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1
.Germs: Right equivalence , Jacobian ideal and codimension

Def. 1.

1 : Right equivalence-

Two function germs fig
: (1

,
0) - 1 are right equivalent (or R-equivalent)

if there is a diffeomorphism germ
& of CIR2

,
01 such that

f = god.

They areRt - equivalent if there is some constant a tM such that

f= god + a

We then write fung or fintg:

R-equivalence allows us to consider function germs independent of

the particular coordinates used.

Example1.

2

(1) The germs fig : (1
,
0) + M , f(x =Y

, gGlica are R-equivalent :

We require
a change of coordinates y

= & (2) such that

f(x) = (g0k)() =g(y) .

Solvingech-aczyn gives
us y =

x h =: $().

The inverse function theorem tells us that I is a diffeomorphism in

a neig
hbourhood of 0-

I
check the preconditions for the inverse function theorem :

I& is smooth and
1 -T

dP( = xE(-

x +r ,
da(a = 1 +0

1 g(x)

~a 70 Oal

!-&(x) c "f(x)



(2) The
germs

Suppose there
fig

:

(garenotRequival
. .

Then c = 125
,

that is &(C) =x *
.

This map is not differentiable

at O
,

so not a diffeomorphism.

↑
Remark

sas

the example 1
.
2(2)

,
$(x) = 15 is not a diffeomorphism .

But it is a homeomorphism asI andF are continuous .

This marks the difference between the study of topology cusing homeomorphisms

and differential topology(using diffeomorphisms).

(2) R- equivalence preserves critical points in the followin sense :

9

Suppose f : U + R
, g

: V- 1 are smooth functions with U.Vopen

and let Q : UzV a diffeomorphism such that f-god .

Thenf has a critical point at EU if and only if

g has a critical point at $(x).

f has a critical point at EU

Edf(x) = 0

=> d(god)(x)
= 0

C

=> dg(q(01)
- dd( = 0

C
-I C & dg(4()

=0 Idef (d() +0 = do() has full rank

En P(x) is a critical point of gE

For R-equivalent function germs fig
: (R40)-> 1 with a differmorphism

germ
& of (12

,
0) such that fogod ,

this translates to :

f has a critical point at o if and only if g
has a

critical point at $(01 = 0
,



&ef. 1. 4 : The Jacobian ideal

Let feen (i.e. f: (MV
,
01 + 1 a smooth function germ

7.The Jacobian ideal

If is the ideal inEn generated by the partial derivatives of fi

If :=! ... En

The Jacobian ideal will help us classify critical points as they are

only determined by the partial derivatives.

Remark1.
5 :

feen has a critical point at the origin if
and only if each of the

generators &o If belongs to mm,
and hence if and only if If cmn

.

Remark1.
6

:

The definition of the Jacobian ideal is independent of the coordinates used :

Let &: (H,
07 + (14

,
0) be a change of coordinates and is = &(2)

·

Then

Encample1
. 7 :

Let f(x) = 2 +... + 22EEn
.
Then Jf: < 22, ... ,

2xn7 = Mr

Def .
1

. 8 : Codimension
-

A germ femm
is of finite codimension if the Jacobian ideal

If is of finite codimension in Mn. In this case,
we define

codim (f) := dim (Mn/yf) .

Remark 1
. 9 :

-

it equivalent germs
have the same codimension.

(see Montaldi, Problem 4
.
9)

Example 1
.10 :

-

Let f(x) = 2(2 + 22+.. -
+ xEMn?

Then Jf = Mn and codiu (f) = dim (Mn/mal = 0.



2. Nondegenerate critical points

thecall that a function germ femm has a nondegenerate critical

point lat of if difco) is nondegenerate.

Poposition 2 -

1 : (4
.
9 in Montaldil

A germ femn has a nondegenerate critical point (at 0

if and only ifIf : An

Remark2
. 2

By definition, Jf = Mn E codim f =0
.

So the proposition above actually

-

tells us that nondegenerate critical points are precisely those of

codimension 0.

Lemma 2
.

3
-

-or a quadratic form filR" -> M
, f(x) = xTAc

,
where(n) T

the first and second derivatives are given byAc Run

df(x) = xT(A+ AT) and d2f(x) = A+AT

(2) For f(x)= xTAbax ,
where All is smooth

, we get
& flol = 0 and df(0) = A(o) +A(o)T

.

Proofof 2
.

3

The proof of Lemma 2
.
3 is simple calculus :

Let x = (
,

. . .,
kn)t ", f(x) = xTA(x)x

f(x) = x
T Ak(x = [aij(xxxj)

df(x) = (
+ I

4i (+ x TEa Ci)
Nas

-

i = 1

in

j = 1

for kee 51, ..., ns we have

(af(x))k=



If Abl = A is constant
,

then f(x) = xTAx is a quadratic
form and the expressions above can be simplified to

M

Enj + Sai [lani + air) ;

df(x) = (: I = (containi ( =
x (A + 1T)

n 4

· xj Sa =
x;a U

t n

j= 1
J i=1

(dif(2)(ke = are + aek , d2f(x)= A +AT
.

For a
matrix Ald,

we can simplify the expressions
at the origin

:

df(0) = 0

(d'f(01)ke = am(0) + ank(0) ,
dif(a) = A(0) + A(0))

.

Y-roofof 2.

1

"We prove
the first implication with the help of Nakayama's lemma ,

Assume thatf has a nondegenerate critical point at 0.

Then we already know that Jf(Mn
(see earlier remark

So it suffices to show that mncJf

Since the critical point Cat o) is nondegenerate,

Q := def(d) is a nondegenerate symmetrical matric

By Taylor's theorem with remainder
,
we get

f(0 + x) = f(0) +df(0)(x) + ExTQx + h(x) with hemn

wa -

-O - g

The remainder is given by
his : [C ch for some c.

121 = 3

IThus
,

all partial derivatives of h of order less thanI vanish at o I
and hemr

We can use Lemma 2.3 to see that

df(x) = ExT(Q+ QT) + dh(x) = ExT-2Q + dh() = xTQ +dh(x)
.

I-(



So for each its1
,...,

n3
,

we get

=gij with gij
the entries of

Now,
we can use the equation above to investigate

·

Muthe Jacobian ideal. Since E ↓
we get

gi
· 2
; liegt, ...,

n3) + Mr
-Jf + mi=

j=1

claim : I : = <gijj Liese,..., ni = Mn

"C" : ICMn is clear since every polynomial

pi()= <j is smooth and vanishes at 0.

9
5-

- %

"3" : Since Q is nondegenerate ,
we can write A :=Q

Then

~
j
=

= Sri because AQ :In

So all 21 , ...,
EF and therefore Mm=<n

, ...
ul CI.

Using E=mn (and macmul ,
we now have mn = If + mn?

It follows from Nakayama's Gemma that MnCJf and thus mm = If.

heck the preconditions for Nakayama's
Lemma :

C

En is a ring, !

is an ideal s .
t

.

atMn = a+ 1 is a unit in En

aemn = a = j; for some coefficient,,I
mn

-

1
1 I-

1 + a etj
,

0 dom lital
->

- - ~

a

=> Fa &En
,

exa is a
unit in En

m, Ifnely generated



"E We prove this implication by contraposition .

If f has no critical point at all at the origin ,
then

Jfk Mn (see earlier remark).

Now suppose
thatf has a critical point at O and this

point is degeneratee.

Using Taylor's theorem and Q := df(0) we can write,
as in

the first part of the proof,

f(x) = Ex+ Qx + h(x)

with hems and Q now degenerate.

Let man be the rank of Q
.

Then we can choose a basis

in Rh S .
t

-

1

Q = (a)
with Q an invertible and symmetric mam-matric

.

We now write the corresponding
coordinates as (in

, ....
m

,Ye , ...Yerml.

Then
TT

f(x, y) = E(,y)((() + h(5 ,y

= =(c) x + h(z, y)

In these coordinates,
we can calculate the partial derivatives

of like we did in the first part of the proof :

m
- + for itst, ...,

m)

9 · S: j
ja

for jost , ...,
n -m]

=j

Again, zh  m
M 1

- T
Thus Jf + mi =< lic 1....,

mi) + Mr ,
so in particular

j= e
Fijj

Yjeff for j-Se, ...,
n -m] as yj is neither in < lis ....,

mis
C

nor in m (as 101 =170). But yjemu
and thus If Imm. M



Proposition 2
.4 (4

. 10 in Montaldi)
-

Suppose f: (12
,
02 + (1

,0) has a nondegenerate critical point lat 01

Then there is a change of coordinates of such that

(fod)(2) = =xTd2f(0)x

The proposition can also be understood asIf is right equivalent to
1

its quadratic part
C Taylor series to degree 21

.

Prof :

f(0) = 0 and f has a critical point at 0 .
Thus

, femm

We know from the Corollary toMadamard's lemmon that

mic is generated by the monomials of degree 2 in 1
, ... .

So we can write
N

f(x)= &PijGj
=

T Ec

with smooth functions Yij EEn and EG: (Yijkell can be chosen to be

symmetric .

I
if Yep ( # PK1bd for some 1

,
kes1..... n)

,
we can simply exchange

Ithose entries with Yy,Pre() : = E(Pek() + 4,)() and the coefficient for

W

seee remains Pe + Pres = 2- Pack = Per(e) + Yke()

Using
Lemma 2.3

,
we get d"f(0)

= F(0) + F(0)T = 2[(0)
·

Sincef has a nondegenerate critical point at 0
,

P(0) = Edflo) is a

nondegenerate matrix .

Nearby nondegenerate quadratic forms
are similar

,
so for each

x near O there is an invertible matric P with Po=1 such that

[(x) = PaT [(0) Px .



It follows from the inverse function theorem that the mapr

2 I Pak is a diffeomorphism germ
at the origin.

Check the preconditions for the inverse function theorem :

ooth and
f(x):= Px is sulI df(0)= Po = 1

, therefore det (14) = 1 +0
I

So we can define new coordinates y=Ro and write

f(x) = 2T E()x = xT PY(0)Bx = y TE(0)y

By defininga via (= P(y) ,
the inverse of y: Pl,

we get

the required statement

(foq)(y) = f(x)= y
+ E(0)y = Ey+ dif(b)y ,

Corollary 2 .
5 (Morse Lemmal

-

If f : (l4
,
0) + CR

,
O) has a nondegenerate critical point at O,

then there is a change of coordinates of such that

(04)() = #1221 ---
In?

Remark 2
.
6

-

For a nondegenerate critical point off, the number of negative
squares in the Morse Lemma is the indez of the critical point.

Proofof 2.
5

Any quadratic form can be diagonalised by a change of basis
,

and if it is nondegenerate ,
the diagonal terms can be made equal

to 11
. If we apply this toxi+ xT(df10K ,

we get the

required statement.



Example2:
7

:

Suppose femz has a nondegenerate critical point at the
origin.

Then the Morse Lemma tells us that
,

after a change of coordinates,
f(x,y) can only be of one of the following three forms :

f(x,y)

1

f(x, y) =
x2- yz

⑧

I(I((Ex
S x

L

f(x
,y)

I ⑧ S x
f(x, y) = 22-ya

YS -SS
&-
L

Y

i f(z,y) = xz + yh

-"



3. Splitting Lemma
Example 3 .

1
-

f(x, u) = x2 + 2x)

Here,
O is a critical point of f, but dif = (2 e)

is degenerate at 0.

If we write

f(x,
u) = ( +uk -

ut and put X(x,
u) = x + u

,
we get

4
-U

f(xu) = f(x ,
u) =x

1

/ I

nondegenerate part degenerate part

Now
, dyf(0) = 2 to and dif(o) = 0

We have already seen some nice properties of nondegenerate
critical points. For classifi degenerate critical points, we want

-ing
art enerate part as seen

to 'split I the nondegenerate p from
the deg

in the example above. This is the idea of the Splitting Lemma.

3
.2Theorem (splitting Lemma

Let femmik ,
which we write as flau) for R

,
we t

Suppose the restriction flauxson has a nondegenerate critical

point (at = 0). Then there is a change of
coordinates

in a neighbourhood of the originCu = (x(X,
)

,
2) such that

f(x(X,
u) ,

u) = Q(x) + h(u)
,

where Q = Edflixson and h is a smooth function .

Furthermore ,
the 'remainder function' h can be found implicitly as follows :

For eachu near O there is a unique point x = XCul such that

dxf(X(u) ,
n) = 0

.

(daflim) is the differential of f with respect to only 2)

Then h(ul = f(x(u) ,
u).



Remark 3
.
3

-

(1) This result is sometimes called the parametrized Morse Lemma,

where the variables a take the place of parameters.

(2) One can further simplifyQ by diagonalising
it so that Q(x) takes

the form [IX,
"

(3) X (u) can be found in principle by using
the implicit function

theorem.

This means that the Taylor series ofh can be found to any given order.

Before we prove
3

.

2
,

we take a look at a typical application of

- 1the SplittingLemma .

-Corollar has a critical point at the origin with Hessian matric

of corank K (i .

e
.

the dimension of its kernell then there are coordinates

~eM" and we R" such that
I

f = Q(x) + h(u) ,

where Q is a nondegenerate quadratic form and hem

Proofof 3
.
4

Since the Flessian matrice of f has corank k,
we can choose a

basis so that it takes the form

S10 with A an invertible symmetric (n-klx(n-k) catric.

coordinates as (x- . .

.
-k

,
Un

,
.. . ,

4K)
.

We write the corresponding
In these new coordinates

,
we can write

def(0) = A
, duf(0)

= 0
,
dudif(o) = 0.

~ Lemma are sa's iedIch -

Now,
the preconditions of the SplitS toI

&

- · - at x = 0

IFr"[03
has a nondegenerate critical

p
ind

I
as decf(o) =A is nondagenerate



So after a further change of coordinates (x
,
u)re (X(2u)

,
u),

we can writef in the form

f(x,
n) = Q(x) +h(u)

.

There remains to show that hem. We already know that
he mis

as f has a critical point at 0
.

furthermore ,
we can represent the quadratic form Q

by a symmetric
matrix

,
such that Q(X) = X**X.

From Lemma 2
.3

,
we know that dQ =Q= 28.

Then we have

dQ(0) 0 (
d2f(0) = (0 dinc) = (2 ho &

Since Q is invertible of rank m
,

we can conclude that

m = rank (d2f(0))= m + rank (d2h(0))

So dahCol =0 and thus hemp

Proofof 3
.

2 :

We begin by finding the map
unex(u) referred to at the end of

the statement.

The map 9 : (x
,
u) +edxf(x,u) is of rank m at the origin ,

because

dy = [f , dudif] and the first man block of at is dif which is

invertible at the origin
asf has a nondegenerate critical point there.

It follows from the implicit function theorem thatThsu) = 0 can

be solved uniquely for c as a (continuously differentiable) function of u
,

defining utX(u).

I
check the preconditions for the implicit function theorems

I+: Mm
+

-> RE is continuously differentiable ,

dxf = def is invertible



That is
,

in a neighbourhood of
the origin,

dxf(xui = 0 ( + x = X(u) .

Now
,

we change the coordinates by defining y
= x-X(u). The map

(x
,u) + (x -X(u),

u)

is a diffeomorphism the map itself
and its inverse (yn) +t (y+ X(u)

,
2)

are continuously differentiable.

Let g(y ,
u) = f(x ,u) = f(y + z() ,

u)
.

Then dyg-o if
and only if you.

[dyg(y,
u) = 0 E)dxf(y +x(u),

u) =0 =- y +x(u) =X(u)Ey=0]

Now for each fixed value ofu near of there is a function gu(y) : =glymul
L

that has a nondegenerate critical point at the origin.

dgu (y) = dyg(u, y) = 0 for y=0 as seen above.

digu(o) is invertible and so too is diguld for sufficiently

small values of a by continuity.

We now minic the proof of the Morse Lemma with the variables a

as parameters.

Let Ma be the ideal of functions fo Emth such that f(0, 41=0
.

Then Mx = (21, ... , m) <Em+ K by Hadamard's Lemma.

Define F(yu) := g(y,n)-g(Qu) ·
Then FEMc (Flou= g(o,

u) -

g(o, u) =0)
.

So we can write

F(y)= Pijcy, u) xixj = y Edymly ,

i
,j=1

Nearby symmetric and nondegenerate
matrices are similar, so for each

Cyn) near 0 there is an invertible matrix Payus
such that

EGui = Payin #10,
01 Payus (and thus Pro

, os
=1)



It follows from the inverse function theorem that : Cynit (Paynsy , u) is

a diffeomorphism germ
.

check the preconditions for
the inverse function theorem :

I is smooth,
~

ye + Pejcym)E
1j

~

you
+ palyusyo

-[(y,
c) = ) pi , ) and dea I&

i
-(I

so disao = (( .. () and defdcol= 1 because Pro=1

-

~

"

(i)

Write (X,
u)= (Payniy , u). Then

F(y,u) = y5 F(y, u)y = y
+ P (yu)[(0,

0) Pcymy = X
+ #10,03X

.

Write Q(x) =XTE(0,
0X

,
so that

g(y, m) = g(0,u) + F(y,u) = g(0,
u)+ Q(x) .

But you corresponds to2= X (u) so that g(o, u) = f(X(n),
u) = h(u)

.

So finally we have

f(x,
u) = g(y,

u) = F(y,u) +g(0, u) = Q(x)+ h(u) I

*position 3 .
5

Let feemth with fliu) = Eithal where zeMY
,

we

Then codim (f) = codim (h)
.

For the proof ,
we use the following algebraic Lemma.

↳ma3be rings and Jas . Suppose D : Rts is a subjectiveLet

homomorphism and let F = (y) .
Then LaR and & induces an

isomorphism F: RII + S/I , defined by G(r+1)= d(r)+]



&
roof of 3

.

6 :

If we compose with the natural homomorphism -Sly,
+: R + Sly sit s + ]

we get a ring homomorphism
ru &(r) +J

Then the first isomorphism theorem for rings tells us that

hert is an ideal and provides an isomorphism inf hery.

In our case
,

kert = j(y) = (2) =1 and

ective .imf = Sky because ↑ is sar :/ + S
&

So SIER/I with an isomorphism /]
r +I |tk(s) +J

&roof of 3
.

5

The Jacobian ideal of fixul= tha is given by

If : <, · . ., m
,
Zu

..... uk). The map d : Em+ + Ex , P(g)(u) =

g(0,u)

defines a homomorphism.

This homomorphism is surjective as for any given herk , the germ
H(x,

u) := h (u) satisfies &CH:h
.

-

Let ge
Emai

.

Then geyf if and only if Plgs +Th

' Suppose that get).
Then we can write

" C
-

m 4

g(x ,u) = &icui + Pibu(u) for some tij &
i = 1 j=

Sok(g)(a) = g(o,
u) = [4j(0,u)() and thus Pg)e]h

j = 1

IS

-". Suppose gz
:= P(g) =Th.C

Then we can
write

t

g(x,x) = gu(2),u) + gz(u) wih get Emt such that gn(0,
ul =0I Thus, que Sy(, u)+ Em+ /

g (0
,
4) =03. IFrom Hadamard's Lemma we know that

3y(x, u) + Em+ (g(0,
u) =03 = (x,.. -,

xm)
.

So getdi
, ...,

xm>
and g

= gutge EJf.

Now,
we can use Lemma 3

.

6 for 6 : Em + E , ThEk , If = (Jh).

So there is an isomorphism I: Emily -> Eklyn and in particular,
codim(f)= dim(Em+/yf) = dim (Ek/yh) = codian (h).


