Catastrophe Theory: Talk 2

1. Germs: Right equivalence, Jacobian ideal and codimension

Def. 1.1 : Right equivalence
Two function germs $f_{i g}:\left(\mathbb{R}^{n}, 0\right) \rightarrow \mathbb{R}$ are right equivalent (or \mathbb{R} - equivalent) if there is a diffeomorphism germ ϕ of $\left(\mathbb{R}^{n}, 0\right)$ swash that

$$
f=g \circ \phi .
$$

They are \mathbb{R}^{+}-equivalent if there is some constant $a \in \mathbb{R}$ such that

$$
f=g \circ \phi+a
$$

We then write $f \sim \sim_{R g}$ or $f v_{12}+g$.
R-equivalence allows us to consider function germs independent of the particular coordinates used.

Example 1.2
(1) The germs $f\left(g:(\mathbb{R}, 0) \rightarrow \mathbb{R}, f(x)=x^{2}-x^{4}, g(x)=x^{2}\right.$ are R-equivalent: we require a change of coordinates $y=\phi(x)$ such that

$$
f(x)=(g \circ \phi)(x)=g(y) .
$$

Solving $x^{2}-x^{4}=y^{2}$ gives us $y=x \sqrt{1-x^{2}}=: \phi(x)$.
The inverse function theorem tells us that ϕ is a diffeomorphism in a neighbourhood of 0 .
$\left[\begin{array}{l}\text { check the preconditions for the inverse function theorem: } \\ \phi \text { is smooth and } \\ d \phi(x)=x \frac{1}{2}\left(1-x^{-2}\right)^{\frac{1}{2}}+\sqrt{1-x^{2}}, d \phi(0)=1 \neq 0\end{array}\right]$

(2) The germs $f\left(g:(\mathbb{R}, 0) \rightarrow \mathbb{R}, f(x)=x^{3}, g(x)=x^{5}\right.$ are not R-equivalent:

Suppose there is a diffeomorphism germ ϕ such that $f=g \circ \phi$.
Then $x^{3}=\phi(x)^{5}$, that is $\phi(x)=x \frac{\frac{3}{5}}{5}$. This map is not differentiable at 0 , so not a diffeomorphism.

Remark 1.3
(1) In the example 1.2 (2), $\phi(x)=x^{\frac{3}{5}}$ is not a differmorphiscm. But it is a homeomorphism as ϕ and $\bar{\phi}^{-1}$ are continuous.
This marks the difference between the study of topology (using homeomorphisms) and differential topology (using diffeomorplisus).
(2) R-equivalence preserves critical points in the following sense:

Suppose $f: U \rightarrow \mathbb{R}, g: V \rightarrow \mathbb{R}$ are smooth functions with $U, V \subset_{\text {open }} \mathbb{R}^{n}$ and Let $\phi: U \rightarrow V$ a diffeomorphism such that $f=g \circ$ od.
Then f has a critical point at $x \in U$ if and only if g has a critical point at $\phi(x)$.

$$
\left[\begin{array}{l}
f \text { has a critical point at } x \in U \\
\Leftrightarrow d f(x)=0 \\
\Leftrightarrow d(g \circ \phi)(x)=0 \\
\Leftrightarrow d g(\phi(0)) \cdot \underbrace{d \phi(x)}_{\text {det }(d \phi(x)) \neq 0}=0 \\
\Leftrightarrow d g(\phi(x))=0 \\
\Longleftrightarrow \phi(x) \text { is a critical point of } g
\end{array}\right]
$$

For R-equivalent function germs fig: $\left(\mathbb{R}^{n}, 0\right) \rightarrow \mathbb{R}$ with a diffeomorphiscm germ ϕ of $\left(\mathbb{R}^{n}, 0\right)$ such that $f=g \circ \phi$, this translates to: f has a critical point at 0 if and only if g has a critical point at $\phi(0)=0$.

Def. 1.4: The Jacobian ideal
Let $f \in \varepsilon_{n}$ (ie. $f:\left(\mathbb{R}^{n}, 0\right) \rightarrow \mathbb{R}$ a smooth function germ). The Jacobian ideal If is the ideal in ε_{n} generated by the partial derivatives of f :

$$
\text { If }:=\left\langle\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right\rangle \Delta \varepsilon_{n}
$$

The Jacobian ideal will help us classify critical points as they are only determined by the partial derivatives.

Remark 1.5:
$f \in \varepsilon_{n}$ has a critical point at the origin if and only if each of the generators $\frac{\partial f}{\partial x i}$ of If belongs to m_{n}, and hence if and only if If cmn .

Remark 1.6:
The definition of the Jacobian ideal is independent of the coordinates used: Let $\phi:\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{n}, 0\right)$ be a change of coordinates and $\hat{x}=\phi(x)$.
Then $\frac{\partial(f \circ \phi)}{\partial \hat{x}_{i}}=\frac{\partial f}{\partial x_{i}}$.
Example 1.7:
Let $f(x)=x_{1}^{2}+\ldots+x_{n}^{2} \in \varepsilon_{n}$. Then $f f=\left\langle 2 x_{1}, \ldots, 2 x_{n}\right\rangle=m_{n}$
Def. 1.8 : Codimension
A germ $f \in m_{n}{ }^{2}$ is of finite codimeasion if the Jacobian ideal If is of finite codimeasion in m_{n}. In this case, we define $\operatorname{codim}(f):=\operatorname{dim}\left(m_{n} / J f\right)$.
Remark 1.9:
R^{+}- equivalent germs have the same codimension.
(see Montaldi, Problem 4.9)
Example 1.20:
Let $f(x)=x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2} \in m_{n}^{2}$.
Then $f_{f}=m_{n}$ and $\operatorname{codim}(f)=\operatorname{dim}\left(m_{n} / m_{n}\right)=0$.
2. Nondegenerate critical points

Recall that a function germs $f \in m_{n}^{2}$ has a nondegenerate critical point (at 0) if $d^{2} f(0)$ is nondegenerate.
Proposition 2.1: (4.9 in Montaldi)
A germ $f \in m_{n}$ has a nondegenerate critical point (at 0) if and only if $y f=m_{n}$
Remark 2.2
By definition, If $=m_{n} \Leftrightarrow \operatorname{codim} f=0$. So the proposition above actually tells us that nondegenerate critical points are precisely those of codimension 0 .
Lemma 2.3
(1) For a quadratic form $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f(x)=x^{\top} A x$, where $A \in \mathbb{R}^{n \times n}$, the first and second derivatives are given by $d f(x)=x^{\top}\left(A+A^{\top}\right)$ and $d^{2} f(x)=A+A^{\top}$.
(2) For $f(x)=x^{\top} A(x) x$, where $A(x)$ is smooth, we get $d f(0)=0$ and $d^{2} f(0)=A(0)+A(0)^{\top}$.

Proof of 2.3
The proof of Lemur 2.3 is simple calculus:
Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, \quad f(x)=x^{\top} \mathcal{A}(x) x$

$$
\begin{aligned}
& f(x)=x^{\top} A(x) x=\sum_{i=1}^{n}\left(\sum_{j=1}^{n} a_{i j}(x) x_{i} x_{j}\right) \\
& d f(x)=\left(\begin{array}{c}
\left.\sum_{i=1}^{n}\left(\sum_{j=1}^{n} \frac{\partial a_{i j}}{\partial x_{1}} x_{i} x_{j}\right)+\sum_{j=1}^{n} a_{i j} x_{j}+\sum_{i=1}^{n} a_{i 1} x_{i}\right) \\
\vdots \\
\left.\sum_{i=1}^{n}\left(\sum_{j=1}^{n} \frac{\partial a_{i j}}{\partial x_{n}} x_{i} x_{j}\right)+\sum_{j=1}^{n} a_{n j} x_{j}+\sum_{i=1}^{n} a_{i n} x_{i}\right)
\end{array}\right)
\end{aligned}
$$

for $k_{c} l \in\{1, \ldots, n\}$ we have

$$
\begin{aligned}
\text { for } k_{l} l \in\{1, \ldots, n\} \\
\begin{aligned}
\left(d^{2} f(x)\right)_{k l}= & \sum_{i=1}^{n}\left(\sum_{j=1}^{n} \frac{\partial a_{i j}}{\partial x_{l} \partial x_{l}} x_{i} x_{j}\right)+\sum_{j=1}^{n} \frac{\partial a_{l j}}{\partial x_{k}} x_{j}+\sum_{i=1}^{n} \frac{\partial a_{i l}}{\partial x_{k}} x_{i} \\
& +\sum_{j=1}^{n} \frac{\partial a_{k j}}{\partial x_{l}} x_{j}+a_{k l}(x)+\sum_{i=1}^{n} \frac{\partial a_{i k}}{\partial x_{l}} x_{i}+a_{l k}(x) .
\end{aligned}
\end{aligned}
$$

If $\mathcal{A}(x)=\mathcal{A}$ is constant, then $f(x)=x^{\top} \mathcal{A} x$ is a quadratic form and the expressions above can be simplified to

$$
\begin{aligned}
& \text { form and the expressions above } \\
& d f(x)=\left(\begin{array}{c}
\sum_{j=1}^{n} a_{1 j} x_{j}+\sum_{i=1}^{n} a_{i 1} x_{i} \\
\vdots \\
\sum_{j=1}^{n} a_{n j} x_{j}+\sum_{i=1}^{n} a_{i n} x_{i}
\end{array}\right)=\left(\begin{array}{c}
\sum_{i=1}^{n}\left(a_{1 i}+a_{i 1}\right) x_{i} \\
\vdots \\
\sum_{i=1}^{n}\left(a_{n i}+a_{i n}\right) x_{i}
\end{array}\right)=x^{\top}\left(A+A^{\top}\right) \\
& \left(d^{2} f(x)\right)_{k e}=a_{k e}+a_{l k}, \quad d^{2} f(x)=A+A^{\top} .
\end{aligned}
$$

For a matrix $A(x)$, we can simplify the expressions at the origin:

$$
\begin{aligned}
& d f(0)=0 \\
& \left(d^{2} f(0)\right)_{k l}=a_{k l}(0)+a_{l k}(0), \quad d^{2} f(0)=A(0)+A(0)^{\top}
\end{aligned}
$$

Proof of 2.1
" \Longrightarrow ": We prove the first implication with the help of Nakayama's lemma.
Assume that f has a nondegenerate critical point at 0 .
Then we already know that $\mathrm{f} \subset \mathrm{m}_{n}$ (see earlier remark) so it suffices to show that $m_{n} \subset J f$.

Since the critical point (at 0) is nondegenerate, $Q:=d^{2} f(0)$ is a nondegenerate symmetrical matrix.

By Taylor's theorem with remainder, we get $f(0+x)=\underbrace{f(0)}_{=0}+\underbrace{d f(0)(x)}_{=0}+\frac{1}{2} x^{\top} Q x+h(x)$ with $h \in m_{n}{ }^{3}$
The remainder is given by $h(x)=\sum_{|\alpha|=3} \frac{\partial^{\alpha} f(c x)}{\alpha!} x^{\alpha}$ for some $c \in(0,1)$.] Thus, all partial derivatives of h of order less than 3 vanish at 0 and $h \in m_{n}{ }^{3}$

We can use Lemma 2.3 to see that

$$
\begin{aligned}
& \text { We can use Lemma } 2.3 \text { to see that } \\
& \begin{aligned}
d f(x) & =\frac{1}{2} x^{\top}\left(Q+Q^{\top}\right)+d h(x)=\frac{1}{2} x^{\top} \cdot 2 Q+d h(x)=x^{\top} Q+d h(x) . \\
& =\left(\begin{array}{c}
\sum_{j=1}^{n} q_{n j} x_{1} \\
\vdots \\
\sum_{j=1}^{n} q_{n j} x_{n}
\end{array}\right)+\left(\begin{array}{c}
\frac{\partial h}{\partial x_{1}} \\
\vdots \\
\frac{\partial h}{\partial x_{n}}
\end{array}\right)
\end{aligned}
\end{aligned}
$$

So for each $i \in\{1, \ldots, n\}$, we get
$\frac{\partial f}{\partial x_{i}}=\sum_{j=1}^{n} q_{i j} x_{j}+\frac{\partial h}{\partial x_{i}}$ with $q_{i j}$ the entries of Q.
Now, we can use the equation above to investigate the Jacobian ideal. Since $\frac{\partial h}{\partial x_{i}} \in m_{n}^{2}$, we get

$$
J f+m_{n}^{2}=\left\langle\sum_{j=1}^{n} q_{i j} x_{j} \mid i \in\{1, \ldots, n\}\right\rangle+m_{n}^{2} \text {. }
$$

claim: $I:=\left\langle\sum_{j=1}^{n} q_{i j} x_{j} \mid i \in\{1, \ldots, n\}\right\rangle=m_{n}$
" c ": IC mn is clear since every polynomial $p_{i}(x)=\sum_{j=1}^{n} q_{i j} x_{j}$ is smooth and vanishes at 0 .
" 2 ": Since Q is nondegererate, we can write $A:=Q^{-1}$.
Then for $k \in\{1, \ldots, n\}$:

$$
\begin{aligned}
& \text { Then for } k \in\{1, \ldots, n s: \\
& x_{k}=\sum_{j=1}^{n}(\sum_{i=1}^{n} \underbrace{a_{k i} q_{i j}}_{k i}) x_{j}=\sum_{i=1}^{n} a_{k i}\left(\sum_{j=1}^{n} q_{i j} x_{j}\right) \in I \\
& =\left\{\begin{array}{l}
1, i=j=k \\
0, \text { else because } A Q=\mathbb{1}_{n}
\end{array}\right.
\end{aligned}
$$

So all $x_{1}, \ldots, x_{n} \in I$ and therefore $m_{n}=\left\langle x_{1}, \ldots, x_{n}\right\rangle \subset I$.
Using $I=m_{n}$ (and $m_{n}^{2}\left(m_{n}\right)$, we now have $m_{n}=f f+m_{n}^{2}$.
It follows from Ukayama's lemma that $m_{n} \subset$ If and thus $m_{n}=$ If. check the preconditions for Nakayama's lemma: ε_{n} is a ring,
m_{n} is an ideal s.t. $a \in m_{n} \Longrightarrow a+1$ is a unit in ε_{n} : $a \in m_{n} \Rightarrow a=\sum_{j=1}^{n} a_{j} x_{j}$ for some coefficients a_{j}

$$
\begin{aligned}
& \Rightarrow \frac{1}{1+a}=\frac{1}{1+\sum_{j=1}^{a_{j} x_{j}}}, 0 \in \operatorname{dom}\left(\frac{1}{1+a}\right) \\
& \Rightarrow \frac{1}{1+a} \in \varepsilon_{n}, 1+a \text { is a unit in } \varepsilon_{n}
\end{aligned}
$$

m_{n}, If $\triangle \varepsilon_{n}$,
m_{n} is finitely generated
"E": We prove this implication by contraposition.
If f has no critical point at all at the origin, then If $\& m_{n}$ (see earlier remark).

Now suppose that f has a critical point at O and this point is degenerate.
Using Taylor's theorem and $Q:=d^{2} f(0)$ we can write, as in the first part of the proof,

$$
f(x)=\frac{1}{2} x^{\top} Q x+h(x)
$$

with $h \in m_{n}{ }^{3}$ and Q now degenerate.
Let $m<n$ be the rank of Q. Then we can choose a basis in \mathbb{R}^{n} s.t.

$$
Q=\left(\begin{array}{ll}
\hat{Q} & 0 \\
0 & 0
\end{array}\right)
$$

with \hat{Q} an invertible and symmetric $m \times m$-matrix.
We now write the corresponding coordinates as $\left(\hat{x}_{1}, \ldots, \hat{x}_{m}, y_{n}, \ldots, y_{n}, m\right)$.

$$
\begin{aligned}
& \text { Then } \\
& \begin{aligned}
f(\hat{x}, y) & =\frac{1}{2}\left(\hat{x}^{\top}, y^{\top}\right)\left(\begin{array}{ll}
\hat{Q} & 0 \\
0 & 0
\end{array}\right)\binom{\hat{x}}{y}+h(\hat{x}, y) \\
& =\frac{1}{2}(\hat{x})^{\top} \hat{Q} \hat{x}+h(\hat{x}, y)
\end{aligned}
\end{aligned}
$$

In these coordinates, we can calculate the partial derivatives of f like we did in the first part of the proof:

$$
\begin{array}{ll}
\frac{\partial f}{\partial \hat{x}_{i}}=\sum_{j=1}^{m} \hat{q}_{i j} \hat{x}_{j}+\frac{\partial h}{\partial \hat{x}_{i}} & \text { for } i \in\{1, \ldots, m\} \\
\frac{\partial f}{\partial y_{j}}=\frac{\partial h}{\partial y_{j}} & \text { for } j \in\{1, \ldots, n-m\}
\end{array}
$$

Again, $\frac{\partial h}{\partial \hat{x}_{i}}, \frac{\partial h}{\partial y_{j}} \in m_{n}^{2}$.
Thus $J f+m_{n}^{2}=\left\langle\sum_{j=1}^{m} \hat{q}_{i j} \hat{x}_{j} \mid i \in\{1, \ldots, m\}\right\rangle+m_{n}^{2}$, so in particular $y_{j} \notin J f$ for $j \in\{1, \ldots, n-m\}$ as y_{j} is neither in $\left\langle\sum_{j=1}^{m} \hat{q}_{i j} \hat{x}_{j} \mid i \in\{1, \ldots, m\}\right\rangle$ nor in $m_{n}^{2}\left(\right.$ as $\left.\frac{\partial y_{j}}{\partial y_{j}}(0)=1 \neq 0\right)$. But $y_{j} \in m_{n}$ and the ns $J f \subset m_{n}$.

Proposition 2.4 (4.10 in Montaldi)
Suppose $f:\left(\mathbb{R}^{n}, 0\right) \rightarrow(\mathbb{R}, 0)$ has a nondegenerate critical point (at 0).
Then there is a change of coordinates ϕ such that

$$
(f \circ \phi)(x)=\frac{1}{2} x^{\top} d^{2} f(0) x
$$

The proposition can also be understood as ' f is right equivalent to its quadratic part (Taylor series to degree 21).

Proof:
$f(0)=0$ and f has a critical point at 0 . Thus, $f \in m_{n}^{2}$. We know from the Corollary to Hadamard's lemma that m_{n}^{2} is generated by the monomials of degree 2 in x_{1}, \ldots, x_{1}.

So we can write

$$
f(x)=\sum_{i, j=1}^{n} \psi_{i j}(x) x_{i} x_{j}=x^{\top} \Psi(x) x
$$

with smooth functions $\psi_{i j} \in \varepsilon_{n}$ and $\Psi(x)=\left(\psi_{i j}(x)\right)$ can be chosen to be symmetric.
[if $\psi_{l k}(x) \neq \psi_{k l}(x)$ for some $l_{1} k \in\{1, \ldots, n\}$, we can simply exchange those entries with $\hat{\psi}_{l k}(x), \hat{\psi}_{k l}(x):=\frac{1}{2}\left(\psi_{l k}(x)+\psi_{k l}(x)\right)$ and the coefficient for $x_{l} x_{k}$ remains $\hat{\psi}_{l k}(x)+\hat{\psi}_{k l}(x)=2 \cdot \hat{\psi}_{k l}(x)=\psi_{1 k}(x)+\psi_{k l}(x)$

Using Lemma 2.3, we get $d^{2} f(0)=\Psi(0)+\Psi(0)^{\top}=L \Psi(0)$.
Since f has a nondegenerate critical point at $0, \Psi(0)=\frac{1}{2} d^{2} f(0)$ is a nondegenerate matrix.
Nearby nondegenerate quadratic forms are similar, so for each x near 0 there is an invertible matrix P_{x} with $P_{0}=\mathbb{1}$ such that $\Psi(x)=P_{x}^{\top} \Psi(0) P_{x}$.

It follows from the inverse function theorem that the map $x \mapsto P_{x} x$ is a diffeomorplison germs at the origin. $\left[\begin{array}{l}\text { Check the preconditions for the inverse function theorem: } \\ \varphi(x):=P_{x} x \text { is smooth and } \\ d \varphi(0)=P_{0}=11 \text {, therefore } \operatorname{det}\left(d \phi_{0}\right)=1 \neq 0\end{array}\right]$

So we can defoe new coordinates $y=P_{x} x$ and write $f(x)=x^{\top} \Psi(x) x=x^{\top} P_{x}^{\top} \Psi(0) P_{x} x=y^{\top} \Psi(0) y$.
By defining ϕ via $x=\phi(y)$, the inverse of $y=P_{x} x$, we get the required statement

$$
(f \circ \phi)(y)=f(x)=y^{\top} \Psi(0) y=\frac{1}{2} y^{\top} d^{2} f(0) y
$$

Corollary 2.5 (Morse Lemma)
If $f:\left(\mathbb{R}^{n}, 0\right) \rightarrow(\mathbb{R}, 0)$ has a nondegenerate critical point at 0 , then there is a change of coordinates ψ such that

$$
(f \circ \phi)(x)= \pm x_{1}^{2} \pm x_{2}^{2} \pm \ldots \pm x_{n}^{2}
$$

Remark 2.6
For a nondegenerote critical point of f, the number of negative squares in the More lemma is the index of the critical point.

Proof of 2.5
Any quadratic form can be diagonalised by a change of basis, and if it is nondegenerate, the diagonal terms can be made equal to ± 1. If we apply this to $x \longmapsto x^{T}\left(\frac{1}{2} d^{2} f(0)\right) x$, we get the required statement.

Example 2.7:
Suppose $f \in m_{2}{ }^{2}$ has a nondegenerate critical point at the origin. Then the Morse Lemma tells us that, after a change of coordinates, $f(x, y)$ can only be of one of the following three forms:

$$
f(x, y)
$$

$$
f(x, y)=-x^{2}-y^{2}
$$

$$
f(x, y)
$$

$$
f(x, y)=x^{2}-y^{2}
$$

3. Splitting Lemma

Example 3.1

$$
f(x, u)=x^{2}+2 x u^{2}
$$

Here, O is a critical point of f, but $d^{2} f=\left(\begin{array}{ll}2 & 4 u \\ 4 u & 4 x\end{array}\right)$ is degenerate at O.
If we write
$f(x, u)=\left(x+u^{2}\right)^{2}-u^{4}$ and put $x(x, u)=x+u^{2}$, we get

$$
f(x, u)=f(x, u)=x^{2}-u^{4}
$$

nondegenerate part degenerate part
Now, $d_{x}^{2} f(0)=2 \neq 0$ and $d_{u}^{2} f(0)=0$
We have already seen some nice properties of nondegenerate critical points. Jor classifying degenerate critical points, we want to 'split' the nondegenerate part from the degenerate part as seen in the example above. This is the idea of the Splitting lemma.

Theorem 3.2 (Splitting lemma)
Let $f \in m_{m+k}$, which we write as $f(x, n)$ for $x \in \mathbb{R}^{m}, u \in \mathbb{R}^{k}$.
Suppose the restriction $\left.f\right|_{\mathbb{R}^{m} \times\{0\}}$ has a nondegererate critical point (at $x=0)$. Then there is a change of coordinates in a neighbourhood of the origin $(x, u)=(x(X, u), u)$ such that

$$
f(x(x, u), u)=Q(x)+h(u)
$$

where $Q=\left.\left(\frac{1}{2} d^{2} f\right)\right|_{\mathbb{R}^{m} \times\{0\}}$ and h is a smooth function.
Furthermore, the 'remainder function' h can be found implicitly as follows: For each u near O there is a unique point $x=\chi(u)$ such that $d_{x} f(x(u), u)=0$. ($d_{x} f(x, u)$ is the differential of f with respect to only x) Then $h(u)=f(x(u), u)$.

Remark 3.3
(1) This result is sometimes called the parametrized Morse leanna, where the variables a take the place of parameters.
(z) One can further simplify Q by diagonalising it so that $Q(x)$ takes the form $\Sigma \pm X_{i}{ }^{2}$
(3) $X(u)$ can be found in principle by using the implicit function theorem. This means that the Taylor series of h ran be found to any given order.

Before we prove 3.2, we take a look at a typical application of the Splitting lemons.

Corollary 3.4
If $f \in m_{n}$ has a critical point at the origin with Hessian matrix of corank k (i.e. the dimension of its kernel) then there are coordinates $X \in \mathbb{R}^{n-k}$ and $u \in \mathbb{R}^{k}$ such that

$$
f=Q(x)+h(u),
$$

where Q is a nondegenerate quadratic form and $h \in m_{k}{ }^{3}$
Proof of 3.4
Since the Hessian matrix of f has corank k, we can choose a basis so that it takes the form
$\left(\begin{array}{cc}A & 0 \\ 0 & 0\end{array}\right)$ with A an invertible symmetric $(n-k) x(n-k)$ matrix.
We write the corresponding coordinates as $\left(x_{1}, \ldots, x_{n-k}, u_{1}, \ldots, u_{k}\right)$.
In these new coordinates, we can write

$$
d_{x}^{2} f(0)=A, d_{u}^{2} f(0)=0, \quad d_{u} d_{x} f(0)=0
$$

Now, the preconditions of the Splitting lemma are satisfied.

$$
\left[\begin{array}{l}
\left.f\right|_{\mathbb{R}^{k} \times\{0\}} \text { has a nondegenerate critical point at } x=0 \\
\text { as } d^{2} \times f(0)=A
\end{array}\right]
$$

So after a further change of coordinates $(x, u) \mapsto(X(x, u), u)$, we can write f in the form

$$
f(x, u)=Q(x)+h(u) .
$$

There remains to show that $h \in m_{k}^{3}$. We already know that $h \in m_{k}^{2}$ as f has a critical point at 0 .
Furthermore, we can represent the quadratic form Q by a symmetric matrix \hat{Q}, such that $Q(x)=X^{\top} \hat{Q} X$.
From Lemma 2.3, we know that $d^{2} Q=\hat{Q}+\hat{Q}^{\top}=2 \hat{Q}$.
Then we have

$$
d^{2} f(0)=\left(\begin{array}{cc}
d^{2} Q(0) & 0 \\
0 & d^{2} h(0)
\end{array}\right)=\left(\begin{array}{cc}
2 \hat{Q} & 0 \\
0 & d^{2} h(0)
\end{array}\right)
$$

Since \hat{Q} is invertible of rank m, we can conclude that

$$
m=\operatorname{rank}\left(d^{2} f(0)\right)=m+\operatorname{rank}\left(d^{2} h(0)\right)
$$

So $d^{2} h(0)=0$ and thus $h \in m_{k}^{3}$.

Proof of 3.2:
We begin by finding the map $u \mapsto x(u)$ referred to at the end of the statement.
The map $\varphi:(x, u) \longmapsto d x f(x, u)$ is of rank m at the origin, because $d \varphi=\left[d_{x}^{2} f, d_{u} d_{x} f\right]$ and the first mam block of $d \varphi$ is $d^{2} x f$ which is invertible at the origin as f has a nondegenerate critical point there. It follows from the implicit function theorem that $\varphi(x, u)=0$ can be solved uniquely for x as a (continuously differentiable) function of u, defining $u \rightsquigarrow x(u)$.
$\left[\begin{array}{l}\text { check the preconditions for the implicit function theorems: } \\ \varphi: \mathbb{R}^{m+k} \rightarrow \mathbb{R}^{m} \quad \text { is continuously differentiable, } \\ d_{x} \varphi=d_{x}^{2} f \text { is invertible }\end{array}\right]$

That is, in a neighbourhood of the origin,

$$
d x f(x, u)=0 \quad \Longleftrightarrow \quad x=x^{(u)}
$$

Now, we change the coordinates by defining $y=x-x(u)$. The map

$$
(x, u) \mapsto(x-X(u), u)
$$

is a diffeomorphism the map itself and its inverse $(y, u) \mapsto(y+x(u), u)$ are continuously differentiable.

Let $g(y, u)=f(x, u)=f(y+x(u), u)$.
Then $d_{y} g=0$ if and only if $y=0$.

$$
\begin{aligned}
& \text { Then } d_{y} g=0 \text { if and only } \\
& {\left[d_{y} g(y, u)=0 \Leftrightarrow d_{x} f(y+x(u), u)=0 \Leftrightarrow y+x(u)=x(u) \Leftrightarrow y=0\right]}
\end{aligned}
$$

Now for each fixed value of u (near 0) there is a function $g u(y):=g(y, u)$ that has a nondegenerate critical point at the origin: $d g_{u}(y)=d_{y g}(u, y)=0$ for $y=0$ as seen above. $d^{2} g_{u}(0)$ is invertible and so too is $d^{2} g_{u}(0)$ for sufficiently small values of u by continuity.

We now uninic the proof of the Morse lemma with the variables a as parameters.
Let μ_{x} be the ideal of functions $f \in \varepsilon_{m+1}$ such that $f(0, u) \equiv 0$. Then $\mu_{x}=\left\langle x_{1}, \ldots, x_{m}\right\rangle \subset \varepsilon_{m+k}$ by Hadamard's Coma.
Define $F(y, u)=g(y, u)-g(0, u)$. Then $F \in \mu_{x} \quad(F(0, u)=g(0, u)-g(0, u) \equiv 0)$.
So we can write

$$
F(y, u)=\sum_{i, j=1}^{m} \psi_{i j}(y, u) y_{i} y_{j}=y^{\tau} \Psi(y, u) y .
$$

Nearby symmetric and nondegenerate matrices are similar, so for each $C_{y, u}, u$ near 0 there is an invertible matrix $P_{C y, u}$ such that $\Psi(y, u)=P_{(y, u)}{ }^{+} \Psi(0,0) P_{(y, u)} \quad$ (and thus $\mathbb{P}_{(0,0)}=1$)

It follows from the inverse function theorem that $\tau:(y, u) \mapsto\left(P_{(y, u)} y, u\right)$ is a diffeomorphism germ.

> [check the preconditions for the inverse function theorem: τ is smooth,

Write $(x, u)=\left(P_{(y, u)}, y, u\right)$. Then

$$
F(y, u)=y^{\top} \Psi(y, u) y=y^{\tau} P_{(y, u)}^{\tau} \Psi(0,0) P_{(y, u)} y=X^{\top} \Psi(0,0) X \text {. }
$$

Write $Q(x)=X^{\top} \Psi(0,0) X$, so that

$$
g(y, u)=g(0, u)+F(y, u)=g(0, u)+Q(x) \text {. }
$$

But $y=0$ corresponds to $x=\chi(u)$ so that $g(0, u)=f(x(u), u)=h(u)$.
So finally we have

$$
f(x, u)=g(y, u)=F(y, u)+g(0, u)=Q(X)+h(u)
$$

Proposition 3.5
Let $f \in \varepsilon_{m+k}$ with $f(x, u)=\sum_{i=1}^{m} \pm x_{i}^{2}+h(u)$ where $x \in \mathbb{R}^{m}, u \in \mathbb{R}^{k}$.
Then $\operatorname{codim}(f)=\operatorname{codim}(h)$.
For the proof, we use the following algebraic Lemma.
Lemma 3.6
Let $R_{1} S$ be rings and $J \subset S$. Suppose $\phi: R \rightarrow S$ is a surjective homomorphism and let $I=\bar{\phi}^{-1}(y)$. Then $I a R$ and ϕ induces an isomorphism $\bar{\phi}, R^{\prime} I \rightarrow S / \Sigma$, defined by $\bar{\phi}(r+I)=\phi(r)+J$

Proof of 3.6 :
If we compose ϕ with the natural homomorphism $S \rightarrow S / y$, we get a ring homomorphism e $\begin{aligned} f: R & \rightarrow S /(y . \\ r & \mapsto \phi(r)+y\end{aligned}$

$$
r \mapsto \phi(r)+y
$$

Then the first isomorphism theorem for rings tells us that her φ is an ideal and provides an isomorphism in $\varphi \cong R / \operatorname{ker} \varphi$ In our case, $\operatorname{ker} \varphi=\varphi^{-1}(y)=\phi^{-1}(y)=I$ and $\operatorname{im} \varphi=S / y$ because ϕ is subjective.
So $S / J \cong R / I$ with an isomorphism $\bar{\phi}: R / I \rightarrow S / J$

$$
\omega+I \mapsto t(s)+J
$$

Proof of 3.5
The Jacobian ideal of $f(x, u)=\sum_{i=1}^{m} \pm x_{i}^{2}+h(u)$ is given by If $=\left\langle x_{1}, \ldots, x_{m}, \frac{\partial h}{\partial u_{1}}, \ldots, \frac{\partial h}{\partial u_{k}}\right\rangle$. The map $\phi: \varepsilon_{m+k} \rightarrow \varepsilon_{k}, \phi(g)(u)=g(0, u)$ defines a homomorphisen.
This homomorphism is sarjective as for any given $h \in \varepsilon_{k}$, the germs $H(x, u):=h(u)$ satisfies $\phi(H)=h$.
Let $g \in \varepsilon_{m+k}$. Then $g \in J f$ if and only if $\phi(g) \in J h$
" \Longrightarrow ": Suppose that $g \in J f$. Then we can write
$g(x, u)=\sum_{i=1}^{m} \varphi_{i}\left(x_{\mu}\right) x_{i}+\sum_{j=1}^{k} \psi_{j}(x, u) \frac{\partial h}{\partial u_{j}}(u)$ for some $\varphi_{i}, \varphi_{j} \in \varepsilon_{m+k}$.
$S_{0} \phi(g)(u)=g(0, u)=\sum_{j=1}^{j=1} \Psi_{j}(0, u) \frac{\partial h}{2 u_{j}}(u)$ and thus $\phi(g) \in j_{h}$
$\stackrel{\text { " }}{ } \in$ ". Suppose $g_{2}:=\phi(g) \in J h$.
Then we can write
$g(x, u)=g_{n}(x, u)+g_{2}(u)$ with $g_{1} \in \varepsilon_{m+k}$ such that $g_{1}(0, u)=0$
Thus, $g_{n} \in\left\{g(x, u) \in \varepsilon_{m+k} / g(0, u) \equiv 0\right\}$.
From Hadamard's lemma we know that

$$
\left\{g(x, u) \in \varepsilon_{m+k} \mid g(0, u) \equiv 0\right\}=\left\langle x_{1}, \ldots, x_{m}\right\rangle \text {. }
$$

So $g_{1} \in\left\langle x_{1}, \ldots, x_{m}\right\rangle$ and $g=g_{1}+g_{2} \in J f$.
Now, we can use Leмина 3.6 for $\phi: \varepsilon_{\text {mit }} \rightarrow \varepsilon_{k}$, Jha $\varepsilon_{k}, J f=\phi^{1}(j h)$. So there is an isomorphism $\bar{\Phi}: \varepsilon_{m+k} / j f_{f} \rightarrow \varepsilon_{k} l_{j h}$ and in particular, $\operatorname{codim}(f)=\operatorname{dim}\left(\varepsilon_{m+k} / J_{f}\right)=\operatorname{dim}\left(\varepsilon_{k} / g_{n}\right)=\operatorname{codim}(h)$.

