.
For example, if pW,ωq is a symplectic cobordism from pM´, ξ´q to pM`, ξ`q and
J P J pW,ω, α`, α´q, then M` is pseudoconvex and M´ is pseudoconcave.

Definition 13.12. Given an odd-dimensional manifold M , we will say that an
almost complex structure J on RˆM is pseudoconvex if truˆM is a pseudoconvex
hypersurface in pR ˆ M,Jq for every r P R, with the induced orientation such that
Br and tru ˆ M are positively transverse.

If H “ pω, λq is a stable Hamiltonian structure on M , then pseudoconvexity of
J P J pHq imposes conditions on H, in particular λ must be a contact form. It also
requires J |ξ to be tamed by dλ|ξ, but unlike the case when J P J pλq, J |ξ need not be
compatible with it, i.e. the positive bilinear form dλp¨, J ¨q|ξ need not be symmetric.
As always, J |ξ must be compatible with ω|ξ, but ω need not be an exact form for
this to hold—the freedom to change rωs P H2

dRpMq will be the main benefit of this
generalization, particularly when we discuss weak symplectic fillings below.

Proposition 13.13. Suppose H “ pω, λq is a stable Hamiltonian structure on
a closed manifold M and J P J pHq is pseudoconvex. Then all nonconstant finite-
energy J-holomorphic curves in R ˆ M have at least one positive puncture, and
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their energies satisfy a uniform upper bound in terms of the periods of their positive
asymptotic orbits.

Proof. It is straightforward to check that either of the two proofs of Proposi-
tion 10.9 given in Lecture 10 generalizes to any J on R ˆ M that is pseudoconvex.
In particular, pseudoconvexity implies that if u : p 9Σ, jq Ñ pR ˆ M,Jq is a J-
holomorphic curve, then u˚dλ ě 0, with equality only at points where u is tangent
to Br and the Reeb vector field. Stokes’ theorem thus gives

(13.9) 0 ď
ż

9Σ

u˚dλ “
ÿ

zPΓ`

Tz ´
ÿ

zPΓ´

Tz,

where Tz ą 0 denotes the period of the asymptotic orbit at each positive/negative
puncture z P Γ˘. Since J |ξ is also tamed by ω|ξ and ω annihilates the Reeb vector
field, we similarly have u˚ω ě 0, with the same condition for equality, and the
compactness of M then implies an estimate of the form

0 ď u˚ω ď cu˚dλ

for every J-holomorphic curve u : p 9Σ, jq Ñ pR ˆ M,Jq, with a constant c ą 0 that
depends only on M , H and J . In light of (13.9), this implies an upper bound onş

9Σ
u˚ω in terms of the periods Tz for z P Γ`. Writing ωϕ “ ω`dpϕprqλq for suitable

C0-small increasing functions ϕ : R Ñ R, we can then apply Stokes’ theorem to the
second term in

Epuq “ sup
ϕ

ż

9Σ

u˚ωϕ “
ż

9Σ

u˚ω ` sup
ϕ

ż

9Σ

u˚dpϕprqλq,

implying a similar upper bound for Epuq. �

Corollary 13.14. For any stable Hamiltonian structure H “ pω, λq with a
nondegenerate Reeb vector field RH and a pseudoconvex J P J pHq, one can use
closed RH-orbits and count J-holomorphic curves in R ˆ M to define the chain
complexes pArr~ss,DSFTq, pW, DHq, pP, dhq and pA, BCHq. �

We shall denote the homologies of the above chain complexes with coefficients
in R “ QrH2pMq{Gs by
HSFT

˚ pM,H, J ;Rq, HW
˚ pM,H, J ;Rq, HRSFT

˚ pM,H, J ;Rq, HC˚pM,H, J ;Rq.
We make no claim at this point about these homologies being invariant. For the
examples that we actually care about, this will turn out to be an irrelevant question
due to Proposition 13.16 and Exercise 13.36 below.

Example 13.15. Suppose α is a contact form on pM, ξq and H “ pΩ, αq is a
stable Hamiltonian structure. Then for all constants c ą 0 sufficiently large, Hc :“
pΩ` c dα, αq is also a stable Hamiltonian structure and there exists a pseudoconvex
Jc P J pHcq. To see the latter, notice that H1

c :“
`
1
c
Ω ` dα, α

˘
is another family of

stable Hamiltonian structures, with J pH1
cq “ J pHcq for all c, and H1

c Ñ pdα, αq as
c Ñ 8. Thus one can select Jc P J pHcq converging to some J8 P J pαq as c Ñ 8,
and these are pseudoconvex for c ą 0 sufficiently large since J8 is.
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Proposition 13.16. In the setting of Example 13.15, assume α is nondegen-
erate and J8 P J pαq satisfies Assumption 12.1. If HC˚pM, ξ;Rq vanishes, then
HC˚pM,Hc, Jc;Rq also vanishes for all c ą 0 sufficiently large.

Proof. We will assume in the following that the usual (unrealistic) transver-
sality assumptions hold, but the essential idea of the argument would not change in
the presence of abstract perturbations.

Let pA, B8
CHq denote the contact homology chain complex generated by closed

Rα-orbits, with B8
CH counting J8-holomorphic curves in R ˆ M . The assumption

HC˚pM, ξ;Rq “ 0 means there exists an element f P A with B8
CHf “ 1. Here f

is a polynomial function of the qγ variables, and B8
CHf counts a specific finite set

of Fredholm regular index 1 curves in pR ˆ M,J8q. Now let pA, BcCHq denote the
chain complex for HC˚pM,Hc, Jc;Rq, and notice that since α is contact, the stable
Hamiltonian structures pdα, αq and Hc “ pΩ` c dα, αq define matching Reeb vector
fields, so the set of generators is unchanged. There is also no change to this complex
if we replace Hc “ pΩ ` c dα, αq by H1

c “
`
1
c
Ω ` dα, α

˘
: this changes the energies

of individual Jc-holomorphic curves, but the sets of finite-energy curves are still the
same in both cases. We can assume Jc Ñ J8 in C8 as c Ñ 8. The implicit function
theorem then extends each of the finitely many J8-holomorphic curves counted by
B8f uniquely to a smooth 1-parameter family of Jc-holomorphic curves for c ą 0
sufficiently large.2 We claim that these are the only curves counted by BcCHf when
c ą 0 is large. Indeed, there would otherwise exist a sequence ck Ñ 8 for which
additional Jck-holomorphic index 1 curves uk contribute to BckCHf , and since f has only
finitely many terms representing possible positive asymptotic orbits, we can find a
subsequence for which all the uk have the same positive asymptotic orbits. A further
subsequence then has all the same negative asymptotic orbits as well since the Reeb
flow is nondegenerate and the total period of the negative orbits is bounded by the
total period of the positive orbits. Finally, since the sequence of stable Hamiltonian
structures H1

ck
converges to pdα, αq, the curves uk have uniformly bounded energy

with respect to H1
ck
, so that SFT compactness yields a subsequence converging to

a J8-holomorphic building of index 1, which can only be one of the curves counted
by B8

CHf . This contradicts the uniqueness in the implicit function theorem and thus
proves the claim. We conclude that for all c ą 0 sufficiently large, BcCHf “ 1. �

Definition 13.17. Assume pW,ωq is a symplectic cobordism with stable bound-
ary BW “ ´M´

š
M`, with induced stable Hamiltonian structures H˘ “ pω˘, λ˘q

at M˘, and suppose J is an almost complex structure on the completion xW that is
ω-tame on W and belongs to J pH˘q on the cylindrical ends. We will say that J
is pseudoconvex near infinity3 if the R-invariant almost complex structures J˘
defined by restricting J to r0,8q ˆ M` and p´8, 0s ˆ M´ are both pseudoconvex.

2In case you are concerned about the parametric moduli space being an orbifold instead of a
manifold, just add asymptotic markers so that there is no isotropy, and divide by the appropriate
combinatorial factors to count.

3If I were being hypercorrect about use of language, I might insist on saying that J is “pseudo-
convex near `8 and pseudoconcave near ´8,” as the orientation reversal at the negative boundary

makes M´ technically a pseudoconcave hypersurface in pxW,Jq, not pseudoconvex. But this defi-
nition will only be useful to us in cases where M´ “ H, so my linguistic guilt is limited.
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Note that the condition on J in the above definition can only be satisfied if λ˘
are both positive contact forms on M˘, but the 2-forms ω˘ need not be exact.

Proving contact invariance of SFT requires counting curves in trivial exact sym-
plectic cobordisms, but it is also natural to try to say things about non-exact
strong symplectic cobordisms using SFT.4 These fit naturally into our previously
established picture since every strong cobordism has collar neighborhoods near the
boundary in which it matches the symplectization of a contact manifold. The fol-
lowing more general notion of cobordism is also natural from a contact topological
perspective, but fits less easily into the SFT picture.

Definition 13.18 ([MNW13]). Given closed contact manifolds pM`, ξ`q and
pM´, ξ´q of dimension 2n ´ 1, a weak symplectic cobordism from pM´, ξ´q to
pM`, ξ`q is a compact symplectic manifold pW,ωq with BW “ ´M´

š
M` admit-

ting an ω-tame almost complex structure J for which the almost complex manifold
pW,Jq is pseudoconvex at M` and pseudoconcave at M´, with

ξ˘ “ TM˘ X JpTM˘q.
Weak cobordisms are characterized by the existence of a tame almost complex

structure J whose restriction to ξ˘ is tamed by two symplectic bundle structures,
ω|ξ˘ and dα˘|ξ˘ (for any choices of contact forms α˘ defining ξ˘). Notice that
in dimension 4, the second condition is mostly vacuous, and the weak cobordism
condition just reduces to

ω|ξ˘ ą 0.

In this form, the low-dimensional case of Definition 13.18 has been around since the
late 1980’s, and there are many interesting results about it, e.g. examples of contact
3-manifolds that are weakly but not strongly fillable [Gir94,Eli96]. We will see in
§13.3.2 that this distinction is detectable via SFT. Higher-dimensional examples of
this phenomenon were found in [MNW13].

One major difference between weak and strong cobordisms is that the latter are
always exact near the boundary, as the Liouville vector field is dual to a primitive
of ω. It turns out that up to deformation, weak fillings that are exact at the
boundary are the same thing as strong fillings—this was first observed by Eliashberg
in dimension three [Eli91, Prop. 3.1], and was extended to higher dimensions in
[MNW13]:

Proposition 13.19. Suppose pW,ωq is a weak filling of a p2n´ 1q-dimensional
contact manifold pM, ξq such that ω|TM is exact. Then after a homotopy of ω through
a family of symplectic forms that vary only in a collar neighborhood of BW and define
weak fillings of pM, ξq, pW,ωq is a strong filling of pM, ξq.

Proof. Choose any contact form α for ξ, and let Ω “ ω|TM . By Proposition 6.9
and Remark 6.10, we can identify a collar neighborhood of BW inW with p´ǫ, 0sˆM ,
with the coordinate on p´ǫ, 0s denoted by r, such that ω “ Ω` dprαq on the collar.

4By strong cobordism, we mean the usual notion of a compact symplectic manifold with convex
and/or concave boundary components (see §1.4). The word “strong” is included in order to contrast
this notion with its weaker cousin described in Definition 13.18.
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By assumption, Ω “ dη for some 1-form η on M , and since pW,ωq is a weak
filling of pM, ξ “ kerαq, we can choose a complex structure Jξ on ξ that is tamed
by both dα|ξ and dη|ξ. Now choose a smooth cutoff function β : r0,8q Ñ r0, 1s that
has compact support and equals 1 near 0. We claim that

ω :“ dpβprqηq ` dprαq
is a symplectic form on r0,8q ˆ M if |β 1| is sufficiently small. Indeed, writing
ω “ dr ^ pα ` β 1prq ηq ` rβprq dη ` r dαs, we have

ωn “ n dr ^ α^ rβprq dη ` r dαsn´1 ` nβ 1prq dr ^ η ^ rβprq dη ` r dαsn´1.

The first term is positive and bounded away from zero since dη|ξ and dα|ξ both
tame Jξ, hence so does β dη ` r dα|ξ. The second term is then harmless if |β 1| is
sufficiently small, proving ωn ą 0.

This defines an extension of the original weak filling to a symplectic completion
xW “ W YM pr0,8q ˆ Mq, and for each r0 ě 0, the compact subdomains defined
by r ď r0 define weak fillings of ptr0u ˆ M, ξq since ω|ξ “ pβpr0q dη ` r0 dαq|ξ also
tames Jξ. Notice that for r0 sufficiently large, the dη term disappears, so ω has
a primitive that restricts to tr0u ˆ M as a contact form for ξ, meaning we have a
strong filling of this hypersurface. The desired deformation of ω can therefore be
defined by pulling back via a smooth family of diffeomorphisms p´ǫ, 0s Ñ p´ǫ, r0s,
where r0 varies from 0 to a sufficiently large constant. �

Unlike strong cobordisms, being a weak cobordism is an open condition: if pW,ωq
is a weak cobordism, then so is pW,ω ` ǫσq for any ǫ ą 0 sufficiently small and a
closed 2-form σ, which need not be exact at BW . As a consequence, the cylindrical
ends of a completed weak cobordism cannot always be deformed to look like the
symplectization of a contact manifold. This is where Definition 13.17 comes in
useful. The proof of the next lemma is very much analogous to Proposition 13.19.

Lemma 13.20 ([MNW13, Lemma 2.10]). Suppose pW,ωq is a weak filling of
a p2n ´ 1q-dimensional contact manifold pM, ξq, α is a contact form for ξ and Ω
is a closed 2-form on M with rΩs “ rω|TMs P H2

dRpMq. Then for any constant
c ą 0 sufficiently large, after a homotopy of ω through a family of symplectic forms
that vary only in a collar neighborhood of BW and define weak fillings of pM, ξq,
ω|TM “ Ω ` c dα. �

The following result then provides a suitable model that can be used as Ω in
the above lemma when ω|TM is nonexact. The statement below is restricted to the
case where rω|TM s is a rational cohomology class; the reason for this is that it relies
on a Donaldson-type existence result for contact submanifolds obtained as zero sets
of approximately holomorphic sections, due to Ibort, Martíınez-Torres and Presas
[IMTP00]. It seems likely that the rationality condition could be lifted with more
work, and in dimension three this is known to be true; see [NW11, Prop. 2.6].

Lemma 13.21 ([CV15, Prop. 2.18]). For any rational cohomology class η P
H2pM ;Qq on a closed p2n ´ 1q-dimensional contact manifold pM, ξq, there exists
a closed 2-form Ω and a nondegenerate contact form α for ξ such that pΩ, αq is a
stable Hamiltonian structure. �
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Combining all of the above results (including Example 13.15) proves:

Proposition 13.22. Suppose pW,ωq is a weak filling of a p2n´ 1q-dimensional
contact manifold pM, ξq such that rω|TM s P H2

dRpMq is rational or n “ 2. Fix a
nondegenerate contact form α for ξ. Then there exists a closed 2-form Ω coho-
mologous to ω|TM such that H :“ pΩ, αq is a stable Hamiltonian structure, and
for all c ą 0 sufficiently large, ω can be deformed in a collar neighborhood of BW ,
through a family of symplectic forms defining weak fillings of pM, ξq, to a new weak
filling for which BW is also stable and inherits the stable Hamiltonian structure
Hc :“ pΩ ` c dα, αq. In particular, after this deformation, the completed stable fill-
ing admits a tame almost complex structure that is pseudoconvex near infinity and
may be assumed C8-close to any given J P J pαq. �

We will use this in §13.3.2 to define obstructions to weak fillability via SFT.

Remark 13.23. There is apparently no analogue of Propositions 13.19 and 13.22
for negative boundary components of weak cobordisms, and this is one of a few
reasons why they are not often discussed. For example, if L is a Lagrangian torus
in the standard symplectic 4-ball D4, then the complement of a neighborhood of
L in B4 defines a strong cobordism from the standard contact T3 to S3. The
symplectic form on this cobordism is obviously exact, but if any result analogous to
Proposition 13.19 were to hold at the concave boundary, then we could deform it to
a Liouville cobordism. No such Liouville cobordism exists—it would imply that the
Lagrangian L Ă B4 is exact, thus violating Gromov’s famous theorem [Gro85] on
exact Lagrangians.

13.2.2. Counting disconnected index 0 curves. Fix a symplectic cobor-
dism pW,ωq with stable boundary BW “ ´M´

š
M` carrying stable Hamiltonian

structures H˘ “ pω˘, λ˘q, along with a generic almost complex structure J that is
ω-tame on W , belongs to J pH˘q on the cylindrical ends, and is pseudoconvex near
infinity. This implies that the stabilizing 1-forms λ˘ are both contact forms. Let
us also assume that the λ˘ are both nondegenerate, and that both J and the in-
duced R-invariant almost complex structures J˘ P J pH˘q satisfy Assumption 12.1.
These assumptions mean that all the usual SFT chain complexes are well defined for
pM˘,H˘, J˘;R˘q with any choice of coefficient ring R˘ “ QrH2pM˘q{G˘s. Denote
the corresponding SFT generating functions by H˘.

Recall from Lecture 12 that the auxiliary data on M` and M´ includes a choice
of capping surface Cγ for each closed Reeb orbit γ (or a capping chain with rational
coefficients if H1pM˘q has torsion). These surfaces satisfy

BCγ “
ÿ

i

mirC˘
i s ´ rγs,

where the mi are integers and C
˘
i Ă M˘ are fixed curves forming a basis of H1pM˘q.

Assume H1pW q and H1pM˘q are all torsion free. (Only minor modifications are
needed if this assumption fails to hold, see Remark 13.1.) We can then fix the
following additional auxiliary data:

(1) A collection of reference curves

S1 – C1, . . . , Cr Ă W
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whose homology classes from a basis of H1pW q.
(2) A unitary trivialization of TW along each of the reference curves C1, . . . , Cr,

denoted collectively by τ .
(3) A spanning surface S˘

i for each of the positive/negative reference curves
C˘
i Ă M˘, i.e. a smooth map of a compact and oriented surface with

boundary into W such that

BS˘
i “

ÿ

j

mjirCjs ´ rC˘
i s

in the sense of singular 2-chains, where mji P Z are the unique coefficients
with rC˘

i s “ ř
jmjirCjs P H1pW q.

Now to any collections of orbits γ
˘ “ pγ˘

1 , . . . , γ
˘
k˘

q in M˘ and a relative homol-

ogy class A P H2pW, γ̄` Y γ̄
´q with BA “ ř

irγ`
i s ´ ř

jrγ´
j s, we can associate an

absolute homology class in two steps: first add A to suitable sums of the capping
surfaces Cγ˘

i
producing a 2-chain whose boundary is a linear combination of positive

and negative reference curves, then add a suitable linear combination of the S˘
i so

that the boundary becomes the trivial linear combination of C1, . . . , Cr. With this
understood, we can now associate an absolute homology class

rus P H2pW q

to any asymptotically cylindrical J-holomorphic curve u : p 9Σ, jq Ñ pxW,Jq, and
this defines the notation Mg,mpJ,A,γ`,γ´q with A P H2pW q. We now require the
trivializations of ξ˘ along each C˘

i to be compatible with τ in the sense that they
extend to trivializations of TW along the capping surfaces S˘

i . With this convention,
the Fredholm index formula takes the expected form

indpuq “ pn´ 3qχp 9Σq ` 2c1prusq `
kÿ̀

i“1

µCZpγiq ´
kÿ́

j“1

µCZpγjq.

If H1pW q has torsion, then this whole discussion can be adapted as in §12.7.1 by re-
placing integral homology with rational homology and capping surfaces with capping
chains, and the Conley-Zehnder indices can be defined modulo 2.

We will also need to impose a compatibility condition relating the coefficient
rings R˘ “ QrH2pM˘q{G˘s to a corresponding choice on the cobordism W . Choose
a subgroup G Ă H2pW q such that

(13.10) xrωs, Ay “ 0 for all A P G,
and such that the maps H2pM˘q Ñ H2pW q induced by the inclusions M˘ ãÑ W

send G˘ into G. If rωs ‰ 0 P H2
dRpW q, then we will have to deal with noncompact

sequences of J-holomorphic curves that have unbounded energy, so it becomes nec-
essary to “complete” R to a Novikov ring sR, which contains R but also includes
infinite formal sums

8ÿ

i“1

cie
Ai such that xrωs, Aiy Ñ `8 as i Ñ 8.
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Note that the evaluation xrωs, Ay P R is well defined for A P H2pW q{G due to
(13.10).

Analogously to our definition of H in Lecture 12, the generating function for

index 0 curves in xW is defined as a formal power series in the variables ~, qγ (for
orbits in M´), and pγ (for orbits in M`), with coefficients in sR:

(13.11) F “
ÿ

uPMσ
0

pJq

ǫpuq
|Autσpuq|~

g´1eAqγ
´
pγ

`
,

where Mσ
0 pJq denotes the moduli space of stable connected J-holomorphic curves

u in xW with indpuq “ 0 and only good asymptotic orbits, modulo permutations of
the punctures, and for each u:

‚ g is the genus of u;
‚ A is the equivalence class of rus P H2pW q in H2pW q{G;
‚ γ

˘ “ pγ˘
1 , . . . , γ

˘
k˘

q are the asymptotic orbits of u after arbitrarily fixing
orderings of its positive and negative punctures;

‚ ǫpuq P t1,´1u is the sign of u as a point in the 0-dimensional component of
M$pJq (after choosing an ordering of the punctures and asymptotic mark-
ers), relative to a choice of coherent orientations on M$pJq.

As usual, the product ǫpuqqγ´
pγ

`
is independent of choices. Similarly to our dis-

cussion of H in §12.3, writing F in the form of (13.11) only makes sense under the

unrealistic assumption that all index 0 curves in xW (including multiple covers) are
regular, but under the same assumption, the formula is equivalent to

(13.12) F “
ÿ

g,A,γ`,γ´

#M$
g,0pJ,A,γ`,γ´q
k`!k´!κγ`κγ´

~g´1eAqγ
´
pγ

`
,

in which the sum ranges over all integers g ě 0, equivalence classes A P H2pMq{G,
and ordered tuples of Reeb orbits γ` “ pγ`

1 , . . . , γ
`
k`

q inM` and γ
´ “ pγ´

1 , . . . , γ
´
k´

q
for which vir-dimM$

g,0pJ,A,γ`,γ´q “ 0. In this form, the transversality issues can

be dealt with as in §12.4.3 by defining #M$
g,0pJ,A,γ`,γ´q P Q as a count of a com-

pact weighted branched 0-manifold obtained as the zero set of a generic multivalued
inhomogeneous perturbation of the nonlinear Cauchy-Riemann operator.

Remark 13.24. The word “stable” in the above definition deserves further com-
ment. Recall from Remark 6.31 that a smooth connected J-holomorphic curve
without marked points is called stable if either it is nonconstant or its domain has
negative Euler characteristic; equivalently, u is stable if and only if Autpuq is finite.
This condition was not relevant in our definition of H because constant curves never
have index 1, but they can have index 0, thus the definition of F explicitly ex-
cludes closed J-holomorphic spheres and tori with rus “ 0, and #M$

g,0pJ, 0,H,Hq
in (13.12) is defined to be 0 for g “ 0, 1. This is appropriate in light of the SFT
compactness theorem, in which smooth non-stable curves can never appear as com-
ponents in stable holomorphic buildings. What may seem a bit confusing at first
is that if dimW “ 6, then constant curves of genus g ě 2 have index 0 and are
stable, so (13.12) does count them. But constant curves can never be isolated, so
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this is yet another case where Assumption 12.1 on transversality definitely cannot
be satisfied. The contributions #M$

g,0pJ, 0,H,Hq for g ě 2 can be defined in this
case using multivalued inhomogeneous perturbations as in §12.4.3, meaning that we

count (with signs and rational weights) nullhomologous solutions u : Σg Ñ xW to
equations of the form B̄Ju “ ν.

We shall regard F as an element in an enlarged operator algebra that includes
q and p variables for good orbits in both M` and M´, related to each other by the
supercommutation relations

rpγ´ , qγ`s “ rpγ`, qγ´ s “ rqγ´ , qγ` s “ rpγ´ , pγ`s “ 0

whenever γ´ is an orbit in M´ and γ` is an orbit in M`. Since all curves counted
by F have index 0, F is homogeneous with degree

|F| “ 0.

Notice that for any fixed monomial qγ
´
pγ

`
, the corresponding set of curves inMσ

0pJq
may be infinite if ω is nonexact, but SFT compactness implies that the set of such
curves with any given bound on xrωs, rusy is bounded. As a consequence, the coeffi-

cient of ~g´1qγ
´
pγ

`
in F belongs to the Novikov ring sR.

Remark 13.25. In the case BM` “ BM´ “ H, there are no q or p variables, so
F is an element of 1

~
sRrr~ss recording the counts of closed J-holomorphic curves of

all genera in all homology classes in the closed symplectic manifold pW,ωq. These
are, in other words, Gromov-Witten invariants of pW,ωq, and F is a simple version
of the so-called Gromov-Witten potential.5

Remark 13.26. In many standard presentations of Gromov-Witten theory, the
moduli space M$

g,0pJ,A,γ`,γ´q in (13.12) is replaced with the compactification

M
$

g,0pJ,A,γ`,γ´q. This distinction is academic in our presentation, because if As-

sumption 12.1 on transversality holds, then M
$

g,0pJ,A,γ`,γ´q does not contain any
nodal curves, for dimensional reasons, so the two spaces are the same finite set. It is
important to keep in mind however that in the real world where transversality cannot
be achieved merely by perturbing J , there exist situations (see Example 13.27 be-

low) where M$
g,0pJ,A,γ`,γ´q is empty but M

$

g,0pJ,A,γ`,γ´q is not, in which case

#M$
g,0pJ,A,γ`,γ´q may be nonzero. The latter can happen because under generic

inhomogeneous perturbations, there may exist solutions u of the perturbed equation
B̄Ju “ ν that converge to nodal curves or buildings (but not to smooth curves) as
the perturbation ν is turned off. The moral is: if you want to deduce a computation
of #M$

g,0pJ,A,γ`,γ´q without actually carrying out abstract perturbations, then

you generally need to understand the compactified space M
$

g,0pJ,A,γ`,γ´q, not
just M$

g,0pJ,A,γ`,γ´q, even if the latter is finite or empty.

5The more elaborate standard version of the Gromov-Witten potential also involves moduli
spaces with marked points, and includes extra generators to keep track of intersection numbers of
the evaluation map with homology cycles in the target manifold. One can similarly build this type
of information into the algebraic formalism of SFT, making it a direct generalization of Gromov-
Witten theory—see [EGH00, §2.2–2.3] for details.
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Example 13.27. Consider the space of closed genus g ě 1 curves of degree 1
in pS2, iq: Mg,0pi, rS2s,H,Hq is empty since a holomorphic map pΣg, jq Ñ pS2, iq
of degree 1 would have to be a diffeomorphism, but Mg,0pi, rS2s,H,Hq contains
a nodal curve u with one spherical component on which u is the identity map,
attached by a node to a genus g component on which u is constant. Nodal curves of
this type are known to make nontrivial contributions to Gromov-Witten invariants;
see e.g. [MS12, Example 8.6.12].

Consider next the series

exppFq :“
8ÿ

k“0

1

k!
Fk.

We will be able to view this as a formal power series in q and p variables and a formal
Laurent series in ~ with coefficients in sR, though it is not obvious at first glance
whether its coefficients are in any sense finite. We will deduce this after interpreting
it as a count of disconnected index 0 curves: first, write

exppFq “
8ÿ

k“0

1

k!

˜ ÿ

pu1,...,ukqPpMσ
0

pJqqk

ǫpu1q . . . ǫpukq
|Autσpu1q| . . . |Autσpukq|~

g1`...`gk´keA1`...Ak

¨ qγ´
1 pγ

`
1 . . . qγ

´
k pγ

`
k

¸
.

Observe that since each of the curves ui P Mσ
0pJq in this expansion has index 0,

the monomials qγ
´
i pγ

`
i all have even degree and thus the order in which they are

written does not matter. Now for a given collection of distinct curves v1, . . . , vN and
integers k1, . . . , kN P N with k1 ` . . .` kN “ k, the various permutations of

pu1, . . . , ukq :“ pv1, . . . , v1loooomoooon
k1

, . . . , vN , . . . , vNlooooomooooon
kN

q P pMσ
0 pJqqˆk

occur k!
k1!...kN !

times in the above sum, so if we forget the ordering, then the contri-

bution of this particular k-tuple of curves to exppFq is

ǫpu1q . . . ǫpukq
k1! . . . kN !|Autσpu1q| . . . |Autσpukq|~

g1`...`gk´keA1`...`Akqγ
´
1 pγ

`
1 . . . qγ

´
k pγ

`
k .

Notice next that the denominator k1! . . . kN !|Autσpu1q| . . . |Autσpukq| is the order of
the automorphism group of the disconnected curve formed by the disjoint union of
u1, . . . , uk: the extra factors ki! come from automorphisms that permute connected
components of the domain. Thus exppFq can also be written as in (13.11), but with
Mσ

0 pJq replaced by the moduli space of potentially disconnected index 0 curves with
unordered punctures, and g´1 generalized to g1 ` . . .`gk´k for any curve that has
k connected components of genera g1, . . . , gk. One subtlety that was glossed over in
the above discussion: the sum also includes the unique curve with zero components,
i.e. the “empty” J-holomorphic curve, which appears as the initial 1 in the series
expansion of exppFq.
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With this interpretation of exppFq understood, we can now address the possibil-
ity that the infinite sum defining exppFq might include infinitely many terms for a

given monomial ~mqγ
´
pγ

`
, i.e. that there are infinitely many disconnected index 0

curves with fixed asymptotic orbits and a fixed sum of the genera minus the number
of connected components. We claim that this can indeed happen, but only if the
curves belong to a sequence of homology classes Ai P H2pMq{G with xrωs, Aiy Ñ 8,

hence the coefficient of ~mqγ
´
pγ

`
in exppFq belongs to the Novikov ring sR. The

danger here comes only from closed curves, since a disjoint union of two curves
with punctures always has strictly more punctures. Notice also that for any given
tuples of orbits γ˘, there exists a number c P R depending only on these orbits and
the chosen capping surfaces such that every (possibly disconnected) J-holomorphic

curve u : 9Σ Ñ xW asymptotic to γ
˘ satisfies

xrωs, rusy ě c.

This follows from the fact that the integral of ω over the relative homology class of
u always has a nonnegative integrand.

Lemma 13.28. Given constants C P R and k P Z, there exists a number N P
N such that if u : pΣ, jq Ñ pxW,Jq is a closed J-holomorphic curve satisfying
xrωs, rusy ď C, with m connected components, all stable, of genera g1, . . . , gm satis-
fying g1 ` . . .` gm ´ m “ k, then m ď N .

Proof. Note first that for each integer g ě 0, there is an energy thresh-
old, i.e. a constant cg ą 0 such that every nonconstant closed and connected J-

holomorphic curve u : Σ Ñ xW of genus g has

xrωs, rusy ě cg.

This is an easy consequence of Gromov’s compactness theorem, which is just the
closed case of SFT compactness. Indeed, if there were no such constant, then we

would find a sequence uk : Σ Ñ xW of connected closed curves with genus g such
that

Epukq “ sup
ϕ

ż

Σ

u˚
kωϕ “ sup

ϕ

xrωϕs, ruksy “ xrωs, ruksy Ñ 0,

where we have used the fact that the cohomology class rωϕs P H2
dRpxW q is indepen-

dent of the choice of auxiliary function ϕ : R Ñ p´ǫ, ǫq and matches rωs under

the isomorphism H2
dRpxW q “ H2

dRpW q defined via a deformation retraction of the
cylindrical ends. There is then a subsequence of uk that converges to a stable holo-
morphic building in which every component has zero energy—in other words, the
limit is a nodal curve whose components are all constant, and its total homology

class is therefore zero. But the latter cannot happen unless ruks “ 0 P H2pxW q for all
k sufficiently large, and since Epukq for closed curves depends only on the homology
class, this would imply Epukq “ 0 as well, so that the curves uk are also constant,
giving a contradiction.

Now if u is a disconnected curve satisfying the stated conditions, the bound
on xrωs, rusy combines with the energy threshold to give bounds on the number
of connected components of u with genus 0 or 1, as stability requires these to be
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nonconstant. All other components contribute positively to the left hand side of the
relation

řm
i“1pgi ´ 1q “ k, so this implies a universal bound on m. �

Corollary 13.29. Fix constants C P R and k P Z, and tuples of Reeb orbits
γ

˘, and assume that the usual transversality conditions hold. Then there exist at

most finitely many potentially disconnected J-holomorphic curves u : 9Σ Ñ xW with
index 0 such that the number of connected components m and the genera g1, . . . , gm
of its components satisfy g1 ` . . .` gm ´ m “ k. �

Corollary 13.30. The expression exppFq is a formal power series in q and p
variables and a formal Laurent series in ~, with coefficients in the Novikov ring sR.

�

For a compact symplectic manifold pW,ωq with no boundary, the coefficients in
F and exppFq are symplectic invariants; in particular they are independent of the
choice of almost complex structure J , and depend in fact only on the deformation
class of the symplectic structure ω. One proves this by choosing a generic homotopy
tJsusPr0,1s of compatible almost complex structures associated to a deformation of ω
and viewing the resulting parametric moduli space as an oriented cobordism between
the moduli spaces for J0 and J1. In the absence of transversality problems, the
cobordism is compact due to a dimension counting argument: the formation of
nodal curves is a codimension two phenomenon, so in a 1-dimensional parametric
moduli space, it never happens. But when BW ‰ H, breaking can also occur,
giving rise to holomorphic buildings with multiple levels that form codimension one
strata of the compatification. This kills the dimension counting argument, with the
consequence that F and exppFq are not independent of the choice of J . Instead, the
compactness and gluing theory give rise to an algebraic relation between F and H˘.

Consider the 1-dimensional moduli space of connected index 1 curves in xW with
genus g. The boundary points of the compactification of this space consist of two
types of buildings:

Type 1 : A main level of index 0 and an upper level of index 1;
Type 2 : A main level of index 0 and a lower level of index 1.

This is clear under the usual transversality assumptions since regular curves in xW
must have index at least 0, while regular curves in the symplectizations R ˆ M˘
have index at least 1 unless they are trivial cylinders. The building must also be
connected and have arithmetic genus g, but there is nothing to guarantee that each
individual level is connected. In fact, we already saw this issue in Lecture 12 when
proving H2 “ 0, but it was simpler to deal with there, because disconnected regular
curves of index 1 in a symplectization always have a unique nontrivial component,

while the rest are trivial cylinders. In the cobordism xW , on the other hand, a
disconnected index 0 curve can be formed by any disjoint union of index 0 curves,
all of which are nontrivial. The resulting algebraic relation therefore involves exppFq
instead of F. Since the union of all buildings of types 1 and 2 described above forms
the boundary of a compact oriented 1-manifold,6 the count of these buildings is zero,

6Or a weighted branched 1-manifold, if transversality problems are solved via multivalued
perturbations.
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and this fact is encoded in the so-called master equation

(13.13) H´ exppFq|p´“0 ´ exppFqH`|q`“0 “ 0,

where the expressions “p´ “ 0” and “q` “ 0” mean that we discard all terms
in H´ exppFq ´ exppFqH` containing any variables pγ for orbits in M´ or qγ for
orbits in M`. The resulting expression is a formal power series in q variables for
orbits in M´ and p variables for orbits in M`, representing a count of generally

disconnected index 1 holomorphic buildings in xW with the specified asymptotics.
The various ways to form such buildings by choices of gluings is again encoded by
the commutator algebra. The master equation (13.13) can be used to prove the
chain map property for counts of curves in cobordisms, thus it is an essential piece
of the invariance proof for each of the homology theories introduced above.

Exercise 13.31. Fill in the details of the proof of (13.13), modulo transversality.

13.3. Full SFT as a BV8-algebra

In this section we discuss the specific theory HSFT
˚ pM, ξ;Rq, defined as the ho-

mology of the chain complex pArr~ss,DSFTq. The case G “ H2pMq with trivial
group ring coefficients QrH2pMq{Gs “ Q will be abbreviated as

HSFT
˚ pM, ξq :“ HSFT

˚ pM, ξ;Qq.
As we defined it, DSFT acts on Arr~ss by treating the generating function H as a
differential operator via the substitution

(13.14) pγ “ κγ~
B

Bqγ
.

According to [CL09], this makes pArr~ss,DSFTq into a BV8-algebra; we’ll have no
particular need to discuss here what that means, but one convenient feature is the
expansion

(13.15) DSFT “ 1

~

8ÿ

k“1

D
pkq
SFT~

k,

in which each D
pkq
SFT : A Ñ A is a differential operator of order ď k (see [CL09, §5]).

For each k P N, D
pkq
SFT is a count of all index 1 holomorphic curves that have genus

g ě 0 and m ě 1 positive punctures such that g ` m “ k. In particular, D
p1q
SFT

is simply the contact homology differential BCH, and the expansion (13.15) implies

together with D2
SFT “ 0 that pDp1q

SFTq2 “ 0, hence we again see the chain complex
for contact homology hidden inside a version of the “full” SFT complex.

13.3.1. Cobordism maps and invariance. One can use the master equation
(13.13) to prove invariance of HSFT

˚ pM, ξ;Rq by a straightforward generalization of
the usual Floer-theoretic argument. Suppose pW, dλq is an exact symplectic cobor-
dism from pM´, ξ´q to pM`, ξ`q with λ|TM˘ “ α˘, and choose a generic almost

complex structure J on xW that is dλ-compatible on W and restricts to the cylin-
drical ends as generic elements J˘ P J pα˘q. Let pA˘rr~ss,D˘

SFTq denote the chain
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complexes associated to the data pα˘, J˘q, and for simplicity in this initial discus-
sion, choose the trivial coefficient ring R “ Q for both. We then define a map

Φ : A`rr~ss Ñ A´rr~ss : f ÞÑ exppFqf |q`“0,

where the generating function exppFq is regarded as a differential operator via the
substitution (13.14), with eA :“ 1 for all A P H2pW q since we are using trivial
coefficients, and “q` “ 0” means that after applying exppFq to change f into a
function of q variables for orbits in both M` and M´, we discard all terms that
involve orbits in M`. The exactness of the cobordism implies that negative powers
of ~ do not appear in Φf , thus producing an element of A´rr~ss: indeed, since

there are no holomorphic curves in xW without positive punctures, every term in
F contains at least one p variable, so that negative powers of ~ do not appear in
exppFq after applying (13.14).

The master equation for F now translates into the fact that Φ is a chain map,

D´
SFT ˝ Φ ´ Φ ˝ D`

SFT,

thus it descends to homology. The geometric meaning of Φ is straightforward to
describe: analogous to (12.11) in Lecture 12, we can write

(13.16) Φqγ “
8ÿ

g“0

ÿ

γ1

~g`k´1ngpγ,γ 1, kqqγ1
,

where ngpγ,γ 1, kq is a product of some combinatorial factors with a signed count
of disconnected index 0 holomorphic curves with connected components of genera
g1, . . . , gm satisfying g1 ` . . . ` gm ´ m “ g ´ 1, and with positive ends at γ and
negative ends at γ 1, where k is the number of positive ends.

Let’s discuss two applications of the cobordism map Φ. First, note that ifW is a
trivial symplectic cobordism r0, 1sˆM , then the above discussion can easily be gen-
eralized with pA˘,D˘

SFTq both defined over the same group ring R “ QrH2pMq{Gs
for any choice of G Ă H2pMq. There is no need to consider a Novikov ring in defining
F here since the cobordism is exact. We therefore obtain a chain map with arbitrary
group ring coefficients, and extending this discussion along standard Floer-theoretic
principles will imply that the chain map is an isomorphism: this can be used in
particular to prove that HSFT

˚ pM, ξ;Rq does not depend on the choices of contact
form and almost complex structure. There are two additional steps involved in this
argument: first, one needs to use a chain homotopy to prove that Φ does not de-

pend on the choice of almost complex structure J on xW . Given a generic homotopy
tJsusPr0,1s, the chain homotopy map

Ψ : A`rr~ss Ñ A´rr~ss
is defined as a differential operator in the same manner as Φ, but counting pairs
ps, uq where s P r0, 1s is a parameter value for which Js is nongeneric and u is a

disconnected Js-holomorphic curve in xW with index ´1. We saw how this works
for cylindrical contact homology in Lecture 10, but there is a new subtlety now

that should be mentioned: in principle, a disconnected index ´1 curve in xW could



386 Chris Wendl

have arbitrarily many components, including perhaps many with index ´1 and oth-
ers with arbitrarily large index. Even worse, the compactified 1-dimensional space
of pairs ps, uq for Js-holomorphic curves u of index 0 may include buildings that
have symplectization levels of index greater than 1, balanced by disjoint unions of
many index ´1 curves in the main level. This sounds horrible, but it can actu-
ally be ignored, for the following reason: first, since there are only finitely many
pairs ps, uq where u is a connected Js-holomorphic curve with index ´1, one can (if
transversality is achievable at all) use a genericity argument to assume without loss
of generality that for any given s P r0, 1s, at most one connected index ´1 curve ex-
ists. This means that in any building that has multiple index ´1 components, those
components are just multiple copies of the same curve. Now, since that curve has
odd index, it is represented by a monomial qγ

´
pγ

`
that contains an odd number of

odd generators, and any nontrivial product of such generators therefore disappears
in A since odd generators anticommute with themselves. This algebraic miracle
encodes a convenient fact about coherent orientations: whenever one of the horrible
buildings described above appears, one can reorder two of the index ´1 components
to produce from it a different building that lives in a moduli space with the opposite
orientation. Gluing this building back together then produces a continuation of the
1-dimensional moduli space, so that the horrible building can actually be interpreted
as an “interior” point of the 1-dimensional space, rather than boundary. The actual
count of boundary points is then exactly what we want it to be: it is represented
algebraically by the chain homotopy relation!

Finally, compositions of cobordism maps can be understood via a stretching
argument that is not substantially different from the case of cylindrical contact
homology. Since the trivial cobordism with R-invariant data gives a cobordism
map that just counts trivial cylinders and is therefore the identity, it follows that
cobordism maps relating different pairs of data pα˘, J˘q are always invertible, and
this proves the invariance of HSFT

˚ pM, ξ;Rq.
The second application concerns nontrivial exact cobordisms, and it is immediate

from the fact that Φ is a chain map:

Theorem 13.32. Any exact cobordism pW, dλq from pM´, ξ´q to pM`, ξ`q gives
rise to a Qrr~ss-linear map

HSFT
˚ pM`, ξ`q Ñ HSFT

˚ pM´, ξ´q.
�

It is much more complicated to say what happens in the event of a nonexact
cobordism, but slightly easier if we restrict our attention to fillings, i.e. the case with
M´ “ H. Assume pW,ωq is a compact symplectic manifold with stable boundaryM ,
inheriting a stable Hamiltonian structure H “ pΩ, αq for which α is a nondegenerate

contact form, and assume also that the completion xW admits an almost complex
structure J that is ω-tame on W and has a pseudoconvex restriction J` P J pHq to
the cylindrical end. We saw in Proposition 13.22 that these conditions can always
be achieved for a weak filling after deforming the symplectic structure. Let

G :“ kerrωs :“ tA P H2pW q | xrωs, Ay “ 0u ,
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and choose G` Ă H2pMq to be any subgroup such that the map H2pMq Ñ H2pW q
induced by the inclusion M ãÑ W sends G` into G. In other words, G` can be any
subgroup of kerrΩs Ă H2pMq. Define the group rings

R` “ QrH2pMq{G`s, R “ QrH2pW q{ kerrωss,
with the Novikov completion of R denoted by sR. The map H2pMq{G` Ñ H2pW q{G
induced by M ãÑ W then gives a natural ring homomorphism

(13.17) R` Ñ sR.
If ω is not exact, then it may no longer be true that every term in F has at least
one p variable. Let us write

F “ F0 ` F1,

where F0 contains no p variables and F1 “ Oppq, i.e. F0 counts all closed curves

in xW , and F1 counts everything else. Since F0 and F1 have even degree, they
commute, and thus

exppFq “ exppF0q exppF1q.
where exppF0q is an invertible element of sRrr~, ~´1ss since expp´F0q exppF0q “ 1.
By the master equation,

exppF0q exppF1qH “ Opqq,
hence exppF1qH “ expp´F0qOpqq “ Opqq since expp´F0q contains no p variables.
Using the substitution (13.14), and using (13.17) to map coefficients in R` to sR, it
follows that exppF1q gives rise to a differential operator

Φ : Arr~ss Ñ sRrr~ss : f ÞÑ exppF1qf |q“0,

which is a chain map to the SFT of the empty set with Novikov coefficients, meaning

Φ ˝ DSFT “ 0.

This chain map counts the disconnected index 0 curves in xW whose connected
components all have at least one positive puncture.

Theorem 13.33. Suppose pW,ωq is a compact symplectic manifold with sta-
ble boundary pM,H “ pΩ, αqq, where α is a nondegenerate contact form, and its

completion xW admits an almost complex structure that is ω-tame on W and has a
generic and pseudoconvex restriction J` P J pHq to the cylindrical end. Let sR denote
the Novikov completion of QrH2pW q{ kerrωss, and let R` “ QrH2pMq{G`s, where
G` Ă H2pMq is any subgroup on which the evaluation of rΩs P H2

dRpMq vanishes.
Then there exists an sRrr~ss-linear map HSFT

˚ pM,H, J`;R`q Ñ sRrr~ss. �

13.3.2. Algebraic torsion. We can now generalize the notion of algebraic
overtwistedness. Notice that since every term in DSFT is a differential operator
of order at least 1,

DSFTf “ 0 for all f P Rrr~ss,
hence every element of the extended coefficient ring Rrr~ss represents an element
of HSFT

˚ pM, ξ;Rq that may or may not be trivial. Since DSFT commutes with all
elements of Rrr~ss, the subset consisting of elements that are trivial in homology
forms an ideal. The following definition originates in [LW11].
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Definition 13.34. We say that a closed contact manifold pM, ξq has algebraic
torsion of order k (or k-torsion for short) with coefficients in R if

r~ks “ 0 P HSFT
˚ pM, ξ;Rq.

The numerical invariant

ATpM, ξ;Rq P N Y t0,8u
is defined to be the smallest integer k such that pM, ξq has algebraic k-torsion but
no pk ´ 1q-torsion, or 8 if there is no algebraic torsion of any order.

Several consequences of algebraic torsion can be read off quickly from the prop-
erties of SFT cobordism maps. Consider first the case of trivial coefficients R “ Q,
which we shall refer to as untwisted algebraic torsion and abbreviate

ATpM, ξq :“ ATpM, ξ;Qq.
If pW,ωq is a strong filling of pM, ξq, then the hypotheses of Theorem 13.33 are
fulfilled even with G` “ H2pMq since ω is exact at the boundary, thus we obtain a
Qrr~ss-linear map HSFT

˚ pM, ξq Ñ sRrr~ss, with sR denoting the Novikov completion
of QrH2pW q{ kerrωss. If r~ks “ 0 P HSFT

˚ pM, ξq, then the cobordism map implies a
contradiction since ~k does not equal 0 in sRrr~ss. Similarly, if pW, dλq is an exact
cobordism from pM´, ξ´q to pM`, ξ`q, then the cobordism map HSFT

˚ pM`, ξ`q Ñ
HSFT

˚ pM´, ξ´q of Theorem 13.32 is also Qrr~ss-linear, and thus any algebraic k-
torsion in pM`, ξ`q is inherited by pM´, ξ´q. This proves:

Theorem 13.35. Contact manifolds with ATpM, ξq ă 8 are not strongly fillable.
Moreover, if there exists an exact symplectic cobordism from pM´, ξ´q to pM`, ξ`q,
then ATpM´, ξ´q ď ATpM`, ξ`q. �

It is known (see [Wen13b]) that the second part of the above theorem does
not hold for strong symplectic cobordisms in general, so exactness of cobordisms
is a meaningful symplectic topological condition, not just a technical hypothesis.
It is also known (see [Ghi05]) that strong and exact fillability are not equivalent
conditions.

There are many known examples of contact manifolds that have untwisted al-
gebraic torsion but are weakly fillable. The simplest are the tight tori pT3, ξkq for
k ě 2, for which weak fillings were first constructed by Giroux [Gir94], but Eliash-
berg [Eli96] showed that strong fillings do not exist, and we will see in Lecture 16
that ATpT3, ξkq “ 1. The weak/strong distinction can often be detected via the
choice of coefficients in SFT. We saw in §13.2.1 that a weak filling of a contact
manifold pM, ξq can always be deformed so as to have stable boundary with data
pH “ pΩ, αq, J`q for which α is a nondegenerate contact form and J` is C8-close to
any given element of J pαq. Proposition 13.16 showed that if pM, ξq is algebraically
overtwisted, then the contact homology for the stable Hamiltonian data pH, J`q can
also be made to vanish.

Exercise 13.36. Generalize the proof of Prop. 13.16 to show that if pM, ξq has
algebraic k-torsion with coefficients in R, then also r~ks “ 0 P HSFT

˚ pM,Hc, Jc;Rq
for sufficiently large c ą 0.
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It then follows using Theorem 13.33 that algebraic torsion with suitably twisted
coefficients also gives an obstruction to weak filling. Let us say that pM, ξq has fully
twisted algebraic k-torsion whenever r~ks “ 0 P HSFT

˚ pM, ξ;QrH2pMqsq. Note that
in parallel with Remark 13.10, any nested pair of subgroups G Ă G1 Ă H2pMq gives
rise to a map

HSFT
˚ pM, ξ;QrH2pMq{G1sq Ñ HSFT

˚ pM, ξ;QrH2pMq{Gsq,
which is a morphism in the sense that it maps the unit and all powers of ~ to
themselves. This implies that pM, ξq has fully twisted k-torsion if and only if it has
k-torsion for every choice of coefficients.

Theorem 13.37. If pM, ξq is a closed contact manifold with a finite order of
algebraic torsion with coefficients in R “ QrH2pMq{Gs for some subgroup G, then
pM, ξq does not admit any weak symplectic filling pW,ωq for which rω|TM s P H2

dRpMq
is rational and annihilates all elements of G. In particular, if pM, ξq has fully twisted
algebraic torsion of some finite order, then it is not weakly fillable. �

Remark 13.38. The rationality condition in Theorem 13.37 can probably be
lifted, and is known to be unnecessary at least in dimension three. It is clear in any
case that if pM, ξq admits a weak filling pW,ωq, then one can always make a small
perturbation of ω to produce a weak filling for which rω|TMs P H2pM ;Qq.

We will see some concrete examples of algebraic torsion computations in Lec-
ture 16. Let us conclude this discussion for now with the observation that algebraic
torsion of order zero is a notion we’ve seen before:

Proposition 13.39. For any closed contact manifold pM, ξq and group ring
R “ QrH2pMq{Gs, the following conditions are equivalent:

(1) pM, ξq has algebraic 0-torsion (with coefficients in R);
(2) pM, ξq is algebraically overtwisted (with coefficients in R);
(3) HSFT

˚ pM, ξ;Rq “ 0.

Proof. It is obvious that (3) implies (1). Since DSFTf “ BCHf `Op~q for f P A,
the linear map

Arr~ss Ñ A : F ÞÑ F|~“0

defines a chain map pArr~ss,DSFTq Ñ pA, BCHq and thus descends to a linear map
HSFT

˚ pM, ξ;Rq Ñ HC˚pM, ξ;Rq which sends 1 P Arr~ss to 1 P A. The existence of
this map proves that (1) implies (2).

To prove that (2) implies (3), recall first that if there exists f P A with BCHf “ 1,
then the fact that HC˚pM, ξ;Rq “ 0 follows easily since for any g P A with BCHg “
0, the graded Leibniz rule implies BCHpfgq “ pBCHfqg ´ fpBCHgq “ g. This works
because BCH is a derivation—but DSFT is not one, so the same trick will not quite
work for DSFT. The trick in proving HSFT

˚ pM, ξ;Rq “ 0 will be to quantify the
failure of DSFT to be a derivation. For our purposes, it suffices to know that

(13.18) DSFTpFGq “ pDSFTFqG ` p´1q|F|FpDSFTGq ` Op~q
holds for all F,G P Arr~ss, which follows from the fact that BCH is a derivation.
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With this remark out of the way, suppose f P A satisfies BCHf “ 1, in which case

(13.19) DSFTf “ 1 ` ~G

for some G P Arr~ss. We claim then that for any Q P Arr~ss with DSFTQ “ 0, there
exists Q1 P Arr~ss with
(13.20) DSFTpfQq “ Q ` ~Q1

andDSFTQ1 “ 0. Indeed, (13.20) follows from (13.18) and (13.19) sinceDSFTQ “ 0,
and DSFTQ1 “ 0 then follows by applying DSFT to (13.20) and using D2

SFT “ 0.
Fixing Q0 :“ Q P Arr~ss, we can now define a sequence Qk P Arr~ss satisfying
DSFTQk “ 0 for all integers k ě 0 via the inductive condition

DSFTpfQkq “ Qk ` ~Qk`1.

Then
ř8
k“0p´1qk~kQk P Arr~ss, and

DSFT

˜
f

8ÿ

k“0

p´1qk~kQk

¸
“ Q.

�
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In this appendix, we review some of the standard properties of Sobolev spaces,
in particular using them to prove Propositions 2.6, 2.7 and 2.10 from §2.2, and
elucidating the construction of Sobolev spaces of sections on vector bundles. A
good reference for the necessary background material is [AF03].

A.1. Approximation, extension and embedding theorems

Unless otherwise noted, all functions in the following are assumed to be defined
on a nonempty open subset

U Ă Rn

with its standard Lebesgue measure, and taking values in a finite-dimensional normed
vector space that will usually not need to be specified, though occasionally we will
assume it is R or C so that one can define products of functions. The domain U
will also sometimes have additional conditions specified such as boundedness or reg-
ularity at the boundary, though we will try not to add too many more restrictions
than are really needed. The most useful assumption to impose on U is known as
the strong local Lipschitz condition: if U is bounded, then it means simply that
near every boundary point of U , one can find smooth local coordinates in which
U looks like the region bounded by the graph of a Lipschitz-continuous function,
and in this case we call U a bounded Lipschitz domain. If U is unbounded,
then one needs to impose extra conditions guaranteeing e.g. uniformity of Lipschitz
constants, and the precise definition becomes a bit lengthy (see [AF03, §4.9]). For
our purposes, all we really need to know about the strong local Lipschitz condition
is that that it is satisfied both by bounded Lipschitz domains and by relatively
tame unbounded domains such as p0, 1q ˆ p0,8q Ă R2 which have smooth boundary
with finitely many corners. We will repeatedly need to use the generalized version
of Hölder’s inequality, which states that for any finite collection of measurable

455
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functions f1, . . . , fm,

(A.1)

›››››
mź

i“1

|fi|
›››››
Lp

ď
mź

i“1

}fi}Lpi for 1 ď p ď p1, . . . , pm ď 8 with
1

p
“

mÿ

i“1

1

pi
.

This is an easy corollary of the standard version,
››|f | ¨ |g|

››
L1 ď }f}Lp ¨ }g}Lq whenever 1 ď p, q ď 8 and 1 “ 1

p
` 1

q
.

For an integer k ě 0 and real number p P r1,8s, we define W k,ppUq as in
§2.2 to be the Banach space of all f P LppUq which have weak partial derivatives
Bαf P LppUq for all |α| ď k. For p “ 2, these spaces are also often denoted by

HkpUq :“ W k,2pUq,
and they admit Hilbert space structures with inner product

xf, gyHk “
ÿ

|α|ďk
xBαf, BαgyL2.

We denote by
W

k,p
0 pUq Ă W k,ppUq, Hk

0 pUq Ă HkpUq
the closed subspaces defined as the closures of C8

0 pUq with respect to the relevant
norms. Since C8

0 pUq is dense in LppUq for 1 ď p ă 8 (see e.g. [LL01, §2.19]),
there is no difference between W 0,ppUq and W

0,p
0 pUq for p ă 8, but in general

W
k,p
0 pUq ‰ W k,ppUq for k ě 1, with a few notable exceptions such as the case

U “ Rn (cf. Corollary A.2 below). Let

W
k,p
loc pUq :“

 
functions f on U

ˇ̌
f P W k,ppVq for all open subsets V Ă U

with compact closure V Ă U
(
,

and say that a sequence fj P W k,p
loc pUq converges inW k,p

loc to f P W k,p
loc pUq if the restric-

tions to all precompact open subsets V Ă V Ă U converge in W k,ppVq. Recall that
for k P t0, 1, 2, . . . ,8u, CkpUq denotes the space of functions on U with continuous
derivatives up to order k, while

CkpUq Ă CkpUq
is the space of f P CkpUq such that for all |α| ď k, Bαf is bounded and uniformly
continuous.

Theorem A.1 ([AF03, §3.17, 3.22]). For any open subset U Ă Rn, and any
k ě 0, 1 ď p ă 8, the subspace

C8pUq X W k,ppUq Ă W k,ppUq
is dense. Moreover, if U Ă Rn satisfies the strong local Lipschitz condition, then the
space !

f P C8pUq
ˇ̌
ˇ f “ rf |U for some rf P C8

0 pRnq
)

is also dense in W k,ppUq, so in particular,

C8pUq X W k,ppUq Ă W k,ppUq
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is dense. �

Corollary A.2. The space C8
0 pRnq is dense in W k,ppRnq for every k ě 0 and

p P r1,8q. �

Here is another useful characterization of W k,p
0 pUq:

Theorem A.3 ([AF03, §5.29]). Assume U Ă Rn is an open subset satisfying the

strong local Lipschitz condition. Then a function f P W k,ppUq belongs to W k,p
0 pUq

if and only if the function rf on Rn defined to match f on U and 0 everywhere else
belongs to W k,ppRnq. �

While it is obvious from the definitions that functions in W k,p
0 pUq always admit

extensions of class W k,p over Rn, this is much less obvious for functions in W k,ppUq
in general, and it is not true without sufficient assumptions about the regularity
of BU . For our purposes it suffices to consider the following case.

Theorem A.4 ([AF03, §5.22]). Assume U Ă Rn is a bounded open subset such
that BU is a submanifold of class Cm for some m P t1, 2, 3, . . . ,8u. Then there
exists a linear operator E that maps functions defined almost everywhere on U to
functions defined almost everywhere on Rn and has the following properties:

‚ For every function f on U , Ef |U ” f almost everywhere;
‚ For every nonnegative integer k ď m and every p P r1,8q, E defines a
bounded linear operator W k,ppUq Ñ W k,ppRnq.

�

Corollary A.5. Suppose U ,U 1 Ă Rn are open subsets such that U has compact
closure contained in U 1. If U satisfies the hypothesis of Theorem A.4, then the
resulting extension operator E can be chosen such that it maps each W k,ppUq for

k ď m and 1 ď p ă 8 into W k,p
0 pU 1q.

Proof. Choose a smooth function ρ : U 1 Ñ r0, 1s that has compact support and
equals 1 on U , then replace the operator E given by Theorem A.4 with the operator
f ÞÑ ρ ¨ Ef . �

To state the Sobolev embedding theorem in its proper generality, recall that for
0 ă α ď 1, the Hölder seminorm of a function f on U is defined by

|f |Cα :“ |f |CαpUq :“ sup
x‰yPU

|fpxq ´ fpyq|
|x´ y|α ,

and Ck,αpUq is then defined as the Banach space of functions f P CkpUq for which
the norm

}f}Ck,α :“ }f}Ck ` max
|β|“k

|Bβf |Cα

is finite. In reading the following statement, it is important to remember that
elements of W k,ppUq are technically not functions, but rather equivalence classes
of functions defined almost everywhere. Thus when we say e.g. that there is an
inclusion W k,ppUq ãÑ Cm,αpUq, the literal meaning is that for every function f

representing an element of W k,ppUq, one can change the values of f in a unique way
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on some set of measure zero in U so that after this change, f P Cm,αpUq. Continuity
of the inclusion means that there is a bound of the form

}f}Cm,α ď c}f}W k,p

for all f P W k,ppUq, where c ą 0 is a constant which may in general depend on m,
α, k, p and U , but not on f .

Theorem A.6 ([AF03, §4.12]). Assume U Ă Rn is an open subset satisfying
the strong local Lipschitz condition, k ě 1 is an integer and 1 ď p ă 8.

(1) If 0 ă k ´ n{p ď 1, then there exist continuous inclusions

W k,ppUq ãÑ C0,αpUq for each α P p0, 1q with α ď k ´ n{p,
W k,ppUq ãÑ LqpUq for each q P rp,8s.

(2) If kp ă n and p˚ ą p is defined by the condition

1

p˚ “ 1

p
´ k

n
,

then there exist continuous inclusions

W k,ppUq ãÑ LqpUq, for each q P rp, p˚s.
(3) If kp “ n, then there exist continuous inclusions

W k,ppUq ãÑ LqpUq, for each q P rp,8q.
Moreover, the spaces W k,p

0 pUq admit similar inclusions under no assumption on the
open subset U Ă Rn. �

Under the same assumption on the domain U , one can apply Theorem A.6 to suc-
cessive derivatives of functions in W k,ppUq and thus obtain the following inclusions
for any integer d ě 0:

W k`d,ppUq ãÑ Cd,αpUq if 0 ă k ´ n{p ď 1, 0 ă α ă 1 and α ď k ´ n{p,(A.2)

W k`d,ppUq ãÑ W d,qpUq if kp ą n and p ď q ď 8,(A.3)

W k`d,ppUq ãÑ W d,qpUq if kp ă n and p ď q ď p˚, with
1

p˚ “ 1

p
´ k

n
,(A.4)

W k`d,ppUq ãÑ W d,qpUq if kp “ n and p ď q ă 8.(A.5)

Remark A.7. The embedding theorem suggests that one should intuitively think
of W k,ppUq as consisting of functions with “k ´ n{p continuous derivatives,” where
the number k´n{p may in general be a non-integer and/or negative. This provides
a useful mnemonic for results about embeddings of one Sobolev space into another,
such as the following.

Corollary A.8. Assume U Ă Rn is an open subset satisfying the strong local
Lipschitz condition, 1 ď p, q ă 8, and k,m ě 0 are integers satisfying

k ě m, p ď q, and k ´ n

p
ě m´ n

q
.

Then there exists a continuous inclusion W k,ppUq ãÑ Wm,qpUq. �



Lectures on Symplectic Field Theory 459

Exercise A.9. Derive Corollary A.8 from Theorem A.6 by checking that under
the stated conditions, there is a continuous inclusion W k´m,ppUq ãÑ LqpUq. Show
also that the hypothesis p ď q is unnecessary if U Ă Rn has finite measure.

By the Arzelà-Ascoli theorem, the natural inclusion

Ck,α1pUq ãÑ Ck,αpUq
for α ă α1 is a compact operator whenever U Ă Rn is bounded. It follows that if
U Ă Rn in (A.2) is bounded and α is strictly less than the extremal value k´n{p, then
the inclusion (A.2) is also compact. A similar statement holds for the inclusion (A.4)
when p ď q ă p˚, and this is known as the Rellich-Kondrachov compactness
theorem. We summarize these as follows:

Theorem A.10 ([AF03, §6.3]). Assume U Ă Rn is a bounded Lipschitz domain,
k ě 1 and d ě 0 are integers and 1 ď p ă 8.

(1) If kp ą n and k ´ n{p ă 1, then the inclusions

W k`d,ppUq ãÑ Cd,αpUq for α P p0, k ´ n{pq,
W k`d,ppUq ãÑ W d,qpUq for q P rp,8q

are compact.
(2) If kp ď n and p˚ P pp,8s is defined by the condition 1{p˚ “ 1{p´k{n, then

the inclusions

W k`d,ppUq ãÑ W d,qpUq for q P rp, p˚q
are compact.

In particular, the continuous inclusion W k,ppUq ãÑ Wm,qpUq in Corollary A.8 is
compact whenever the inequality k ´ n{p ě m´ n{q is strict. �

On connected 1-dimensional domains U Ă R, the spaces W 1,ppUq admit an alter-
native characterization in terms of classical derivatives defined almost everywhere:

Proposition A.11. For ´8 ă a ă b ă 8, every absolutely continuous function
on ra, bs belongs to W 1,1ppa, bqq and has a weak derivative that is equal to its classical
derivative almost everywhere. Conversely, every function in W 1,1ppa, bqq is equal
almost everywhere to an absolutely continuous function defined on ra, bs.

Proof. Let us denote the classical derivative of a function f by f 1
c and the weak

derivative by f 1
w whenever there is danger of confusion. If f is absolutely continuous

on ra, bs, then for every test function ϕ P C8
0 ppa, bqq, fϕ defines an absolutely

continuous function on ra, bs that vanishes at the end points, so the fundamental
theorem of calculus implies

ş
ra,bspfϕq1

c “
ş

ra,bs f
1
cϕ `

ş
ra,bs fϕ

1 “ 0, proving that the

almost everywhere defined function f 1
c P L1pra, bsq is also the weak derivative f 1

w,
and thus f P W 1,1ppa, bqq.

Conversely, suppose f P W 1,1ppa, bqq, so it has a weak derivative f 1
w P L1ppa, bqq.

We can then define an absolutely continuous function g on ra, bs by gpxq :“
şx
a
f 1
w,

which is differentiable almost everywhere and satisfies g1
c “ f 1

w. By the argument of
the previous paragraph, g1

c is also a weak derivative g1
w, thus g ´ f is a function on
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pa, bq with vanishing weak derivative, implying via [LL01, Theorem 6.11] that g´f

is equal almost everywhere to a constant. �

Corollary A.12. For ´8 ă a ă b ă 8 and 1 ď p ď 8, W 1,pppa, bqq has a
canonical identification with the space of absolutely continuous functions on ra, bs
whose classical derivatives belong to Lppra, bsq. �

A.2. Products, compositions, and rescaling

We now restate and prove Propositions 2.6, 2.7 and 2.10 from §2.2. These are
all corollaries of the Sobolev embedding theorem, so in particular they hold for the
same class of domains U Ă Rn, and the restrictions on U can be dropped at the cost
of replacing each space W k,p by W k,p

0 .
We begin by generalizing Prop. 2.6, hence we consider Sobolev spaces of functions

valued in R or C so that pointwise products of functions are well defined almost
everywhere. We say that there is a continuous product map,

W k1,p1pUq ˆ . . .ˆ W km,pmpUq Ñ W k,ppUq,
or a continuous product pairing in the case m “ 2, if for every set of functions
fi P W ki,pipUq with i “ 1, . . . , m, the pointwise product function f1 ¨ . . . ¨ fm is in
W k,ppUq and there is an estimate of the form

}f1 ¨ . . . ¨ fm}W k,p ď c}f1}W k1,p1 ¨ . . . ¨ }fm}W km,pm

for some constant c ą 0 not depending on f1, . . . , fm. The case m “ 2, k1 “ k2 “ k

and p1 “ p2 “ p is especially interesting, as the space W k,ppUq is then a Banach
algebra. More generally, one can ask under what circumstances multiplication by
functions of classW k,p defines a bounded linear operator on functions of class Wm,q.
A hint about this comes from the world of classically differentiable functions: mul-
tiplication by Ck-smooth functions defines a continuous map Cm Ñ Cm if and only
if k ě m. The corresponding answer in Sobolev spaces turns out to be that func-
tions of class W k,p need to have strictly more than zero derivatives in the sense of
Remark A.7, and at least as many derivatives as functions of class Wm,q.

Theorem A.13. Assume U Ă Rn is an open subset satisfying the strong local
Lipschitz condition, 1 ď p, q ă 8, and k,m ě 0 are integers satisfying

k ě m, kp ą n, and k ´ n

p
ě m ´ n

q
.

Then there exists a continuous product pairing

W k,ppU ,Cq ˆ Wm,qpU ,Cq Ñ Wm,qpU ,Cq : pf, gq ÞÑ fg.

The following preparatory lemma will be useful both for proving the product
estimate and for further results below. It is an easy consequence of Theorem A.6
and Hölder’s inequality.

Lemma A.14. Assume U Ă Rn is an open subset satisfying the strong lo-
cal Lipschitz condition, m ě 2 is an integer, and we are given positive numbers
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p1, . . . , pm ě 1 and integers k1, . . . , km ě 0. Let I :“
 
i P t1, . . . , mu

ˇ̌
kipi ď n

(
.

Then for any q ě 1 satisfying

ÿ

iPI

ˆ
1

pi
´ ki

n

˙
ă 1

q
ď

mÿ

i“1

1

pi
,

there is a continuous product map

W k1,p1pUq ˆ . . .ˆ W km,pmpUq Ñ LqpUq.
Proof. By the generalized Hölder inequality (A.1), it suffices to show that for

any q ě 1 in the stated range, one can find numbers q1, . . . , qm P rq,8s satisfying
1{q “ 1{q1 ` . . .` 1{qm for which Theorem A.6 provides continuous inclusions

W ki,pipUq ãÑ LqipUq
for each i “ 1, . . . , m. Whenever kipi ą n, this inclusion is valid with qi chosen freely
from the interval rpi,8s, so 1{qi can then take any value subject to the constraint

0 ď 1

qi
ď 1

pi
.

If on the other hand kipi ď n, then we can arrange 1{qi to take any value in the
range

1

pi
´ ki

n
ă 1

qi
ď 1

pi
.

Adding these up, the range of values for
ř
i
1
qi
that we can achieve in this way covers

the stated interval. �

Proof of Theorem A.13. By density of smooth functions, it suffices to prove
that an estimate of the form

}fg}Wm,q ď c}f}W k,p}g}Wm,q

holds for all f P C8pUqXW k,ppUq and g P C8pUqXWm,qpUq. Equivalently, we need
to show that for all f and g of this type and every multiindex α of degree |α| ď m,
there is a constant c ą 0 independent of f and g such that

}Bαpfgq}Lq ď c}f}W k,p}g}Wm,q .

Since f and g are smooth, we are free to use the product rule in computing Bαpfgq,
which will then be a linear combination of terms of the form Bβf ¨ Bγg where |α| “
|β| ` |γ|, hence we have reduced the problem to proving a bound

}Bβf ¨ Bγg}Lq ď c}f}W k,p}g}Wm,q

for every pair of multiindices β, γ with |β| ` |γ| ď m. Since Bβf P W k´|β|,ppUq and
Bγf P Wm´|γ|,qpUq, the result follows if we can assume that for every pair of integers
a, b ě 0 satisfying a` b ď m, there exists a continuous product pairing

(A.6) W k´a,ppUq ˆ Wm´b,qpUq Ñ LqpUq.
If pk ´ aqp ą n, then W k´a,p ãÑ L8 and (A.6) is immediate since Wm´b,q ãÑ LqpUq.
For the remaining cases, we shall apply Lemma A.14, noting that the condition
1{q ď 1{p ` 1{q is trivially satisfied.
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If pm´ bqq ą n but pk´ aqp ď n, then the hypotheses of the lemma are satisfied
if and only if

1

p
´ k ´ a

n
ă 1

q
.

Since 1
p

´ k
n

ď 1
q

´ m
n
by assumption, we have

1

p
´ k ´ a

n
“ 1

p
´ k

n
` a

n
ď 1

q
´ m

n
` a

n
ď 1

q

since a ď m, and equality holds only if a “ m, b “ 0 and k ´ n{p “ m ´ n{q,
which implies mq ą n. In this case Wm´b,q “ Wm,q ãÑ L8, and the pairing (A.6)
follows because W k´a,p “ W k´m,p embeds continuously into Lq: the latter follows
from Theorem A.6 since 1

p
´ k´m

n
“ 1

q
.

Finally, when pk ´ aqp ď n and pm ´ bqq ď n, the hypotheses of the lemma are
satisfied sinceˆ

1

p
´ k ´ a

n

˙
`
ˆ
1

q
´ m´ b

n

˙
ď 1

p
´ k

n
` 1

q
´ m

n
` m

n
“
ˆ
1

p
´ k

n

˙
` 1

q
ă 1

q
,

where we’ve used the assumption kp ą n and the fact that a` b ď m. �

Remark A.15. A much simpler argument shows similarly that for any open
domain U Ă Rn, any integer k ě 1 and any p P r1,8q, there is a continuous product
pairing

CkpU ,Cq ˆ W k,ppU ,Cq ˆ W k,ppU ,Cq.
As in Theorem A.13, this follows from the density of C8 X W k,p Ă W k,p after
showing that all f P CkpUq and g P C8pUq X W k,ppUq satisfy an estimate of the
form }fg}W k,p ď c}f}Ck}g}W k,p. The latter follows easily from the definition of the
W k,p-norm.

In general it is not straightforward to say when the usual product rule Bipfgq “
Bif ¨ g ` f ¨ Big does or does not hold in the sense of weak derivatives. If g and Big
are locally integrable and f is smooth, then there is no trouble: the formula can
be derived in this case directly from the definition of weak derivatives, using the
observation that for any test function ϕ P C8

0 pUq, ϕf is also in C8
0 pUq and satisfies

the product rule. If on the other hand f and g are not continuous but have well-
defined weak derivatives and a locally integrable product, then there is no guarantee
in general that any of Bipfgq, Bif ¨g or f ¨Big should be well-defined locally integrable
functions. Theorem A.13 provides a means of resolving this question whenever f
and g belong to suitable Sobolev spaces.

Proposition A.16. Suppose k,m, p, q and U Ă Rn satisfy the same condi-
tions as in Theorem A.13, and m ě 1. Then for every f P W k,ppU ,Cq and
g P Wm,qpU ,Cq, the weak partial derivatives of fg P Wm,qpU ,Cq are given almost
everywhere by the usual Leibniz rule Bipfgq “ Bif ¨ g ` f ¨ Big.

Proof. Choose sequences of smooth functions fj , gj with fj Ñ f in W k,p and
gj Ñ g in Wm,q. Then since k ě m ě 1, there is also Lp-convergence Bifj Ñ Bif and
Lq-convergence Bigj Ñ Big, so after restricting to a subsequence, we may assume that
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all four of the sequences fj , Bifj , gj and Bigj converge pointwise almost everywhere.
The continuity of the product pairing W k,p ˆ Wm,q Ñ Wm,q now implies Wm,q-
convergence fjgj Ñ fg and thus Lq-convergence

Bipfjgjq “ Bifj ¨ gj ` fj ¨ Bigj Ñ Bipfgq.
The result follows since Bifj ¨gj `fj ¨Bigj also converges pointwise almost everywhere
to Bif ¨ g ` f ¨ Big. �

Remark A.17. A slight simplification of the same argument as in Proposi-
tion A.16 shows that the product rule also holds (without any assumption on the
open domain U Ă Rn) for f P CmpU ,Cq and g P Wm,ppU ,Cq for any p P r1,8q if
m ě 1. The key facts here are the continuity of the product pairing Cm ˆ Wm,p Ñ
Wm,p and the density of C1 in Wm,p, so that f and g can be approximated by pairs
for which the classical product rule holds. Both results can also be extended in a
similar manner to prove the expected formula for Bαpfgq for any multiindex α of
order |α| ď m.

The next result generalizes Proposition 2.7 and concerns the following question:
if f : U Ñ Rm is a function of class W k,p whose graph lies in some open subset
V Ă U ˆ Rm, and Ψ : V Ñ RN is another function, under what conditions can we
conclude that the function

U Ñ RN : x ÞÑ Ψpx, fpxqq
is in W k,ppU ,RNq? We will abbreviate this function in the following by Ψ ˝ pIdˆ fq,
and we would also like to know whether it depends continuously (in the W k,p-
topology) on f and Ψ. The following theorem is stated rather generally, but on
first reading you may prefer to assume U Ă Rn is bounded, in which case some of
the hypotheses become vacuous. We will say that an open subset V Ă U ˆ Rm is a
star-shaped neighborhood of f : U Ñ Rm if it contains the graph of f0 and

px, vq P V ñ px, tv ` p1 ´ tqf0pxqq P V for all t P r0, 1s.
Theorem A.18. Assume U Ă Rn is an open subset satisfying the strong local

Lipschitz condition, p P r1,8q and k P N satisfy kp ą n, and V Ă U ˆRm is a star-
shaped neighborhood of some function f0 P W k,ppU ,Rmq. Assume also Ok,ppU ;Vq Ă
W k,ppU ,Rmq is an open neighborhood of f0 such that

px, fpxqq P V for all x P U and f P Ok,ppU ;Vq,
and OkpV ,RNq Ă CkpV,RNq is a subset such that all Ψ P OkpV,Rnq have the
following properties:1

(1) There exists a bounded subset K Ă U such that Ψpx, vq is independent of x
for all x P UzK;

(2) Ψ ˝ pId ˆ f0q P LppU ,RNq.
Then there is a well-defined and continuous map

OkpV,RNq ˆ Ok,ppU ;Vq Ñ W k,ppU ,RNq : pΨ, fq ÞÑ Ψ ˝ pId ˆ fq,
1Both of the conditions on Ψ P OkpV ,Rnq are vacuous if U Ă Rn is bounded.
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and for each Ψ P OkpV,RNq and f P W k,ppU ,RNq, the weak partial derivatives of
Ψ ˝ pId ˆ fq are given almost everywhere by the classical formula

Bj rΨ ˝ pId ˆ fqs pxq “ BjΨpx, fpxqq ` D2Ψpx, fpxqqBjfpxq,
where BjΨ denotes the partial derivative of Ψpx, vq with respect to the jth coordinate
in x P Rn, and D2Ψ is its differential with respect to v P Rm.

Proof. We will show first that if f P Ok,ppU ;Vq is smooth, then Ψ ˝ pId ˆ
fq belongs to W k,ppU ,RNq for every Ψ P OkpV,RNq. Since V is a star-shaped
neighborhood of f0, we have

|Ψpx, fpxqq´Ψpx, f0pxqq| “
ˇ̌
ˇ̌
ż 1

0

d

dt
Ψ
`
x, tfpxq ` p1 ´ tqf0pxq

˘
dt

ˇ̌
ˇ̌

ď
ˆż 1

0

|D2Ψ
`
x, tfpxq ` p1 ´ tqf0pxq

˘
| dt

˙
¨ |fpxq ´ f0pxq|

ď }Ψ}C1pVq ¨ |fpxq ´ f0pxq|
for all x P U , implying

}Ψ ˝ pId ˆ fq ´ Ψ ˝ pId ˆ f0q}Lp ď }Ψ}C1pVq ¨ }f ´ f0}Lp,

hence Ψ ˝ pId ˆ fq P LppU ,RNq.
For ℓ “ 1, . . . , k, we can regard the ℓth derivative of Ψ with respect to variables

in Rm as a bounded and uniformly continuous map from V into the vector space of
symmetric ℓ-multilinear maps from Rm to RN , denoting this by

Dℓ
2Ψ : V Ñ HomppRmqbℓ,RNq.

Denote the partial derivatives with respect to variables in U Ă Rn by

D
β
1Ψ : V Ñ RN ,

where β is a multiindex in n variables. Now for any multiindex α with |α| ď k, the
derivative BαpΨ ˝ pId ˆ fqq is a linear combination of product functions of the form

(A.7) pDγ
1D

ℓ
2Ψ ˝ pId ˆ fqqpBβ1f, . . . , Bβℓfq : U Ñ RN ,

where ℓ` |γ| P t1, . . . , |α|u and |β1| ` . . .` |βℓ| “ |α| ´ |γ|. If ℓ “ 0 but |γ| ą 0, then
this expression is clearly in LppU ,RNq since it is continuous and Dγ

1Ψpx, vq “ 0 for
x P UzK, where K is bounded. For ℓ ě 1, it satisfies

››pDγ
1D

ℓ
2Ψ ˝ pId ˆ fqqpBβ1f, . . . , Bβℓfq

››
LppUq ď }Dγ

1D
ℓ
2Ψ}C0pVq ¨

›››››
ℓź

j“1

|Bβjf |
›››››
LppUq

if the product on the right hand side has finite Lp-norm. The latter is trivially
true if ℓ “ 1. To deal with the ℓ ě 2 case, note that Bβjf P W k´|βj|,ppUq for each
j “ 1, . . . , ℓ, so the necessary bound will follow from the existence of a continuous
product map

W k´m1,ppUq ˆ . . .ˆ W k´mℓ,ppUq Ñ LppUq
for mj :“ |βj |, and we claim that such a product map does exist whenever kp ą n

and m1, . . . , mℓ ě 0 are integers satisfying m1 ` . . . ` mℓ ď k. To see this, note
first that since W k´mj ,p ãÑ L8 whenever pk ´ mjqp ą n, it suffices to prove the



Lectures on Symplectic Field Theory 465

claim under the assumption that pk ´mjqp ď n for every j “ 1, . . . , ℓ. In this case,
Lemma A.14 provides the desired product map if the condition

ℓÿ

j“1

ˆ
1

p
´ k ´ mj

n

˙
ă 1

p
ď

ℓÿ

j“1

1

p

is satisfied. And it is: using kp ą n, ℓ ě 2 and m1 ` . . .` mℓ ď k, we find

ℓÿ

j“1

ˆ
1

p
´ k ´ mj

n

˙
“ ℓ

ˆ
1

p
´ k

n

˙
` m1 ` . . .` mℓ

n

ď 1

p
` pℓ ´ 1q

ˆ
1

p
´ k

n

˙
ă 1

p
.

This proves that Ψ ˝ pId ˆ fq P W k,ppU ,RNq.
Next, suppose f P Ok,ppU ;Vq is not necessarily smooth but fi P Ok,ppU ;Vq is

a sequence of smooth functions converging to f in W k,p, while Ψi P OkpV ,RNq
converges to Ψ P OkpV,RNq in Ck. Then the same argument we used to estimate
}Ψ ˝ pId ˆ fq ´ Ψ ˝ pId ˆ f0q}Lp shows that Ψi ˝ pId ˆ fiq Ñ Ψ ˝ pId ˆ fq in Lp, and
since fi is also C

0-convergent, the compactly supported functions Dγ
1Ψi ˝ pId ˆ fiq

converge to Dγ
1Ψ ˝ pId ˆ fq in Lp for each multiindex with 1 ď |γ| ď k. For ℓ ě 1

and |γ| ` ℓ ď k, Dγ
1D

ℓ
2Ψi ˝ pId ˆ fiq converges to Dγ

1D
ℓ
2Ψ ˝ pId ˆ fq in C0pU ,RNq,

and each of the derivatives Bβjfi appearing in (A.7) also converges in LppUq. In
light of the continuous product maps discussed above, it follows that each derivative
BαpΨi ˝ pId ˆ fiqq for |α| ď k is Lp-convergent, and its limit is necessarily (by
Exercise A.19 below) the corresponding weak derivative BαpΨ ˝ pId ˆ fqq, hence

Ψ ˝ pId ˆ fq P W k,ppU ,RNq and Ψi ˝ pId ˆ fiq W k,p

ÝÑ Ψ ˝ pId ˆ fq. Since all sequences
in this discussion can also be replaced with subsequences that are pointwise almost
everywhere convergent, this also proves that the classical formula for BαpΨi˝pIdˆfiqq
for each |α| ď k remains valid for computing the corresponding weak derivative
BαpΨ ˝ pId ˆ fqq. With this understood, one can now repeat the arguments of this
paragraph for an arbitrary W k,p-convergent sequence fi Ñ f without assuming the
fi are smooth, thus proving the continuity of the map pΨ, fq ÞÑ Ψ ˝ pId ˆ fq. �

Exercise A.19. Show that if fi is a sequence of smooth functions on an open set

U Ă Rn with fi
Lp

Ñ f and Bαfi L
p

Ñ g for some multiindex α and functions f, g P LppUq,
then Bαf “ g in the sense of distributions.

The following result on coordinate transformations of the domain can be proved
in an analogous way to Theorem A.18, though it is considerably easier since there is
no need to worry about Sobolev product maps (and thus no need to assume kp ą n

or impose regularity conditions on the domain).

Theorem A.20 ([AF03, §3.41]). Assume k P N, 1 ď p ď 8, and U ,U 1 Ă Rn are
open subsets with a Ck-smooth diffeomorphism ϕ : U Ñ U 1 such that all derivatives
of ϕ and ϕ´1 up to order k are bounded and uniformly continuous. Then there is a
well-defined Banach space isomorphism

W k,ppU 1q Ñ W k,ppUq : f ÞÑ f ˝ ϕ.
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Next, we restate and prove Proposition 2.10. Denote by D̊n and D̊n
ǫ px0q the open

balls of radius 1 and ǫ about the origin and a point x0 respectively in Rn.

Theorem A.21. Assume p P r1,8q and k P N satisfy kp ą n, and for a given

point x0 P D̊n with ǫ0 :“ distpx0, BDnq, associate to each f P W k,ppD̊nq and ǫ P p0, ǫ0q
the function fǫ P W k,ppD̊nq defined by

fǫpxq :“ fpx0 ` ǫxq.

Then for each α P p0, 1q satisfying α ď k ´ n
p
, there exists a constant C ą 0 such

that the estimate

}fǫ ´ fǫp0q}W k,p ď Cǫα}f ´ fpx0q}W k,p

holds for all f P W k,ppD̊nq and ǫ P p0, ǫ0q.

Proof. To estimate }fǫ ´ fǫp0q}Lp, we use the fact that f ´ fpx0q P W k,p is
Hölder continuous, i.e. Theorem A.6 embeds W k,p continuously into C0,α for any
α P p0, 1q with α ď k ´ n{p, thus f satisfies

|fpxq ´ fpx0q| ď c}f ´ fpx0q}W k,ppD̊nq ¨ |x´ x0|α for all x P D̊n
ǫ0

px0q

for some constant c ą 0. We therefore have

}fǫ ´ fǫp0q}pLp “
ż

Dn

|fpx0 ` ǫxq ´ fpx0q|p ď cp}f ´ fpx0q}p
W k,p

ż

Dn

|ǫx|αp

“ cp}f ´ fpx0q}p
W k,p ¨ ǫαp

ż

Dn

|x|αp “: Cpǫαp}f ´ fpx0q}p
W k,p

for a suitable constant C ą 0, implying }fǫ ´ fǫp0q}Lp ď Cǫα}f ´ fpx0q}W k,p.
Next, consider a multiindex β of order |β| “ m P t1, . . . , ku. The functions

Bβpf ´ fpx0qq “ Bβf and Bβpfǫ ´ fǫp0qq “ Bβfǫ for each ǫ P p0, ǫ0q are then in

W k´m,ppD̊nq, and we need to establish bounds on }Bβfǫ}Lp in terms of the W k,p-
norm of f ´ fpx0q. If m ă k, then Theorem A.6 gives a continuous inclusion

(A.8) W k´m,ppD̊nq ãÑ LqpD̊nq

for any q P rp,8q satisfying 1{q ě 1{p ´ pk ´ mq{n. The same is also trivially true
in the case m “ k, since q and p must then be equal. Notice that if pk ´ mqp ě n,
then q is allowed to be arbitrarily large. We will therefore assume in general that
(A.8) holds with q P rp,8q satisfying

1

q
` 1

r
“ 1

p
,

where r “ n
k´m P p0,8s if pk ´ mqp ă n and otherwise r “ p ` δ for some δ ą 0

which may be chosen arbitrarily small. Given this, we apply change of variables and
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Hölder’s inequality to find

}Bβfǫ}pLppD̊nq “ ǫmp
ż

Dn

|Bβfpx0 ` ǫxq|p “ ǫmp´n
ż

Dn
ǫ px0q

|Bβfpxq|p

ď ǫmp´n}Bβf}p
LqpD̊n

ǫ q}1}p
LrpD̊n

ǫ q

ď ǫmp´n rVolpDn
ǫ px0qqsp{r }Bβf}p

LqpD̊nq

ď cǫmp´n rVolpDn
ǫ px0qqsp{r }Bβf}p

W k´m,ppD̊nq

ď cǫmp´n rVolpDn
ǫ px0qqsp{r }f ´ fpx0q}p

W k,ppD̊nq

for some constant c ą 0. Writing VolpDn
ǫ px0qq “ Cǫn for a suitable constant C ą 0,

the exponent on ǫ in this expression becomes mp ´ n ` np

r
. If pk ´ mqp ă 0, this is

exactly kp´ n “ pk´ n{pqp, and otherwise, taking r´ p ą 0 to be arbitrarily small
makes it less than but arbitrarily close to mp. Since α ď k´n{p and α ă 1 ď m, we
are now free to replace this exponent with αp and rewrite the established estimate
as }Bβfǫ}Lp ď Cǫα}f ´ fpx0q}W k,p. �

A.3. Difference quotients

If f is a function on Rn, then for every i “ 1, . . . , n and h P Rzt0u, the difference
quotient

Dh
i fpx1, . . . , xnq :“ fpx1, . . . , xi´1, xi ` h, xi`1, . . . , xnq ´ fpx1, . . . , xnq

h

defines a function Dh
i f on Rn. The total difference quotient of f is then the

n-tuple of functions

Dhf :“ pDh
1f, . . . , D

h
nfq,

so for example if f : Rn Ñ Rm, then Dhf : Rn Ñ Rmn. The transformation
f ÞÑ Dh

i f is obviously linear for any fixed number h, and it satisfies a Leibniz rule

Dh
i pfgq “ Dh

i f ¨ g ` f ¨Dh
i g

whenever pointwise products of f and g can be defined (e.g. if both are real or
complex valued). It also commutes with differentiation

Dh
i pBjfq “ BjpDh

i fq
on any function f for which Bjf can be defined (weakly or strongly). Clearly if
f P W k,ppRnq, then Dhf P W k,ppRnq for every h P Rz0, and if f is supported in an
open subset U Ă Rn, then Dhf is supported in an arbitrarily small neighborhood
of U for sufficiently small |h|. Moreover, if f is a function defined only on U Ă Rn,
then on any open subset V Ă U with compact closure in U , Dhf can be defined on
V for any h P Rzt0u satisfying

|h| ă distpV,RnzUq :“ inf
 

|x´ y|
ˇ̌
x P V and y P RnzU

(
.

The following result about difference quotients is useful for proving local regu-
larity of solutions to PDEs, as in §2.4.
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Theorem A.22. Assume V Ă U Ă Rn are open subsets with V having compact
closure contained in U , 1 ď p ă 8, and k P N.

(1) If f P W k,ppUq, then Dhf converges to ∇f in W k´1,p on V as h Ñ 0, and

}Dhf}W k´1,ppVq ď }∇f}W k´1,ppUq

for all h ‰ 0 with |h| ă distpV,RnzUq.
(2) Suppose p ą 1, f P W k´1,ppUq and the difference quotients Dhf satisfy a

uniform bound
}Dhf}W k´1,ppVq ď C

for all h ‰ 0 with |h| sufficiently small. Then f |V P W k,ppVq and its first
derivative satisfies }∇f}W k´1,ppVq ď mk,pC, where mk,p P N is a constant

depending only on the definition of the W k´1,p-norm.

The next few results are intended as preparation for the proof of Theorem A.22.

Lemma A.23. For any open subset U Ă Rn and continuously differentiable func-
tion f on U , the difference quotients Dh

i f converge to Bif uniformly on compact
subsets as h Ñ 0.

Proof. Fix a compact subset K Ă U . Then for every x P K and h P Rzt0u
sufficiently small, the mean value theorem gives

Dh
i fpxq “ Bifpx1q

where
x1 :“ px1, . . . , xi´1, xi ` th, xi`1, . . . , xnq P U

for some t P r0, 1s, so in particular, |x1 ´x| ď |h|. We then have |Bifpxq ´Dh
i fpxq| “

|Bifpxq ´ Bifpx1q|, and the result follows since both x and x1 may be assumed to lie
in a compact subset of U , on which Bif is uniformly continuous. �

Proposition A.24. Suppose 1 ď p ă 8, U Ă Rn is an open subset and f P
W 1,ppUq. Then for any open subset V Ă U with compact closure in U , }Dhf}LppVq ď
}∇f}LppUq for every h ‰ 0 with |h| ă distpV,RnzUq, and Dhf Ñ ∇f in Lp on V as
h Ñ 0.

Proof. We show first that for any f P W 1,ppUq,
(A.9) }Dh

i f}LppVq ď }Bif}LppUq, i “ 1, . . . , n

for every V Ă U with compact closure in U and every h ‰ 0 with |h| ă distpV,RnzUq.
Indeed, if f P W 1,ppUqXC8pUq, then denoting the standard basis of Rn by pe1, . . . , enq,
we have

ˇ̌
Dh
i fpxq

ˇ̌
“
ˇ̌
ˇ̌fpx` heiq ´ fpxq

h

ˇ̌
ˇ̌ “

ˇ̌
ˇ̌1
h

ż 1

0

d

dt
fpx` theiq dt

ˇ̌
ˇ̌

“
ˇ̌
ˇ̌
ż 1

0

Bifpx ` theiq dt
ˇ̌
ˇ̌ ď

ż 1

0

|Bifpx ` theiq| dt.

Then since any measurable function g : r0, 1s Ñ R satisfies
ˆż 1

0

|gptq| dt
˙p

ď
ż 1

0

|gptq|p dt
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by Jensen’s inequality, this gives

}Dh
i f}p

LppVq “
ż

V

ˇ̌
Dh
i fpxq

ˇ̌p
dµpxq ď

ż

V

ˆż 1

0

|Bifpx ` theiq| dt
˙p

dµpxq

ď
ż

V

ż 1

0

|Bifpx` theiq|p dt dµpxq “
ż 1

0

ż

V

|Bifpx` theiq|p dµpxq dt

ď
ż 1

0

}Bif}p
LppUq dt “ }Bif}p

LppUq.

This estimate extends to every f P W 1,ppUq by density of smooth functions.
Next, suppose f P W 1,ppUq and ǫ ą 0 is given. Choose a smooth approximation

fǫ P W 1,ppUq X C8pUq with }f ´ fǫ}W 1,ppUq ă ǫ{3. By Lemma A.23, Dh
i fǫ Ñ Bifǫ in

C0
loc on U as h Ñ 0, and since V has finite measure, this implies we can find δ ą 0

such that |h| ă δ implies }Dh
i fǫ ´ Bifǫ}LppVq ă ǫ{3. Now by (A.9),

}Dh
i fǫ ´ Dh

i f}LppVq ď }Bifǫ ´ Bif}LppUq ď }fǫ ´ f}W 1,ppUq ă ǫ{3,

so combining these estimates gives }Dh
i f ´ Bif}LppVq ă ǫ whenever |h| ă δ. �

The proof of the next proposition will require the following standard result from
real analysis, known as the Banach-Alaoglu theorem. It follows easily from the
separability of Lp-spaces for p ă 8 together with the duality of Lp and Lq for
1{p ` 1{q “ 1; see for instance [LL01, §2.18].

Theorem A.25 (Banach-Alaoglu). For any measurable subset U Ă Rn, if 1 ă
p ă 8, then every bounded sequence fj P LppUq has a weakly convergent subsequence,
i.e. after passing to a subsequence, one can find a function f8 P LppUq such that for
every ϕ P LqpUq with 1{p ` 1{q “ 1,

ş
U
fjϕ Ñ

ş
U
f8ϕ. �

Remark A.26. One popular way of summarizing the Banach-Alaoglu theorem
is the statement that “closed balls in Lp are weakly compact”; indeed, if fj P LppUq
satisfies the bound }fj}Lp ď C, then the weak limit f8 provided by Theorem A.25
also satisfies }f8}Lp ď C. The latter follows from the general fact that for any
sequence fj P LppUq converging weakly to some f8 P LppUq,

}f8}LppUq ď lim inf }fj}LppUq.

The proof of this is not hard; see e.g. [LL01, §2.11].

Proposition A.27. Suppose V Ă U Ă Rn are open subsets such that V has
compact closure contained in U , 1 ă p ă 8, f is a measurable function on U with
}f}LppVq ă 8, and there exist constants C ą 0 and δ ą 0 such that

}Dh
i f}LppVq ď C whenever 0 ă |h| ă δ.

Then f |V has a weak partial derivative Bif P LppVq satisfying }Bif}LppVq ď C.

Proof. For any sequence hj Ñ 0 of sufficiently small nonzero real numbers, the

sequence D
hj
i f satisfies }Dhj

i f}LppVq ď C, thus the Banach-Alaoglu theorem implies
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that after passing to a subsequence, one finds a function g P LppVq with }g}LppVq ď C

such that ż

V

pDhj
i fqϕ Ñ

ż

V

gϕ

for all ϕ P LqpVq, where 1{p`1{q “ 1. In particular, this is true for all test functions
ϕ P C8

0 pVq, and in this case there is an “integration by parts” relation
ż

V

pDhj
i fqϕ “

ż

V

fpx` hjeiq ´ fpxq
hj

ϕpxq dµpxq

“ ´
ż

V

fpxqϕpx ´ hjeiq ´ ϕpxq
´hj

dµpxq “ ´
ż

V

fD
´hj
i ϕ.

By Lemma A.23, D
´hj
i ϕ Ñ Biϕ uniformly on V and thus also in LqpVq, so taking

the limit of the integrals, we’ve shown
ż

V

gϕ “ ´
ż

V

fBiϕ for all ϕ P C8
0 pVq,

or in other words, Bif “ g P LppVq. �

Proof of Theorem A.22. The two statements in the theorem follow by ap-
plying Propositions A.24 and A.27 respectively to Bαf for every multiindex α with
|α| ď k´1, using the fact thatDhpBαfq “ BαpDhfq. For the bound on }∇f}W k´1,ppVq,
we observe that by assumption,

}Dhf}W k´1,ppVq “
ÿ

|α|ďk´1

}BαpDhfq}LppVq “
ÿ

|α|ďk´1

}DhpBαfq}LppVq ď C,

thus each individual term in this sum satisfies }DhpBαfq}LppVq ď C, implying }∇pBαfq}LppVq ď
C and thus

}∇f}W k´1,ppVq “
ÿ

|α|ďk´1

}Bαp∇fq}LppVq “
ÿ

|α|ďk´1

}∇pBαfq}LppVq

ď
ÿ

|α|ďk´1

C “: mk,pC.

�

A.4. Spaces of sections of vector bundles

In this section, fix a field

F :“ R or C,

assume M is a smooth n-dimensional manifold, possibly with boundary, and π :
E Ñ M is a smooth vector bundle of rank m over F. This comes with a “bundle
atlas” Apπq, a set whose elements α P Apπq each consist of the following data:

(1) An open subset Uα Ă M ;

(2) A smooth local coordinate chart ϕα : Uα
–ÝÑ Ωα, where Ωα is an open

subset of Rn
` :“ tpx1, . . . , xnq P Rn | xn ě 0u;

(3) A smooth local trivialization Φα : E|Uα

–ÝÑ Uα ˆ Fm.
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Smoothness of ϕα and Φα means as usual that for every pair α, β P Apπq, the
coordinate transformations

ϕβα :“ ϕ´1
β ˝ ϕα : Ωαβ

–ÝÑ Ωβα, Ωαβ :“ ϕαpUα X Uβq
and transition maps

gβα : Uα X Uβ Ñ GLpm,Fq such that Φβ ˝ Φ´1
α px, vq “ px, gβαpxqvq

for x P Uα X Uβ, v P Fm

are smooth, and we shall assume the bundle atlas is maximal in the sense that
any triple pU , ϕ,Φq that is smoothly compatible with every α P Apπq also belongs
to Apπq.

Any α P Apπq now associates to sections η : M Ñ E their local coordinate
representatives

ηα :“ pr2 ˝Φα ˝ η ˝ ϕ´1
α : Ωα Ñ Fm,

where pr2 : Uα ˆ Fm Ñ Fm is the projection, and the representatives with respect
to two distinct α, β P Apπq are related by

ηβ “ pgβα ˝ ϕ´1
β qpηα ˝ ϕαβq on Ωβα Ă Ωβ.

For p P r1,8s and each integer k ě 0, we then define the topological vector space of

sections of class W k,p
loc by

W
k,p
loc pEq :“

 
η :M Ñ E

ˇ̌
sections such that ηα P W k,p

loc pΩ̊α,Fmq
for all α P Apπq

(
,

where convergence ηj Ñ η in W k,p
loc pEq means that ηαj Ñ ηα in W k,p

loc pΩ̊α,Fmq for all
α P Apπq. Note that Ωα is not necessarily an open subset of Rn since it may contain

points in BRn
` “ Rn´1 ˆ t0u, but its interior Ω̊α is open in Rn, and W

k,p
loc pΩ̊αq is

thus defined as in §A.1. Strictly speaking, elements of η P W k,p
loc pEq are not sections

but equivalence classes of sections defined almost everywhere—the latter notion is
defined with respect to any measure arising from a smooth volume element on M ,
and it does not depend on this choice.

It turns out that W k,p
loc pEq can be given the structure of a Banach space if M is

compact. This follows from the fact thatM can then be covered by a finite subset of
the atlas Apπq, but we must be a little bit careful: not all charts in Apπq are equally
suitable for definingW k,p-norms on sections, because e.g. even a nice smooth section
η P ΓpEq may have }ηα}W k,ppΩ̊αq “ 8 if Ωα Ă Rn

` is unbounded. One way to deal

with this is as follows: we will say that α P Apπq is a precompact chart if there
exists α1 P Apπq and a compact subset K Ă M such that

Uα Ă K Ă Uα1.

When this is the case, Ωα Ă Rn
` is necessarily bounded, and the transition maps

between two precompact charts necessarily have bounded derivatives of all orders,
as they are restrictions to precompact subsets of maps that are smooth on larger
domains. If M is compact, then one can always find a finite subset I Ă Apπq
consisting of precompact charts such that M “ Ť

αPI Uα.
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Definition A.28. Suppose E Ñ M is a smooth vector bundle over a compact
manifold M , and I Ă Apπq is a finite set of precompact charts such that tUαuαPI
is an open cover of M . We then define W k,ppEq as the vector space of all sections
η :M Ñ E for which the norm

}η}W k,p :“ }η}W k,ppEq :“
ÿ

αPI
}ηα}W k,ppΩ̊αq

is finite.

The norm in the above definition depends on auxiliary choices, but it is easy to
see that the resulting definition of the space W k,ppEq and its topology do not. In
fact:

Proposition A.29. If M is compact, then W k,ppEq “ W
k,p
loc pEq, and a sequence

ηj converges to η inW
k,p
loc pEq if and only if the norm given in Definition A.28 satisfies

}ηj ´ η}W k,ppEq Ñ 0.

The proposition is an immediate consequence of the following.

Lemma A.30. Suppose M is a smooth manifold, π : E Ñ M is a smooth vector
bundle, tβu Y J Ă Apπq is a finite collection of charts such that M “ Ť

αPJ Uα and
all coordinate transformations and transition maps relating any two charts in the
collection tβu Y J have bounded derivatives of all orders (e.g. it suffices to assume
all are precompact). Then there exists a constant c ą 0 such that

}ηβ}W k,ppΩ̊βq ď c
ÿ

αPJ
}ηα}W k,ppΩ̊αq

for all sections η :M Ñ E with ηα P W k,ppΩ̊αq for every α P J .
Proof. Choose a partition of unity tρα : M Ñ r0, 1suαPJ subordinate to the

finite open cover tUαuαPJ . Now η “ ř
αPJ ραη, and each ραη is supported in Uα, so

pραηqβ has support in Ωβα “ ϕβpUα X Uβq. Thus using Theorem A.20 with the fact
that gβα, ϕ

´1
β , ϕαβ and ϕβα “ ϕ´1

αβ are all smooth functions with bounded derivatives
of all orders on the domains in question, we find

}ηβ}W k,ppΩ̊βq “
›››››
ÿ

αPJ
pραηqβ

›››››
W k,ppΩ̊βq

ď
ÿ

αPJ
}pραηqβ}W k,ppΩ̊βαq

“
ÿ

αPJ
}pρα ˝ ϕ´1

β qpgβα ˝ ϕ´1
β qpηα ˝ ϕαβq}W k,ppΩ̊βαq

ď c
ÿ

αPJ
}ηα}W k,ppΩ̊αβq ď c

ÿ

αPJ
}ηα}W k,ppΩ̊αq.

�

Corollary A.31. If M is compact, then the norm on W k,ppEq given by Defi-
nition A.28 is independent of all auxiliary choices up to equivalence of norms. �

Theorem A.32. For any smooth vector bundle π : E Ñ M over a compact
manifold M , W k,ppEq is a Banach space.
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Proof. If ηj P W k,ppEq is a Cauchy sequence, then for some chosen finite col-
lection I Ă Apπq of precompact charts covering M , the sequences ηαj for α P I are

Cauchy in W k,ppΩ̊αq and thus have limits ξpαq P W k,ppΩ̊α,Fmq. Choosing a parti-
tion of unity tρα : M Ñ r0, 1suαPI subordinate to tUαuαPI , we can now associate to
each α P I a section η8,α P W k,ppEq characterized uniquely by the condition that it
vanishes outside of Uα and is represented in the trivialization on Uα by

ηα8,α “ pρα ˝ ϕ´1
α qξpαq.

We claim that ραηj Ñ η8,α in W k,ppEq for each α P I. Indeed, we have

pραηjqα “ pρα ˝ ϕ´1
α qηαj Ñ pρα ˝ ϕ´1

α qξpαq “ ηα8,α in W k,ppΩ̊αq

since ηαj Ñ ξpαq. For all other β P I not equal to α, pραηjqβ ´ η
β
8,α P W k,ppΩ̊β,Fmq

has support in Ωβα “ ϕβpUα X Uβq, thus
}pραηjqβ ´ ηβ8,α}W k,ppΩ̊βq “ }pραηjqβ ´ ηβ8,α}W k,ppΩ̊βαq ď c}pραηjqα ´ ηα8,α}W k,ppΩ̊αq,

where the inequality comes from Lemma A.30 after replacing M with Uα, and Uβ
with Uβ X Uα (note that the lemma does not require M to be compact). With the
claim established, we have

ηj “
ÿ

αPI
ραηj Ñ

ÿ

αPI
η8,α in W k,ppEq.

�

Remark A.33. One can use exactly the same approach to show that when M is
compact, the space CkpEq of Ck-smooth sections η :M Ñ E has a canonical (up to
equivalence of norms) Banach space structure for each finite integer k ě 0 such that
convergence in the Ck-norm is equivalent to uniform convergence of all derivatives
up to order k.

Exercise A.34. For U Ă Rn an open subset, the space W k,p
loc pUq was defined in

§A.1, but one can give it an alternative definition in the present context by viewing
functions on U as sections of a trivial vector bundle over U , with the latter viewed
as a noncompact smooth n-manifold. Show that these two definitions of W k,p

loc pUq
are equivalent.

Exercise A.35. Suppose U Ă Rn is a bounded open subset with smooth bound-
ary, so its closure U Ă Rn is a smooth compact submanifold with boundary, and let
E Ñ U be a trivial vector bundle. Show that there is a canonical Banach space iso-
morphism betweenW k,ppUq as defined in §A.1 andW k,ppEq as defined in the present
section. Hint: Recall that sections inW k,ppEq are only required to be defined almost
everywhere, so in particular if the domainM is a manifold with boundary, they need
not be well defined on BM .

In light of Exercise A.35, the natural generalization of W k,p
0 pUq in the present

setting is

W
k,p
0 pEq :“ C8

0 pE|MzBM q,
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i.e. it is the closure in the W k,p-norm of the space of smooth sections that vanish
near the boundary. Density of smooth sections will imply that this is the same as
W k,ppEq if M is closed, but in general W k,p

0 pEq is a closed subspace of W k,ppEq.
The partition of unity argument in Theorem A.32 contains all the essential ideas

needed to generalize results about Sobolev spaces on domains in Rn to compact
manifolds. We now state the essential results, leaving the proofs as exercises.

Theorem A.36. Assume M is a smooth compact n-manifold, possibly with
boundary, π : E Ñ M is a smooth vector bundle of finite rank, k ě 0 is an in-
teger and 1 ď p ă 8. Then the Banach space W k,ppEq has the following properties.

(1) The space ΓpEq of smooth sections is dense in W k,ppEq.
(2) If kp ą n, then for each integer d ě 0, there exists a continuous and compact

inclusion

W k`d,ppEq ãÑ CdpEq.
(3) The natural inclusion

W k`1,ppEq ãÑ W k,ppEq
is compact.

(4) Suppose F,G Ñ M are smooth vector bundles such that there exists a
smooth bundle map

E b F Ñ G : η b ξ ÞÑ η ¨ ξ.
Then if kp ą n and 0 ď m ď k, there exists a continuous product pairing

W k,ppEq ˆ Wm,ppF q Ñ Wm,ppGq : pη, ξq ÞÑ η ¨ ξ.
In particular, products ofW k,p sections giveW k,p sections whenever kp ą n.

(5) Suppose F Ñ M is another smooth vector bundle, V Ă E is an open subset
that intersects every fiber of E, and we consider the spaces

W k,ppVq :“
 
η P W k,ppEq

ˇ̌
ηpMq Ă V

(

and

Ck
MpV, F q :“

 
Φ : V Ñ F | fiber-preserving maps of class Ck

(
,

where the latter is assigned the topology of Ck-convergence on compact sub-
sets. If kp ą n, then W k,ppVq is an open subset of W k,ppEq, and the map

Ck
MpV, F q ˆ W k,ppVq Ñ W k,ppF q : pΦ, ηq ÞÑ Φ ˝ η

is well defined and continuous.
(6) If N is another smooth compact manifold and ϕ : N Ñ M is a smooth

diffeomorphism, then there is a Banach space isomorphism

W k,ppEq Ñ W k,ppϕ˚Eq : η ÞÑ η ˝ ϕ.
�
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Remark A.37. It is sometimes useful to extend the definitions and results of
this section to vector bundles that are not smooth, e.g. vector bundles of class Ck or
W k,p, for which all transition maps are required to be of class Ck orW k,p respectively.
The latter makes sense in general only if kp ą n, so that transition maps are at
least continuous. Given a bundle of this type, one can enhance the arguments of
this section with the aid of Theorem A.13 to show that Wm,ppEq is a well-defined
Banach space for every m ď k, though it would not be well defined if m ą k.
Such spaces arise frequently in global analysis, e.g. if f is a non-smooth element in
the Banach manifold B of W k,p-smooth maps of M into another manifold N , then
f˚TN Ñ M is in general a vector bundle of class W k,p, and TfB “ W k,ppf˚TNq.

A.5. Some remarks on domains with cylindrical ends

For bundles π : E Ñ M with M noncompact, W k,ppEq is not generally well

defined without making additional choices. When M “ 9Σ “ ΣzΓ is a punctured

Riemann surface and π : E Ñ 9Σ is equipped with an asymptotically Hermitian
structure tpEz, Jz, ωzquzPΓ as defined in Lecture 4, one nice way to define W k,ppEq
was introduced in §4.1: one takes it to be the space of sections in W

k,p
loc pEq whose

W k,p-norms on each cylindrical end are finite with respect to a choice of asymp-
totic trivialization. This definition requires the convenient fact that complex vector
bundles over S1 are always trivial, though one can also do without this by using
the ideas in the previous section. Indeed, any collection of local trivializations on
the asymptotic bundle Ez Ñ S1 covering S1 gives rise via the asymptotically Her-
mitian structure to a collection of trivializations on E covering the corresponding
cylindrical end 9Uz . The key fact is then that S1 is compact, hence one can always
choose such a covering to be finite: combining this with a finite covering of 9Σ in the
complement of its cylindrical ends by precompact charts, we obtain a covering of 9Σ
by a finite collection of bundle charts that are not all precompact, but nonetheless
have the property that all transition maps have bounded derivatives of all orders.
This is enough to define a W k,p-norm for sections of E Ñ 9Σ as in Definition A.28
and to prove that it does not depend on the choices of charts or local trivializations,
though it does depend on the asymptotically Hermitian structure.

With this definition understood, one can easily generalize the Sobolev embedding
theorem and other important statements in Theorem A.36 to the setting of an
asymptotically Hermitian bundle over a punctured Riemann surface. We shall leave
the details of this generalization as an exercise, but take the opportunity to point
out a few important differences from the compact case.

First, since 9Σ is not compact, neither are the inclusions

W k`d,ppEq ãÑ CdpEq, W k`1,ppEq ãÑ W k,ppEq.
The proof of compactness fails due to the fact that cylindrical ends require local
trivializations over unbounded domains of the form p0,8q ˆ p0, 1q Ă R2, for which
Theorem A.10 does not hold. And indeed, considering unbounded shifts on the
infinite cylinder 9Σ “ RˆS1, it is easy to find a sequence of W k,p-bounded functions
with kp ą 2 that do not have a C0-convergent subsequence. That is the bad news.
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The good news is that if η P W k`d,ppEq for kp ą 2, then one can say considerably
more about η than just that it is Cd-smooth. Indeed, restricting to one of the
cylindrical ends r0,8q ˆ S1 Ă 9Σ, notice that the finiteness of the W k`d,p-norm over
9Σ implies

}η}W k`d,pppR,8qˆS1q Ñ 0 as R Ñ 8.

Since these domains are all naturally diffeomorphic for different values of R, the
Cd-norm of η over pR,8q ˆ S1 is bounded by the W k`d,p-norm via a constant that
does not depend on R, so this implies an asymptotic decay condition

}η}CdprR,8qˆS1q Ñ 0 as R Ñ 8
for every η P W k`d,ppEq.

Here is another useful piece of good news: since 9Σ does not have boundary,
W k,ppEq “ W

k,p
0 pEq.

Theorem A.38. Given an asymptotically Hermitian bundle E over a punctured
Riemann surface 9Σ, the space C8

0 pEq of smooth sections with compact support is
dense in W k,ppEq for all k ě 0 and 1 ď p ă 8.

Proof. We can assume as in Definition A.28 that the W k,p-norm for sections η
of E is given by

}η}W k,p “
ÿ

αPI
}ηα}W k,ppΩαq,

where I Ă Apπq is a finite collection of bundle charts

α “
´
ϕα : Uα

–ÝÑ Ωα , Φα : E|Uα

–ÝÑ Uα ˆ Cn
¯

such that each of the open sets Ωα Ă C is either bounded or (for charts over the
cylindrical ends) of the form

Ωα “ p0,8q ˆ ωα Ă R2 “ C

for some bounded open subset ωα Ă R. Now given η P W k,ppEq, Theorem A.1
provides for each α P I a sequence ηαj P W k,ppΩαq of smooth functions with bounded

support such that ηαj Ñ ηα in W k,ppΩαq. Choose a partition of unity tρα : 9Σ Ñ
r0, 1suαPI subordinate to the open cover tUαuαPI and let

ηj :“
ÿ

αPI
ραpηαj ˝ ϕαq P W k,ppEq.

These sections are smooth and have compact support since the ηαj have bounded

support in Ωα, and they converge in W k,p to η. �
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The Floer Cǫ space

The Cǫ-topology for functions was introduced by Floer [Flo88b] to provide a Ba-
nach manifold of perturbed geometric structures without departing from the smooth
category: it is a way to circumvent the annoying fact that spaces of smooth functions
which arise naturally in geometric settings are not Banach spaces. The construction
of Cǫ spaces generally depends on several arbitrary choices and is thus far from
canonical, but this detail is unimportant since the Cǫ space itself is never the main
object of interest. What is important is merely the properties that it has, namely
that it not only embeds continuously into C8 and contains an abundance of non-
trivial functions, but also is a separable Banach space and can therefore be used in
the Sard-Smale theorem for genericity arguments. We shall prove these facts in this
appendix.

Fix a smooth finite-rank vector bundle π : E Ñ M over a finite-dimensional
compact manifoldM , possibly with boundary. For each integer k ě 0, we denote by
CkpEq the Banach space of Ck-smooth sections of E; note that the norm on CkpEq
depends on various auxiliary choices but is well defined up to equivalence of norms
since M is compact. Now if ǫ “ pǫkq8

k“0 is a sequence of positive numbers with
ǫk Ñ 0, set

CǫpEq “
 
η P ΓpEq

ˇ̌
}η}Cǫ

ă 8
(
,

where the Cǫ-norm is defined by

(B.1) }η}Cǫ
“

8ÿ

k“0

ǫk}η}Ck .

The norm for CǫpEq is somewhat more delicate than for CkpEq, e.g. its equivalence
class is not obviously independent of auxiliary choices. This remark is meant as
a sanity check, but it should not cause extra concern since, in practice, the space
CǫpEq is typically regarded as an auxiliary choice in itself. In many applications,
one fixes an open subset U Ă M and considers the closed subspace

CǫpE;Uq “
 
η P CǫpEq

ˇ̌
η|MzU ” 0

(
.

Remark B.1. The requirement for M to be compact can be relaxed as long as
U Ă M has compact closure: e.g. in one situation of frequent interest in this book,
we takeM to be the noncompact completion of a symplectic cobordism. In this case
CǫpE;Uq can be defined as a closed subspace of CǫpE|M0

q where M0 Ă M is any
compact manifold with boundary that contains the closure of U . For this reason,
we lose no generality in continuing under the assumption that M is compact.

477
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In order to prove things about CǫpEq, we will need to specify a more precise
definition of the Ck-norms. To this end, define a sequence of vector bundles Epkq Ñ
M for integers k ě 0 inductively by

Ep0q :“ E, Epk`1q :“ HompTM,Epkqq.
Choose connections and bundle metrics on both TM and E; these induce connec-
tions and bundle metrics on each of the Epkq, so that for any section ξ P ΓpEpkqq,
the covariant derivative ∇ξ is now a section of Epk`1q. In particular for η P ΓpEq,
we can define the “kth covariant derivative” of η as a section

∇kη P ΓpEpkqq.
Using the bundle metrics to define C0-norms for sections of Epkq, we can then define

}η}CkpEq “
kÿ

m“0

}∇mη}C0pEpmqq,

where by convention ∇0η :“ η. We will assume throughout the following that the
Ck-norms appearing in (B.1) are defined in this way.

Theorem B.2. CǫpEq is a Banach space.

Proof. We need to show that Cǫ-Cauchy sequences converge in the Cǫ-norm.
It is clear from the definitions that if ηj P CǫpEq is Cauchy, then ηj is also Ck-
Cauchy for every k ě 0, hence its derivatives ∇kηj for every k are C0-convergent
to continuous sections ξk of Epkq. This convergence implies that ξk`1 “ ∇ξk in
the sense of distributions, hence by the equivalence of classical and distributional
derivatives (see e.g. [LL01, §6.10]), η8 :“ ξ0 is smooth with ∇kη8 “ ξk, so that
∇kηj Ñ ∇kη8 in C0pEpkqq for all k.

We claim η8 P CǫpEq. Choose N ą 0 such that }ηi ´ ηj}Cǫ
ă 1 for all i, j ě N .

Then for every m P N and every i ě N ,
mÿ

k“0

ǫk}ηi}Ck ď
mÿ

k“0

ǫk}ηi ´ ηN}Ck `
mÿ

k“0

ǫk}ηN}Ck

ď }ηi ´ ηN}Cǫ
` }ηN}Cǫ

ă 1 ` }ηN}Cǫ
.

Fixing m and letting i Ñ 8, we then have
mÿ

k“0

ǫk}η8}Ck ď 1 ` }ηN}Cǫ

for all m, so we can now let m Ñ 8 and conclude }η8}Cǫ
ď 1 ` }ηN}Cǫ

ă 8.
The argument that }ηj ´ η8}Cǫ

Ñ 0 as j Ñ 8 is similar: pick ǫ ą 0 and N such
that }ηi ´ ηj}Cǫ

ă ǫ for all i, j ě N . Then for a fixed m P N, we can let i Ñ 8 in
the expression

řm
k“0 ǫk}ηi ´ ηj}Ck ă ǫ, giving

mÿ

k“0

ǫk}η8 ´ ηj}Ck ď ǫ.

This is true for every m, so we can take m Ñ 8 and conclude }η8 ´ ηj}Cǫ
ď ǫ for

all j ě N . �
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To show that CǫpEq is also separable, we will follow a hint1 from [HS95] and
embed it isometrically into another Banach space that can be more easily shown to
be separable. For each integer k ě 0, define the vector bundle

F pkq “ Ep0q ‘ . . .‘ Epkq,

and let Xǫ denote the vector space of all sequences

ξ :“ pξ0, ξ1, ξ2, . . .q P
8ź

k“0

C0pF pkqq

such that

}ξ}Xǫ
:“

8ÿ

k“0

ǫk}ξk}C0 ă 8.

Exercise B.3. Adapt the proof of Theorem B.2 to show thatXǫ is also a Banach
space.

Lemma B.4. Xǫ is separable.

Proof. Since C0pF pkqq is separable for each k ě 0, we can fix countable dense
subsets P k Ă C0pF pkqq. The set

P :“
 

pξ0, . . . , ξN , 0, 0, . . .q P Xǫ

ˇ̌
N ě 0 and ξk P P k for all k “ 0, . . . , N

(

is then countable and dense in Xǫ. �

Theorem B.5. CǫpEq is separable.

Proof. Consider the injective linear map

CǫpEq ãÑ Xǫ : η ÞÑ
`
η, pη,∇ηq, pη,∇η,∇2ηq, . . .

˘
.

This is an isometric embedding and thus presents CǫpEq as a closed linear subspace
of Xǫ, hence the theorem follows from Lemma B.4 and the fact that subspaces of
separable metric spaces are always separable. �

Note that given any open subset U Ă M , Theorems B.2 and B.5 also hold for
CǫpE;Uq, as a closed subspace of CǫpEq. So far in this discussion, however, there has
been no guarantee that CǫpEq or CǫpE;Uq contains anything other than the zero-
section, though it is clear that in theory, one should always be able to enlarge the
space by choosing new sequences ǫk that converge to zero faster. The following result
says that CǫpE;Uq can always be made large enough to be useful in applications.

Theorem B.6. Given an open subset U Ă M , the sequence ǫk can be chosen to
have the following properties:

(1) CǫpE;Uq is dense in the space of continuous sections vanishing outside U .
(2) Given any point p P U , a neighborhood Np Ă U of p, a number δ ą 0 and

a continuous section η0 of E, there exists a section η P ΓpEq and a smooth
compactly supported function β : Np Ñ r0, 1s such that

βη P CǫpE;Uq, βppqηppq “ η0ppq, and }η ´ η0}C0 ă δ.

1Thanks to Sam Lisi for explaining to me what the hint in [HS95] was referring to.
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Proof. Note first that it suffices to find two separate sequences ǫk and ǫ1
k that

have the first and second property respectively, as the sequence of minima minpǫk, ǫ1
kq

will then have both properties.
The following construction for the first property is based on a suggestion by

Barney Bramham. Observe first that the space C0pE;Uq of continuous sections
vanishing outside U is a closed subspace of C0pEq and is thus separable, so we can
choose a countable C0-dense subset P Ă C0pE;Uq. Moreover, the space of smooth
sections vanishing outside U is dense in C0pE;Uq, hence we can assume without loss
of generality that the sections in P are smooth. Now write P “ tη1, η2, η3, . . .u and
define ǫk ą 0 for every integer k ě 0 to have the property

ǫk ă 1

2k
min

"
1

}η1}Ck

, . . . ,
1

}ηk}Ck

*
.

Then every ηj is in CǫpE;Uq, as

}ηj}Cǫ
ă

j´1ÿ

k“0

ǫk}ηj}Ck `
8ÿ

k“j

1

2k
ă 8.

The second property is essentially local, so it can be deduced from Lemma B.7
below. �

Lemma B.7. Suppose β : D̊n Ñ r0, 1s is a smooth function with compact support

on the open unit ball D̊n Ă Rn and βp0q “ 1. One can choose a sequence of positive
numbers ǫk Ñ 0 such that for every η0 P Rm and r ą 0, the function η : Rn Ñ Rm

defined by
ηppq :“ βpp{rqη0

satisfies
ř8
k“0 ǫk}η}Ck ă 8.

Proof. Define ǫk ą 0 so that for k ě 1,

ǫk “ 1

kk}β}Ck

.

Then
8ÿ

k“1

ǫk}η}Ck ď
8ÿ

k“1

1

kk}β}Ck

}β}Ck

rk
“

8ÿ

k“1

ˆ
1{r
k

˙k

ă 8.

�



APPENDIX C

Genericity in the space of asymptotic operators

The purpose of this appendix is to prove Lemma 3.35, which was needed for
our definition of spectral flow in §3.3. The proof combines some ideas from that
section with the technique used in Lecture 8 to prove generic transversality of moduli
spaces via the Sard-Smale theorem. Some knowledge of that technique should thus
be considered a prerequisite for this appendix; if you have never seen it before and
were directed here after reading the statement of Lemma 3.35, you might want to
skip this for now and come back after you’ve read as far as Lecture 8.

Recalling the notation from Lecture 3, we fix the real Hilbert spaces

H “ L2pS1,R2nq, D “ H1pS1,R2nq,
the symmetric index 0 Fredholm operator

Tref “ ´J0 Bt : D Ñ H

and, given a bounded family of symmetric matrices S P L8pS1,Endsym
R pR2nqq, refer

to any operator of the form

A “ ´J0 Bt ´ S : D Ñ H

as an asymptotic operator. Such operators belong to the space of symmetric
compact perturbations of Tref ,

Fredsym
R pD,H,Trefq “

 
Tref ` K : D Ñ H

ˇ̌
K P L

sym
R pHq

(
,

which we regard as a smooth Banach manifold via its obvious identification with the
space L

sym
R pHq of symmetric bounded linear operators on H. For k P N, we denote

by

Fredsym,k
R pD,H,Trefq Ă Fredsym

R pD,H,Trefq
the finite-codimensional submanifold determined by the condition dimR kerA “
dimR cokerA “ k.

Here is the statement of Lemma 3.35 again.

Lemma. Fix a smooth path r´1, 1s Ñ L8pEndsym
R pR2nqq : s ÞÑ Ss and consider

the 1-parameter family of symmetric index 0 Fredholm operators

As :“ ´J0 Bt ´ Ss : H
1pS1,R2nq Ñ L2pS1,R2nq

for s P r´1, 1s, assuming A˘1 are isomorphisms. Then after replacing Ss by a

family of the form rSsptq :“ Ssptq ` Bps, tq for some smooth function B : r´1, 1s Ñ
Endsym

R pR2nq that vanishes for s “ ˘1 and may be assumed arbitrarily C8-small,
one can arrange that the following conditions hold:

481
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(1) For each s P p´1, 1q, all eigenvalues of As are simple.
(2) All intersections of the smooth path

p´1, 1q Ñ Fredsym
R pD,H,Trefq : s ÞÑ As

with Fredsym,1
R pD,H,Trefq are transverse.

We shall now prove this by constructing a Floer-type space of Cǫ-smooth (see
Appendix B) perturbed families of asymptotic operators, and using the Sard-Smale
theorem to find a countable collection of comeager subsets whose intersection con-
tains perturbations achieving the desired conditions.

Choose a sequence of positive numbers ǫ “ pǫkq8
k“0 with ǫk Ñ 0 to define a

separable Banach space

Aǫ :“
 
B P C8pr´1, 1s ˆ S1,Endsym

R pR2nqq
ˇ̌

}B}Cǫ
ă 8 and Bp˘1, ¨q ” 0

(
,

and assume via Theorem B.6 that Aǫ is dense in the Banach space of continuous
functions r´1, 1s ˆ S1 Ñ Endsym

R pR2nq vanishing at t˘1u ˆ S1. We then consider
perturbed 1-parameter families of asymptotic operators of the form

AB
s :“ As ` Bps, ¨q : D Ñ H

for B P Aǫ, s P r´1, 1s. Remarks 3.20 and 3.21 imply that the perturbed family
defines a smooth path in Fredsym

R pD,H,Trefq as long as the original path s ÞÑ Ss is
smooth in L8pEndsym

R pR2nqq. For each k P N and B P Aǫ, define the set

VkpBq “
 

ps, λq P p´1, 1q ˆ R
ˇ̌
dimR ker

`
AB
s ´ λ

˘
“ k

(
.

To show that eigenvalues are generically simple, we need to show that for a comeager
set of choices of B P Aǫ, V

kpBq is empty for all k ě 2. Given ps0, λ0q P VkpBq, recall
from §3.3 that there exist decompositions

D “ V ‘ K, H “ W ‘ K

where K “ ker
`
AB
s0

´ λ0
˘
, W “ im

`
AB
s0

´ λ0
˘
is the L2-orthogonal complement

of K, and V “ W X D, so that any symmetric bounded linear operator T in a
sufficiently small neighborhood O Ă L

sym
R pD,Hq of AB

s0
´ λ0 can be written in

block form

T “
ˆ
A B
C D

˙

with A : V Ñ W invertible. This gives rise to a smooth map

Φ : O Ñ Endsym
R pKq : T ÞÑ D ´ CA´1B

whose zero set is precisely the set of nearby symmetric operators with k-dimensional
kernel. A neighborhood of ps0, λ0q in VkpBq can thus be identified with the zero set
of the map

ΨBps, λq :“ ΦpAB
s ´ λq P Endsym

R pKq,
defined for ps, λq P p´1, 1qˆR sufficiently close to ps0, λ0q. Notice that the derivative
dΨBps, λq : R ‘ R Ñ Endsym

R pKq is Fredholm since its domain and target are both
finite dimensional, and it can only ever be surjective when k “ dimRK “ 1.
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The following space will now play the role of a “universal moduli space” as in
Lecture 8: let

Vk “
 

ps, λ, Bq P p´1, 1q ˆ R ˆ Aǫ

ˇ̌
ps, λq P VkpBq

(
.

The proof that this is a smooth Banach manifold depends on the following algebraic
lemma.

Lemma C.1. Fix an asymptotic operator A “ ´J0 Bt ´ S and a linear transfor-
mation

Υ : kerA Ñ kerA

that is symmetric with respect to the L2-product. Then there exists a continuous
loop B : S1 Ñ Endsym

R pR2nq such that

xη, BξyL2 “ xη,ΥξyL2

for all η, ξ P kerA.

Proof. Note first that every nontrivial loop η P kerA Ă H1pS1,R2nq is contin-
uous and nowhere zero due to the generalized existence/uniqueness result for solu-
tions to linear ODEs in Exercise 3.16. It follows that if we fix a basis pη1, . . . , ηkq
for kerA, then the vectors η1ptq, . . . , ηkptq P R2n are also linearly independent for all
t P S1 and thus span a continuous S1-family of k-dimensional subspaces Vt Ă R2n,
each equipped with a distinguished basis. There is therefore a unique continuous

S1-family of linear transformations pBptq : Vt Ñ Vt such that for every η P kerA,
pBptqηptq “ pΥηqptq for all t. Extend pBptq arbitrarily to a continuous family of linear
maps on R2n.

The matrices pBptq P EndpR2nq need not be symmetric, but they do satisfy

xη, pBξyL2 “ xη,ΥξyL2 for all η, ξ P kerA.

Since Υ is symmetric, this implies moreover that for all η, ξ P kerA,

xη,ΥξyL2 “ xξ,ΥηyL2 “ xξ, pBηyL2 “ xη, pBTξyL2.

The loop B :“ 1
2
p pB ` pBTq thus has the desired properties. �

Now using the previously described construction in the space of symmetric Fred-
holm operators, a neighborhood of any point ps0, λ0, B0q in Vk can be identified with
the zero set of a smooth map of the form

Ψps, λ, Bq :“ ΨBps, λq P Endsym
R pKq,

defined for all ps, λ, Bq sufficiently close to ps0, λ0, B0q in p´1, 1q ˆ R ˆ Aǫ, where
K “ ker

`
AB0

s0
´ λ0

˘
. The partial derivative of Ψ with respect to the third variable

at ps0, λ0, B0q is then a linear map

L :“ D3Ψps0, λ0, B0q : Aǫ Ñ Endsym
R pKq

of the form

(C.1) LB : K Ñ K : η ÞÑ πKpBps0, ¨qηq,
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where πK : W ‘K Ñ K is the orthogonal projection. We claim that L is surjective.
Indeed, for any Υ P Endsym

R pKq, Lemma C.1 provides a continuous loop C0 : S1 Ñ
Endsym

R pR2nq such that

πKpC0ηq “ Υη for all η P K,
and this can be extended to a continuous function C : r´1, 1s ˆ S1 Ñ Endsym

R pR2nq
satisfying Cps0, ¨q ” C0 and Cp˘1, ¨q ” 0 since s0 ‰ ˘1. The function C might fail
to be of class Cǫ, but since it can be approximated arbitrarily well in the C0-norm
by functions in Aǫ, we conclude that the image of L is dense in Endsym

R pKq. Since
the latter is finite dimensional, the claim follows.

The implicit function theorem now gives Vk the structure of a smooth Banach
submanifold of p´1, 1qˆRˆAǫ, and it is separable since the latter is also separable.
Consider the projection

(C.2) π : Vk Ñ Aǫ : ps, λ, Bq ÞÑ B,

which is a smooth map of separable Banach manifolds whose fibers π´1pBq are the
spaces VkpBq. Using Lemma 8.2, the fact that each map ΨB is Fredholm implies
that π is also a Fredholm map, so the Sard-Smale theorem implies that the regular
values of π form a comeager subset

Areg,k
ǫ

Ă Aǫ.

The intersection

Areg
ǫ

:“
č

kPN
Areg,k

ǫ

is then another comeager subset of Aǫ, with the property that for each B P Areg
ǫ

and every k P N and ps, λq P VkpBq, dΨBps, λq is (by Lemma 8.2) surjective. As was
observed previously, this is impossible for dimensional reasons if k ě 2, implying
that VkpBq is then empty.

To find perturbations that also achieve the transversality condition, we use a
similar argument: define for each B P Aǫ the subset

V0pBq “
 
s P p´1, 1q

ˇ̌
dimR kerA

B
s “ 1

(
,

along with the corresponding universal set

V0 “
 

ps, Bq P p´1, 1q ˆ Aǫ

ˇ̌
s P V0pBq

(
.

A neighborhood of any ps0, B0q in V0 is then the zero set of a smooth map of the
form

Ψps, Bq “ ΦpAB
s q P Endsym

R pkerAB0

s0
q,

defined for all ps, Bq P p´1, 1q ˆ Aǫ close enough to ps0, B0q. For a fixed B P Aǫ

near B0 and s1 P V0pBq near s0, a neighborhood of s1 in V0pBq is then the zero set
of ΨBpsq :“ Ψps, Bq, and the intersection of the path s ÞÑ AB

s P Fredsym
R pD,H,Trefq

with Fredsym,1
R pD,H,Trefq at s “ s1 is transverse if and only if

dΨBps1q : R Ñ Endsym
R pkerAB0

s0
q
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is surjective. At ps0, B0q, the partial derivative of Ψ with respect to B is again the
same operator

L “ D2Ψps0, B0q : Aǫ Ñ Endsym
R pkerAB0

s0
q

as in (C.1), which we’ve already seen is surjective due to Lemma C.1. Thus one can
apply the Sard-Smale theorem to the projection

V0 Ñ Aǫ : ps, Bq ÞÑ B,

obtaining a comeager subsetAreg,0
ǫ

Ă Aǫ such that all pathsAs`Bps, ¨q forB P Areg,0
ǫ

satisfy the required transversality condition. The comeager subset Areg,0
ǫ

XAreg
ǫ

Ă Aǫ

thus consists of perturbed families of operators for which all desired conditions are
satisfied, and it contains a sequence converging in the C8-topology to 0. This
concludes the proof of Lemma 3.35.
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[Gir02] , Géométrie de contact: de la dimension trois vers les dimensions supérieures,
Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002),
2002, pp. 405–414.

[Gro85] M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82

(1985), no. 2, 307–347.
[Gro57] A. Grothendieck, Sur la classification des fibrés holomorphes sur la sphère de Riemann,

Amer. J. Math. 79 (1957), 121–138 (French).
[Hin00] R. Hind, Holomorphic filling of RP3, Commun. Contemp. Math. 2 (2000), no. 3, 349–

363.
[Hin03] R. Hind, Stein fillings of lens spaces, Commun. Contemp. Math. 5 (2003), no. 6, 967–

982.
[HL15] R. Hind and S. Lisi, Symplectic embeddings of polydisks, Selecta Math. (N.S.) 21 (2015),

no. 3, 1099–1120.
[Hir94] M. W. Hirsch, Differential topology, Springer-Verlag, New York, 1994.
[Hof93] H. Hofer, Pseudoholomorphic curves in symplectizations with applications to the We-

instein conjecture in dimension three, Invent. Math. 114 (1993), no. 3, 515–563.
[Hof00] , Holomorphic curves and real three-dimensional dynamics, Geom. Funct. Anal.

Special Volume (2000), 674–704. GAFA 2000 (Tel Aviv, 1999).
[Hof06] H. Hofer, A general Fredholm theory and applications, Current developments in math-

ematics, 2004, Int. Press, Somerville, MA, 2006, pp. 1–71.
[HLS97] H. Hofer, V. Lizan, and J.-C. Sikorav, On genericity for holomorphic curves in four-

dimensional almost-complex manifolds, J. Geom. Anal. 7 (1997), no. 1, 149–159.
[HS95] H. Hofer and D. A. Salamon, Floer homology and Novikov rings, The Floer memorial

volume, Progr. Math., vol. 133, Birkhäuser, Basel, 1995, pp. 483–524.
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