
TOPICS IN TOPOLOGY (�TOPOLOGIE III'), SOMMERSEMESTER 2024, HU
BERLIN

CHRIS WENDL

This is not a set of lecture notes, but merely a brief summary of the contents of each lecture,
with reading suggestions and a compendium of exercises. The suggested reading will usually not
correspond precisely to what was covered in the lectures, but there will often be a heavy overlap.

Prologue: notation

Before getting into the content of the course, here is a glossary of important notation that is
used in the lectures, including some comparison with other sources such as [tD08,DK01,Wen23]
where di�erent notation is sometimes used. This glossary will be updated during the semester as
needed, and it is not in alphabetical order, but there is some kind of ordering principle. . .maybe
you can �gure out what it is.

Categories.


 General shorthand: For any category C , I often abuse notation by writing X P C to mean
�X is an object in C �; many other authors denote this by �X P ObpC q� or something
similar. For two objects X,Y P C , I write

HomC pX,Y q or sometimes just HompX,Y q

for the set of morphisms X Ñ Y . The notation MorpX,Y q is also frequently used in
many sources, and would make more sense linguistically, but it seems to be less popular.
Given two functors F ,G : A Ñ B, the notation

T : F Ñ G

means that T is a natural transformation from F to G.

 Top: the category of topological spaces and continuous maps

 Top�: the category of pointed spaces and pointed maps, i.e. an object pX,xq is a
topological space X equipped with a base point x P X, and morphisms f : pX,xq Ñ pY, yq
are continuous maps X Ñ Y that send x to y. This notation is common but not universal,
e.g. [tD08] uses a superscript 0 to indicate base points, so Top� is called TOP0.


 Set: the category of sets and maps (with no continuity requirement)

 Set�: the category of pointed sets and (not necessarily continuous) pointed maps,
i.e. an object pX,xq is a set X with a base point x P X, and morphisms f : pX,xq Ñ pY, yq
are arbitrary maps X Ñ Y that send x to y.


 Toprel: the category of pairs of spaces pX,Aq andmaps of pairs, i.e. an object pX,Aq is
a topological space X equipped with a subset A � X, and morphisms f : pX,Aq Ñ pY,Bq
are continuous maps X Ñ Y that send A into B. Despite the uniquity of this category,
there doesn't seem to be any common standard notation for it; [tD08] calls it TOPp2q, and
similarly writes TOPp3q for the category of triples pX,A,Bq with B � A � X, and so
forth. In [Wen23] I used a subscript instead of a superscript, but I'm changing it so that I
can also de�ne the next item on this list.
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 Toprel� : the category of pointed pairs of spaces, i.e. an object pX,A, xq is a topological
space X equipped with a subset A � X and a base point x P A, and morphisms f :
pX,A, xq Ñ pY,B, yq are maps of pairs pX,Aq Ñ pY,Bq that also send x to y. I have
no idea what anyone else calls this, but it's a subcategory of what [tD08] calls TOPp3q,
and is in any case clearly important since e.g. it is the domain of the relative homotopy
functors πn.


 hTop, hTop�, hTop
rel, hToprel� : the homotopy categories associated to Top, Top�, Top

rel

and Toprel� respectively, meaning we de�ne categories with the same objects, but instead
of taking morphisms to be actual maps, we de�ne them to be homotopy classes of maps
(respecting subsets and/or base points where appropriate, so e.g. pointed homotopy
for hTop�, and homotopy of maps of pairs for hToprel). This notation (or similar) for
homotopy categories is very common, but di�erent from my Topology I�II notes [Wen23],
which wrote e.g. Toph� instead of hTop�.


 Diff: the category of smooth �nite-dimensionalmanifolds without boundary, and smooth
maps


 Grp: the category of groups and group homomorphisms

 Ab: the category of abelian groups and homomorphisms, which is a subcategory of Grp

 Ring � CRing � Fld: the category of rings with unit and its subcategories of commu-
tative rings and �elds respectively, with ring homomorphisms (preserving the unit)


 R-Mod: the category of modules over a given commutative ring R and R-module ho-
momorphisms. In [Wen23] I called this ModR, and other variations such as Mod-R are
also common.


 K-Vect: the category of vector spaces over a given �eld K and K-linear maps, i.e. this
is R-Mod in the special case where R is a �eld K. In [Wen23] I called this VecK.


 Categories of (co-)chain complexes: given any additive category A such as Ab orR-Mod,

ChpA q or sometimes simply Ch

denotes the category of chain complexes . . . Ñ An�1 Ñ An Ñ An�1 Ñ . . . formed out of
objects and morphisms in A , with the morphisms of ChpA q de�ned to be chain maps.
There is a similar category CoChpA q of cochain complexes . . .Ñ An�1 Ñ An Ñ An�1 Ñ
. . ., though I am not really happy with this notation and I doubt that anyone else is
either. In [Wen23] I denoted ChpAbq, CoChpAbq, ChpR-Modq and CoChpR-Modq by Chain,
Cochain, ChainR and CochainR respectively. One sometimes sees a meaningless subscript
such as Ch
pA q added, but there are also meaningful subscripts that de�ne important
subcategories such as e.g. Ch¥0pA q, the chain complexes that are trivial in all negative
degrees.


 Homotopy categories of chain complexes: analogously to the homotopy categories
of spaces, one can take the objects in ChpA q and de�ne morphisms to be chain homotopy
classes of chain maps instead of actual chain maps. The internet seems quite insistent that
I should call the resulting category

KpA q :� the (naive) homotopy category associated to ChpA q,

even though I'd rather call it hChpA q, and in [Wen23] I wrote e.g. Chainh instead of KpAbq;
on occasion I have even seen HopA q in place of KpA q. I have no idea what notation to
use for the homotopy category of cochain complexes. People who like derived categories
will tell you that there are other things more deserving of the name �homotopy category
of chain complexes,� and I added the word �naive� above in order to avoid getting into
conversations about it with those people, which would be completely unnecessary for the
purposes of the present course.



TOPICS IN TOPOLOGY (�TOPOLOGIE III'), SOMMERSEMESTER 2024, HU BERLIN 3


 TopB , TopB,�, hTopB and hTopB,�: Given a space B, these are the various categories of
(unpointed or pointed) spaces over B with maps over B or homotopy classes thereof,
as de�ned in Week 4, Lecture 6. The notation used in [tD08] for TopB and hTopB is not
identical but su�ciently similar; I cannot �nd de�nitions in [tD08] for the pointed variants
TopB,� and hTopB,�.

Topological constructions.

 X > Y : This is how I write the disjoint union of two topological spaces (and similarly
for pairs of spaces), and most sensible people use either this notation or X \ Y , but
[tD08] instead writes X � Y and calls it the topological sum of X and Y , presumably
because�like the direct sum of abelian groups and many other constructions that use the
word �sum��it is a coproduct. The book by tom Tieck becomes signi�cantly easier to read
once you realize this.


 X
²
Y : the coproduct of X and Y , whatever that means in whichever category X and

Y happen to live in, so e.g. in Top, it means the same thing as X > Y , though in Top� it
means X _ Y .


 rX,Y s: If X and Y are just topological spaces (i.e. objects in Top), then this denotes the
set of homotopy classes of maps X Ñ Y , i.e.

rX,Y s :� HomhToppX,Y q.

If X and Y are equipped with additional data (which may be suppressed in the notation)
and are thus objects in Top�, Top

rel or Toprel� , then I use the same notation rX,Y s to mean
the corresponding notion of homotopy classes in each category, so e.g. in the context of
pointed spaces, I would write

rX,Y s :� HomhTop�pX,Y q,

and similarly for (pointed or unpointed) pairs of spaces. This convention is popular but
not universal, e.g. [tD08] writes rX,Y s0 for the set of pointed homotopy classes and uses
rX,Y s only to mean unpointed homotopy classes; [DK01] does the same but writes rX,Y s0
instead of rX,Y s0.


 X_Y and X^Y : these are the wedge sum and smash product respectively of pointed
spaces, and mercifully, everyone seems to agree on what they mean and how to write them.


 Implied base points: for a pair of spaces pX,Aq, the quotient space X{A is often
interpreted as a pointed space, with the collapsed subset A as base point. Similarly, for
two pointed spaces X,Y , the set of pointed homotopy classes rX,Y s is viewed as a
pointed set (i.e. an object in Set�) whose base point is the homotopy class of the constant
map to the base point of Y .


 One-point spaces: the symbol � is often used to mean either a one-point space, the
unique point in that space, or sometimes a previously unnamed base point of a given
pointed space. It should usually be clear from context which is meant.


 I: this usually denotes the unit interval

I :� r0, 1s,

as appears in domains of paths, homotopies etc.

 Homotopy relations: Given maps f, g : X Ñ Y , I write

f �
h
g

to means that f and g are homotopic ([tD08] writes �f � g�), and

f
H
⇝ g
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to mean that H is a homotopy from f to g, thought of as a path in the space of maps,
hence H : I �X Ñ Y with Hp0, �q � f and Hp1, �q � g. This can also mean e.g. pointed
homotopy or homotopy of maps of pairs if working in Top� or Toprel respectively. Where

I write f
H
⇝ g, [tD08] writes H : f � g.


 Homotopy commutative diagrams: I use a diagram of the form

Z X

Y Q

f

g � φ

ψ

to mean that φ�f and ψ �g need not be identical but are homotopic, whatever that means
in whichever category the objects of the diagram live in, e.g. if they are pointed spaces it
means pointed homotopic, for spaces without base points it just means homotopic�it may
also mean chain homotopic if the objects are chain complexes. If I write the variant

Z X

Y Q

f

g �
α

φ

ψ

,

then it means that α is a homotopy (or chain homotopy as the case may be) from φ � f to
ψ � g. It wasn't easy to �gure out how to render this in LaTeX, so maybe that's why most
textbooks don't do it.


 Zpfq, Zpf, gq, conepfq: mapping cylinders, double mapping cylinders andmapping
cones (see Week 2, Lecture 3)


 CX, SX: the cone and suspension respectively of a space X. In the context of pointed
spaces the same notation may instead mean the reduced cone/suspension.


 P pfq, P pf, gq, F pfq: the mapping path space of a map, double mapping path space
of two maps, and homotopy �ber of a map respectively, as de�ned in Week 3, Lecture 5.
These constructions are dual to Zpfq, Zpf, gq and conepfq respectively, in the sense that
they �t into analogous diagrams with all arrows reversed.


 rX,Y sB : For two spacesX,Y over another space B, this is the set of (unpointed or pointed)
homotopy classes of maps over B, i.e. morphisms in the category hTopB or hTopB,�.

1. Week 1

Lecture 1 (15.04.2024): Motivation and colimits.


 Motivational theorem on exotic spheres (Milnor 1956): There exists a smooth manifold Y
that is homeomorphic but not di�eomorphic to S7. (In fact, Kervaire and Milnor proved
shortly afterwards that there are exactly 28 such manifolds up to di�eomorphism.)


 Outline of a proof (slightly ahistorical), with notions that will be major topics in this course
written in red:
(1) Pontryagin classes: Associate topological invariants pkpEq P H4kpX;Zq for each k P N

to every isomorphism class of vector bundles E over a given space X. Since every
smooth manifold M has a tangent bundle TM , we can de�ne pkpMq :� pkpTMq P
H4kpM ;Zq as an invariant of smooth (but not topological) manifolds.

(2) Intersection form and signature: For a compact oriented 4k-manifold M (possibly
with boundary), the intersection form is the quadratic form QM on H2kpM, BM ;Zq
de�ned by

QM pαq :� xαY α, rM sy P Z,
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and it's called the �intersection form� because it can be interpreted as a signed count of
intersections between two generic closed oriented submanifolds representing the class
in H2kpM ;Zq Poincaré dual to α. The signature σpMq P Z is essentially the number
of positive eigenvalues minus the number of negative eigenvalues1 of this quadratic
form.

(3) Hirzebruch signature theorem (8-dimensional case): ForM a closed oriented 8-manifold,

σpMq �
1

45
x7p2pMq � p1pMq Y p1pMq, rM sy.

(4) (the clever bit) Construct a compact oriented smooth 8-manifold X with simply con-
nected boundary Y :� BX such that σpXq � 8, H2pY q and H3pY q both vanish, and
the tangent bundle TX is stably trivial, which implies its Pontryagin classes van-
ish. The construction can be described (key words: �plumbing of spheres�), and the
computations carried out, using only methods from Topology 2.

(5) Deduce via Poincaré duality, the Hurewicz theorem and Whitehead's theorem2 that Y
is homotopy equivalent to S7. By Smale's solution to the higher-dimensional Poincaré
conjecture,3 it follows that Y is homeomorphic to S7.

(6) Argue by contradiction: If Y is di�eomorphic to S7, then one can construct a closed
smooth 8-manifold M by gluing X to an 8-disk along a di�eomorphism BX � Y �
S7 � BD8,

M :� X YS7 D8.

Methods from Topology 2 (e.g. Mayer-Vietoris) now imply p1pMq � 0 and σpMq � 8,
so Hirzebruch says

45σpMq � 45 � 8 � 7xp2pMq, rM sy.

But the right hand side of this relation is a multiple of 7, and the left hand side is
not.


 Interpretation of a functor F : J Ñ C as a diagram in C over J , constant functors
X : J Ñ C as targets, the universal property and de�nition of the colimit colimpFq


 Interpreting direct systems as diagrams and direct limits as colimits

 De�ning the quotient space X{A as colimit of the diagram

A �

X

understood as a functor J Ñ Top, where J is a category with three objects and only
two nontrivial morphisms.

1What I really mean is: �rst rewrite QM as a quadratic form on H2kpM, BM ;Qq or H2kpM, BM ;Rq, which is a
vector space, so that by standard linear algebra, you can present it in terms of a symmetric linear transformation
and look at the eigenvalues of that transformation. One can de�ne this in a more obviously invariant way by talking
about maximal subspaces on which QM is positive/negative de�nite.

2A 3-dimensional version of this same argument is described in [Wen23, Lecture 57], using the theorems of
Hurewicz and Whitehead as black boxes.

3This is the one major black box in this proof that I do not intend to �ll in, because that would be a whole
course in itself.
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Lecture 2 (18.04.2024): From coproducts to pullbacks and pushouts.


 The limit limpFq of a diagram F : J Ñ C

 Inverse limits as limits of diagrams

 Important special cases of limits and colimits:

� Coproducts
²
, and examples in the categories Top (disjoint union), Top� (wedge

sum), Ab (direct sum) and Grp (free product)
� Products � (or

±
), and examples in Top

� Equalizers and co-equalizers, realization in Top as subspaces or quotient spaces
respectively


 Word of caution: limits and colimits are not guaranteed to exist, e.g. in the category Diff
of smooth �nite-dimensional manifolds without boundary, �nite or countable coproducts
exist (and are the same thing as in Top), but uncountable disjoint unions are not second
countable and are thus not objects in Diff. Similarly, �nite products exist in Diff but
in�nite products typically do not.


 Theorem: In any category C , all (co-)limits can be presented in terms of (co-)products
and (co-)equalizers, if they exist.


 Proof sketch (co-limit case): Given F : J Ñ C : α ÞÑ Xα, construct colimpFq as the
equalizer of two morphisms Y

f,g
ÝÑ Z de�ned as follows. Write the set of all morphisms in

J as HompJ ,J q; we then take Y to be the coproduct

Y :�
º

ϕPHompJ ,J q

Xϕ, where for ϕ P Hompα, βq, Xϕ :� Xα,

while Z is the slightly simpler coproduct

Z :�
º
βPJ

Xβ .

For each α, β P J and ϕ P Hompα, βq, let fϕ : Xϕ Ñ Z denote the composition of the
morphism ϕ� : Xϕ � Xα Ñ Xβ with the canonical morphism Xβ Ñ

²
γPJ Xγ of the

coproduct; the universal property of the coproduct then dictates that the collection of
morphisms fϕ : Xϕ Ñ Z determines a morphism f : Y Ñ Z. Similarly, g : Y Ñ Z is
determined by the collection of morphisms gϕ : Xϕ Ñ Z de�ned for each ϕ P Hompα, βq as
the compositions of IdXα : Xϕ � Xα Ñ Xα with the canonical morphism Xα Ñ

²
γPJ Xγ .

Now check that the universal property is satis�ed (exercise).

 Upshot: In Top, colimits are quotients of disjoint unions, limits are subspaces of products.

 Fiber products: presenting the �ber product of two maps f : X Ñ Z and g : Y Ñ Z in
Top as the �intersection locus�

X �f g Y :�
 
px, yq P X � Y

�� fpxq � gpyq
(

with the obvious projections to X and Y .

 Interpreting �ber products as pullbacks

 Pushouts: presenting the pushout of two maps f : Z Ñ X and g : Z Ñ Y in Top as
�gluing spaces together� along a map:

X Yf g Y :� pX > Y q
M
fpzq � gpzq for all z P Z.


 Question for thought: How many of these constructions of limits or colimits work in the
homotopy categories hTop or hTop�? (Hint: Do not try too hard to make sense of equalizers
and co-equalizers.)
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Suggested reading. The main de�nitions involving direct systems and direct limits can all be
found in [Wen23, Lecture 39], with the generalization to colimits explained in Exercise 39.24. If
you're really serious about this stu�, you can also try reading [Mac71].

If you want to read more about exotic spheres, there's a nice collection of relevant literature
assembled at https://www.maths.ed.ac.uk/~v1ranick/exotic.htm.

Exercises (for the Übung on 25.04.2024). Since the Übung on 25.04 was cancelled due to
illness, most of the exercises for Week 1 have now been supplemented with written answers and/or
some discussion.

Exercise 1.1. In what sense precisely are the limit and colimit of a diagram F : J Ñ C unique,
if they exist?

Answer: If the limit or colimit exists (of which there is no guarantee, cf. Exercise 1.7), then
it is unique up to canonical isomorphisms. Precisely: Suppose X,Y P C are two objects, together

with collections of morphisms Fpαq φαÝÑ X and Fpαq ψαÝÑ Y for all α P J , such that both satisfy
the universal property for colimpFq. Then there is a uniquely determined isomorphism

f : X
�
ÝÑ Y such that ψα � f � φα for all α P J .

The existence and uniqueness of a morphism f satisfying this condition follows from the universal
property of X, and the fact that it is an isomorphism follows by reversing the roles of X and Y ,
since Y also satis�es the universal property. For limpFq there is a similar uniqueness statement,
proved in a similar way.

Note that in most categories, uniqueness �up to canonical isomorphisms� is the best that one
could hope to get from universal properties, as one will always have the freedom to replace a
given object playing the role of colimpFq or limpFq with a di�erent object that is isomorphic to
it. In practice, our favorite categories often come with canonical constructions that lead to speci�c
objects, e.g. the disjoint union (also known as the coproduct) of a given collection of topological
spaces is a speci�c space, not just an equivalence class of spaces up to homeomorphism. But
in various situations, limits or colimits can also arise from something other than the canonical
construction, and �nding an isomorphism with that canonical construction may be harder than
explicitly verifying the universal property.

Exercise 1.2 (morphisms between (co-)products). Assume J is a set, and tXαuαPJ and tYαuαPJ
are collections of objects in some category C such that the products#¹

αPJ

Xα

πX
β

ÝÑ Xβ

+
βPJ

,

#¹
αPJ

Yα
πY
β

ÝÑ Yβ

+
βPJ

,

and coproducts #
Xβ

iXβ
ÝÑ

º
αPJ

Xα

+
βPJ

,

#
Yβ

iYβ
ÝÑ

º
αPJ

Yα

+
βPJ

exist. In what sense does an arbitrary collection of morphisms tfα : Xα Ñ YαuαPJ uniquely
determine morphismsº

αPJ

fα :
º
αPJ

Xα Ñ
º
αPJ

Yα, and
¹
αPJ

fα :
¹
αPJ

Xα Ñ
¹
αPJ

Yα?

Argue in terms of universal properties, without using your knowledge of how to represent products
and coproducts in any speci�c categories.

https://www.maths.ed.ac.uk/~v1ranick/exotic.htm
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Answer: The morphisms
²
α fα and

±
α fα are uniquely determined by the condition that the

diagrams

Xβ Yβ

²
αXα

²
α Yα

fβ

iXβ iYβ²
α fα

and

±
αXα

±
α Yα

Xβ Yβ

πX
β

±
α fα

πY
β

fβ

commute for every β P J . One gets the existence and uniqueness of
²
α fα from the universal

property of the coproduct
²
αXα, because the morphisms iYβ � fβ : Xβ Ñ

²
α Yα make

²
α Yα a

target of the diagram whose colimit is
²
αXα. Similarly, the existence and uniqueness of

±
α fα

follows from the universal property of the product
±
α Yα, using the collection morphisms fβ �πXβ :±

αXα Ñ Yβ .

Exercise 1.3 (�nite limits and colimits). Show that in any category C , �nite colimits always exist
if and only if all pushouts exist and C has an initial object (see Exercise 1.5). Dually, �nite limits
always exist if and only if all pullbacks (also known as �ber products) exist and C has a terminal
object.4

Hint: By a theorem stated in the lecture, it su�ces if you can express arbitrary (co-)equalizers
and �nite (co-)products in terms of pushouts or pullbacks.

Solution: Note that the statement of this exercise has been revised; the original version had
two errors, one being its failure to mention initial and terminal objects, and the other an oversim-
pli�cation of what it means for a limit or colimit to be �nite�we need the category J underlying
the diagram to have �nitely-many morphisms, not just �nitely-many objects.

With that understood, let's assume all pushouts exist and that C also has an initial object
0 P C . If we can show that all �nite coproducts and all coqualizers exist, then the theorem from
lecture uses these to construct a colimit for any diagram F : J Ñ C such that J has only �nitely
many objects and morphisms. (Regarding the errors in the original version: note that if J has
�nitely-many objects but in�nitely-many morphisms, then one of the coproducts needed for the
theorem from lecture is not �nite.)

You should be able to convince yourself via an inductive argument that if the coproduct of two
objects X,Y P C always exists, then all �nite coproducts exist. So let's show �rst that X

²
Y

exists for arbitrary X,Y P C . At this point I �nd it helpful to think about how coproducts and
pushouts are constructed concretely in the example C � Top: the coproduct of X and Y is their
disjoint union, and the pushout of a pair of maps f : Z Ñ X and g : Z Ñ Y is a quotient of
that disjoint union by the equivalence relation such that fpzq � gpzq for all z P Z. If we want to
make that equivalence relation trivial so that the pushout turns out to be the same thing as the
coproduct, the solution is to choose the empty set for Z; the maps f, g are uniquely determined
by this choice, because the empty set is an initial object in Top (see Exercise 1.5). This suggests
that in our given category C with initial object 0 P C , the pushout of the diagram

0 X

Y

should be the coproduct of X and Y ; note that only one diagram of this form is possible since
0 being initial means that the morphisms 0 Ñ X and 0 Ñ Y are unique. Now suppose P is the

4The word ��nite� in this context refers to limits or colimits of diagrams F : J Ñ C such that J has only

�nitely many objects and morphisms.
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pushout of this diagram, equipped with morphisms φ : X Ñ P and ψ : Y Ñ P , and suppose we
are given another object Z with morphisms f : X Ñ Z and g : Y Ñ Z. The diagram

0 X

Y Z

f

g

then trivially commutes, since there is only one morphism 0 Ñ Z, and the universal property of
the pushout gives rise to a unique morphism u : P Ñ Z such that f � u � φ and g � u � ψ, which
amounts to the statement that P with its morphisms φ and ψ also satis�es the universal property
of the coproduct X

²
Y .

We show next that the coequalizer of an arbitrary pair of morphisms

X Y

f

g

in C can also be constructed as a pushout. Think again about how it works in the case C � Top:
the coequalizer here is the quotient of Y by the equivalence relation such that fpxq � gpxq for all
x P X. If we instead take the pushout of f and g, the resulting space is too large: it is a quotient
of Y > Y instead of Y , meaning that we glue together two copies of Y by identifying fpxq in one
copy with gpxq in the other copy for each x P X. But the correct space can be obtained from this
by making the equivalence relation larger, so that for every y P Y , y in the �rst copy gets identi�ed
with y in the second copy. The way to realize this is by enlarging the domain of the pair of maps
used in de�ning the pushout: instead of the two maps f, g : X Ñ Y , we consider the pushout of
the two maps f > Id, g > Id : X > Y Ñ Y .

Let's say that again without assuming C � Top. We've already shown that the coproductX
²
Y

of two objects in C can be constructed, and if we write iX : X Ñ X
²
Y and iY : Y Ñ X

²
Y for

the canonical morphisms that coproducts come equipped with, then by the universal property of
the coproduct, every morphism φ : X Ñ Y determines a unique morphism φ

²
Id : X

²
Y Ñ Y

for which the diagram

X

X
²
Y Y

Y

iX

φ

φ
²

Id

iY Id

commutes. Claim: Given two morhisms f, g : X Ñ Y , a diagram of the form

X
²
Y Y

Y Z

f
²

Id

g
²

Id φ

ψ
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commutes if and only if φ � ψ and φ � f � φ � g. To see this, we can enhance the diagram in two
ways using the universal property of the coproduct: �rst,

Y

X
²
Y Y

Y Z

iY

Id

Id

f
²

Id

g
²

Id φ

ψ

shows that if the given diagram commutes, then φ � φ � Id � ψ � Id � ψ. Assuming this, the
second enhanced diagram

X

X
²
Y Y

Y Z

iX

f

g

f
²

Id

g
²

Id φ

ψ

then proves φ � f � ψ � g � φ � g. Conversely, if one assumes φ � ψ and φ � f � φ � g, then
φ � pf

²
Idq and ψ � pg

²
Idq are two morphisms X

²
Y Ñ Z whose compositions with iX and iY

are identical, so the uniqueness in the universal property of the coproduct requires them to be the
same.

The result of the claim is that pushout diagrams for the two morphisms f
²

Id : X
²
Y Ñ Y

and g
²

Id : X
²
Y Ñ Y are equivalent to coequalizer diagrams for f, g : X Ñ Y . It is a short

step from there to the conclusion that an object Z with morphism Y Ñ Z satis�es the universal
property of the coequalizer if and only if Z with two copies of that same morphism Y Ñ Z satis�es
the universal property of the pushout.

For the dual case of this whole story, I will just say this: if 1 P C is a terminal object, then the
uniqueness of morphisms to 1 implies that the pullback of the diagram

X

Y 1

satis�es the universal property of the product X�Y . Having shown that �nite products exist, one
then obtains the equalizer of any pair of morphisms f, g : X Ñ Y as the pullback of the diagram

X

X X � Y

Id�f

Id�g

.

If �nite products and equalizers always exist, then all �nite limits can be constructed out of them.

Exercise 1.4. Let's talk about some coproducts and products in algebraic settings.

(a) What is a coproduct of two objects in the category Ring of rings with unit? Try to describe
it explicitly.

(b) Same question about products in Ring. (This one is perhaps easier.)
(c) Show that two �elds of di�erent characteristic can have neither a product nor a coproduct

in the category Fld of �elds.
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Answers: The coproduct of two rings A,B is their tensor product Ab B, equipped with the ring
homomorphisms

A
iAÝÑ AbB : a ÞÑ ab 1, B

iBÝÑ AbB : b ÞÑ 1b b.

As a set, A b B is the same thing as the tensor product of A and B as abelian groups; one then
gives it a ring structure by de�ning

pab bqpa1 b b1q :� paa1q b pbb1q.

It is easy to check that the required universal property is satis�ed. Perhaps more interesting is to
observe that in the more familiar categories Ab and R-Mod in which we are used to talking about
tensor products, they do not arise as colimits, and there is an obvious reason why they shouldn't:
the only obviously canonical homomorphisms I can think of from a pair of abelian groups A and
B to their tensor product A b B are the trivial ones. The big di�erence in Ring as that rings
have multiplicative units, and these give rise to canonical nontrivial morphisms from A and B
to A b B as described above. (For similar reasons, you also should not try to think of tensor
products as categorical products�for a more useful categorical perspective on tensor products, see
Exercise 1.9.)

The product in Ring is exactly what you'd expect: the product of rings.
For �elds, the problem is that there are in fact no �eld homomorphisms at all between a pair

of �elds with di�erent characteristics. So for any �elds A and B, the need to have morphisms
A,B Ñ A

²
B and A � B Ñ A,B means that neither the coproduct nor the product can exist

unless A and B have the same characteristic (which their product and coproduct must then also
have). For example, Z2 and Q have no coproduct in Fld, though they do have a coproduct in Ring,
namely Z2 bQ, which is an extremely indirect way of writing the trivial ring. (Amusing exercise:
show that 1 � 0 in Z2 bQ. The elements 1 and 0 are never equal in a �eld.)

Exercise 1.5 (initial and terminal objects). In de�ning limits and colimits of diagrams F : J Ñ
C , the set of objects in J is not required to be nonempty. When it is empty, we can think of
colimpFq is a coproduct of an empty collection of objects in C , and colimpFq is then called an
initial object in C . Similarly, the product limpFq of an empty collection of objects is called a
terminal (or �nal) object in C .

(a) Reformulate the de�nitions given above for the terms �initial object� and �terminal object�
in a way that makes no reference to limits or colimits, and using this reformulation, give a
short proof that both are unique up to canonical isomorphisms, if they exist.

(b) Show that for any initial object 0 P C , the coproducts 0
²
X and X

²
0 exist and the

canonical morphisms of X to each are isomorphisms. Similarly, for any terminal object
1 P C , the products 1 � X and X � 1 exist and their canonical morphisms to X are
isomorphisms.

(c) Describe what initial and terminal objects are in each of the following categories, if they
exist: Top, Top�, Ab, Ring, and Fld.
Hint: You might guess the last two from Exercise 1.4.

Answers: If J is the empty category, then there is a unique diagram F : J Ñ C , but it
carries no information. If we want to de�ne a colimit of this diagram, then any object X P C
can be considered a target; there is no need to specify any morphisms since J has no objects.
The condition of X being a universal target is, however, nontrivial: it means that for any other
target Y , there is a unique morphism u : X Ñ Y such that. . . well, at this point we would normally
say that certain morphisms admit factorizations through the morphism u, but since J has no
objects, there are no morphisms to be factored and thus no further conditions to impose. We are
left only with this: X P C is an initial object if and only if for every object Y P C , there is a
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unique morphism X Ñ Y . That's the usual de�nition�we stated it in a much more roundabout
way by talking about coproducts over the empty category.

Here's the dual version: X P C is a terminal object if and only if for every object Y P C , there
is a unique morphism Y Ñ X.

With these de�nitions understood: if 0, 01 P C are two initial objects, then there is a unique
morphism 0 Ñ 01, and there is also a unique morphism 01 Ñ 0. Moreover, there are unique
morphisms 0 Ñ 0 and 01 Ñ 01, and both of those have to be identity morphisms, since identity
morphisms must always exist. It follows that the unique morphisms 0 Ñ 01 and 01 Ñ 0 are
inverse to each other, and are thus isomorphisms. The uniqueness of terminal objects up to unique
isomorphisms is proved similarly; there is only a slightly di�erent reason for the uniqueness of the
morphisms 1Ñ 11 and so forth.

Let's consider the coproduct of an initial object 0 P C with an arbitrary X P C . We claim that
X itself plays the role of the coproduct, together with the two morphisms

0

X

X

Id

,

the �rst of which is determined by the condition that 0 is an initial object. Indeed, suppose Y is
given, along with a morphism f : X Ñ Y and the unique morphism 0Ñ Y (for which there is no
freedom of choice). The dashed arrow in the following diagram is then uniquely determined,

0

X Y

X

Id

f

,

and this establishes the universal property of the coproduct. In this way of representing 0
²
X, the

canonical morphismX Ñ 0
²
X is imply the identity morphismX Ñ X, and thus an isomorphism.

Similar arguments prove the analogous statements about X
²

0, 1�X and X � 1.
Here is an inventory of initial and terminal objects in speci�c categories:


 Top: the empty set H is initial, and every one-point space � is terminal. Note that the
initial object in this case is not just unique up to isomorphism, but is actually unique,
i.e. there really is only one object in Top called H. By contrast, the unique point in a one-
point space can be anything, and the collection of all possible one-point spaces is therefore
too large to qualify as a set; it is a proper class. Nonetheless, there is indeed a unique
homeomorphism between any two of them.


 Top�: every one-point space is both an initial and a terminal object.

 Ab: every trivial group is both initial and terminal. The answer in R-Mod is the same, in
case you'd wondered.


 Ring: this one's more interesting. According to Exercise 1.4, tensor products are coproducts
in Ring, so an initial object R P Ring should be a ring with the property that RbA � A �
A b R for all rings A P Ring; plugging in A :� Z as a special case, one deduces R � Z.
And indeed, for any other ring B, a ring homomorphism Z Ñ B is uniquely determined
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by the condition that it preserve the 0 and 1 elements. Terminal objects are trivial rings,
i.e. those in which 1 � 0.


 Fld: there are no initial or terminal objects in Fld, because as discussed in the answer to
Exercise 1.4(c), there do not exist any �elds that admit homomorphisms either to or from
every other �eld (of arbitrary characteristic).

Exercise 1.6 (biproducts). Assume A is a category in which the sets HompA,Bq of morphisms
AÑ B for each A,B P A are equipped with the structure of abelian groups such that composition
HompA,Bq � HompB,Cq : pf, gq ÞÑ g � f is always a bilinear map. (Popular examples are the
categories Ab of abelian groups and R-Mod of modules over a commutative ring R.) A biproduct
of two objects A,B P A is an object C P A equipped with four morphisms

(1.1)

A A

C

B B

iA πA

πBiB

that satisfy the �ve relations

(1.2) πAiA � 1A, πBiB � 1B , πAiB � 0, πBiA � 0, iAπA � iBπB � 1C .

In the categories Ab or R-Mod, an example of a biproduct of A and B is the direct sum A ` B
with its canonical inclusion and projection maps. The category A is called additive if every pair
of objects has a biproduct.

(a) Show that for any biproduct as in the diagram (1.1), C with the morphisms iA, iB is a
coproduct of A and B, and with the morphisms πA, πB it is also a product of A and B.

(b) Show that in the categories Ab and R-Mod, every biproduct of two objects A,B admits
an isomorphism to A`B that identi�es the four maps in (1.1) with the obvious inclusions
and projections.

(c) A (covariant or contravariant) functor F : A Ñ B between two additive categories is called
an additive functor if the map de�ned by F from HompA,Bq to HompFpAq,FpBqq or
(in the contravariant case) HompFpBq,FpAqq is a group homomorphism for all A,B P A .
Show that additive functors send all biproducts in A to biproducts in B.

Remark: Popular examples of additive functors Ab Ñ Ab or R-Mod Ñ R-Mod are bG, Gb,
Homp�, Gq and HompG, �q for any �xed module G, as these arise in the universal coe�cient theorems
for homology and cohomology.

Answers: Let's show �rst that (1.1) and (1.2) make C with the morphisms iA : A Ñ C and
iB : A Ñ B into a coproduct of A and B. We need to show that the dashed morphism u in the
diagram

A

C X

B

iA

fA

u

iB

fB

exists and is unique for any given object X P A with morphisms fA, fB from A and B respectively.
Start with uniqueness: if u is a morphism for which this diagram commutes, then using (1.2) and
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the assumption that composition is bilinear, we have

u � upiAπA � iBπBq � puiAqπA � puiBqπB � fAπA � fBπB .

For existence, we then just need to de�ne u by this formula and show that it satis�es uiA � fA and
uiB � fB , which also follows easily from the relations (1.2). The proof that C with the morphisms
πA, πB is a product of A and B is similar.

For part (b), we already know that A`B de�nes a biproduct of R-modules A and B, so what
we really need is a general result about uniqueness of biproducts up to isomorphism. We already
have such results for products and coproducts separately, but we cannot directly apply them
here, even though we know that biproducts are both; the trouble is that doing so will produce two
isomorphisms between any two biproducts of A and B, one that arises by viewing them as products,
and another by viewing them as coproducts. We want to see that those two isomorphisms are the
same one.

Concretely, let's suppose that (1.1) and (1.2) are given, and that we also have a second object C 1

and set of morphisms i1A, i
1
B , π

1
A, π

1
B satisfying the same set of relations. We do not need to assume

A is Ab or R-Mod for this discussion, as it will make sense in any category for which biproducts
can be de�ned, but some intuition about direct sums may nonetheless be helpful for writing down
suitable morphisms between C and C 1. Explicitly, de�ne

f :� i1AπA � i1BπB : C Ñ C 1, and g :� iAπ
1
A � iBπ

1
B : C 1 Ñ C.

Using (1.2), we then have

gf � piAπ
1
A � iBπ

1
Bqpi

1
AπA � i1BπBq � iApπ

1
Ai

1
AqπA � iApπ

1
Ai

1
BqπB � iBpπ

1
Bi

1
AqπA � iBpπ

1
Bi

1
BqπB

� iAπA � iBπB � 1C ,

and by a similar calculation, fg � 1C1 , so f is an isomorphism with g � f�1. Using f to identify
C with C 1 now transforms the morphism iA : AÑ C into

fiA � pi1AπA � i1BπBqiA � i1ApπAiAq � i1BpπBiAq � i1A : AÑ C 1,

and it transforms the morphism πA : C Ñ A into

πAf
�1 � πApiAπ

1
A � iBπ

1
Bq � pπAiAqπ

1
A � pπAiBqπ

1
B � π1A : C 1 Ñ A,

and by similar calculations,

fiB � i1B , πBf
�1 � π1B .

One can now appeal to abstract principles (i.e. the universal properties of products and coproducts)
to deduce that f is indeed the only isomorphism C Ñ C 1 that relates the morphisms iA, i1A and so
forth in this way.

For a covariant additive functor F : A Ñ B, it is easy to check that F sends the four morphisms
of (1.1) to morphisms

FpAq FpAq

FpCq

FpBq FpBq

FpiAq FpπAq

FpπBqFpiBq

in B that satisfy the �ve relations (1.2), making FpCq a biproduct of FpAq and FpBq. The amusing
detail is what happens if F is contravariant: it still works, but the reversal of arrows means that
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some roles need to be switched, e.g. the diagram in B arising from (1.1) must be written as

FpAq FpAq

FpCq

FpBq FpBq

FpπAq FpiAq

FpiBqFpπBq

.

With FpπAq,FpπBq now playing the roles formerly played by iA, iB and FpiAq,FpiBq playing the
roles of πA, πB , one easily checks that the �ve relations (1.2) are satis�ed, so FpCq is again a
biproduct of FpAq and FpBq, with contravariance having transformed inclusions into projections
and vice versa.

Exercise 1.7 (�ber products in Diff). As mentioned in lecture, the category Diff of smooth
manifolds is one in which many limits and colimits do not exist. An important example is the �ber
product of two smooth maps f : M Ñ Q and g : N Ñ Q, which matches the usual topological
�ber product

M �f g N :�
 
px, yq PM �N

�� fpxq � gpyq
(
�M �N

if the maps f and g are transverse to each other (written f&g), because the implicit function
theorem then givesM �f gN a natural smooth manifold structure for which the obvious projections
to M and N are smooth.5 If, on the other hand, f and g are not transverse, then the examples
below show that all bets are o�.

(a) Suppose F : P ÑM and G : F Ñ N are smooth maps that de�ne a target in Diff for the
�ber product diagram de�ned by f and g; in other words, the diagram

P M

N Q

F

G f

g

commutes and consists entirely of smooth manifolds and smooth maps. Interpret this
diagram as de�ning a smooth map

u : P ÑM �N

whose image lies in the topological �ber product M �f g N � M � N , and show that if
F and G satisfy the universal property for a �ber product in Diff, then u is a continuous
bijection of P onto M �f g N �M �N .

(b) Deduce that if M �f g N � M � N is a smooth submanifold of M � N , then M �f g N

with its projection maps to M and N does in fact de�ne a �ber product in Diff. (Note
that this may sometimes hold even if f and g are not transverse.)

(c) Consider the example M � N � Q :� R with fpxq :� x2 and gpyq :� y2, thus

M �f g N �
 
px, yq P R2

�� x2 � y2
(
.

5Transversality is a condition on the derivatives of f and g at all points x P M and y P N such that fpxq � gpyq �:
p; writing the derivatives at these points as linear maps dfpxq : TxM Ñ TpQ and dgpyq : TyM Ñ TpQ between the
appropriate tangent spaces, it means that the subspaces im dfpxq and im dgpyq span all of TpQ. Choosing suitable
local coordinates near each point px, yq P M �f g N , one can identify M �f g N locally with the zero-set of a smooth

map whose derivative at px, yq is surjective if and only if the transversality condition holds, so that the implicit
function theorem makes M �f g N a smooth submanifold of M �N .
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You will easily convince yourself that this topological �ber product is not a manifold. Show
that the pair of maps f, g does not admit any �ber product in Diff. Note that this is a
stronger statement than just the observation that tx2 � y2u � R2 is not an object of Diff.
Hint: You can use parts (a) and (b) to show that if P is a smooth �ber product, then it
contains a special point p P P such that P ztpu is di�eomorphic to tx2 � y2uztp0, 0qu.

(d) Here's a weirder example: Let M � Q :� R, de�ne N :� � as a manifold of one point with
g : N Ñ Q � R mapping to 0, and choose f :M � RÑ R � Q to be any smooth function
with

f�1p0q � t�1,�1{2,�1{3, . . .u Y t0u Y t. . . , 1{3, 1{2, 1u .

(If you have doubts about the existence of such a function, try making minor modi�cations
to the function e�1{x2

, or something similar.) Show that in this case, a �ber product in
Diff does exist, but is not homeomorphic to the topological �ber product.
Hint: What can you say about continuous maps from locally path-connected spaces to
f�1p0q � R?

Answers: For part (a), note �rst that a �ber product diagram in Diff can always also be interpreted
as a �ber product diagram in Top, so applying the universal property of the topological �ber product
M �f gN immediately gives us a unique continuous map u : P ÑM �f gN such that the diagram

M

P M �f g N

N

u

F

G

commutes, where the vertical arrows are the obvious projections. This diagram also gives us an
explicit formula for u: its composition with the inclusion M �f g N ãÑM �N is just

pF,Gq : P ÑM �N,

which is a smooth map since F and G are smooth, though we cannot sensibly call it a smooth map
to M �f g N unless the latter is known to be a smooth submanifold of M �N .

We want to show that if P with the maps F and G satis�es the universal property for a �ber
product in Diff, then the map u : P Ñ M �f g N described above is a bijection. Indeed, pick any
point px, yq PM �f g N and consider the pullback diagram

� M

N Q

x

y f

g

,

where the labels �x� and �y� on arrows are used to indicate the images of maps from a one-point
space labelled �. The latter is (trivially) a smooth 0-manifold, and the maps de�ned on it are
(trivially) smooth, so this diagram lives in Diff, and the universal property of the �ber product P
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therefore produces a unique map u : � Ñ P for which the diagram

M

� P

N

x

y

u

F

G

commutes. The image of u : � Ñ P is thus the unique point p P P satisfying uppq � pF ppq, Gppqq �
px, yq.

Part (b) follows almost immediately from what was said above: ifM �f gN is a smooth subman-
ifold of M �N , then the map u : P ÑM �f g N obtained from any smooth �ber product diagram
by applying the universal property in Top is automatically also smooth, with the consequence that
M �f g N also satis�es the universal property in Diff.

For the example in part (c), M �f g N � R � R � R2 is the union of the two lines ty � xu

and ty � �xu, so it is not globally a manifold, though it becomes a smooth 1-manifold if one
deletes the singular point p0, 0q. Suppose there exists a smooth manifold P and smooth functions
F,G : P Ñ R such that the diagram

P R

R R

F

G f

g

de�nes a �ber product in Diff. By part (a), the smooth map pF,Gq : P Ñ R2 is then a bijection
onto the set ty � �xu, so that there is a unique point p P P with F ppq � Gppq � 0. The manifold
P must be path-connected, because any point in ty � �xu can be joined to p0, 0q by a smooth
path lying in one of the smooth submanifolds ty � xu or ty � �xu, and the universal property
will then produce a smooth map from this submanifold to P , whose image thus contains a path
from any given point to p. Now let Σ :� ty � �xuztp0, 0qu � R2, de�ning a smooth 1-dimensional
submanifold of R2, and observe that the restrictions to Σ of the two projections R2 Ñ R de�ne
a smooth �ber product diagram, and thus (since P satis�es the universal property) give rise to
a smooth map u : Σ Ñ P , which is inverse to the bijection P ztpu Ñ Σ de�ned by pF,Gq. This
shows that P ztpu and Σ are di�eomorphic, thus P is a connected smooth manifold that can be
turned into a 1-manifold with four connected components by deleting one point. There is no such
manifold, so this is a contradiction.

For the example in part (d), we can identify M � N � R � � with R and thus identify the
topological �ber product with the set

M �f g N � f�1p0q � R,

carrying the subspace topology it inherits as a subset of R. It is not a manifold, because the
point 0 P f�1p0q does not have any connected neighborhood. However, for any given smooth �ber
product diagram

P R

� R

F

f

0

,

P is a smooth manifold with a smooth function F : P Ñ R whose image is contained in f�1p0q,
and there is very little freedom in �nding functions F with this property: since P is locally path-
connected, F must be locally constant. It follows that F does factor through a smooth manifold
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with an obvious smooth bijection onto f�1p0q: the manifold in question is f�1p0q itself, but with
the discrete topology instead of the subspace topology. Conclusion: the �ber product in Diff for
our given pair of maps is given by

f�1p0q R

� R

f

0

,

where f�1p0q in the corner is understood to carry the discrete topology and is thus a smooth 0-
manifold. Its obvious bijection to the topological �ber product (f�1p0q with the subspace topology)
is continuous, but not a homeomorphism.

Exercise 1.8. The following bit of abstract nonsense provides a useful tool for proving that
objects are isomorphic in various categories, e.g. one can apply it in hTop to establish homotopy
equivalences, or (as in Exercise 1.9 below) to deduce properties of tensor products from a universal
property.

In any category C , each object X P C determines a covariant functor

HompX, �q : C Ñ Set,

which associates to each object Y P C the set HompX,Y q of morphisms and to each morphism
f : Y Ñ Z in C the map

HompX,Y q
f�
ÝÑ HompX,Zq : g ÞÑ f � g.

There is similarly a contravariant functor Homp�, Xq : C Ñ Set for which morphisms f : Y Ñ Z
induce maps

HompZ,Xq
f�

ÝÑ HompY,Xq : g ÞÑ g � f.

(a) Show that for any two objects X,Y P C , each morphism f : X Ñ Y determines a natural
transformation Tf : HompY, �q Ñ HompX, �q associating to each object Z P C the set
map f� : HompY,Zq Ñ HompX,Zq, and that if f is an isomorphism, then the map f� is
bijective for every Z P C , i.e. Tf is then a natural isomorphism.6

(b) Show conversely that every natural transformation T : HompY, �q Ñ HompX, �q is Tf for a
unique morphism f : X Ñ Y , which is an isomorphism of C if and only if Tf is a natural
isomorphism. It follows that X and Y are isomorphic whenever the sets of morphisms
HompX,Zq and HompY,Zq are in bijective correspondence for every third object Z, in a
way that is natural with respect to Z.

(c) Prove contravariant analogues of parts (a) and (b) involving the functors Homp�, Xq and
Homp�, Y q.

Solution: The interesting step is part (b), so let's just talk about that. (One could give a quick
answer to part (a) more or less by mumbling the word �functor�.) Suppose a natural transformation
T : HompY, �q Ñ HompX, �q is given, so for every object Z P C , T de�nes a set map

TZ : HompY,Zq Ñ HompX,Zq

which is required to �t into certain commutative diagrams as dictated by the word �natural�. In
particular, choosing Z :� Y , we observe that T determines a distinguished morphism f : X Ñ Y
by

f :� TY pIdY q P HompX,Y q.

6A natural isomorphism T : F Ñ G between two functors F ,G : A Ñ B is a natural transformation such
that the morphism T pαq : Fpαq Ñ Gpαq in B associated to each object α P A is an isomorphism. It follows that T
has an inverse, which is also a natural transformation T�1 : G Ñ F .
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We claim now that, in fact, T � Tf . Indeed, given any Z P C and g P HompY,Zq, naturality
implies that the diagram

HompY, Y q HompX,Y q

HompY,Zq HompX,Zq

TY

g� g�

TZ

commutes, hence

TZpgq � TZpg � IdY q � pTZ � g�qpIdY q � pg� � TY qpIdY q � g�f � g � f � f�g � Tf pgq.

Now that we know all natural transformations arise in this way, and after verifying the formula
Tf�g � Tg � Tf , it follows easily that the morphism f : X Ñ Y has an inverse if and only if the
corresponding natural transformation Tf has an inverse.

One way to apply this result in homotopy theory is as follows. Suppose we are given a map
f : X Ñ Y for which we can verify that for all spaces Z, the induced maps

f� : rY, Zs Ñ rX,Zs : g ÞÑ g � f

are bijective. This means that the natural transformation on Hom-functors corresponding to f is a
natural isomorphism, therefore implying that f itself is an isomorphism, i.e. the conclusion in this
setting is that f is a homotopy equivalence. The variant in part (c) would imply similarly that if
the maps

f� : rZ,Xs Ñ rZ, Y s : g ÞÑ f � g

are known to be bijective for all spaces Z, then f is a homotopy equivalence.

Exercise 1.9 (tensor products). On the category R-Mod of modules over a commutative ring R,
the tensor product satis�es the following universal property: for any three R-modules A,B,C, the
natural map

HompAbB,Cq
α
ÝÑ HompA,HompB,Cqq, αpΦqpaqpbq :� Φpab bq

is a bijection. Indeed,
Hom2pA,B;Cq :� HompA,HompB,Cqq

can be interpreted as the set of R-bilinear maps A�B Ñ C, so the fact that α is bijective means
that every such bilinear map factors through the canonical R-bilinear map A�B Ñ AbB and a
uniquely determined R-module homomorphism A b B Ñ C. In fact, α is not just a bijection; it
is also an R-module isomorphism, though we will not make use of this fact in the following. The
important observation for now is that α de�nes a natural isomorphism between the two functors
Homp� b �, �q and Hom2 from R-Mod�R-Mod�R-Mod to Set, which are contravariant in the �rst
two variables and covariant in the third.

More generally, suppose C is any category for which the sets HompX,Y q can be regarded as
objects in C for every X,Y P C , and suppose b : C � C Ñ C is a functor such that the functors
C �C �C Ñ Set de�ned by Homp�b �, �q and Hom2 :� Homp�,Homp�, �qq are naturally isomorphic,
so in particular, for every triple of objects X,Y, Z P C , there is a bijection of sets

HompX b Y, Zq � HompX,HompY,Zqq

that is natural with respect to all three.

(a) Prove that there is a natural isomorphism relating any two functors b,b1 : C � C Ñ C
that satisfy the condition described above. In other words: tensor products are uniquely
determined (up to natural isomorphism) by the universal property.
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(b) Prove that b is associative in the sense that the functors C � C � C Ñ C de�ned by
pX,Y, Zq ÞÑ X b pY b Zq and pX,Y, Zq ÞÑ pX b Y q b Z are naturally isomorphic. Prove
it using only the universal property, i.e. do not use any knowledge of how b is actually
de�ned in any speci�c categories.

Solutions: Both parts are applications of Exercise 1.8, which is the right tool for the job because
the universal property of b does not tell us what X bY is, but instead tells us what other functor
HompX b Y, �q is naturally isomorphic to, namely Hom2pX,Y ; �q :� HompX,HompY, �qq. If we are
given two versions b and b1 that both satisfy the universal property, we obtain from this a natural
isomorphism

HompX b Y, �q � HompX b1 Y, �q

for every pair of objectsX,Y P C , and therefore (via Exercise 1.8) an isomorphismXbY � Xb1Y .
Associativity follows similarly because one can follow two chains of natural bijections that both

end at the same destination: for any spaces X,Y, Z, V we have:

HompX b pY b Zq, V q � HompX,HompY b Z, V qq � HompX,HompY,HompZ, V qqq,

and also

HomppX b Y q b Z, V q � HompX b Y,HompZ, V qq � HompX,HompY,HompZ, V qqq.

Exercise 1.10 (tensor products of pairs). Let Toprel denote the category of pairs of spaces and
maps of pairs. When de�ning the cross and cup products on relative homology and cohomology,
one often sees the product of two pairs de�ned as

pX,Aq � pY,Bq � pX � Y,A� Y YX �Bq.

(a) Why is this de�nition of � not actually a product (in the sense of category theory) on the
category Toprel? What do categorical products in Toprel actually look like?

(b) In the spirit of Exercise 1.9, I would like to argue that � as de�ned above should be
interpreted as a tensor product on Toprel. Due to some subtle point-set topological issues
that I'd rather not get into until next week, it's best for now to dispense with topologies and
work instead in the category Setrel, whose objects are pairs pX,Aq of sets with A � X, and
whose morphisms pX,Aq Ñ pY,Bq are arbitrary (not necessarily continuous) maps X Ñ Y
that send A into B. In this setting, how can you regard each of the sets HomppX,Aq, pY,Bqq

as an object of Setrel such that there are natural bijections

HomppX,Aq � pY,Bq, pZ,Cqq � Hom
�
pX,Aq,HomppY,Bq, pZ,Cqq

�
for all choices of pairs?

Answers: Categorical products require projection morphisms, but e.g. the projection map X�Y Ñ
X does not generally send A � Y Y X � B into A, and thus does not de�ne a map of pairs
pX,Aq � pY,Bq Ñ pX,Y q. For a categorical product on Toprel, the correct de�nition would be the
obvious one,

pX,Aq � pY,Bq :� pX � Y,A�Bq.

If pX,Aq and pY,Bq are objects in Setrel, then HomppX,Aq, pY,Bqq also becomes an object in
Setrel after singling out the subset 

ϕ P HomppX,Aq, pY,Bqq
�� ϕpXq � B

(
� HomppX,Aq, pY,Bqq.

It is then straightforward to check that set maps of pairs from pX,Aq to HomppY,Bq, pZ,Cqq are
in natural bijective correspondence with set maps of pairs from pX,Aq � pY,Bq to pZ,Cq.

The case of this with A � B � C � H is often written in a more appealing way by using the
notation

XY :� HompY,Xq in Set,
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so that HompX � Y, Zq � HompX,HompY,Zqq becomes the so-called exponential law

ZX�Y � pZY qX .

Note that this is one of the few situations in which the categorical product can also sensibly be
called a tensor product; they are not the same thing in Setrel, but in Set they are.

The reason we removed topologies from the picture before starting this discussion was that one
needs to be very careful about de�ning the right topology on the set CpX,Y q of continuous maps
X Ñ Y between two spaces if one wants to have a natural bijection

CpX � Y,Zq � CpX,CpY, Zqq.

In fact, there is no right way to de�ne the topology on CpX,Y q so that this works for all spaces; one
must �rst restrict the category of spaces under consideration, and then make slight modi�cations
to the de�nitions of both CpX,Y q and X � Y as topological spaces. We will go into a little bit of
detail about this when it becomes necessary, as without it, one would miss out on some very clever
tools coming from stable homotopy theory.

2. Week 2

The lecture on 22.04.2024 was cancelled due to illness, so this week contains only one lecture.

Lecture 3 (25.04.2024): The homotopy category and mapping cylinders.


 The homotopy categories hTop (without base points) and hTop� (with base points)

 Notation for diagrams that commute up to homotopy (see the notational glossary above)

 The double mapping cylinder of two maps f : Z Ñ X and g : Z Ñ Y ,

Zpf, gq :�
�
X > pI � Zq > Y

�M
�, where p0, zq � fpzq and p1, zq � gpzq for all z P Z.


 Role of Zpf, gq as a weak form of pushout in hTop (it is called a homotopy pushout):
the diagram

Z X

Y Zpf, gq

f

g � iX

iY

commutes up to an obvious homotopy, though not on the nose (the obvious inclusions iX
and iY have disjoint images). Diagrams

Z X

Y Q

f

g �
H

φ

ψ

determine maps Zpf, gq u
ÝÑ Q, constructed in an obvious way out of φ, ψ and the homotopy

φ � f
H
⇝ ψ � g, so that the diagram

X

Zpf, gq Q

Y

iX

φ

u

iY ψ
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commutes (on the nose, i.e. not just up to homotopy).

 Special cases:

(1) Mapping cylinder of f : X Ñ Y :

Zpfq :� ZpIdX , fq � pI � Zq Yf Y,

where the gluing occurs along t1u�Z. Convenient feature: Zpfq deformation retracts
to Y , so iY : Y ãÑ Zpfq is a homotopy equivalence. We can therefore view every map
X Ñ Y �up to homotopy equivalence� as inclusion of a subspace, namely iX : X ãÑ
Zpfq. (This trick was used once at the end of Topologie II, cf. the last two pages of
[Wen23].)

(2) Mapping cone of f : X Ñ Y : using the unique map ϵ : X Ñ �, we de�ne

conepfq :� Zpϵ, fq � CX Yf Y,

where CX :� pI �Xq
L
pt0u �Xq is the usual cone of X.

(3) Suspension (unreduced): Not the most direct way to de�ne it, but the familiar
suspension SX of a space X is also the double mapping cylinder of a pair of maps
from X to one-point spaces:

X �

� SX

� .

Here the two maps from � to SX have images at the opposite poles, which are points
obtained by collapsing I �X at t0u �X and t1u �X separately.


 Variant for hTop�: If X,Y, Z are pointed spaces and f, g are pointed maps, de�ning a base
point on Zpf, gq requires modifying its de�nition by

Zpf, gq :�

�
X _

I � Z

I � �
_ Y


M
�, where p0, zq � fpzq and p1, zq � gpzq for all z P Z.

Note: Quotienting I �Z is necessary because I �Z on its own has no natural base point,
but whenever Z,Z 1 are two pointed spaces,

pointed homotopies I � Z Ñ Z 1 ô pointed maps
I � Z

I � �
Ñ Z 1.

Everything discussed above has analogues in which all maps are base-point preserving.
The pointed version is sometimes called the reduced double mapping cylinder, and one
can also derive from it special cases such as the reduced mapping cone and reduced
suspension, which we'll have much more to say about later.


 Why is Zpf, gq not really a pushout in hTop?
(1) Our construction of the map u : Zpf, gq Ñ Q uses more information than a diagram

in hTop: it uses the actual maps in the diagram (not just their homotopy classes),
plus a choice of homotopy. This doesn't mean it cannot work, but is a hint that we
may be cheating.
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(2) (The real reason): The diagram

X

Zpf, gq Q

Y

iX

φ

�
u

iY

ψ

�

does not always uniquely determine rus P rZpf, gq, Qs. Example: The mapping cone
conepαq of a degree 2 map α : S1 Ñ S1, say αpeiθq :� e2iθ if we think of S1 as the
unit circle in C. Now conepαq � RP2 and the natural inclusion S1

ãÑ conepαq de�nes
the nontrivial element of π1pRP2q � Z2. A homotopy pushout diagram

S1 �

S1 Q

α �

β

now means a choice of space Q and homotopy class β P rS1, Qs such that β � β is
homotopic to a constant loop. The latter always holds if Q is simply connected, so
take Q :� S2, and then observe that the diagram

�

conepαq S2

S1

�

u

�

always commutes up to homotopy, since rS1, S2s � � � r�, S2s. But rRP2, S2s has
more than one element, because there exist maps RP2 Ñ S2 having either possible
value of the mod-2 mapping degree (cf. Exercise 2.1).


 Theorem: There exists a category P whose objects are pushout diagrams (in Top)

Z X

Y

f

g

such that
(1) Changing the maps f and g by homotopies produces isomorphic objects of P;
(2) There is a functor P Ñ hTop sending each pushout diagram to its mapping cylinder

Zpf, gq.
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 Proof sketch: Morphisms in P are diagrams

Z X

Z 1 X 1

Y

Y 1

g

f

γ

�
ψ

�
ϕ

α

g1

f 1

β

,

including choices of homotopies ϕ and ψ as part of the data. The notion of composition
of such morphisms arises naturally by composing maps and concatenating homotopies.7

Such a morphism determines a homotopy pushout diagram

Z X

Y Zpf 1, g1q

f

g
�
H iX1�α

iY 1�β

and therefore also an induced map Zpf, gq u
ÝÑ Zpf 1, g1q. It is a bit tedious but straight-

forward to check:
(1) The map induced by a composition of two morphisms in P is homotopic to the

composition of the two induced maps.
(2) If the maps α, β, γ all have homotopy inverses, one can use them to construct an

inverse morphism in P.
Both only require the same ideas that are needed for proving e.g. that multiplication in the
fundamental group is associative. The second point implies, in particular, that the map
Zpf, gq Ñ Zpf 1, g1q is a homotopy equivalence whenever α, β, γ are.


 Corollary: If f �
h
f 1 and g �

h
g1, then Zpf, gq and Zpf 1, g1q are homotopy equivalent.


 Theorem: Pushouts in hTop and hTop� do not always exist.8


 Proof sketch in hTop�: Fix the obvious base point in S
1 so that our previous degree 2 map

α : S1 Ñ S1 preserves base points. A pushout diagram in hTop� of the form

S1 �

S1 P

α �

β

then means a pointed space P together with an element in the 2-torsion subgroup of its
fundamental group

β P π1pP qp2q :�
 
γ P π1pP q

�� γ2 � 0
(
.

7It seems likely that I'm oversimplifying this and ought to talk about �homotopy classes of homotopies� if I
really want the composition in P to be associative, but I do not want to give these details more attention than they
deserve. I am attempting to present a slightly more highbrow perspective on a sequence of lemmas in [tD08, �4.1�4.2]
that seem rather technical and tedious.

8. . . which is why we need to use homotopy pushouts instead.
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Then P and β satisfy the universal property for a pushout in hTop� if and only if for every
space Q and γ P π1pQqp2q, the map

rP,Qs Ñ π1pQqp2q : u ÞÑ u�β

is a bijection. Assume this is true, and then consider the surjective map

SOp3q
p
ÝÑ S2 : A ÞÑ Ae1,

where S2 is the unit sphere in R3 and e1, e2, e3 P R3 denotes the standard basis. Taking
e1 as a base point in S2, we have

p�1pe1q � SOp2q � S1,

giving rise to an exact sequence of pointed spaces

S1 i
ãÑ SOp3q

p
Ñ S2.

We will see next week that the map p : SOp3q Ñ S2 has a special property: it is a �bration,
with the consequence that for every space P , the induced sequence of pointed sets

rP, S1s
i�
Ñ rP,SOp3qs

p�
Ñ rP, S2s

is also exact, meaning the preimage of the base point under p� matches the image of i�.
(Here rX,Y s means the set of homotopy classes of pointed maps X Ñ Y , so it is a set with
an obvious base point.) Combining this with the bijection that we deduced above from the
universal property of the pushout, we obtain an exact sequence

π1pS
1qp2q Ñ π1pSOp3qqp2q Ñ π1pS

2qp2q,

in which the �rst and last terms both vanish. But SOp3q � RP3 and thus π1pSOp3qq � Z2,
so the middle term does not vanish, and this is a contradiction.


 To do next week: De�ne what a �bration is and explain why the sequence of sets of
homotopy classes in that proof was exact.

Suggested reading. A more comprehensive treatment of mapping cylinders (including details
that I left out of the proof of the theorem about the functor P Ñ hTop) can be found in [tD08, �4.1�
4.2]. This does not include the proof that pushouts in hTop� don't exist; I found that in the
materials for a course on homotopy theory by Tyrone Cutler, available at https://www.math.

uni-bielefeld.de/~tcutler/ (see the �rst set of exercises on homotopy pushouts).

Exercises (for the Übung on 2.05.2024).

Exercise 2.1. Review the notions of the Z2-valued and Z-valued mapping degrees for maps
between closed and connected topological manifolds of the same dimension, as covered e.g. in
[Wen23, Lecture 35]. Then:

(a) Show that for every closed and connected topological manifold M of dimension n P N, the
set rM,Sns contains at least two elements, and in�nitely many if M is orientable.

(b) Does the set rSn,M s also always have more than one element?

Exercise 2.2. Deduce from the properties of double mapping cylinders the standard fact that
there is a functor S : TopÑ Top assigning to every space X P Top its (unreduced) suspension SX.
Note: This is just intended as a sanity check. There is nothing especially nontrivial to be done
here, and there are also more direct ways to show that suspensions de�ne a functor.

Exercise 2.3. Show that the mapping cone conepfq of any homotopy equivalence f : X Ñ Y is a
contractible space.
Hint: Find a useful morphism in the category P of pushout diagrams.

https://www.math.uni-bielefeld.de/~tcutler/
https://www.math.uni-bielefeld.de/~tcutler/
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Exercise 2.4. Show that for any two maps f : Z Ñ X and g : Z Ñ Y , the singular homologies
(with arbitrary coe�cients) of the spaces X,Y, Z and Zpf, gq are related by a long exact sequence
of the form

. . .Ñ Hn�1pZpf, gqq Ñ HnpZq Ñ HnpXq `HnpY q Ñ HnpZpf, gqq Ñ Hn�1pZq Ñ . . . ,

and describe explicitly what the two homomorphisms in the middle of this sequence look like.
Show that it also works with all homology groups replaced by their reduced counterparts, then
write down the special case of a mapping cone and check that what you have is consistent with
Exercise 2.3.
Hint: There is a relatively straightforward way to apply the Mayer-Vietoris sequence here, but you
could also deduce this as a special case of the exact sequence of the generalized mapping torus
derived in [Wen23, Lecture 34].

Exercise 2.5. Prove that pushouts in hTop do not always exist.
Hint: The proof carried out in lecture for hTop� requires only minor modi�cations. Note that even
if X and Y are spaces without base points, the set of homotopy classes rX,Y s still has a natural
base point whenever Y is path-connected. (Why?)

Exercise 2.6. Give explicit examples of homotopic maps

f �
h
f 1 : Z Ñ X and g �

h
g1 : Z Ñ Y

such that the mapping cylinders Zpf, gq and Zpf 1, g1q are not homeomorphic. (They will of course
be homotopy equivalent!)

Exercise 2.7. The join X � Y of two spaces X and Y is the double mapping cylinder ZpπX , πY q
de�ned via the projection maps πX : X � Y Ñ X and πY : X � Y Ñ Y . Prove that the join of
two spheres is always homeomorphic to a sphere: concretely, for every m,n P N,

Sm � Sn � Sm�n�1.

Hint: Split the double mapping cylinder in half so that you see Sm �Sn as the union of two pieces
glued along boundaries that both look like Sm�Sn. Can you think of two compact manifolds that
both have Sm � Sn as boundary? Stare closely at the two pieces, you might recognize them! Now
glue them together and ask: what is Sm � Sn the boundary of?

Exercise 2.8. Many constructions in homotopy theory have analogues in homological algebra,
and one of these is the mapping cone. For two chain complexes pA�, BAq and pB�, BBq with a chain
map f : A� Ñ B�, the mapping cone of f is the chain complex pconepfq�, Bq with

conepfqn :� An�1 `Bn and B :�

�
�BA 0
�f BB



.

The analogy to the mapping cone in Top goes through cellular homology: if X,Y are two CW-
complexes and f : X Ñ Y is a cellular map, then the cone of f inherits a natural cell decom-
position whose augmented cellular chain complex rCCW

� pconepfqq is the cone of the chain map
f� : rCCW

� pXq Ñ rCCW
� pY q.9

Show that the mapping cone conepfq� of a chain map f : A� Ñ B� similarly plays the role
of a homotopy pushout in the category Ch of chain complexes and chain maps, with the role of a
one-point space played by the trivial chain complex 0� P Ch. Speci�cally:

9This was Problem 2(b) on the take-home midterm for last semester's Topologie II course, but for Exercise 2.8,
you do not need to know about it.
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(a) There is a natural chain map iB : B� Ñ conepfq� such that the diagram

A� 0�

B� conepfq�

f �

iB

commutes up to chain homotopy.
(b) Any homotopy-commutative diagram in Ch of the form

A� 0�

B� D�

f
�
H

ψ

naturally determines a chain map u : conepfq� Ñ D� such that u � iB is chain homotopic
to ψ.

(c) If we were being strict about the analogy via cellular homology, then the trivial complex
0� in the diagrams above ought to be replaced by rCCW

� p�q, the augmented cellular chain
complex of a one-point space, which is not trivial: it has nontrivial entries in degrees 0
and �1, with the boundary operator giving an isomorphism between them. Explain why
this discrepancy does not matter, and nothing in the discussion above would change if we
used rCCW

� p�q in place of 0�.

Hint: None of this is hard. . . the quickest approach may be by guessing.

3. Week 3

Lecture 4 (29.04.2024): Introduction to �brations.

 The set of (free or pointed) homotopy classes rX,Y s as a pointed set (assuming Y is
path-connected in the unpointed case)


 What it means for a sequence of three pointed sets to be exact

 Motivational question: Given a map p : E Ñ B and the inclusion i : F :� p�1p�q ãÑ E,
what condition makes the sequence

rX,F s
i�
ÝÑ rX,Es

p�
ÝÑ rX,Bs

exact for all other spaces X?

 De�nition of the homotopy lifting property (free case) and (free, i.e. unpointed) �brations
p : E Ñ B. (See next lecture for a precise roundup of the crucial de�nitions.)


 Terminology: the base B and �bers Eb :� p�1pbq � E of a �bration p : E Ñ B

 Example 1: covering spaces (discrete �bers, lifts of homotopies are unique, which does not
hold for more general �brations)


 Example 2: �ber bundles (to be studied later in this course): tEbubPB is a continuous
family of homeomorphic spaces (assuming B is path-connected)
� Example 2a: For M any smooth n-manifold, its tangent bundle TM �

�
xPM TxM

is a �ber bundle whose �bers (the tangent spaces) TxM are all homeomorphic to Rn.
(One can cook up examples with more interesting �bers e.g. by equipping each tangent
space with an inner product and taking the unit sphere in each�this produces a �ber
bundle with �bers homeomorphic to Sn�1, a so-called sphere bundle.)

� Example 2b: The map p : SOp3q Ñ S2 that we used in Lecture 3 for showing that
pushouts in hTop� do not always exist. Observation 1: For base point e1 P S2, the
�ber F :� p�1pe1q is a subgroup isomorphic to SOp2q, thus homeomorphic to S1.
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Observation 2: That subgroup acts continuously (in fact smoothly), freely and tran-
sitively from the right on every other �ber, implying that all �bers are homeomorphic
(in fact di�eomorphic) to S1.


 Remark: When we study �ber bundles in earnest, we will prove that they all have the
homotopy lifting property, and are thus �brations. If you are already familiar with smooth
�ber bundles and connections, then you should believe this easily for the following reason:
any choice of connection on p : E Ñ B de�nes parallel transport maps which uniquely
determine a lift of any smooth homotopy X � I Ñ B. (One has to work harder to also get
lifts of all continuous homotopies. . . for this, di�erential geometry is not enough.)


 Theorem (already proved): For any �bration p : E Ñ B with B path-connected, and any
space X, the induced sequence of free homotopy classes rX,F s Ñ rX,Es Ñ rX,Bs is exact.
(Here the map F Ñ E is the inclusion of the �ber F :� p�1pb0q � E over any chosen point
b0 P B.)10


 Idea: If we can show that every map f : X Ñ Y becomes a �bration after replacing X
with some space X 1 �

h.e.
X, then we can do this with the inclusion F ãÑ E and thus extend

the exact sequence rX,F s Ñ rX,Es Ñ rX,Bs one more term to the left. Then we can do
it again, and again, and extend the sequence as far as we want. . .


 Example (path space �brations): for pX,x0q P Top�, we de�ne
� the free path space: CpI,Xq :� tcontinuous maps I Ñ Xu with the compact-open
topology

� the based path space: PX :� Px0X :�
 
γ P CpI,Xq

�� γp0q � x0
(

� the based loop space: ΩX :� Ωx0
X :�

 
γ P PX

�� γp1q � x0
(
.

Notice: CpI,Xq does not depend on a base point, and it has no natural base point of
its own. The spaces PX and ΩX do have natural base points de�ned by constant paths.
De�ne maps CpX, Iq

p
ÝÑ X and PX

p
ÝÑ X by ppγq :� γp1q; for the latter, we notice

p�1px0q � ΩX � PX, making

ΩX ãÑ PX
p
Ñ X

an exact sequence of pointed spaces.

 Theorem: (1) CpI,Xq

p
Ñ X and PX

p
Ñ X are �brations. (2) The map CpI,Xq

p
Ñ X is

also a homotopy equivalence. (3) The space PX is contractible.

The following is a digression, subtitled �The revenge of Topologie I�:


 Why is p : CpI,Xq Ñ X continuous? More generally, is the map

ev : CpX,Y q �X Ñ Y : pf, xq ÞÑ fpxq

continuous for all spaces X and Y ? (One can show that it is always sequentially continu-
ous.)


 Counterexample: ev : CpQ,Rq � Q Ñ R is not continuous for the obvious (subspace)
topology on Q � R. Quick proof: If ev is continuous, then for every continuous f0 : QÑ R,
every x0 P Q and every neighborhood U � R of y0 :� f0px0q, there are open neighborhoods
f0 P O � CpQ,Rq and x0 P W � Q such that pf, xq P O �W implies fpxq P U . Without
loss of generality, the set O � CpQ,Rq has the form

O �
 
f
�� fpKiq � Vi for all i � 1, . . . , N

(
� CpQ,Rq

10In the lecture I somewhat sloppily asserted that this statement was equally valid in the unpointed and pointed
cases, but in fact the pointed case involves some subtleties that I brushed under the rug. These gaps got �lled in in
Lecture 5.
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for some �nite collection of compact subsetsKi � Q and open subsets Vi � R, i � 1, . . . , N .
But since compact subsets of Q cannot contain any open subsets, one can then �nd two
irrational numbers a   b such that

W0 :� pa, bq XQ �W

is a nonempty open subset of W disjoint from K1 Y . . . YKN . Now de�ne a continuous
function f : Q Ñ R that matches f0 outside of W0 but takes a value fpxq R U for some
x PW0; this is easy since a, b R Q. Then pf, xq P O �W but fpxq R U , a contradiction.


 Message: Q is a terrible topological space. The main problem: It is not locally compact.

 Lemma 1: If X is locally compact and Hausdor�,11 then ev : CpX,Y q � X Ñ Y is
continuous. (For the proof, see Exercise 3.3.)


 The exponential law: For two sets X,Y (not necessarily with topologies), let XY denote
the set of all (not necessarily continuous) maps Y Ñ X. Then there is a natural bijection

ZX�Y � pZY qX ,

identifying each map f : X � Y Ñ Z with the map pf : X Ñ ZY de�ned by pfpxqpyq :�
fpx, yq.


 Lemma 2: For all topological spaces X,Y, Z, if f : X � Y Ñ Z is continuous, then the
corresponding map pf : X Ñ ZY is a continuous map into CpY,Zq. The converse also holds
if Y is locally compact and Hausdor�. (Proof: see Exercise 3.3.)


 Corollary (since I is locally compact and Hausdor�): Homotopies X�I Ñ Y are naturally
equivalent to continuous maps on X with values in the path space CpI, Y q.12

End of Topologie I digression.


 Proof of the theorem on path space �brations: see [DK01, Theorem 6.15], supplemented by
the following remark. In this proof, there are several maps and homotopies to be written
down, most of which are pretty straightforward, one just needs to think a little about why
they are continuous. Thanks to the digression above, the fact that I is locally compact
and Hausdor� ensures this.

Lecture 5 (2.05.2024): Replacing maps with �brations. This lecture began with some
minor extensions and clari�cations to the main de�nition from Lecture 4.


 De�nition: A map p : E Ñ B has the (free) homotopy lifting property (HLP) with
respect to some class of spaces C � Top if the lifting problem

X E

X � I B

i0

�H0

p
�H

H

11Whether the Hausdor� condition here is truly necessary depends on what de�nition one takes for the term
locally compact. I typically de�ne locally compact to mean simply that every point has a compact neighborhood, but
many authors (such as tom Dieck [tD08]) prefer a stricter de�nition in which the compact neighborhood can always
be assumed arbitrarily small: concretely, for every point x P X, every neighborhood of x contains a neighborhood of
x that is compact. The latter is the condition that one really needs for proving ev : CpX,Y q�X Ñ Y is continuous,
but it is equivalent to the simpler de�nition whenever X is Hausdor�. I have no plans to consider any examples in
which X is not Hausdor�.

12I'm not certain, but in the lecture I may have stated this wrongly and said homotopies X � I Ñ Y are
equivalent to paths in the space CpX,Y q, i.e. maps I Ñ CpX,Y q. The latter is not true in general unless X is also
locally compact and Hausdor�.
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is solvable for all X P C , i.e. given a homotopy H and an initial condition rH0 for a lift,
the lifted homotopy rH exists. Here i0 denotes the inclusion X � X � t0u ãÑ X � I.


 Notation convention: For a homotopy H : X � I Ñ Y , we will often write

Ht :� Hp�, tq : X Ñ Y for each t P I.


 De�nition: p : E Ñ B is a free (Hurewicz) �bration if it satis�es the HLP with respect
to all spaces X P Top. The word �free� (or the synonyms �unpointed� or �unbased�) is
included in order to distinguish this from the pointed variant below, but will be omitted
whenever possible. The word �Hurewicz� will almost always be omitted, but is meant to
distinguish this from certain useful weaker conditions, such as:


 De�nition: p : E Ñ B is a Serre �bration if it satis�es the HLP with respect to all
CW-complexes X. Note that E and B do not need to be CW-complexes. This condition
is often easier to verify, and has some very nice applications to higher homotopy groups
(we'll get there in a few lectures).


 De�nition: A pointed map p : E Ñ B has the (pointed) homotopy lifting property
with respect to some class of pointed spaces C � Top� if the lifting problem

pX, �q pE, �q

pX � I, t�u � Iq pB, �q

i0

�H0

p
�H

H

is solvable for allX P C ; in other words, we require the HLP but with maps and homotopies
replaced by pointed maps and pointed homotopies.


 De�nition: A pointed map p : E Ñ B is a pointed (Hurewicz) �bration if it satis�es the
pointed HLP with respect to all X P Top�.


 Theorem (�the main property of �brations�): Assume p : E Ñ B satis�es the (free or
pointed) HLP with respect to some class C in Top or Top� respectively; in the free case,
assume also that B is path-connected, so that sets of (free or pointed) homotopy classes
rX,Bs have natural base points in either case. Denote the inclusion i : F :� p�1pb0q ãÑ E,
where b0 P B is the base point in the pointed case, or any chosen point in the free case.
Then for every X P C , the sequence

rX,F s
i�
Ñ rX,Es

p�
Ñ rX,Bs

is exact.

 Convenient fact (see Exercise 3.2): Pointed �brations are also free �brations after forgetting
their base points.


 Inconvenient fact: If p : E Ñ B is a free �bration, choosing base points � P B and
� P p�1p�q � E to make p into a pointed map does not automatically make it into a
pointed �bration! On the other hand, actual counterexamples are not easy to �nd, mainly
because. . .


 Su�ciently convenient fact: The aforementioned pointed map p : E Ñ B does however
satisfy the pointed HLP with respect to all �reasonable� pointed spaces. This means that in
practice, one rarely actually needs to worry about the distinction between free and pointed
�brations. (Giving more details on this will require some discussion of co�brations, which
is coming next week.)


 De�nition: A sequence of maps Z
j
Ñ X

f
Ñ Y has the homotopy type of a �bration

if there exists a �bration p : E Ñ B with �ber inclusion i : F :� p�1p�q ãÑ E and a
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homotopy commutative diagram

Z X Y

F E B

j

�

f

�
i p

in which the vertical maps are all homotopy equivalences. (Note: This de�nition is sensible
in either the free or the pointed case�for the latter, one takes all maps and homotopies
to be pointed.) It follows that sequences of the form

rQ,Zs
j�
Ñ rQ,Xs

f�
Ñ rQ,Y s

are exact for all Q (assuming as usual in the unpointed case that Y is path-connected).
Remark: There are obvious generalizations of this conclusion for cases where p : E Ñ B
only satis�es the HLP with respect to some smaller class of spaces C ; then one must also
assume Q P C in writing down such exact sequences.


 Convention: Unless the words �free� or �pointed� are included explicitly, every statement
in the rest of this lecture is meant to be valid for both cases, with closely analogous proofs
in either context.


 Theorem 1: For every map f : X Ñ Y , there exists a space Z (the �homotopy �ber�

of f) and a map j such that Z
j
Ñ X

f
Ñ Y has the homotopy type of a �bration. In other

words, �every map is a �bration up to homotopy equivalence�. Proof at the end of the
lecture.


 The dual perspective on the HLP: For topological spaces X,Y , abbreviate

Y X :� CpX,Y q

with the compact-open topology.13 This makes XI the space of paths in X, and since I is
locally compact and Hausdor�, the evaluation map

ev : XI � I Ñ X : pγ, tq ÞÑ γptq

is a homotopy between ev0 :� evp�, 0q and ev1 :� evp�, 1q; one can deduce from this (see
Exercise 3.3) that for every continuous map f : X Ñ Y , the induced map

f I : XI Ñ Y I : γ ÞÑ f � γ

is continuous, thus de�ning a functor p�qI � CpI, �q : Top Ñ Top. Moreover, the natural
bijection Y X�I � pY IqX identi�es homotopies H : X � I Ñ Y with maps H : X Ñ Y I

into path space, and this translates the HLP into the diagram

X

EI E

BI B.

�H

�H0

H
ev0

pI p

ev0

Interpretation: the HLP is satis�ed if and only if EI with its maps to E and BI de�nes
a �weak �ber product� of the maps p : E Ñ B and ev0 : BI Ñ B, i.e. the map X Ñ EI is
required to exist, but need not be unique (as an actual universal property would require).

13We had previously used the notation Y X to mean all (not necessarily continuous) maps X Ñ Y , but we are
now altering the de�nition of this notation in the context of topological spaces, because it's a convenient shorthand.
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 Constructions of �brations (proofs are straightforward and mostly consist of drawing some
diagrams and adding some dotted arrows):
(1) Projection maps B � F Ñ B are always �brations. (Note that here one can clearly

see the non-uniqueness of the lifted homotopy, outside of special cases such as when
F is a discrete space, which would make the projection a covering map.)

(2) Path space: By a very slight extension of what we proved last time, the map

XI pev0,ev1q
ÝÑ X �X

is always a �bration.
(3) Compositions: If p : E Ñ B and f : B Ñ A are �brations, then so is f � p : E Ñ A.

(Remark: If we didn't already know this, we could now deduce from the �rst three
items on this list that the maps ev0, ev1 : XI Ñ X individually are also �brations.)

(4) Products: Given two �brations pi : Ei Ñ Bi for i � 1, 2, the product map p1 � p2 :
E1 � E2 Ñ B1 �B2 is also a �bration.

(5) Pullbacks: Assume E1 is a �ber product of p : E Ñ B and another map f : B1 Ñ B,
so we have a diagram

E1 E

B1 B

f 1

p1 p

f

,

and E1 can be identi�ed with B1 �f pE � B1�E so that f 1 and p1 become the obvious
projections. For any b P B1, writing E1

b :� pp1q�1pbq � E1, it follows that

E1
b

f 1

ÝÑ Efpbq

is a homeomorphism, thus we think of E1 as a union of the same collection of �bers
as E, but parametrized over B1 instead of B. Proposition: If p is a �bration, then so
is p1. (We then call p1 : E1 Ñ B1 the pullback of p : E Ñ B via the map B1 Ñ B, and
sometimes emphasize this by writing f�E :� E1. It is also often called an induced
�bration.) Sketch of proof: Given a homotopy X�I Ñ B1, composing it with f gives
a homotopy to B, which can be lifted to E. The universal property of the pullback
determines from this a unique map X � I Ñ E1, which turns out to be the lift we
need.

(6) Path/loop spaces: Analogously to the free path space functor TopÑ Top : X ÞÑ XI ,
the based path and loop spaces de�ne functors Top� Ñ Top� sending X to PX or ΩX.
Proposition: For any free �bration p : E Ñ B, the map pI : EI Ñ BI is also a (free)
�bration; similarly for any pointed �bration p : E Ñ B, the maps Pp : PE Ñ PB and
Ωp : ΩE Ñ ΩB are pointed �brations. Proof in the free case: The correspondence
Y X�I � pY IqX translates the HLP for pI : EI Ñ BI with respect to a space X into
a lifting problem of the form

X � I E

X � I � I B

i0�Id p ,

which is solvable because p : E Ñ B has the HLP with respect to X � I. The proofs
for the based path and loop spaces are Exercise 3.4.
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 Proposition: Every pointed �bration F i
ãÑ E

p
Ñ B (we will often write the inclusion of the

�ber F � p�1p�q � E as part of the data) determines a canonical pointed homotopy class
of maps

ΩB
δ
ÝÑ F.

Part 1 of the proof: The idea is the same as in covering space theory, where each based
loop γ : I Ñ B gets interpreted as a path and then has a (in this case non-unique) liftrγ : I Ñ E that starts at the base point but may end in some other point of F � p�1p�q.
Since p : E Ñ B has the HLP with respect to the space ΩB, we can do this for all loops
at once by interpreting ev : ΩB � I Ñ B as a homotopy and lifting it:

ΩB E

ΩB � I B

const

p

ev

�ev .

On ΩB, ev0 and ev1 are both constant maps to the base point of B, thus δ :� rev1 : ΩB Ñ E
takes values in F . (We will need some machinery developed next week in order to show
that the homotopy class of δ is independent of the choice of lift.)


 Theorem 2 (just a preview of our goal for next week, with the caveat that the statement
may need minor modi�cations before it is strictly correct): For any pointed �bration

F
i
Ñ E

p
Ñ B, every triple of consecutive terms in the sequence of pointed (homotopy

classes of) maps

. . . ÝÑ Ω2E
Ω2p
ÝÑ Ω2B

δ
ÝÑ ΩF

Ωi
ÝÑ ΩE

Ωp
ÝÑ ΩB

δ
ÝÑ F

i
ÝÑ E

p
ÝÑ B

has the homotopy type of a pointed �bration. (Note: Implicit in this sequence is the

observation that ΩF has an obvious identi�cation with the �ber of ΩE
Ωp
Ñ ΩB over the

base point of ΩB, such that Ωi : ΩF Ñ ΩE becomes its inclusion.)

 Remark: Theorem 2 gives us long exact sequences of sets of pointed homotopy classes

. . .Ñ rX,Ω2Bs Ñ rX,ΩF s Ñ rX,ΩEs Ñ rX,ΩBs Ñ rX,F s Ñ rX,Es Ñ rX,Bs,

and since pointed �brations are also free �brations, the corresponding sequence of sets of
free homotopy classes is also exact wherever exactness makes sense (i.e. when the relevant
space is known to be path-connected).


 De�nition: The (double) mapping path space of two maps f : X Ñ Z and g : Y Ñ Z is

P pf, gq :� X �f ev0
ZI �ev1 g Y �

 
px, γ, yq P X � ZI � Y

�� γ is a path in Z from fpxq to gpyq
(
.

This construction is �dual� to the double mapping cylinder, in the sense that it �ts into all
the same diagrams but with the arrows reversed, e.g. with the obvious projections to X
and Y , the diagram

P pf, gq X

Y Z

πX

πY � f

g

commutes up to an obvious homotopy, and any homotopy commutative diagram of the
form

Q X

Y Z

φ

ψ
�
H

f

g
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naturally determines a map u : QÑ P pf, gq for which the diagram

X

Q P pf, gq

Y

u

φ

ψ

πX

πY

commutes. In summary: P pf, gq is a homotopy pullback of the maps f and g. (As with
homotopy pushouts: We are not claiming that P pf, gq de�nes an actual pullback in the
category hTop, which would require the homotopy class of u : Q Ñ P pf, gq above to be
determined uniquely by the commutativity (up to homotopy) of the diagram. Exercise for
those who are so inclined: show that pullbacks in hTop do not always exist.)


 Remark: If f and g are pointed maps, then there is an obvious choice of base point for
P pf, gq that makes everything in the above discussion pointed. In contrast to the case of
mapping cylinders, this does not require any modi�cation to the de�nition of the space
P pf, gq itself.


 Proposition: The map

pπX , πY q : P pf, gq Ñ X � Y

is a �bration (and by composition, so therefore are the individual projections πX and πY ).
Proof: It's a pullback of the path space �bration ZI Ñ Z � Z:

P pf, gq ZI

X � Y Z � Z

pπX ,πY q pev0,ev1q

f�g

,

where the map P pf, gq Ñ ZI is px, γ, yq ÞÑ γ.

 Proof of Theorem 1: De�ne the mapping path space of f : X Ñ Y as

P pfq :� P pf, IdY q �
 
px, γ, yq P X � Y I � Y

�� γp0q � fpxq and γp1q � y
(

�
 
px, γq P X � Y I

�� γp0q � fpxq
(
.

By contracting every path back to its starting point, we �nd a deformation retraction of
P pfq to an embedded copy of X, i.e. the map h : X Ñ P pfq : x ÞÑ px, constfpxqq is a
homotopy inverse of the projection πX : P pfq Ñ X : px, γq ÞÑ x. Moreover, πX is a
�bration, and more importantly, so is the other projection

p :� πY : P pfq Ñ Y : px, γq ÞÑ γp1q,

which now �ts into the commutative diagram

X P pfq

Y

h

f
p

,
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in which h is a homotopy equivalence. One can now take the �ber Z :� p�1p�q � P pfq
with inclusion i : Z ãÑ P pfq and de�ne j :� πX � i : Z Ñ X, producing the diagram

Z X Y

Z P pfq Y

j f

Id

i

πX �

p

Id ,

in which the vertical maps are all homotopy equivalences.

 To do list for next week: Clarify in what sense the �bration P pfq

p
Ñ Y and homotopy �ber

Z associated to f : X Ñ Y are unique, why the homotopy class of δ : ΩB Ñ F is well
de�ned, where the long exact sequence in Theorem 2 comes from, why free �brations with
added base points are almost as good in practice as pointed �brations, and along the way,
what a co�bration is and what this whole story looks like with all the arrows reversed.
That will keep us busy enough.

Suggested reading. The main nontrivial things we did this week can be found in [DK01, �6.2,
�6.4 and �6.9]. An unfortunate omission in both [DK01] and [tD08] is the pointed variant of the
homotopy lifting property, but there's a fuller discussion of this and the associated subtleties in
the �Fibrations IV� section of Cutler's lecture notes at https://www.math.uni-bielefeld.de/

~tcutler/.

Exercises (for the Übung on 16.05.2024). Thursday the 9th is a holiday, so we'll talk about
these exercises (and probably some others) in the Übung for the following week.

Exercise 3.1. The following are two examples of maps p : E Ñ B with the property that all �bers
Eb :� p�1pbq are homotopy equivalent�we will see next week that this is a property that �brations
must have, though in these examples, the �bers are not all homeomorphic, so they cannot be �ber
bundles. Determine whether each is actually a �bration.

(a) The projection E Ñ R : px, yq ÞÑ x of the subset E :�
 
px, yq P R2

�� |y| ¤ |x|
(
.

(b) The projection E Ñ I : px, yq ÞÑ x of the subset E :�
�
I � t0u

�
Y
�
t0u � I

�
.

Exercise 3.2. Prove that every pointed �bration becomes a free �bration after forgetting the base
points.
Hint: For any X P Top and Y P Top�, unpointed maps X Ñ Y are equivalent to pointed maps
X� Ñ Y , for a pointed space X� de�ned as the disjoint union of X with a one point space.

Exercise 3.3. For this exercise, let's agree to call a space X locally compact if every neighbor-
hood of every point x P X contains a compact neighborhood of x.14 If you prefer the convention
that �locally compact� just means every point has a compact neighborhood, then feel free to add
the assumption that X is Hausdor�, which makes the simpler de�nition of locally compact equiv-
alent to the stricter one stated above. We assume as usual that the space CpX,Y q of continuous
maps X Ñ Y carries the compact-open topology. The �rst three parts below add up to the proofs
of two lemmas that were stated without proof in lecture.

(a) Prove that if X is locally compact, then the evaluation map ev : CpX,Y q � X Ñ Y :
pf, xq ÞÑ fpxq is continuous.

14This de�nition presumes the term neighborhood of x to mean any set that contains an open set containing x,
i.e. the neighborhood itself need not be open.

https://www.math.uni-bielefeld.de/~tcutler/
https://www.math.uni-bielefeld.de/~tcutler/
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(b) Prove that for any spaces X,Y, Z and any continuous map f : X � Y Ñ Z, the mappf : X Ñ CpY, Zq de�ned by pfpxqpyq :� fpx, yq is also continuous, thus de�ning an injective
map

(3.1) CpX � Y,Zq Ñ CpX,CpY,Zqq : f ÞÑ pf.
Remark: One would ideally also like to know that the map (3.1) is continuous, but let's
not worry about that for now.

(c) Prove that for two given spaces Y and Z, the evaluation map ev : CpY, Zq � Y Ñ Z is
continuous if and only if the map (3.1) is surjective for all spaces X.
Hint: The identity map is continuous on all spaces.
Comment: It follows in particular that (3.1) is a bijection whenever Y is locally compact;
we have already made ample use of the special case Y :� I in the lectures.

(d) Give a concrete example of three spaces for which the map (3.1) is not surjective.
(e) Writing XI :� CpI,Xq for the space of paths in X, show that for any continuous map

f : X Ñ Y , the induced map f I : XI Ñ Y I : γ ÞÑ f � γ is continuous.

Before we continue, here is a de�nition: A continuous map q : rX Ñ X is called a quotient map
if it is surjective and the open sets U � X are precisely the sets for which q�1pUq � rX is open.
Equivalently, q is a quotient map if and only if it descends to a homeomorphism rX{� Ñ X, for the
equivalence relation � on rX such that x � y means qpxq � qpyq. Most crucially, being a quotient
map means that in any diagram of the formrX

X Y,

q
rf

f

continuity of the map rf implies that f is also continuous. (The converse is of course obvious, since
q is continuous.)

(f) Given two quotient maps p : rX Ñ X and q : rY Ñ Y , can you show that the product map
p�q : rX� rY Ñ X�Y is also a quotient map? Give it a try, but do not try too hard. . . Once
you've gotten stuck and realized that it isn't obvious, take a look at [Mun75, pp. 143�144].

(g) Prove that if Y is a space with the property that ev : CpY, Zq � Y Ñ Z is continuous for
every space Z, then for every quotient map q : rX Ñ X, the product

q � IdY : rX � Y Ñ X � Y

is also a quotient map. In particular, this is true whenever Y is locally compact.
(h) In last week's Übung, I sketched an approach to proving Sm �Sn � Sm�n�1 (Exercise 2.7)

that led to the more general formula

X � Y �
�
CX � Y

�
YX�Y

�
X � CY

�
,

obtained by splitting the double mapping cylinder in the middle and reinterpreting the
quotients that one sees in the two halves. I also mentioned however that it is not so
obvious how generally this formula holds, because e.g. CX � Y is a product of a quotient,
which is not always homeomorphic to the corresponding quotient of a product. Can you
name some conditions on X and Y that will guarantee that the formula holds? (Your
conditions should preferably include the special case with X � Sm and Y � Sn!)

Exercise 3.4. In lecture, we exploited the natural bijective correspondence between mapsX Ñ Y I

and maps X � I Ñ Y to prove that for any �bration p : E Ñ B, the map pI : EI Ñ BI is also a
�bration, give or take some minor details (e.g. the continuity of pI is Exercise 3.3(e) above).
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(a) Describe a pointed space P 1X associated to every pointed space X with the property
that there is a natural bijective correspondence between pointed maps X Ñ PY to the
based path space and pointed maps P 1X Ñ Y . Moreover, there should also be a bijec-
tive correspondence between pointed homotopies X � I Ñ PY and pointed homotopies
P 1X � I Ñ Y .
Achtung: The detail about homotopies will require you to think about products of quo-
tients, so Exercise 3.3(g) may be useful.

(b) Do the same thing as in part (a) for pointed maps/homotopies to the based loop space ΩY .
(c) Prove the result stated in lecture that for any pointed �bration p : E Ñ B, the induced

maps Pp : PE Ñ PB and Ωp : ΩE Ñ ΩB are also pointed �brations.

Exercise 3.5. Prove that if X is path-connected, then the homotopy type of the based loop space
ΩX is independent of the choice of base point.

Exercise 3.6. Formulate an analogue for mapping path spaces P pf, gq of the theorem we pre-
viously proved about mapping cylinders Zpf, gq de�ning a functor from a category of pushout
diagrams to hTop. Convince yourself in this way that the homotopy type of P pf, gq only depends
on the homotopy classes of the two maps f : X Ñ Z and g : Y Ñ Z.

Exercise 3.7. The mapping path space P pfq � tpx, γq P X � Y I | γp0q � fpxqu of a map
f : X Ñ Y can be described as the �ber product of the maps f : X Ñ Y and ev0 : Y I Ñ Y , so by
the universal property of the �ber product, the diagram

XI Y I

X Y

fI

ev0 ev0

f

determines a map u : XI Ñ P pfq. Show that f : X Ñ Y is a �bration if and only if the map
u : XI Ñ P pfq admits a right-inverse λ : P pfq Ñ XI ; in this situation, λ is sometimes called a
lifting function for the �bration f : X Ñ Y .

4. Week 4

Thursday this week is a holiday, so there is only one lecture and no Übung.

Lecture 6 (6.05.2024): The transport functor.


 Recall: We constructed for every (unpointed or pointed) map f : X Ñ Y a diagram

F pfq X Y

F pfq P pfq Y

j f

Id

i

πX �

p

Id ,

where the bottom row is a (free or pointed) �bration with �ber F pfq :� p�1p�q � P pfq
(preimage of the base point � P Y if pointed, an arbitrary point if not), and all the vertical
maps are homotopy equivalences. We call F pfq the homotopy �ber of f : X Ñ Y . We
also had a homotopy inverse h : X Ñ P pfq of πX �tting into the diagram

F X Y

F pfq P pfq Y

h h

f

Id

p

,
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which commutes on the nose (not just up to homotopy), where F :� f�1p�q � X, thus
de�ning a comparison map

F
h
ÝÑ F pfq

from the �actual� �ber of f to its homotopy �ber.

 Question: Does f : X Ñ Y uniquely determine (up to what notion of equivalence?) the
�bration p : E Ñ Y in any diagram of the form

X E

Y

�
h.e.

f
�

p
?

For instance, if f : X Ñ Y is already a �bration, are the two �brations (and thus their
�bers) equivalent in some sense?15


 Inspiration from di�erential geometry: For a smooth �ber bundle p : E Ñ B, any choice of
connection associates to each smooth path x

γ
⇝ y in B a parallel transport di�eomorphism

Ex
Pγ
ÝÑ Ey,

and it is compatible with smooth concatenation of paths: Pα�β � Pβ � Pα. Connections
live in a contractible space of choices, so up to homotopy, Pγ is independent of this choice
and depends only on the (smooth) homotopy class of the path γ. Given any smooth
homotopy H : X � I Ñ B between maps H0, H1 : X Ñ B, parallel transport determines
a correspondence

lifts
E

X B

p
�H0

H0

ÞÑ lifts
E

X B

p
�H1

H1

de�ned by rH1pxq :� PHpx,�q � rH0pxq. At the level of homotopy classes of lifts, this corre-
spondence is independent of choices, and depends on H only up to (smooth) homotopy
of homotopies. In homotopy theory, we have no smooth structures and cannot talk about
connections. . . but we probably can prove that things are unique up to homotopy!


 De�nition: Given B P Top, the category TopB of spaces over B has objects that are pairs
pX, fq with X a space and f : X Ñ B a map, and the set of morphisms HomppX, fq, pY, gqq
consists of maps over B, meaning maps φ : X Ñ Y that �t into the diagram

X Y

B

φ

f g
.

Two such morphisms φ,ψ are homotopic over B if there exists a homotopy φ
H
⇝ ψ

such that Ht is a morphism pX, fq Ñ pY, gq for every t P I. This notion de�nes the
corresponding homotopy category hTopB , and isomorphisms in this category are called
homotopy equivalences over B. There are similar de�nitions for categories TopB,� and
hTopB,� in which all maps and homotopies are required to be pointed.

15In the lecture I stated this question a bit di�erently, involving a more complicated diagram, but I later realized
that that version was not exactly the question we are going to answer, nor is it the one that we really need to
answer.
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 Notation: Given two objects X,Y in TopB or TopB,�, we denote by

rX,Y sB :� HompX,Y q in hTopB or hTopB,� resp.

the set of homotopy classes of (unpointed or pointed) maps X Ñ Y over B. We can also
write rpX, fq, pY, gqsB whenever the maps f : X Ñ B and g : Y Ñ B de�ning these objects
need to be speci�ed.


 De�nition: Given X,Y P Top, the homotopy groupoid ΠpX,Y q is a category whose
objects are maps f : X Ñ Y , with morphisms

Hompf, gq :�
!
homotopies f

H
⇝ g

)M
�,

where the equivalence relation is �homotopy of homotopies�: H � H 1 means there is a

homotopy H
Φ
⇝ H 1 of maps X � I Ñ Y such that Φs :� Φp�, �, sq : X � I Ñ Y for each

s P I is also a homotopy f
Φs⇝ g. Composition of morphisms is de�ned by concatenation

of homotopies. (Easy exercise: The equivalence relation makes this notion of composition
associative. The proof is essentially the same as the proof that multiplication in the
fundamental group is associative.)


 Remark: ΠpX,Y q is called a groupoid (and not just a category) because all of its morphisms
are invertible; one can always reverse homotopies.


 Special case: ΠpY q :� Πp�, Y q is the fundamental groupoid of Y , and for each y P Y ,
Hompy, yq is then the (opposite of the) fundamental group π1pY, yq.16


 For X,Y P Top�, there is a pointed variant of ΠpX,Y q whose objects are pointed maps
and morphisms are homotopy classes of pointed homotopies. Amusing exercise: Is Πp�, Y q
interesting in the pointed case?


 Theorem: For every (free or pointed) �bration p : E Ñ B and every space X (unpointed
or pointed), there is a well-de�ned transport functor

ΠpX,Bq Ñ Set

which associates to each map f : X Ñ B the set rpX, fq, pE, pqsB of homotopy classes of
maps over B; we can interpret these as homotopy classes of lifts rf : X Ñ E of f : X Ñ B.

To each homotopy class of homotopies f
H
⇝ g of maps f, g : X Ñ B, it associates the map

rpX, fq, pE, pqsB
H#
ÝÑ rpX, gq, pE, pqsp

which sends the homotopy class of the lift rf to the homotopy class of a lift rg obtained by
lifting H : X � I Ñ B to a homotopy rH : X � I Ñ E from rf to rg.


 Remark: It is educational to try using the HLP to prove that H# is independent of choices,
but you will get stuck at some point and notice that the lifting problem you need to solve
is more complicated than the one addressed by the HLP. We will deal with this next week,
after talking a bit about the homotopy extension property and co�brations. For the rest
of this lecture, we take the existence of the transport functor as a black box and explore
some of its applications.

16A slightly annoying detail here is that while Hompy, yq has a natural group structure de�ned by composition
of morphisms�which in this case means homotopy classes of concatenation of paths�the conventions of category
theory then force multiplication in Hompy, yq to be de�ned by rαsrβs :� rβ � αs. This is why, strictly speaking
Hompy, yq is the opposite group of π1pY, yq, rather than π1pY, yq itself. For any group G with multiplication of
elements g, h P G denoted by gh P G, the opposite group Gop can be de�ned as the same set but with a new
multiplication law ��� de�ned by g � h :� hg, so there is no di�erence if G happens to be abelian, but in general G
and Gop are di�erent (though isomorphic!) groups. One occasionally sees claims in the literature that the �correct�
de�nition of π1pY, yq really should be what we normally call π1pY, yqop, so that it matches Hompy, yq rather than
its opposite group. But this idea does not seem to have caught on.
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 Theorem: For any �bration p : E Ñ B and any two homotopic maps f0, f1 : B1 Ñ B, the
pullback �brations f�0 E Ñ B1 and f�1 E Ñ B1 are homotopy equivalent over B1. It follows
in particular that for every b P B1, there is a homotopy equivalence pf�0 Eqb Ñ pf�1 Eqb
between corresponding �bers.


 Corollary (the case B1 :� �): For a �bration p : E Ñ B, any two �bers over the same
path-component of B are homotopy equivalent.


 Proof of the theorem: For each i � 0, 1 we have pullback diagrams

f�i E E

B1 B

f 1i

pi p

fi

,

Let B1 ftÝÑ B for t P I denote the family of maps de�ned by a given homotopy

f0
F
⇝ f1.

The family f�0 E
ft�p0ÝÑ B then de�nes a homotopy

f0 � p0
H
⇝ f1 � p0

of maps f�0 E Ñ B, and using the transport functor, we obtain a bijection H# that asso-
ciates to each homotopy class of lifts of f0 � p0 a homotopy class of lifts of f1 � p0. Since
f 10 : f�0 E Ñ E is a lift of f0 �p0 : f�0 E Ñ B, we can feed this into H# and thus obtain a lift
g : f�0 E Ñ E of f1 � p0, and by the universal property of the pullback f�1 E, this uniquely
determines the map ΦF : f�0 E Ñ f�1 E in the following diagram

f�0 E

f�1 E E

B1 B

ΦF

g

p0

f 11

p1 p

f1

.

By Exercise 4.1 below, this construction de�nes a functor

ΠpB1, Bq Ñ hTopB1

which associates to each map f : B1 Ñ B the induced �bration f�E Ñ B1 and to each

homotopy class of homotopies f
F
⇝ g the homotopy class of maps over B1 represented

by ΦF : f�E Ñ g�E as constructed above via the transport functor. Since morphisms
in ΠpB1, Bq are all invertible, the maps ΦF obtained in this way are all isomorphisms
in hTopB1 , meaning homotopy equivalences over B1.


 Theorem: If E
p
Ñ B and E1 p1

Ñ B are two �brations and f : E Ñ E1 is a homotopy
equivalence of spaces that is also a map over B (with respect to p, p1), then f is also a
homotopy equivalence over B.
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 Remark: Using Exercise 4.2 below, it follows that whenever we have two ways of replacing
a map f : X Ñ Y by �brations pi : Ei Ñ Y as in the diagram

E0 X E1

Y
p0

�

�
h.e.

�
h.e.

f

p1

� ,

the two �brations must be homotopy equivalent over Y , and their corresponding �bers
therefore homotopy equivalent. In particular, all reasonable de�nitions of the term �homo-
topy �ber� give the same thing up to homotopy equivalence.


 Preparation for the proof: Given a map X
f
Ñ Y and a space E, f induces a map

rY,Es
f�

ÝÑ rX,Es : φ ÞÑ f�φ :� φ � f,

which is obviously bijective if f is a homotopy equivalence. If we are also given maps
q : Y Ñ B and p : E Ñ B, then for any map φ : Y Ñ E over B, the diagram

X Y E

B

f

f�φ:�φ�f

f�q:�q�f

φ

q
p

means that f also induces a map

rpY, qq, pE, pqsB
f�

ÝÑ rpX, f�qq, pE, pqsB .


 Lemma: In the situation above, if p : E Ñ B is a �bration and f : X Ñ Y is a homotopy

equivalence, then the map rpY, qq, pE, pqsB
f�

ÝÑ rpX, f�qq, pE, pqsB is also bijective.

 Proof of the lemma: Given a homotopy inverse g : Y Ñ X of X, choose a homotopy

IdY
H
⇝ f � g, so that q �H is then a homotopy of maps Y Ñ B from q to q � f � g � g�f�q.

We claim that the diagram

(4.1) rpY, qq, pE, pqsB rpX, f�qq, pE, pqsB rpY, g�f�qq, pE, pqsB
f�

pq�Hq#

g�

commutes. The reason is that for any given map pY, qq
φ
ÝÑ pE, pq over B, the following

diagram reveals that there is an obvious choice of lift for the homotopy q �H : Y � I Ñ B
with initial condition φ : Y Ñ E:

Y E

Y

Y � I B

φ

Id

p

φ

qH

q�H

Choosing φ � H : Y � I Ñ E as the lifted homotopy, it de�nes a homotopy from φ to
φ � f � g � g�f�φ and thus proves the claim. Since pq �Hq# is a bijection, it follows that



42 CHRIS WENDL

f� is injective and g� is surjective. Using a homotopy of g � f to IdX , one can apply the
same trick again to show that the composition

rpX, f�qq, pE, pqsB rpY, g�f�qq, pE, pqsB rpX, f�g�f�qq, pE, pqsB
g� f�

is also bijective, implying that the same map g� is also injective, and thus bijective. Since
the composition g�f� in (4.1) is bijective, it now follows that f� is bijective.


 Remark: The proof of the lemma should remind you of the proof that homotopy equiv-
alences induce isomorphisms of fundamental groups (in spite of the annoying detail that
the homotopy inverse need not respect base points). In fact, there is a dual version of
this lemma for co�brations, a special case of which involves homotopy classes of maps
S1 Ñ X over a one point space, and the result in that case is precisely the isomorphism
of fundamental groups.


 The proof of the theorem about homotopy equivalence of �brations now follows from
abstract nonsense; see Exercise 4.3 below.

Suggested reading. The notions of �spaces/maps over B� and the homotopy groupoid are intro-
duced in [tD08, �2.2 and �2.9], with the special case of the fundamental groupoid treated at length
in �2.5. My presentation of the transport functor is based essentially on [tD08, �5.6], though tom
Dieck only gives very brief sketches of proofs in that section, since it appears after the corresponding
discussion about co�brations (which is formally similar).

In [DK01, �6.6], you will also �nd a fairly down-to-earth proof of the fact that for the �bration
P pfq Ñ Y constructed out of the mapping path space of any map f : X Ñ Y , the associated
homotopy equivalence h : X Ñ P pfq is also a homotopy equivalence over Y whenever f : X Ñ Y
itself is a �bration. This is less general than what we proved, because it applies only to a speci�c
�bration P pfq Ñ Y rather than an arbitrary �bration over Y that �ts into a suitable diagram with
f : X Ñ Y . Unfortunately, the proof of the main theorem about the long exact �bration sequence
in [DK01, �6.11] sneakily uses the more general version of this uniqueness result, so as far as I can
tell, this is a logical gap in the book.

Exercises (also for the Übung on 16.05.2024).

Exercise 4.1. In lecture we used the transport functor to associate to any �bration p : E Ñ B
and any homotopy class of homotopies F between two maps f0, f1 : B1 Ñ B a homotopy class of
maps over B1 in the form

f�0 E f�1 E

B1

ΦF

p0 p1
,

relating the two pullback �brations pi : f�i E Ñ B1 induced by fi : B1 Ñ B for i � 0, 1. Complete
the proof that this construction de�nes a functor

ΠpB1, Bq Ñ hTopB1 ,

which associates to each map f : B1 Ñ B the pullback �bration f�E Ñ B1, with the important
consequence that the map ΦF determined by a homotopy is always a homotopy equivalence over B1.

Hint: Consider a family of maps B1 ftÝÑ B parameterized by t P r0, 2s, which you can think of
as a concatenation of a homotopy from f0 to f1 with a homotopy from f1 to f2. De�ning the
induced maps f�0 E Ñ f�1 E and f�1 E Ñ f�2 E requires choosing lifts of certain homotopies of maps
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f�0 E Ñ B (for 0 ¤ t ¤ 1) and f�1 E Ñ B (for 1 ¤ t ¤ 2) respectively. Let these choices determine
how you can continue the lift of the homotopy of maps f�0 E Ñ B over the interval 1 ¤ t ¤ 2, thus
de�ning the induced map f�0 E Ñ f�2 E.

Exercise 4.2. Assume p : E Ñ Y is a �bration and f : X Ñ Y is a map.

(a) Show that if φ : X Ñ E is a map for which the diagram

X E

Y

φ

f
�

p

commutes up to homotopy, then φ can be replaced with a homotopic map X Ñ E that
makes the diagram commute on the nose.

(b) Deduce the basic uniqueness result about �brations associated to a map f : X Ñ Y ,
namely that for any diagram of the form

E0 X E1

Y
p0

�

�
h.e.

�
h.e.

f

p1

�

in which p0 : E0 Ñ Y and p1 : E1 Ñ Y are both �brations, the two �brations are homotopy
equivalent over Y .

Exercise 4.3. Suppose C is a category and X
f
Ñ Y is a morphism in C with the property that

the maps

HompY,Xq
f�

ÝÑ HompX,Xq and HompY, Y q
f�

ÝÑ HompX,Y q

de�ned via f�φ :� φ � f are both bijections. Prove that f is an isomorphism of C . Then use this
to �nish the proof of the theorem stated in lecture that every homotopy equivalence E Ñ E1 that
is also a map over B for two �brations E,E1 Ñ B is also a homotopy equivalence over B.

5. Week 5

Lecture 7 (13.05.2024): Co�brations.

 Tricky lifting problem 1: If p : E Ñ B is a free �bration and we choose base points � P B
and � P p�1p�q � E to make it a pointed map, then it satis�es the pointed HLP with
respect to a pointed space X if and only if the lifting problem

X � t0u Y t�u � I E

X � I B

�H0Yconst

p

H

�H

is solvable. Having rH prescribed on t�u� I and not just on X �t0u means that the usual
(free) HLP does not guarantee a solution to this problem.


 Tricky lifting problem 2: Showing that the transport functor for a free �bration p : E Ñ B
is well de�ned requires solving the lifting problem

X � pBI � I Y I � t0uq E

X � I2 B

p

G

rG .
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Here, G : X � I2 Ñ B : px, s, tq ÞÑ Hpsqpx, tq is a 1-parameter family of homotopies

tH0
Hpsq

⇝ H1usPI between two �xed maps H0, H1 : X Ñ B, the lift rG is prescribed on
X � BI � I because lifts of the two speci�c homotopies Hp0q and Hp1q have already been
chosen, and it is prescribed on X�I�t0u because we are also given a homotopy t rHpsq

0 usPI

of lifts of H0. The existence of rG then implies a corresponding homotopy t rHpsq
1 usPI of lifts

of H1.

 More general question: Given a free �bration p : E Ñ B and a map j : A Ñ X, under
what conditions is the problem

A E

X B

j p

solvable? We refer to this in the following as problem (FLP), for �fundamental lifting
problem�.


 Theorem FLP (the �fundamental lifting property�): Problem (FLP) is solvable whenever
j : A Ñ X is a free co�bration (see de�nition below) and either j or p is a homotopy
equivalence.
Remark: We will only need a special case of Theorem FLP and thus will not prove it in
full generality. Notice that the case where j : AÑ X is the inclusion Y �t0u ãÑ Y � I for
some space Y is simply the HLP with respect to Y . Since the map ev0 : Y I Ñ Y is always
both a �bration and a homotopy equivalence, the HEP de�ned below is another special
case.


 De�nition: A map j : AÑ X satis�es the (free) homotopy extension property (HEP)
with respect to a space Y if the lifting problem

A Y I

X Y

h

j ev0

H0

H

is solvable for all given maps H0 and h. Interpretation: Since maps AÑ Y I are equivalent
to homotopies A� I Ñ Y , the diagram asks that for any given homotopy h : A� I Ñ Y
and map H0 : X Ñ Y satisfying H0�j � h0, there should exist a homotopy H : X�I Ñ Y
satisfying Ht � j � ht for all t. In other words, the problem

A A� I

X X � I

Y

j

i0

j�Id
h

i0

H0

H

is solvable, allowing us to interpret X � I as a weak pushout of the maps i0 : A ãÑ A� I
and j : A Ñ X. (The word �weak� is included because the map H is not required to be
unique, and in typical examples it is not.) We will see in Exercise 5.2 that without loss
of generality, j : A Ñ X is always the inclusion of a subspace A � X, in which case H is
literally an extension of h : A� I Ñ Y to the larger domain X � I.


 De�nition: j : AÑ X is a (free) co�bration if it has the HEP with respect to all spaces Y .
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 Main application: Assume for simplicity that j : AÑ X is the inclusion of a subspace A �
X, and let q : X Ñ X{A denote the quotient projection. Given a path-connected space Y ,

we can plug the maps A
j
Ñ X

q
Ñ X{A into the contravariant functor r�, Y s : hTop Ñ Set�

and obtain a sequence of homotopy sets

rX{A, Y s
q�

ÝÑ rX,Y s
j�

ÝÑ rA, Y s.

Theorem: This sequence is exact whenever j : AÑ X has the free HEP with respect to Y ,
so in particular whenever it is a free co�bration. (The proof is an easy exercise.)


 Terminology: for a co�bration j : AÑ X, we call A the cobase and X{jpAq the co�ber.

 There is an analogous pointed homotopy extension property and thus a notion of
pointed co�brations in which all maps and homotopies are required to be pointed. For
these, the theorem above is true for sets of pointed homotopy classes of maps to Y , and
the presence of a base point removes the necessity of assuming Y is path-connected. (Note
that we never need any path-connectedness assumption on A, X or X{A, in contrast to
the case of �brations.)


 Convention: As with �brations, any statement we make about co�brations without spec-
ifying the words free/unpointed or pointed/based should be understood to be valid in two
parallel versions, one in the category Top or hTop, the other in Top� or hTop�. This is,
however, possible less often with co�brations than with �brations, due to the more-than-
cosmetic di�erences between spaces such as X � I and pX � Iq

L
pt�u � Iq.


 Constructions of co�brations (analogous to the list in Lecture 5 for �brations; for proofs,
see Exercise 5.3):
(1) Inclusions in coproducts: For all spaces A,Q P Top, the inclusion A ãÑ A > Q is

a free co�bration, and for pointed spaces A,Q P Top�, the inclusion A ãÑ A_Q is a
pointed co�bration.

(2) Cylinders: Inclusions of the form

X >X
i0>i1ÝÑ X � I or X _X

i0_i1ÝÑ
X � I

t�u � I

are free or pointed co�brations respectively, where itpxq :� px, tq.
(3) Compositions: The composition of two co�brations is a co�bration.
(4) Coproducts: Given two (free or pointed) co�brations ji : Ai Ñ Xi for i � 1, 2, the

map

j1 > j2 : A1 >A2 Ñ X1 >X2 or j1 _ j2 : A1 _A2 Ñ X1 _X2

is a (free or pointed) co�bration respectively.
(5) Pushouts: Assume X 1 is the pushout of two maps j : AÑ X and f : AÑ A1, giving

rise to the diagram

A A1

X X 1

j

f

j1

f 1

.

If j : AÑ X is a co�bration, then so is j1 : A1 Ñ X 1. In this case we call j1 : A1 Ñ X 1

the co�bration induced from j : AÑ X by the map f : AÑ A1; this construction is
sometimes called change of cobase.


 Proposition: For any two maps f : Z Ñ X and g : Z Ñ Y in Top or Top�, the natural
inclusion of X > Y or X _ Y respectively into the (unreduced or reduced) double mapping
cylinder Zpf, gq is a (free or pointed) co�bration.
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Proof: Present it as the pushout of the maps Z > Z ãÑ Z � I and f > g : Z > Z Ñ X > Y
in the unpointed case, or Z _ Z ãÑ pZ � Iq

L
pt�u � Iq and f _ g : Z _ Z Ñ X _ Y in the

pointed case.

 Corollary: Every map f : X Ñ Y has the homotopy type of a co�bration whose co�ber
(known as the homotopy co�ber of f) is the mapping cone of f . Proof:

X Y

X Zpfq Zpfq
L
X � CX YX Y � conepfq,

f

Id

iX

h

where h : Zpfq Ñ Y is the homotopy equivalence de�ned on Zpfq �
�
pX � Iq > Y

�M
� by

hprpx, tqsq :� fpxq for px, tq P X � I and hpyq :� y for y P Y .
Remark: Following our usual convention, this result is equally valid in the unpointed and
pointed cases. In the latter version, Zpfq and conepfq are the reduced mapping cylinder
and cone respectively.


 In the following, we rede�ne the unreduced mapping cylinder of a map j : AÑ X by

Zpjq :� Zpj, Idq � X Yj pA� Iq,

where A� I is glued to X along A� t0u instead of A� t1u.
Theorem: There is a natural map Ψ : Zpjq Ñ X � I such that the following conditions are
equivalent:
(1) j : AÑ X is a free co�bration;
(2) Ψ : Zpjq Ñ X � I admits a right-inverse r : X � I Ñ Zpjq;
(3) j : AÑ X has the HEP with respect to the space Zpjq.
(For the pointed version of this theorem and its consequences, see Exercise 5.1.)
Proof: Look at the diagram

(5.1)

A A� I

X Zpjq

X � I

Zpjq

Y

j

i0

φA

j�Id
φA h

φX

i0

φX

H0

Ψ

r

u

The top left square is a pushout square, with φA and φX denoting the maps canonically
associated with the pushout. The universal property of the pushout implies that the maps
Ψ and u exist and are unique; in light of uniqueness, it also implies that r � Ψ � Id if r
exists. The map r does exist (but need not be unique) if j has the free HEP with respect
to Zpjq, and in that case, u � r solves the homotopy extension problem with respect to an
arbitrary given space Y .
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 Remark: If j : A Ñ X is the inclusion of a subspace A � X (which is not a loss of
generality according to Exercise 5.2), then (5.1) shows that Ψ is the canonical bijection

Zpjq Ñ X � t0u YA� I,

which need not be a homeomorphism in general because the subspace topology on X �
t0uYA� I � X� I may be di�erent from the topology of Zpjq �

�
X > pA� Iq

�L
�. But if

A ãÑ X is a co�bration, then r restricts to X � t0u YA� I as a continuous inverse of this
bijection, meaning we have a homeomorphism Zpjq � X � t0u YA� I, and r can then be
interpreted as a retraction

X � I
r
ÝÑ X � t0u YA� I.

Corollary: The inclusion A ãÑ X of a subspace A � X is a co�bration if and only if there
exists a retraction X � I

r
ÝÑ X � t0u YA� I.


 De�nition: For a closed subset A � X, we call pX,Aq an NDR-pair (stands for �neighbor-
hood deformation retract�) if there exists a continuous function u : X Ñ I and a homotopy
ρ : X � I Ñ X such that

ρ1 � IdX , ρt|A � IdA for all t P I, and ρ0 ptu   1uq � A.

Further, we call it a DR-pair if additionally u   1 everywhere on X, in which case the
open subset tu   1u is all of X and ρ is therefore a deformation retraction of X to A.


 Lemma (see Exercise 5.4):
(1) If pX,Aq and pY,Bq are NDR-pairs then so is pX � Y,A � Y Y X � Bq, and it is a

DR-pair whenever either of pX,Aq or pY,Bq is a DR-pair.
(2) If A � X is a closed subset such that there exists a retraction r : X � I Ñ X � t0u Y

A� I, then pX,Aq is an NDR-pair.

 Corollary: For a closed subset A � X, the inclusion A ãÑ X is a free co�bration if and
only if pX,Aq is an NDR-pair.
Proof: Co�bration ñ retraction ñ NDR-pair according to the lemma and the previous
corollary. Conversely, one easily checks that pI, t0uq is a DR-pair, so if pX,Aq is an NDR-
pair, then pX � I,X � t0u Y A � Iq is a DR-pair, implying the existence of the required
retraction.


 Theorem (a useful special case of Theorem FLP): The lifting problem (FLP) is solvable
whenever j : A Ñ X is the inclusion of a subspace A � X and pX,Aq is a DR-pair. (For
applications to tricky lifting problems 1 and 2, see Exercise 5.5.)


 Proof: Assume u : X Ñ I and ρ : X � I Ñ X make pX,Aq a DR-pair, so in particular,
u�1p0q � A, ρ1 � IdX , ρt|A � IdA for all t P I and ρ0pXq � A. The problem to be solved
is

A E

X B

f

j p

g

h .

As an ansatz, we try to de�ne h : X Ñ E in the form

hpxq � rHpx, upxqq,
where rH : X � I Ñ E is a lift of the homotopy

H : X � I Ñ B, Hpx, tq :� g � ρpx, tq.

The condition hpaq � fpaq for a P A is then satis�ed if and only if rH0|A � f , which we
can arrange by requiring the initial lift of the homotopy to be rH0 :� f � ρ0. The condition
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p�hpxq � Hpx, upxqq � g�ρpx, upxqq � gpxq is then satis�ed if ρpx, upxqq � x for all x P X,
which is not necessarily true in general, but can be arranged without loss of generality.
Indeed, for each x P X, ρpx, �q P XI is a path starting in A and ending at x, and is a
constant path for every x P A. It therefore su�ces to reparametrize ρ by speeding up each
of these paths so that for each x R A, ρpx, �q reaches the end already by time t � upxq ¡ 0.
(Exercise: Write this down explicitly and reassure yourself that the modi�ed version of ρ
can be made continuous�in XzA and in the interior of A this is obvious, but one needs
to think more carefully about the boundary of A.)

Lecture 8 (16.05.2024): The Puppe sequence of a �bration. Coming soon. . .

Suggested reading. Coming soon. . .

Exercises (for the Übung on 23.05.2024).

Exercise 5.1. Write down an analogue of the diagram (5.1) for pointed co�brations, in which Zpjq
becomes the reduced mapping cylinder and X � I is replaced by the quotient pX � Iq

L
pt�u � Iq.

Deduce from this a theorem characterizing pointed co�brations A ãÑ X in terms of the existence
of a retraction of pointed spaces.

Exercise 5.2. A continuous map f : X Ñ Y is called an embedding if it is injective and is a
homeomorphism onto its image fpXq � Y with the subspace topology. Embeddings can also be
characterized via the following universal property: an injective continuous map f : X Ñ Y is an
embedding if and only if for every space Z and every (not necessarily continuous) map g : Z Ñ X,
g is continuous whenever the composition f � g is continuous. Before proceeding, take a moment
to make sure you understand why these two versions of the de�nition are equivalent.

(a) Show that for any two maps f : Z Ñ X and g : Z Ñ Y , the natural inclusions of X and
Y into the (unreduced or reduced) double mapping cylinder Zpf, gq are embeddings.

(b) Prove the following dual version of the statement in Exercise 4.2(a): For any co�bration
j : AÑ X and maps f : AÑ Y and φ : X Ñ Y such that the diagram

A

X Y

j f

φ

�

commutes up to homotopy, φ can be replaced with a homotopic map X Ñ Y that makes
the diagram commute on the nose.

(c) Use the universal property of embeddings to deduce from parts (a) and (b) that all co�-
brations are embeddings.
Hint: What can you conclude from an embedding that is the composition of two other
continuous maps?

(d) Recall that a continuous map f : X Ñ Y is a closed map if it sends all closed subsets of
X to closed subsets of Y ; in particular, if f is a closed map, then its image fpXq � Y is
necessarily a closed set in Y . Show that if f is also an embedding, then the converse also
holds, i.e. the closed embeddings are precisely those embeddings f : X Ñ Y whose images
in Y are closed.

(e) Show that if j : A Ñ X is a free co�bration and X is Hausdor�, then j is a closed
embedding.
Hint: You can now assume without loss of generality that A � X is a subspace with
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inclusion j. We showed in lecture that whenever such an inclusion is a free co�bration,
there exists a retraction

X � I
r
ÝÑ pX � t0uq Y pA� Iq,

so for the inclusionX � X�t1u
i1
ãÑ X�I, it follows that x P A if and only if r�i1pxq � i1pxq.

Use this to present A as the preimage of the diagonal subset for some map from X to a
Hausdor� space.
Remark: This has the convenient consequence that the co�berX{A of a co�bration j : A ãÑ
X will be Hausdor� in all examples we ever want to consider (cf. [Wen23, Exercise 6.20]).

(f) Under what assumptions on a pointed space X can you also conclude for a pointed co�-
bration A ãÑ X that A is closed?

(g) The natural statement dual to the result of part (c) would be that all �brations p : E Ñ B
are quotient maps (cf. Exercise 3.3), but this is unfortunately not quite true. Show that if
p : E Ñ B is a �bration and the base B is locally path-connected, then p is an open map,
and is therefore a quotient map if and only if it is surjective. Can you �nd counterexamples
in which p is not a quotient map, either because it is not surjective or because B is not
locally path-connected?
Hint: Thanks to Exercise 4.2(a), you should have the freedom to replace p : E Ñ B with
the natural �bration P ppq Ñ B built out of its mapping path space.

Exercise 5.3. Prove the claims stated in lecture about constructions of co�brations via inclusions
into coproducts or cylinders, compositions, coproducts of maps, and pushouts. If you don't have
time for all of these, focus on pushouts.

Exercise 5.4. For an NDR-pair pX,Aq with associated function u : X Ñ I and homotopy
ρ : X � I Ñ X, the data pu, ρq are sometimes called an NDR-presentation of pX,Aq. Parts (a)
and (b) below give the proof of a lemma that was quoted in lecture; the precise formulas are
adapted from [May99, �6.4].

(a) Prove that if pX,Aq and pY,Bq have NDR-presentations pu, ρq and pv, σq respectively, then
we obtain an NDR-presentation pw,φq of pX � Y,A� Y YX �Bq by setting

wpx, yq :� min tupxq, vpyqu

and

φpx, y, tq :�

�
ρ

�
x, t �min

"
1,
vpyq

upxq

*

, σ

�
y, t �min

"
1,
upxq

vpyq

*
�
,

and in particular, pX � Y,A� Y YX �Bq is a DR-pair whenever either pX,Aq or pY,Bq
is a DR-pair.
Remark: We are following a convention thatmint1, p{qu :� 1 whenever q � 0. Nonetheless,
it is not entirely obvious from the formula that φ : X � Y � I Ñ X � Y is continuous,
especially near points where x or y lies on the boundary of A or B respectively.

(b) Prove that if A � X is a closed subset and r � pρ, τq : X � I Ñ X � I is a retraction onto
the subset X�t0uYA� I, then pu, ρq is an NDR-presentation of pX,Aq, where u : X Ñ I
is de�ned by

upxq :� sup
tPI

|t� τpx, tq| .

What goes wrong here if you do not assume that A � X is closed?
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(c) If (like most of us) you learned the basics of homology from [Hat02], then you may have
noticed some similarity between NDR-pairs and Hatcher's notion of �good pairs�.17 They
are not quite equivalent notions, however; reread both de�nitions to make sure that you
understand why neither implies the other.18

(d) Suppose A � X is closed and is a deformation retract of an open neighborhood U � X
of A, and that X admits a metric (compatible with its topology) for which the distance
between A and XzU is positive. Show that pX,Aq is then an NDR-pair.

(e) Show that all CW-pairs pX,Aq are NDR-pairs.
Hint: Construct u : X Ñ I so that it equals 1 on every cell closure does not touch A,
and also on a neighborhood of the center of every cell that is not contained in A. Start
with AYX0, then extend inductively from AYXn�1 to AYXn for each n P N.

(f) Let RJ denote the vector space
±
J R, equipped with the product topology; equivalently,

you can think of RJ as the set of all (not necessarily continuous) maps J Ñ R, with the
topology of pointwise convergence. Show that if the set J is uncountable, then t0u � RJ
is closed but is not the zero set of any continuous function u : RJ Ñ I, and deduce that
the inclusion t0u ãÑ RJ is not a co�bration.
Hint: If such a function u : RJ Ñ I exists, how can you characterize neighborhoods of the
form u�1pr0, 1{nqq for n P N? Use this to construct a sequence of functions fn : J Ñ R
that satis�es upfnq Ñ 0 but converges pointwise to a nonzero function f : J Ñ R. The
latter will be possible speci�cally because J is uncountable.

Exercise 5.5. Let's start with something easy:

(a) Show that for every free co�bration j : A Ñ X, any choice of base points that makes j
into a pointed map makes it also into a pointed co�bration.

Going from free to pointed �brations is more complicated, and requires the following notion: A
pointed space X is called well-pointed if the inclusion of its base point t�u ãÑ X is a closed free
co�bration.

(b) Show that if p : E Ñ B is a free �bration, then for any choice of base points that makes p
into a pointed map, it satis�es the pointed HLP with respect to all well-pointed spaces.
Hint: If pX, �q is well pointed, then pX � I,X � t0u Y t�u � Iq is a DR-pair. (Why?)

The result in part (b) is the reason why, in practice, one rarely needs to worry about the distinction
between free and pointed �brations. It su�ces for most purposes to restrict attention exclusively to
well-pointed spaces, and many books on homotopy theory impose this condition across the board,
simply for convenience, even though it is often not really necessary.19 Pointed spaces that are

17Hatcher calls pX,Aq a good pair if A � X is closed and is a deformation retract of some open neighborhood
U � X of A.

18I will not suggest searching for examples that satisfy one of the de�nitions but not the other�in practice,
almost all of the examples of interest satisfy both. We will see when we study the homotopy-theoretic perspective
on homology that the role of good pairs is played in that setting by inclusions that are co�brations.

19I have been noticing a tendency in the homotopy theory literature that strikes me as unhealthy. It seems to be
widely assumed that �most� of the important results in homotopy theory will not reliably work unless one restricts
to some �convenient� category of spaces that have better �formal� properties than Top or Top

�
. One of the common

restrictions is to consider only the well-pointed spaces within Top
�
, the standard intuition (so far as I understand

it) being that this is what is required in order to make every result about �brations or co�brations equally valid
in the free and pointed cases. I �nd that intuition to be a dreadful oversimpli�cation of reality. For example, one
cannot simply prove that the transport functor for a free �bration is well de�ned, and then immediately claim that
it is therefore also well-de�ned in the pointed case as long as everything is well-pointed; that summary does not
bear a close resemblence to the correct proof in the pointed case (see Exercise 5.6), in which well-pointedness is not
actually relevant at all. I have noticed several places in textbooks where well-pointedness is assumed without being
necessary, and this even seems to cause some confusion among experts (see e.g. https://math.stackexchange.com/

https://math.stackexchange.com/questions/175590/importance-of-well-pointedness-in-particular-for-the-pointed-mapping-cylinder-c
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not well-pointed are typically quite peculiar, cf. Exercise 5.4(f). One can improve part (b) to the
statement that for any closed free �bration p : E Ñ B with a choice of base points such that p is
a pointed map and B is well-pointed, p : E Ñ B is also a pointed �bration.20 There is also a dual
result, stating that any pointed co�bration j : A Ñ X becomes a free co�bration after forgetting
the base points if both A and X are well-pointed. This result is apparently trickier to prove, but
we will not make any use of it in this course.21

(c) Use DR-pairs to complete the proof that the transport functor for a free �bration is well
de�ned. But if you don't like doing it that way, skip this and proceed to Exercise 5.6.

Exercise 5.6. As mentioned in lecture, the lifting problem

X � pBI � I Y I � t0uq E

X � I2 B

p

G

rG

can indeed be solved by showing that pX � I2, X � pBI � I Y I � t0uqq is a DR-pair, but a few of
you ganged up on me after that lecture and convinced me (with some di�culty) that there is an
easier way, based on choosing a homeomorphism of pairs

pI2, BI � I Y I � t0uq
Φ
ÝÑ pI2, I � t0uq.

Draw enough pictures to convince yourself that such a map exists.

(a) Use the homeomorphism Φ to reduce the lifting problem in the diagram above to an
application of the standard homotopy lifting property. This completes the proof that the
transport functor is well de�ned for every free �bration.

(b) What about the transport functor for pointed �brations? Determine what lifting problem
needs to be solved in order for the transport functor in the pointed setting to be well-
de�ned, and use the homeomorphism Φ to solve it.
Hint: The most useful way to view pointed homotopies X � I Ñ Y in this context is as
pointed maps X�I

t�u�I Ñ Y . This also applies to homotopies of pointed homotopies, which

you can view as pointed maps X�I2

t�u�I2 Ñ Y . Now just check whether what you wrote down

in part (a) descends to the relevant quotients.
(c) Without looking up the de�nition, what do you think the transport functor of a co�bration

A ãÑ X should be, and what extension problem needs to be solved in order to prove that it
is well de�ned? Solve it in the unpointed case by combining a well-chosen homeomorphism
with the knowledge that X � t0u YA� I is a retract of X � I. Then adapt your solution
to the pointed case by letting things descend to quotients.

There may be more exercises coming after Thursday, though this does seem like enough. . .

questions/175590/importance-of-well-pointedness-in-particular-for-the-pointed-mapping-cylinder-c). I
am therefore making a big e�ort to avoid imposing such assumptions when they are not truly relevant. In the case
of well-pointedness, the price we pay is that we must always keep in mind two parallel de�nitions of the HLP and
HEP�one for the free case and another for the pointed case�but this strikes me as the natural thing to do.

20For a proof of this statement, see Proposition 1.8 of Cutler's lecture notes Fibrations IV at https://www.

math.uni-bielefeld.de/~tcutler/. The proof uses the characterization of �brations in terms of lifting functions

(Exercise 3.7), which is the dual variant of the characterization of co�brations in terms of retractions. It also uses
a weaker assumption than t�u ãÑ B being a closed co�bration; it is su�cient in fact to assume that the base point
in B is the zero set of a continuous function B Ñ I.

21The full details take about three pages in [MP12, Lemma 1.3.4], where they appear together with a de facto
apology for having stated the result casually in [May99, �8.3] as if it were a self-evident fact with no need for
justi�cation.
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