TOPICS IN TOPOLOGY (“TOPOLOGIE IIT’), SOMMERSEMESTER 2024, HU
BERLIN

CHRIS WENDL

This is not a set of lecture notes, but merely a brief summary of the contents of each lecture,
with reading suggestions and a compendium of exercises. The suggested reading will usually not
correspond precisely to what was covered in the lectures, but there will often be a heavy overlap.

PROLOGUE: NOTATION

Before getting into the content of the course, here is a glossary of important notation that is
used in the lectures, including some comparison with other sources such as [tD08, DK01, Wen23]
where different notation is sometimes used. This glossary will be updated during the semester as
needed, and it is not in alphabetical order, but there is some kind of ordering principle. .. maybe
you can figure out what it is.

Categories.

e General shorthand: For any category %, I often abuse notation by writing X € € to mean
“X is an object in ¥”; many other authors denote this by “X € Ob(%)” or something
similar. For two objects X,Y € €, I write

Homg (X,Y) or sometimes just Hom(X,Y)

for the set of morphisms X — Y. The notation Mor(X,Y) is also frequently used in
many sources, and would make more sense linguistically, but it seems to be less popular.
Given two functors F,G : & — %, the notation

T:F—¢g

means that T is a natural transformation from F to G.

e Top: the category of topological spaces and continuous maps

e Top,: the category of pointed spaces and pointed maps, i.e. an object (X,x) is a
topological space X equipped with a base point « € X, and morphisms f : (X,z) — (Y,y)
are continuous maps X — Y that send = to y. This notation is common but not universal,
e.g. [tD08] uses a superscript 0 to indicate base points, so Top, is called TOPY.

e Set: the category of sets and maps (with no continuity requirement,)

o Set,: the category of pointed sets and (not necessarily continuous) pointed maps,
i.e. an object (X, z) is a set X with a base point x € X, and morphisms f : (X, z) — (Y,y)
are arbitrary maps X — Y that send z to y.

e Top™!: the category of pairs of spaces (X, A) and maps of pairs, i.e. an object (X, A) is
a topological space X equipped with a subset A c X, and morphisms f : (X, A) — (Y, B)
are continuous maps X — Y that send A into B. Despite the uniquity of this category,
there doesn’t seem to be any common standard notation for it; [tD08] calls it TOP(2), and
similarly writes TOP(3) for the category of triples (X, A, B) with B ¢ A ¢ X, and so
forth. In [Wen23] I used a subscript instead of a superscript, but I'm changing it so that I
can also define the next item on this list.
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Top'®!: the category of pointed pairs of spaces, i.e. an object (X, A, z) is a topological
space X equipped with a subset A < X and a base point x € A, and morphisms [ :
(X,A,z) - (Y,B,y) are maps of pairs (X, A) — (Y, B) that also send = to y. I have
no idea what anyone else calls this, but it’s a subcategory of what [tD08] calls TOP(3),
and is in any case clearly important since e.g. it is the domain of the relative homotopy
functors m,,.
hTop, hTop,, hTop™, hTop': the homotopy categories associated to Top, Top,, Top™
and Top]fkel respectively, meaning we define categories with the same objects, but instead
of taking morphisms to be actual maps, we define them to be homotopy classes of maps
(respecting subsets and/or base points where appropriate, so e.g. pointed homotopy
for hTop,, and homotopy of maps of pairs for hToprel). This notation (or similar) for
homotopy categories is very common, but different from my Topology I-II notes [Wen23],
which wrote e.g. Topf,f instead of hTop,,.
Diff: the category of smooth finite-dimensional manifolds without boundary, and smooth
maps
Grp: the category of groups and group homomorphisms
Ab: the category of abelian groups and homomorphisms, which is a subcategory of Grp
Ring © CRing D Fld: the category of rings with unit and its subcategories of commu-
tative rings and fields respectively, with ring homomorphisms (preserving the unit)
R-Mod: the category of modules over a given commutative ring R and R-module ho-
momorphisms. Tn [Wen23] T called this Mod”, and other variations such as Mod-R are
also common.
K-Vect: the category of vector spaces over a given field K and K-linear maps, i.e. this
is R-Mod in the special case where R is a field K. In [Wen23] I called this Veck.
Categories of (co-)chain complexes: given any additive category &/ such as Ab or R-Mod,

Ch(«) or sometimes simply Ch

denotes the category of chain complexes ... —» A, ;1 —> A, > A,,_1 — ... formed out of
objects and morphisms in &7, with the morphisms of Ch(«) defined to be chain maps.
There is a similar category CoCh(«?) of cochain complexes ... > A,—1 — A, —> A,y1 —
..., though I am not really happy with this notation and I doubt that anyone else is
either. In [Wen23] I denoted Ch(Ab), CoCh(Ab), Ch(R-Mod) and CoCh(R-Mod) by Chain,
Cochain, Chain® and Cochain® respectively. One sometimes sees a meaningless subscript
such as Ch,(«/) added, but there are also meaningful subscripts that define important
subcategories such as e.g. Ch>o(<7), the chain complexes that are trivial in all negative
degrees.

Homotopy categories of chain complexes: analogously to the homotopy categories
of spaces, one can take the objects in Ch(%) and define morphisms to be chain homotopy
classes of chain maps instead of actual chain maps. The internet seems quite insistent that
I should call the resulting category

K(&) := the (naive) homotopy category associated to Ch(«?),

even though I’d rather call it hCh(.27), and in [Wen23] T wrote e.g. Chain” instead of K(Ab);
on occasion I have even seen Ho(%7) in place of K(<). I have no idea what notation to
use for the homotopy category of cochain complexes. People who like derived categories
will tell you that there are other things more deserving of the name “homotopy category
of chain complexes,” and I added the word “naive” above in order to avoid getting into
conversations about it with those people, which would be completely unnecessary for the
purposes of the present course.
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e Topg, Topg 4, hTopp and hTopy ,: Given a space B, these are the various categories of
(unpointed or pointed) spaces over B with maps over B or homotopy classes thereof,
as defined in Week 4, Lecture 6. The notation used in [tD08] for Topy and hTopy is not
identical but sufficiently similar; I cannot find definitions in [tD08] for the pointed variants
Topp , and hTopg .

Topological constructions.

e X 11Y: This is how I write the disjoint union of two topological spaces (and similarly
for pairs of spaces), and most sensible people use either this notation or X u'Y, but
[tDO08] instead writes X + Y and calls it the topological sum of X and Y, presumably
because—Ilike the direct sum of abelian groups and many other constructions that use the
word “sum”—it is a coproduct. The book by tom Tieck becomes significantly easier to read
once you realize this.

e X[]Y: the coproduct of X and Y, whatever that means in whichever category X and
Y happen to live in, so e.g. in Top, it means the same thing as X 1Y, though in Top,, it
means X v Y.

e [X,Y]: If X and Y are just topological spaces (i.e. objects in Top), then this denotes the
set of homotopy classes of maps X — Y, i.e.

[X,Y] := Homp1op(X, Y).

If X and Y are equipped with additional data (which may be suppressed in the notation)
and are thus objects in Top,, Top™ or Topffl, then I use the same notation [X, Y] to mean
the corresponding notion of homotopy classes in each category, so e.g. in the context of

pointed spaces, I would write
[X, Y] := Hompop, (X, Y),

and similarly for (pointed or unpointed) pairs of spaces. This convention is popular but
not universal, e.g. [tD08] writes [X,Y]° for the set of pointed homotopy classes and uses
[X, Y] only to mean unpointed homotopy classes; [DK01] does the same but writes [ X, Y]o
instead of [X,Y]°.

e X vY and X AY: these are the wedge sum and smash product respectively of pointed
spaces, and mercifully, everyone seems to agree on what they mean and how to write them.

e Implied base points: for a pair of spaces (X, A), the quotient space X/A is often
interpreted as a pointed space, with the collapsed subset A as base point. Similarly, for
two pointed spaces X,Y, the set of pointed homotopy classes [X,Y] is viewed as a
pointed set (i.e. an object in Set,) whose base point is the homotopy class of the constant
map to the base point of Y.

¢ One-point spaces: the symbol * is often used to mean either a one-point space, the
unique point in that space, or sometimes a previously unnamed base point of a given
pointed space. It should usually be clear from context which is meant.

e [: this usually denotes the unit interval

I:=10,1],

as appears in domains of paths, homotopies etc.
e Homotopy relations: Given maps f,g: X — Y, I write

Sy
to means that f and g are homotopic ([tD08] writes “f ~ ¢”), and

fiy
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to mean that H is a homotopy from f to g, thought of as a path in the space of maps,
hence H : I x X — Y with H(0,-) = f and H(1,-) = ¢g. This can also mean e.g. pointed
homotopy or homotopy of maps of pairs if working in Top,, or Top™ respectively. Where
I write f 4 g, [tDO8] writes H : f ~ g.

e Homotopy commutative diagrams: I use a diagram of the form

z -1, x

o~ ]

Yy -5 Q
to mean that o f and 1o g need not be identical but are homotopic, whatever that means
in whichever category the objects of the diagram live in, e.g. if they are pointed spaces it
means pointed homotopic, for spaces without base points it just means homotopic—it may
also mean chain homotopic if the objects are chain complexes. If I write the variant

7z 1. x

lg . l@ )

Yy 25 Q
then it means that « is a homotopy (or chain homotopy as the case may be) from po f to
1 og. It wasn’t easy to figure out how to render this in LaTeX, so maybe that’s why most
textbooks don’t do it.

o Z(f), Z(f,qg), cone(f): mapping cylinders, double mapping cylinders and mapping
cones (see Week 2, Lecture 3)

e C'X, SX: the cone and suspemnsion respectively of a space X. In the context of pointed
spaces the same notation may instead mean the reduced cone/suspension.

o P(f), P(f,g), F(f): the mapping path space of a map, double mapping path space
of two maps, and homotopy fiber of a map respectively, as defined in Week 3, Lecture 5.
These constructions are dual to Z(f), Z(f,g) and cone(f) respectively, in the sense that
they fit into analogous diagrams with all arrows reversed.

e [X,Y]p: For two spaces X, Y over another space B, this is the set of (unpointed or pointed)
homotopy classes of maps over B, i.e. morphisms in the category hTopg or hTopp ,.

1. WEEK 1
Lecture 1 (15.04.2024): Motivation and colimits.

¢ Motivational theorem on exotic spheres (Milnor 1956): There exists a smooth manifold ¥
that is homeomorphic but not diffeomorphic to S7. (In fact, Kervaire and Milnor proved
shortly afterwards that there are exactly 28 such manifolds up to diffeomorphism.)

e Outline of a proof (slightly ahistorical), with notions that will be major topics in this course
written in red:

(1) Pontryagin classes: Associate topological invariants py(E) € H**(X;Z) for each k € N
to every isomorphism class of vector bundles E over a given space X. Since every
smooth manifold M has a tangent bundle T'M, we can define pi(M) := pp(TM) €
H*(M;Z) as an invariant of smooth (but not topological) manifolds.

(2) Intersection form and signature: For a compact oriented 4k-manifold M (possibly
with boundary), the intersection form is the quadratic form Qn; on H2*(M,0M;Z)
defined by

Qu(a) ={lava,[M])eZ,
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and it’s called the “intersection form” because it can be interpreted as a signed count of
intersections between two generic closed oriented submanifolds representing the class
in Hop(M;Z) Poincaré dual to a. The signature o(M) € Z is essentially the number
of positive eigenvalues minus the number of negative eigenvalues' of this quadratic
form.

(3) Hirzebruch signature theorem (8-dimensional case): For M a closed oriented 8-manifold,

o(M) = S (Tpa(M) — py (M) 0y (M), [M]).

(4) (the clever bit) Construct a compact oriented smooth 8-manifold X with simply con-
nected boundary Y := 0X such that o(X) = 8, Ha(Y) and H3(Y') both vanish, and
the tangent bundle T'X is stably trivial, which implies its Pontryagin classes van-
ish. The construction can be described (key words: “plumbing of spheres”), and the
computations carried out, using only methods from Topology 2.

(5) Deduce via Poincaré duality, the Hurewicz theorem and Whitehead’s theorem? that Y’
is homotopy equivalent to S7. By Smale’s solution to the higher-dimensional Poincaré
conjecture,’ it follows that Y is homeomorphic to S7.

(6) Argue by contradiction: If Y is diffeomorphic to S”, then one can construct a closed
smooth 8-manifold M by gluing X to an 8-disk along a diffeomorphism 0X =Y =
S7 = oD’

M = X ugr D8

Methods from Topology 2 (e.g. Mayer-Vietoris) now imply p; (M) = 0 and o(M) = 8,
so Hirzebruch says

450(M) = 45 - 8 = pa(M), [M]).

But the right hand side of this relation is a multiple of 7, and the left hand side is
not.
o Interpretation of a functor F : ¢ — % as a diagram in ¥ over _Z, constant functors
X : 7 — € as targets, the universal property and definition of the colimit colim(F)
e Interpreting direct systems as diagrams and direct limits as colimits
e Defining the quotient space X /A as colimit of the diagram

A — %

l

X

understood as a functor # — Top, where _¢# is a category with three objects and only
two nontrivial morphisms.

IWhat 1 really mean is: first rewrite Qs as a quadratic form on H28(M, dM; Q) or H2*(M, M ;R), which is a
vector space, so that by standard linear algebra, you can present it in terms of a symmetric linear transformation
and look at the eigenvalues of that transformation. One can define this in a more obviously invariant way by talking
about maximal subspaces on which Q) is positive/negative definite.

2A 3-dimensional version of this same argument is described in [Wen23, Lecture 57], using the theorems of
Hurewicz and Whitehead as black boxes.

3This is the one major black box in this proof that I do not intend to fill in, because that would be a whole
course in itself.
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Lecture 2 (18.04.2024): From coproducts to pullbacks and pushouts.

The limit lim(F) of a diagram F: 7 — ¢
Inverse limits as limits of diagrams
Important special cases of limits and colimits:
— Coproducts [ [, and examples in the categories Top (disjoint union), Top, (wedge
sum), Ab (direct sum) and Grp (free product)
— Products x (or []), and examples in Top
— Equalizers and co-equalizers, realization in Top as subspaces or quotient spaces
respectively
Word of caution: limits and colimits are not guaranteed to exist, e.g. in the category Diff
of smooth finite-dimensional manifolds without boundary, finite or countable coproducts
exist (and are the same thing as in Top), but uncountable disjoint unions are not second
countable and are thus not objects in Diff. Similarly, finite products exist in Diff but
infinite products typically do not.
Theorem: In any category %, all (co-)limits can be presented in terms of (co-)products
and (co-)equalizers, if they exist.
Proof sketch (co-limit case): Given F : # — € : o — X,, construct colim(F) as the

equalizer of two morphisms Y 19, 7 defined as follows. Write the set of all morphisms in
¥ as Hom(_#, #); we then take Y to be the coproduct

Y := H X4, where for ¢ € Hom(, B), X4 := Xa,
¢eHom( ¢, )
while Z is the slightly simpler coproduct

Z:= 1] Xs.

Be 7

For each a,8 € # and ¢ € Hom(a, ), let f4 : X4 — Z denote the composition of the
morphism ¢, : Xy = X, — Xg with the canonical morphism Xz — ]_[76] X, of the
coproduct; the universal property of the coproduct then dictates that the collection of
morphisms fy : X4 — Z determines a morphism f : Y — Z. Similarly, g : ¥ — Z is
determined by the collection of morphisms g4 : X — Z defined for each ¢ € Hom(c, 3) as
the compositions of Idx, : X4 = Xo — X, with the canonical morphism X, — ]_[76/ X5
Now check that the universal property is satisfied (exercise).

Upshot: In Top, colimits are quotients of disjoint unions, limits are subspaces of products.
Fiber products: presenting the fiber product of two maps f: X - Zandg:Y — Z in
Top as the “intersection locus”

X %, Y i={(z,y) e X xY | f(x) = g(v)}

with the obvious projections to X and Y.

Interpreting fiber products as pullbacks

Pushouts: presenting the pushout of two maps f: Z — X and g : Z — Y in Top as
“gluing spaces together” along a map:

X ju, Y = (X1Y) /f(z) ~g(z) for all z€ Z.

Question for thought: How many of these constructions of limits or colimits work in the
homotopy categories hTop or hTop,? (Hint: Do not try too hard to make sense of equalizers
and co-equalizers.)
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Suggested reading. The main definitions involving direct systems and direct limits can all be
found in [Wen23, Lecture 39], with the generalization to colimits explained in Exercise 39.24. If
you’re really serious about this stuff, you can also try reading [Mac71].

If you want to read more about exotic spheres, there’s a nice collection of relevant literature
assembled at https://www.maths.ed.ac.uk/"viranick/exotic.htm.

Exercises (for the Ubung on 25.04.2024). Since the Ubung on 25.04 was cancelled due to
illness, most of the exercises for Week 1 have now been supplemented with written answers and/or
some discussion.

Exercise 1.1. In what sense precisely are the limit and colimit of a diagram F : # — % unique,
if they exist?

Answer: If the limit or colimit exists (of which there is no guarantee, cf. Exercise 1.7), then
it is unique up to canonical isomorphisms. Precisely: Suppose X,Y € € are two objects, together

with collections of morphisms F(a) 2% X and F(«) Lo Y for all € ¥, such that both satisfy
the universal property for colim(F). Then there is a uniquely determined isomorphism

f:X =Y such that Yo =fop, forallae 7.

The existence and uniqueness of a morphism f satisfying this condition follows from the universal
property of X, and the fact that it is an isomorphism follows by reversing the roles of X and Y,
since Y also satisfies the universal property. For lim(F) there is a similar uniqueness statement,
proved in a similar way.

Note that in most categories, uniqueness “up to canonical isomorphisms” is the best that one
could hope to get from universal properties, as one will always have the freedom to replace a
given object playing the role of colim(F) or lim(F) with a different object that is isomorphic to
it. In practice, our favorite categories often come with canonical constructions that lead to specific
objects, e.g. the disjoint union (also known as the coproduct) of a given collection of topological
spaces is a specific space, not just an equivalence class of spaces up to homeomorphism. But
in various situations, limits or colimits can also arise from something other than the canonical
construction, and finding an isomorphism with that canonical construction may be harder than
explicitly verifying the universal property.

Exercise 1.2 (morphisms between (co-)products). Assume J is a set, and {X,}aes and {Yy}aes
are collections of objects in some category ¢ such that the products

7TX 7TY
BeJ BeJ

aeJ aeJ
and coproducts
i i
Xg -5 [ Xa , v, 5]V
aeJ BeJ aeJ BeJ

exist. In what sense does an arbitrary collection of morphisms {f, : Xo — Ya,}aes uniquely
determine morphisms

[Tre:[[Xa=]]Yer and  JJfe:[[Xa—]]Ya?
aeJ aeJ aeJ agJ aeJ aeJ

Argue in terms of universal properties, without using your knowledge of how to represent products
and coproducts in any specific categories.
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Answer: The morphisms [ [, fo and [[, fo are uniquely determined by the condition that the
diagrams

fﬁ H fa

Xg —— Y3 [I.Xe — 1], Ya
A
HO(XQMHO‘YQ XﬁLY5

commute for every 5 € J. One gets the existence and uniqueness of [ [ fo from the universal
property of the coproduct [ [, X, because the morphisms 135/ ofg:Xg—][,Ye make [[ Y, a
target of the diagram whose colimit is [ [, Xo. Similarly, the existence and uniqueness of [, fa
follows from the universal property of the product [ [, Y4, using the collection morphisms fz owé( :

HaXa g Yg.

Exercise 1.3 (finite limits and colimits). Show that in any category %, finite colimits always exist
if and only if all pushouts exist and % has an initial object (see Exercise 1.5). Dually, finite limits
always exist if and only if all pullbacks (also known as fiber products) exist and € has a terminal
object.*

Hint: By a theorem stated in the lecture, it suffices if you can express arbitrary (co-)equalizers
and finite (co-)products in terms of pushouts or pullbacks.

Solution: Note that the statement of this exercise has been revised; the original version had
two errors, one being its failure to mention initial and terminal objects, and the other an oversim-
plification of what it means for a limit or colimit to be finite—we need the category _# underlying
the diagram to have finitely-many morphisms, not just finitely-many objects.

With that understood, let’s assume all pushouts exist and that 4 also has an initial object
0 € ¥. If we can show that all finite coproducts and all coqualizers exist, then the theorem from
lecture uses these to construct a colimit for any diagram F : ¢ — % such that ¢ has only finitely
many objects and morphisms. (Regarding the errors in the original version: note that if # has
finitely-many objects but infinitely-many morphisms, then one of the coproducts needed for the
theorem from lecture is not finite.)

You should be able to convince yourself via an inductive argument that if the coproduct of two
objects X,Y € ¥ always exists, then all finite coproducts exist. So let’s show first that X [[Y
exists for arbitrary X,Y € €. At this point I find it helpful to think about how coproducts and
pushouts are constructed concretely in the example ¥ = Top: the coproduct of X and Y is their
disjoint union, and the pushout of a pair of maps f : Z —- X and g : Z — Y is a quotient of
that disjoint union by the equivalence relation such that f(z) ~ g(z) for all z € Z. If we want to
make that equivalence relation trivial so that the pushout turns out to be the same thing as the
coproduct, the solution is to choose the empty set for Z; the maps f, g are uniquely determined
by this choice, because the empty set is an initial object in Top (see Exercise 1.5). This suggests
that in our given category ¥ with initial object 0 € €, the pushout of the diagram

0— X

|

Y
should be the coproduct of X and Y’; note that only one diagram of this form is possible since

0 being initial means that the morphisms 0 — X and 0 — Y are unique. Now suppose P is the

4The word “finite” in this context refers to limits or colimits of diagrams F : # — ¢ such that ¢ has only
finitely many objects and morphisms.
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pushout of this diagram, equipped with morphisms ¢ : X — P and ¥ : Y — P, and suppose we
are given another object Z with morphisms f: X — Z and g : Y — Z. The diagram

>

—

—
~

!

N

_9,

then trivially commutes, since there is only one morphism 0 — Z, and the universal property of
the pushout gives rise to a unique morphism u : P — Z such that f = uwo ¢ and g = w o v, which
amounts to the statement that P with its morphisms ¢ and 1 also satisfies the universal property
of the coproduct X [[Y.

We show next that the coequalizer of an arbitrary pair of morphisms

X

f
/;\,xY
~Z

in ¥ can also be constructed as a pushout. Think again about how it works in the case ¥ = Top:
the coequalizer here is the quotient of Y by the equivalence relation such that f(x) ~ g(z) for all
x € X. If we instead take the pushout of f and g, the resulting space is too large: it is a quotient
of Y 1Y instead of Y, meaning that we glue together two copies of Y by identifying f(z) in one
copy with g(z) in the other copy for each x € X. But the correct space can be obtained from this
by making the equivalence relation larger, so that for every y € Y, y in the first copy gets identified
with y in the second copy. The way to realize this is by enlarging the domain of the pair of maps
used in defining the pushout: instead of the two maps f,g : X — Y, we consider the pushout of
the two maps flild,guild: XY — Y.

Let’s say that again without assuming @ = Top. We’ve already shown that the coproduct X [[Y
of two objects in 4 can be constructed, and if we write ix : X -» X [[Y and iy : Y —» X [[Y for
the canonical morphisms that coproducts come equipped with, then by the universal property of
the coproduct, every morphism ¢ : X — Y determines a unique morphism o [[Id: X [[Y - Y

for which the diagram

X]_[Y plI1d,
Y

commutes. Claim: Given two morhisms f,g: X — Y, a diagram of the form

X[y U9y

b |

y —%
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commutes if and only if ¢ = and po f = ¢ o g. To see this, we can enhance the diagram in two
ways using the universal property of the coproduct: first,

shows that if the given diagram commutes, then ¢ = p old = 1 o Id = 1. Assuming this, the
second enhanced diagram

X

x1py 44y

s |

y —Y 7

3

then proves po f = 1pog = ¢ og. Conversely, if one assumes ¢ = ¢ and po f = p o g, then
wo(f]]Id) and 1o (g]]Id) are two morphisms X [[Y — Z whose compositions with ix and iy
are identical, so the uniqueness in the universal property of the coproduct requires them to be the
same.

The result of the claim is that pushout diagrams for the two morphisms f[[Id: X [[Y - YV
and g]JId : X[[Y — Y are equivalent to coequalizer diagrams for f,g: X — Y. It is a short
step from there to the conclusion that an object Z with morphism Y — Z satisfies the universal
property of the coequalizer if and only if Z with two copies of that same morphism Y — Z satisfies
the universal property of the pushout.

For the dual case of this whole story, I will just say this: if 1 € ¥ is a terminal object, then the
uniqueness of morphisms to 1 implies that the pullback of the diagram

X

|

Y —— 1
satisfies the universal property of the product X x Y. Having shown that finite products exist, one
then obtains the equalizer of any pair of morphisms f,g: X — Y as the pullback of the diagram
X
Idxf -

X 459 x o« y
If finite products and equalizers always exist, then all finite limits can be constructed out of them.

Exercise 1.4. Let’s talk about some coproducts and products in algebraic settings.

(a) What is a coproduct of two objects in the category Ring of rings with unit? Try to describe
it explicitly.

(b) Same question about products in Ring. (This one is perhaps easier.)

(c) Show that two fields of different characteristic can have neither a product nor a coproduct
in the category Fld of fields.
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Answers: The coproduct of two rings A, B is their tensor product A ® B, equipped with the ring
homomorphisms

A£>A®B:al—>a®17 Bi—B>A®B:bv—>1®b.

As a set, A® B is the same thing as the tensor product of A and B as abelian groups; one then
gives it a ring structure by defining

(a®b)(d @) := (ad") ® (bV').

It is easy to check that the required universal property is satisfied. Perhaps more interesting is to
observe that in the more familiar categories Ab and R-Mod in which we are used to talking about
tensor products, they do not arise as colimits, and there is an obvious reason why they shouldn’t:
the only obviously canonical homomorphisms I can think of from a pair of abelian groups A and
B to their tensor product A ® B are the trivial ones. The big difference in Ring as that rings
have multiplicative units, and these give rise to canonical nontrivial morphisms from A and B
to A® B as described above. (For similar reasons, you also should not try to think of tensor
products as categorical products—for a more useful categorical perspective on tensor products, see
Exercise 1.9.)

The product in Ring is exactly what you’d expect: the product of rings.

For fields, the problem is that there are in fact no field homomorphisms at all between a pair
of fields with different characteristics. So for any fields A and B, the need to have morphisms
A,B — A]]B and A x B —> A, B means that neither the coproduct nor the product can exist
unless A and B have the same characteristic (which their product and coproduct must then also
have). For example, Zs and Q have no coproduct in Fld, though they do have a coproduct in Ring,
namely Zo ® Q, which is an extremely indirect way of writing the trivial ring. (Amusing exercise:
show that 1 = 0 in Zo ® Q. The elements 1 and 0 are never equal in a field.)

Exercise 1.5 (initial and terminal objects). In defining limits and colimits of diagrams ¥ : ¢ —
¢, the set of objects in ¢ is not required to be nonempty. When it is empty, we can think of
colim(F) is a coproduct of an empty collection of objects in %, and colim(F) is then called an
initial object in ¥. Similarly, the product lim(F) of an empty collection of objects is called a
terminal (or final) object in €.

(a) Reformulate the definitions given above for the terms “initial object” and “terminal object”
in a way that makes no reference to limits or colimits, and using this reformulation, give a
short proof that both are unique up to canonical isomorphisms, if they exist.

(b) Show that for any initial object 0 € &, the coproducts 0[[ X and X []O0 exist and the
canonical morphisms of X to each are isomorphisms. Similarly, for any terminal object
1 € &, the products 1 x X and X x 1 exist and their canonical morphisms to X are
isomorphisms.

(c) Describe what initial and terminal objects are in each of the following categories, if they
exist: Top, Top,, Ab, Ring, and Fld.

Hint: You might guess the last two from Exercise 1.4.

Answers: If 7 is the empty category, then there is a unique diagram F : ¢ — €, but it
carries no information. If we want to define a colimit of this diagram, then any object X € ¥
can be considered a target; there is no need to specify any morphisms since _# has no objects.
The condition of X being a universal target is, however, nontrivial: it means that for any other
target Y, there is a unique morphism u : X — Y such that. .. well, at this point we would normally
say that certain morphisms admit factorizations through the morphism u, but since ¢ has no
objects, there are no morphisms to be factored and thus no further conditions to impose. We are
left only with this: X € ¥ is an initial object if and only if for every object Y € €, there is a



12 CHRIS WENDL

unique morphism X — Y. That’s the usual definition—we stated it in a much more roundabout
way by talking about coproducts over the empty category.

Here’s the dual version: X € € is a terminal object if and only if for every object Y € €, there
is a unique morphism Y — X.

With these definitions understood: if 0,0’ € & are two initial objects, then there is a unique
morphism 0 — 0/, and there is also a unique morphism 0’ — 0. Moreover, there are unique
morphisms 0 — 0 and 0’ — 0’, and both of those have to be identity morphisms, since identity
morphisms must always exist. It follows that the unique morphisms 0 — 0’ and 0’ — 0 are
inverse to each other, and are thus isomorphisms. The uniqueness of terminal objects up to unique
isomorphisms is proved similarly; there is only a slightly different reason for the uniqueness of the
morphisms 1 — 1’ and so forth.

Let’s consider the coproduct of an initial object 0 € ¥ with an arbitrary X € ¥. We claim that
X itself plays the role of the coproduct, together with the two morphisms

AN
v

0

X >
d

X

the first of which is determined by the condition that O is an initial object. Indeed, suppose Y is
given, along with a morphism f: X — Y and the unique morphism 0 — Y (for which there is no
freedom of choice). The dashed arrow in the following diagram is then uniquely determined,

0 f\
s
f
X
and this establishes the universal property of the coproduct. In this way of representing 0 [ [ X, the
canonical morphism X — 0] ] X is imply the identity morphism X — X, and thus an isomorphism.

Similar arguments prove the analogous statements about X [J0, 1 x X and X x 1.
Here is an inventory of initial and terminal objects in specific categories:

s
h<

e Top: the empty set ¢F is initial, and every one-point space * is terminal. Note that the
initial object in this case is not just unique up to isomorphism, but is actually unique,
i.e. there really is only one object in Top called . By contrast, the unique point in a one-
point space can be anything, and the collection of all possible one-point spaces is therefore
too large to qualify as a set; it is a proper class. Nonetheless, there is indeed a unique
homeomorphism between any two of them.

e Top,: every one-point space is both an initial and a terminal object.

e Ab: every trivial group is both initial and terminal. The answer in R-Mod is the same, in
case you’d wondered.

e Ring: this one’s more interesting. According to Exercise 1.4, tensor products are coproducts
in Ring, so an initial object R € Ring should be a ring with the property that R A =~ A =
A® R for all rings A € Ring; plugging in A := Z as a special case, one deduces R = Z.
And indeed, for any other ring B, a ring homomorphism Z — B is uniquely determined
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by the condition that it preserve the 0 and 1 elements. Terminal objects are trivial rings,
i.e. those in which 1 = 0.

e Fld: there are no initial or terminal objects in Fld, because as discussed in the answer to
Exercise 1.4(c), there do not exist any fields that admit homomorphisms either to or from
every other field (of arbitrary characteristic).

Exercise 1.6 (biproducts). Assume & is a category in which the sets Hom(A, B) of morphisms
A — B for each A, B € o are equipped with the structure of abelian groups such that composition
Hom(A, B) x Hom(B,C) : (f,g) — go f is always a bilinear map. (Popular examples are the
categories Ab of abelian groups and R-Mod of modules over a commutative ring R.) A biproduct
of two objects A, B € & is an object C € & equipped with four morphisms

A A
C
B B

(1.1)

that satisfy the five relations
(1.2) mata =14, 7wpip=1p, 7aip=0, 7pta=0, iamsa+ipng=1c.

In the categories Ab or R-Mod, an example of a biproduct of A and B is the direct sum A @ B
with its canonical inclusion and projection maps. The category <7 is called additive if every pair
of objects has a biproduct.

(a) Show that for any biproduct as in the diagram (1.1), C' with the morphisms i,ip is a
coproduct of A and B, and with the morphisms 74, 7p it is also a product of A and B.

(b) Show that in the categories Ab and R-Mod, every biproduct of two objects A, B admits
an isomorphism to A@® B that identifies the four maps in (1.1) with the obvious inclusions
and projections.

(c) A (covariant or contravariant) functor F : &/ — % between two additive categories is called
an additive functor if the map defined by F from Hom(A, B) to Hom(F(A), F(B)) or
(in the contravariant case) Hom(F(B), F(A)) is a group homomorphism for all A, B € <.
Show that additive functors send all biproducts in <7 to biproducts in Z.

Remark: Popular examples of additive functors Ab — Ab or R-Mod — R-Mod are @G, G®,
Hom(-, G) and Hom(G, -) for any fixed module G, as these arise in the universal coefficient theorems
for homology and cohomology.

Answers: Let’s show first that (1.1) and (1.2) make C' with the morphisms i4 : A — C and
ip : A = B into a coproduct of A and B. We need to show that the dashed morphism u in the
diagram

exists and is unique for any given object X € & with morphisms f4, fp from A and B respectively.
Start with uniqueness: if u is a morphism for which this diagram commutes, then using (1.2) and
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the assumption that composition is bilinear, we have
u=u(iama +ipnp) = (wia)ma + (uip)mp = fama + fB7B.

For existence, we then just need to define u by this formula and show that it satisfies ui4 = fa and
uip = fp, which also follows easily from the relations (1.2). The proof that C with the morphisms
w4, g is a product of A and B is similar.

For part (b), we already know that A @ B defines a biproduct of R-modules A and B, so what
we really need is a general result about uniqueness of biproducts up to isomorphism. We already
have such results for products and coproducts separately, but we cannot directly apply them
here, even though we know that biproducts are both; the trouble is that doing so will produce two
isomorphisms between any two biproducts of A and B, one that arises by viewing them as products,
and another by viewing them as coproducts. We want to see that those two isomorphisms are the
same one.

Concretely, let’s suppose that (1.1) and (1.2) are given, and that we also have a second object C”
and set of morphisms ¢4, iz, 7'y, 75 satisfying the same set of relations. We do not need to assume
&/ is Ab or R-Mod for this discussion, as it will make sense in any category for which biproducts
can be defined, but some intuition about direct sums may nonetheless be helpful for writing down
suitable morphisms between C and C”. Explicitly, define

fi=iyma+igng: C - ', and g =iamy +ipng: C' — C.
Using (1.2), we then have
gf = (iam'y +ipnp)(i'yma +igmE) = ia(myi's)ma +ia(mhi's)mp +ig(ngi'y)ma +ip(ngig)TE

=1iama +ipmp = 10,
and by a similar calculation, fg = 1, so f is an isomorphism with g = f~!. Using f to identify
C with C’ now transforms the morphism 74 : A — C into

fia = (iyma +igmp)ia =iy (maia) +ig(rpia) =iy : A > ',
and it transforms the morphism 74 : C' — A into
maf Tt =maliany +ipnly) = (maia)7y + (maip)ny =y 1 O — A,
and by similar calculations,
fip =ip, mpf "l =7

One can now appeal to abstract principles (i.e. the universal properties of products and coproducts)
to deduce that f is indeed the only isomorphism C' — C’ that relates the morphisms i 4,4y and so
forth in this way.

For a covariant additive functor F : &/ — 4, it is easy to check that F sends the four morphisms
of (1.1) to morphisms

F(4) F(4)

Flia) F(ma)
\f(c) /
F(ip) F(rB)
F(B) / \F (B)

in # that satisfy the five relations (1.2), making F(C) a biproduct of F(A) and F(B). The amusing
detail is what happens if F is contravariant: it still works, but the reversal of arrows means that
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some roles need to be switched, e.g. the diagram in £ arising from (1.1) must be written as

F(4) F(4)

NJw Sl

With F(7w4), F(rp) now playing the roles formerly played by i4,ip and F(ia), F(ip) playing the
roles of ma,7p, one easily checks that the five relations (1.2) are satisfied, so F(C) is again a
biproduct of F(A) and F(B), with contravariance having transformed inclusions into projections
and vice versa.

Exercise 1.7 (fiber products in Diff). As mentioned in lecture, the category Diff of smooth
manifolds is one in which many limits and colimits do not exist. An important example is the fiber
product of two smooth maps f: M — @ and g : N — @, which matches the usual topological
fiber product

M yx, N := {(z,y)e M x N | f(x) =g(y)} c M x N

if the maps f and ¢ are transverse to each other (written frg), because the implicit function
theorem then gives M xgNa natural smooth manifold structure for which the obvious projections
to M and N are smooth.” If, on the other hand, f and g are not transverse, then the examples
below show that all bets are off.

(a) Suppose F': P — M and G : F — N are smooth maps that define a target in Diff for the
fiber product diagram defined by f and g; in other words, the diagram

P-LsMm

le s

N%Q

commutes and consists entirely of smooth manifolds and smooth maps. Interpret this
diagram as defining a smooth map

u:P—->MxN

whose image lies in the topological fiber product M x N < M x N, and show that if
F and G satisfy the universal property for a fiber product in Diff, then u is a continuous
bijection of P onto M ,x N c M x N.

(b) Deduce that if M ;x, N c M x N is a smooth submanifold of M x N, then M ;x N
with its projection maps to M and N does in fact define a fiber product in Diff. (Note
that this may sometimes hold even if f and g are not transverse.)

(c) Consider the example M = N = @Q := R with f(z) := 22 and g(y) := y?, thus

fogNz{(x,y)eR2 | 2* = ¢}

5Transversality is a condition on the derivatives of f and g at all points € M and y € N such that flz) =gly) =:
p; writing the derivatives at these points as linear maps df (z) : To M — T,Q and dg(y) : Ty M — T,Q between the
appropriate tangent spaces, it means that the subspaces im df (z) and im dg(y) span all of T,Q. Choosing suitable
local coordinates near each point (x,y) € M Xy N, one can identify M Xy N locally with the zero-set of a smooth
map whose derivative at (z,y) is surjective if and only if the transversality condition holds, so that the implicit
function theorem makes M X N a smooth submanifold of M x N.



16 CHRIS WENDL

You will easily convince yourself that this topological fiber product is not a manifold. Show
that the pair of maps f, g does not admit any fiber product in Diff. Note that this is a
stronger statement than just the observation that {z? = y?} < R? is not an object of Diff.
Hint: You can use parts (a) and (b) to show that if P is a smooth fiber product, then it
contains a special point p € P such that P\{p} is diffeomorphic to {z? = y*}\{(0,0)}.

(d) Here’s a weirder example: Let M = @ := R, define N :=  as a manifold of one point with
g: N — @ = R mapping to 0, and choose f: M =R — R = @ to be any smooth function
with

FH0) = {—1,-1/2,-1/3,..}u {0} U {...,1/3,1/2,1}.

(If you have doubts about the existence of such a function, try making minor modifications
to the function e~/ 3”2, or something similar.) Show that in this case, a fiber product in
Diff does exist, but is not homeomorphic to the topological fiber product.

Hint: What can you say about continuous maps from locally path-connected spaces to
fH0) cR?

Answers: For part (a), note first that a fiber product diagram in Diff can always also be interpreted
as a fiber product diagram in Top, so applying the universal property of the topological fiber product
M ¢x, N immediately gives us a unique continuous map u: P — M ;x N such that the diagram

P%Mfg
\&l
N

commutes, where the vertical arrows are the obvious projections. This diagram also gives us an
explicit formula for u: its composition with the inclusion M  x N < M x N is just

N

(F,G): P> M x N,

which is a smooth map since F' and G are smooth, though we cannot sensibly call it a smooth map
to M ;x N unless the latter is known to be a smooth submanifold of M x N.

We want to show that if P with the maps F' and G satisfies the universal property for a fiber
product in Diff, then the map u: P > M X N described above is a bijection. Indeed, pick any
point (z,y) € M 7%, N and consider the pullback diagram

« —2 5 M

bl

N%Q

where the labels “z” and “y” on arrows are used to indicate the images of maps from a one-point
space labelled . The latter is (trivially) a smooth O-manifold, and the maps defined on it are
(trivially) smooth, so this diagram lives in Diff, and the universal property of the fiber product P
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therefore produces a unique map u : * — P for which the diagram

. M
7
¥ —— P
k} le
N
commutes. The image of u : * — P is thus the unique point p € P satisfying u(p) = (F'(p), G(p)) =
(2,9)-

Part (b) follows almost immediately from what was said above: if M ;x N is a smooth subman-
ifold of M x N, then the map u: P — M ,x N obtained from any smooth fiber product diagram
by applying the universal property in Top is automatically also smooth, with the consequence that
M ;x, N also satisfies the universal property in Diff.

For the example in part (c), M ;x, N c R xR = R? is the union of the two lines {y = z}
and {y = —x}, so it is not globally a manifold, though it becomes a smooth 1-manifold if one

deletes the singular point (0,0). Suppose there exists a smooth manifold P and smooth functions
F,G : P — R such that the diagram

JRE N )

e )

R 2> R
defines a fiber product in Diff. By part (a), the smooth map (F,G) : P — R? is then a bijection
onto the set {y = tx}, so that there is a unique point p € P with F(p) = G(p) = 0. The manifold
P must be path-connected, because any point in {y = tz} can be joined to (0,0) by a smooth
path lying in one of the smooth submanifolds {y = x} or {y = —z}, and the universal property
will then produce a smooth map from this submanifold to P, whose image thus contains a path
from any given point to p. Now let ¥ := {y = £2}\{(0,0)} c R?, defining a smooth 1-dimensional
submanifold of R?, and observe that the restrictions to ¥ of the two projections R? — R define
a smooth fiber product diagram, and thus (since P satisfies the universal property) give rise to
a smooth map u : ¥ — P, which is inverse to the bijection P\{p} — ¥ defined by (F,G). This
shows that P\{p} and ¥ are diffeomorphic, thus P is a connected smooth manifold that can be
turned into a 1-manifold with four connected components by deleting one point. There is no such
manifold, so this is a contradiction.

For the example in part (d), we can identify M x N = R x » with R and thus identify the

topological fiber product with the set

M ¢x, N =f""0)cR,

carrying the subspace topology it inherits as a subset of R. It is not a manifold, because the
point 0 € f71(0) does not have any connected neighborhood. However, for any given smooth fiber
product diagram

PR
L, b
0
* —— R
P is a smooth manifold with a smooth function F': P — R whose image is contained in f~1(0),

and there is very little freedom in finding functions F' with this property: since P is locally path-
connected, F' must be locally constant. It follows that F' does factor through a smooth manifold
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with an obvious smooth bijection onto f~1(0): the manifold in question is f~*(0) itself, but with
the discrete topology instead of the subspace topology. Conclusion: the fiber product in Diff for
our given pair of maps is given by

f7H0) — R

| | b
+ —2 SR
where f71(0) in the corner is understood to carry the discrete topology and is thus a smooth 0-

manifold. Its obvious bijection to the topological fiber product (f~1(0) with the subspace topology)
is continuous, but not a homeomorphism.

Exercise 1.8. The following bit of abstract nonsense provides a useful tool for proving that
objects are isomorphic in various categories, e.g. one can apply it in hTop to establish homotopy
equivalences, or (as in Exercise 1.9 below) to deduce properties of tensor products from a universal
property.

In any category %, each object X € ¥ determines a covariant functor

Hom(X,:) : € — Set,

which associates to each object Y € € the set Hom(X,Y") of morphisms and to each morphism
f:Y > Zin € the map

Hom(X,Y) ELN Hom(X,Z) :gw— fog.

There is similarly a contravariant functor Hom(:, X) : € — Set for which morphisms f :Y — Z
induce maps
Hom(Z, X) EAN Hom(Y, X): g~ go f.

(a) Show that for any two objects X,Y € &, each morphism f : X — Y determines a natural
transformation Ty : Hom(Y,-) — Hom(X,-) associating to each object Z € & the set
map f* : Hom(Y,Z) —» Hom(X, Z), and that if f is an isomorphism, then the map f* is
bijective for every Z € €, i.e. Ty is then a natural isomorphism.°

(b) Show conversely that every natural transformation 7" : Hom(Y,-) — Hom(X, ) is T for a
unique morphism f : X — Y, which is an isomorphism of ¢ if and only if 7 is a natural
isomorphism. It follows that X and Y are isomorphic whenever the sets of morphisms
Hom(X, Z) and Hom(Y, Z) are in bijective correspondence for every third object Z, in a
way that is natural with respect to Z.

(c) Prove contravariant analogues of parts (a) and (b) involving the functors Hom(-, X) and
Hom(-,Y).

Solution: The interesting step is part (b), so let’s just talk about that. (One could give a quick
answer to part (a) more or less by mumbling the word “functor”.) Suppose a natural transformation
T : Hom(Y,-) —» Hom(X,-) is given, so for every object Z € €, T defines a set map

Ty : Hom(Y, Z) - Hom(X, Z)

which is required to fit into certain commutative diagrams as dictated by the word “natural”. In
particular, choosing Z := Y, we observe that T' determines a distinguished morphism f: X —» Y
by

f:=Ty(Idy) e Hom(X,Y).

6A natural isomorphism T : F — G between two functors F,G : &/ — £ is a natural transformation such
that the morphism T'(a) : F(a) — G(a) in £ associated to each object o € &7 is an isomorphism. It follows that T'
has an inverse, which is also a natural transformation T-1.6 > F.
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We claim now that, in fact, T = Ty. Indeed, given any Z € ¢ and g € Hom(Y, Z), naturality
implies that the diagram

Hom(Y,Y) — Hom(X,Y)

J{g* ig*
Hom(Y, Z) —2%+ Hom(X, Z)

commutes, hence

Tz(9) =Tz(goldy) = (Tz 0gx)(Idy) = (gx o Ty )(Idy) = g« f = go f = f*g = T(9)-

Now that we know all natural transformations arise in this way, and after verifying the formula
Ttog = Ty o Ty, it follows easily that the morphism f : X — Y has an inverse if and only if the
corresponding natural transformation 7 has an inverse.

One way to apply this result in homotopy theory is as follows. Suppose we are given a map
f: X — Y for which we can verify that for all spaces Z, the induced maps

[F Y, Zl - [X,Z]:g—>gof

are bijective. This means that the natural transformation on Hom-functors corresponding to f is a
natural isomorphism, therefore implying that f itself is an isomorphism, i.e. the conclusion in this
setting is that f is a homotopy equivalence. The variant in part (c¢) would imply similarly that if
the maps

f* : [Z7X] - [Z7Y] g fog
are known to be bijective for all spaces Z, then f is a homotopy equivalence.

Exercise 1.9 (tensor products). On the category R-Mod of modules over a commutative ring R,
the tensor product satisfies the following universal property: for any three R-modules A, B, C, the
natural map

Hom(A ® B, C) % Hom(A, Hom(B, C)), a(®)(a)(d) := P(a®Db)

is a bijection. Indeed,
Homgz (A, B; C) := Hom(A, Hom(B, C))

can be interpreted as the set of R-bilinear maps A x B — C, so the fact that « is bijective means
that every such bilinear map factors through the canonical R-bilinear map A x B - A® B and a
uniquely determined R-module homomorphism A ® B — C. In fact, « is not just a bijection; it
is also an R-module isomorphism, though we will not make use of this fact in the following. The
important observation for now is that « defines a natural isomorphism between the two functors
Hom(-®-,+) and Homs from R-Mod x R-Mod x R-Mod to Set, which are contravariant in the first
two variables and covariant in the third.

More generally, suppose € is any category for which the sets Hom(X,Y') can be regarded as
objects in & for every X,Y € €, and suppose ® : ¥ x € — % is a functor such that the functors
€ x € x € — Set defined by Hom(-®-, -) and Homy := Hom(-, Hom(-, -)) are naturally isomorphic,
so in particular, for every triple of objects X,Y, Z € &, there is a bijection of sets

Hom(X ®Y, Z) =~ Hom(X, Hom(Y, Z))

that is natural with respect to all three.

(a) Prove that there is a natural isomorphism relating any two functors ®,®' : € x € —» ¢
that satisfy the condition described above. In other words: tensor products are uniquely
determined (up to natural isomorphism) by the universal property.
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(b) Prove that ® is associative in the sense that the functors € x € x € — € defined by
(XY, Z2) » X® (Y ®Z) and (X,Y,Z) —» (X ®Y) ® Z are naturally isomorphic. Prove
it using only the universal property, i.e. do not use any knowledge of how ® is actually
defined in any specific categories.

Solutions: Both parts are applications of Exercise 1.8, which is the right tool for the job because
the universal property of ® does not tell us what X ® Y is, but instead tells us what other functor
Hom(X ®Y,-) is naturally isomorphic to, namely Homs(X,Y’; ) := Hom(X, Hom(Y,-)). If we are
given two versions ® and ® that both satisfy the universal property, we obtain from this a natural
isomorphism
Hom(X ®Y,-) ~ Hom(X ®' Y, ")

for every pair of objects X, Y € ¢, and therefore (via Exercise 1.8) an isomorphism X®@Y =~ X®'Y".

Associativity follows similarly because one can follow two chains of natural bijections that both
end at the same destination: for any spaces X,Y, Z, V we have:

Hom(X ® (Y ® Z),V) = Hom(X, Hom(Y ® Z,V)) = Hom(X, Hom(Y, Hom(Z, V))),
and also

Hom((X ®Y)® Z,V) ~ Hom(X ® Y,Hom(Z,V)) = Hom(X, Hom(Y, Hom(Z, V))).

Exercise 1.10 (tensor products of pairs). Let Top* denote the category of pairs of spaces and
maps of pairs. When defining the cross and cup products on relative homology and cohomology,
one often sees the product of two pairs defined as

(X, A)x(V,B)=(XxY,AxY uX xB).

(a) Why is this definition of x not actually a product (in the sense of category theory) on the
category Top™'? What do categorical products in Top™' actually look like?

(b) In the spirit of Exercise 1.9, I would like to argue that x as defined above should be
interpreted as a tensor product on Top”’l. Due to some subtle point-set topological issues
that I’d rather not get into until next week, it’s best for now to dispense with topologies and
work instead in the category Set™, whose objects are pairs (X, A) of sets with A ¢ X, and
whose morphisms (X, A) — (Y, B) are arbitrary (not necessarily continuous) maps X — Y
that send A into B. In this setting, how can you regard each of the sets Hom((X, 4), (Y, B))
as an object of Set™ such that there are natural bijections

Hom((X, A) x (Y, B),(Z,C)) =~ Hom ((X, A),Hom((Y, B), (Z, O)))
for all choices of pairs?

Answers: Categorical products require projection morphisms, but e.g. the projection map X xY —
X does not generally send A x Y U X x B into A, and thus does not define a map of pairs
(X,A) x (Y,B) - (X,Y). For a categorical product on Top™, the correct definition would be the
obvious one,
(X,A) x (Y,B):=(X xY,A x B).

If (X, A) and (Y, B) are objects in Set™, then Hom((X, A), (Y, B)) also becomes an object in

Set™ after singling out the subset
{6 € Hom((X, A), (Y, B)) | (X) € B} < Hom((X, A), (Y, B)).

It is then straightforward to check that set maps of pairs from (X, A) to Hom((Y, B), (Z,C)) are
in natural bijective correspondence with set maps of pairs from (X, A) x (Y, B) to (Z,C).

The case of this with A = B = C' = (J is often written in a more appealing way by using the

notation
XY := Hom(Y, X) in Set,
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so that Hom(X x Y, Z) = Hom(X, Hom(Y, Z)) becomes the so-called exponential law

ZX XY ~ (ZY)
Note that this is one of the few situations in which the categorical product can also sensibly be
called a tensor product; they are not the same thing in Setrel, but in Set they are.

The reason we removed topologies from the picture before starting this discussion was that one
needs to be very careful about defining the right topology on the set C'(X,Y") of continuous maps
X — Y between two spaces if one wants to have a natural bijection

C(XxY,Z2)=C(X,C(Y, 2)).

In fact, there is no right way to define the topology on C'(X,Y') so that this works for all spaces; one
must first restrict the category of spaces under consideration, and then make slight modifications
to the definitions of both C(X,Y) and X x Y as topological spaces. We will go into a little bit of
detail about this when it becomes necessary, as without it, one would miss out on some very clever
tools coming from stable homotopy theory.

2. WEEK 2

The lecture on 22.04.2024 was cancelled due to illness, so this week contains only one lecture.

Lecture 3 (25.04.2024): The homotopy category and mapping cylinders.

e The homotopy categories hTop (without base points) and hTop,, (with base points)
e Notation for diagrams that commute up to homotopy (see the notational glossary above)
¢ The double mapping cylinder of twomaps f: Z > X andg: Z —> Y,

Z(f,g) = (Xu( x Z)IJY)/~7 where (0,2) ~ f(z) and (1,2) ~ g(z) for all z € Z.

e Role of Z(f,g) as a weak form of pushout in hTop (it is called a homotopy pushout):
the diagram

z 1 i x

|~
Y —— Z(f,9)

commutes up to an obvious homotopy, though not on the nose (the obvious inclusions i x
and iy have disjoint images). Diagrams

z -1 x

gl e lsa
Y¥—oQ

determine maps Z(f, g) — @, constructed in an obvious way out of ¢, 1) and the homotopy
pof z 1 o g, so that the diagram

uj \
w[ /
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commutes (on the nose, i.e. not just up to homotopy).
e Special cases:
(1) Mapping cylinder of f: X — Y:

Z(f) = Z(ldx, f) = (I x Z) Uy Y,

where the gluing occurs along {1} x Z. Convenient feature: Z(f) deformation retracts
to Y, soiy : Y — Z(f) is a homotopy equivalence. We can therefore view every map
X — Y “up to homotopy equivalence” as inclusion of a subspace, namely ix : X —
Z(f). (This trick was used once at the end of Topologie II, cf. the last two pages of
[Wen23].)

(2) Mapping cone of f: X — Y: using the unique map ¢ : X — =, we define

cone(f):=Z(e, f) =CX vy Y,

where CX := (I x X)/({0} x X) is the usual cone of X.

(3) Suspension (unreduced): Not the most direct way to define it, but the familiar
suspension SX of a space X is also the double mapping cylinder of a pair of maps
from X to one-point spaces:

X — =

|~

x# — SX

Here the two maps from = to SX have images at the opposite poles, which are points
obtained by collapsing I x X at {0} x X and {1} x X separately.
e Variant for hTop,,: If X,Y, Z are pointed spaces and f, g are pointed maps, defining a base
point on Z(f, g) requires modifying its definition by

Z(f,g):= <X v i’if v Y) /~, where (0,2) ~ f(2) and (1, 2) ~ g(z) for all z € Z.

Note: Quotienting I x Z is necessary because I x Z on its own has no natural base point,
but whenever Z, Z’ are two pointed spaces,

I xZ
pointed homotopies I x Z — Z' = pointed maps T A
&

Everything discussed above has analogues in which all maps are base-point preserving.
The pointed version is sometimes called the reduced double mapping cylinder, and one
can also derive from it special cases such as the reduced mapping cone and reduced
suspension, which we’ll have much more to say about later.

e Why is Z(f,g) not really a pushout in hTop?

(1) Our construction of the map u : Z(f,g) — @ uses more information than a diagram
in hTop: it uses the actual maps in the diagram (not just their homotopy classes),
plus a choice of homotopy. This doesn’t mean it cannot work, but is a hint that we
may be cheating.
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(2) (The real reason): The diagram

does not always uniquely determine [u] € [Z(f, g), Q] Example: The mapping cone
cone(a) of a degree 2 map a : S' — S!, say a(e?) := €2 if we think of S' as the
unit circle in C. Now cone(a) = RP? and the natural inclusion S' < cone(a) defines
the nontrivial element of 7, (RP?) = Z,. A homotopy pushout diagram

Sl —— «

o~
SlTQ

now means a choice of space (Q and homotopy class 3 € [S!, Q] such that 3 - 3 is
homotopic to a constant loop. The latter always holds if @) is simply connected, so
take @ := S2, and then observe that the diagram

1\

cone(a) —— S?

always commutes up to homotopy, since [S',S?] = # = [+, S?]. But [RP? 5?] has
more than one element, because there exist maps RP? — 2 having either possible
value of the mod-2 mapping degree (cf. Exercise 2.1).

e Theorem: There exists a category & whose objects are pushout diagrams (in Top)

4f>X

< N

such that
(1) Changing the maps f and g by homotopies produces isomorphic objects of Z;
(2) There is a functor & — hTop sending each pushout diagram to its mapping cylinder

Z(f,9)-
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e Proof sketch: Morphisms in & are diagrams

z— 1 . x

vy ~ %
NN
o I L x

v ;

\,6’/‘
Y/
including choices of homotopies ¢ and 1 as part of the data. The notion of composition

of such morphisms arises naturally by composing maps and concatenating homotopies.”
Such a morphism determines a homotopy pushout diagram

z 1 . x

lg ;[ J/iXIOO[
Y Z / /
iyrof (f.9)

and therefore also an induced map Z(f,g) — Z(f',¢'). It is a bit tedious but straight-

forward to check:

(1) The map induced by a composition of two morphisms in & is homotopic to the
composition of the two induced maps.

(2) If the maps «, 8,v all have homotopy inverses, one can use them to construct an
inverse morphism in Z.

Both only require the same ideas that are needed for proving e.g. that multiplication in the

fundamental group is associative. The second point implies, in particular, that the map

Z(f,9) — Z(f',¢') is a homotopy equivalence whenever «, 3, are.

Corollary: If f >~ fand g > g', then Z(f,g) and Z(f',¢’) are homotopy equivalent.

Theorem: Pushouts in hTop and hTop,, do not always exist.®
Proof sketch in hTop,: Fix the obvious base point in S! so that our previous degree 2 map
a: 81 — S preserves base points. A pushout diagram in hTop,, of the form

St ——

17]
SlT>P

then means a pointed space P together with an element in the 2-torsion subgroup of its
fundamental group

5€7T1(P)(2) = {76771(P) |’Yz ZO}-

"It seems likely that I'm oversimplifying this and ought to talk about “homotopy classes of homotopies” if I

really want the composition in & to be associative, but I do not want to give these details more attention than they
deserve. I am attempting to present a slightly more highbrow perspective on a sequence of lemmas in [tD08, §4.1-4.2]
that seem rather technical and tedious.

... which is why we need to use homotopy pushouts instead.
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Then P and f satisfy the universal property for a pushout in hTop,, if and only if for every
space @ and v € 71 (Q)(2), the map

[P, Q] = m1(Q)(2) : u = usf3

is a bijection. Assume this is true, and then consider the surjective map
SO(3) 2 8% : A — Aey,

where S? is the unit sphere in R? and e, es, e3 € R? denotes the standard basis. Taking
e1 as a base point in 52, we have

p~t(er) = SO(2) = S,
giving rise to an exact sequence of pointed spaces
5t <5 50(3) B 2.
We will see next week that the map p : SO(3) — S? has a special property: it is a fibration,
with the consequence that for every space P, the induced sequence of pointed sets

[P,S'] 5 [P,SO(3)] %5 [P, 5]

is also exact, meaning the preimage of the base point under p, matches the image of i,.
(Here [ X, Y] means the set of homotopy classes of pointed maps X — Y, so it is a set with
an obvious base point.) Combining this with the bijection that we deduced above from the
universal property of the pushout, we obtain an exact sequence

m1(S) 2y = m1(SO(3))(2) = 71(S?)(2),

in which the first and last terms both vanish. But SO(3) = RP? and thus m; (SO(3)) = Z,
so the middle term does not vanish, and this is a contradiction.

e To do next week: Define what a fibration is and explain why the sequence of sets of
homotopy classes in that proof was exact.

Suggested reading. A more comprehensive treatment of mapping cylinders (including details
that I left out of the proof of the theorem about the functor & — hTop) can be found in [tD08, §4.1-
4.2]. This does not include the proof that pushouts in hTop, don’t exist; I found that in the
materials for a course on homotopy theory by Tyrone Cutler, available at https://www.math.
uni-bielefeld.de/ tcutler/ (see the first set of exercises on homotopy pushouts).

Exercises (for the Ubung on 2.05.2024).

Exercise 2.1. Review the notions of the Zs-valued and Z-valued mapping degrees for maps
between closed and connected topological manifolds of the same dimension, as covered e.g. in
[Wen23, Lecture 35]. Then:

(a) Show that for every closed and connected topological manifold M of dimension n € N, the
set [M, S™] contains at least two elements, and infinitely many if M is orientable.
(b) Does the set [S™, M] also always have more than one element?

Exercise 2.2. Deduce from the properties of double mapping cylinders the standard fact that
there is a functor S : Top — Top assigning to every space X € Top its (unreduced) suspension SX.
Note: This is just intended as a sanity check. There is nothing especially nontrivial to be done
here, and there are also more direct ways to show that suspensions define a functor.

Exercise 2.3. Show that the mapping cone cone(f) of any homotopy equivalence f: X —» Y is a
contractible space.
Hint: Find a useful morphism in the category & of pushout diagrams.
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Exercise 2.4. Show that for any two maps f: Z — X and g : Z — Y, the singular homologies
(with arbitrary coefficients) of the spaces X, Y, Z and Z(f, g) are related by a long exact sequence
of the form

= Hn1(Z(1,9)) = Hn(2) = Hn(X) @ Ho(Y) = Hn(Z(f,9)) = Hna(2) — -,

and describe explicitly what the two homomorphisms in the middle of this sequence look like.
Show that it also works with all homology groups replaced by their reduced counterparts, then
write down the special case of a mapping cone and check that what you have is consistent with
Exercise 2.3.

Hint: There is a relatively straightforward way to apply the Mayer-Vietoris sequence here, but you
could also deduce this as a special case of the exact sequence of the generalized mapping torus
derived in [Wen23, Lecture 34].

Exercise 2.5. Prove that pushouts in hTop do not always exist.

Hint: The proof carried out in lecture for hTop,, requires only minor modifications. Note that even
if X and Y are spaces without base points, the set of homotopy classes [X,Y] still has a natural
base point whenever Y is path-connected. (Why?)

Exercise 2.6. Give explicit examples of homotopic maps
f;f’:Z—>X and g;g’:Z—>Y

such that the mapping cylinders Z(f,g) and Z(f',¢') are not homeomorphic. (They will of course
be homotopy equivalent!)

Exercise 2.7. The join X #Y of two spaces X and Y is the double mapping cylinder Z(7x, mwy)
defined via the projection maps 7x : X xY — X and 7y : X xY — Y. Prove that the join of
two spheres is always homeomorphic to a sphere: concretely, for every m,n € N,

Sm " Sn ~ Sm+n+1.

Hint: Split the double mapping cylinder in half so that you see S™ % S™ as the union of two pieces
glued along boundaries that both look like S™ x S™. Can you think of two compact manifolds that
both have S™ x S™ as boundary? Stare closely at the two pieces, you might recognize them! Now
glue them together and ask: what is S™ = S™ the boundary of?

Exercise 2.8. Many constructions in homotopy theory have analogues in homological algebra,
and one of these is the mapping cone. For two chain complexes (A, 04) and (By, 0g) with a chain
map f : Ay — B, the mapping cone of f is the chain complex (cone(f)s,d) with

cone(f), := Ap—1 ® B, and 0:= <_6A 0 ) .
-f OB
The analogy to the mapping cone in Top goes through cellular homology: if X,Y are two CW-
complexes and f : X — Y is a cellular map, then the cone of f inherits a natural cell decom-
position whose augmented cellular chain complex CSW (cone(f)) is the cone of the chain map
fu: CEW(X) - CSW (V).
Show that the mapping cone cone(f)s of a chain map f : A, — B, similarly plays the role
of a homotopy pushout in the category Ch of chain complexes and chain maps, with the role of a
one-point space played by the trivial chain complex 0, € Ch. Specifically:

9This was Problem 2(b) on the take-home midterm for last semester’s Topologie II course, but for Exercise 2.8,
you do not need to know about it.
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There is a natural chain map ig : By — cone(f)s such that the diagram

Ay — 04

o~
B*Tcone(f)*

commutes up to chain homotopy.
Any homotopy-commutative diagram in Ch of the form

Ay — 04

o
Be == D

naturally determines a chain map w : cone(f)s — Dy such that woip is chain homotopic
to .

If we were being strict about the analogy via cellular homology, then the trivial complex
0, in the diagrams above ought to be replaced by 5’EW(*), the augmented cellular chain
complex of a one-point space, which is not trivial: it has nontrivial entries in degrees 0
and —1, with the boundary operator giving an isomorphism between them. Explain why
this discrepancy does not matter, and nothing in the discussion above would change if we
used CSW () in place of 0.

Hint: None of this is hard. .. the quickest approach may be by guessing.

3. WEEK 3

Lecture 4 (29.04.2024): Introduction to fibrations.

The set of (free or pointed) homotopy classes [X,Y] as a pointed set (assuming Y is
path-connected in the unpointed case)

What it means for a sequence of three pointed sets to be exact

Motivational question: Given a map p : E — B and the inclusion i : F := p~1(x) — E,
what condition makes the sequence

[X, F] 2 [X, E] 25 [X, B]

exact for all other spaces X7

Definition of the homotopy lifting property (free case) and (free, i.e. unpointed) fibrations
p: E — B. (See next lecture for a precise roundup of the crucial definitions.)
Terminology: the base B and fibers Ej, := p !(b) c E of a fibration p: E — B
Example 1: covering spaces (discrete fibers, lifts of homotopies are unique, which does not
hold for more general fibrations)

Example 2: fiber bundles (to be studied later in this course): {Ejp}wep is a continuous
family of homeomorphic spaces (assuming B is path-connected)

— Example 2a: For M any smooth n-manifold, its tangent bundle TM = |, ,, T. M
is a fiber bundle whose fibers (the tangent spaces) T, M are all homeomorphic to R™.
(One can cook up examples with more interesting fibers e.g. by equipping each tangent
space with an inner product and taking the unit sphere in each—this produces a fiber
bundle with fibers homeomorphic to S"~!, a so-called sphere bundle.)

— Example 2b: The map p : SO(3) — S? that we used in Lecture 3 for showing that
pushouts in hTop, do not always exist. Observation 1: For base point e; € S?, the
fiber F' := p~1(e;) is a subgroup isomorphic to SO(2), thus homeomorphic to S*.
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Observation 2: That subgroup acts continuously (in fact smoothly), freely and tran-

sitively from the right on every other fiber, implying that all fibers are homeomorphic

(in fact diffeomorphic) to S*.
Remark: When we study fiber bundles in earnest, we will prove that they all have the
homotopy lifting property, and are thus fibrations. If you are already familiar with smooth
fiber bundles and connections, then you should believe this easily for the following reason:
any choice of connection on p : £ — B defines parallel transport maps which uniquely
determine a lift of any smooth homotopy X x I — B. (One has to work harder to also get
lifts of all continuous homotopies. . . for this, differential geometry is not enough.)
Theorem (already proved): For any fibration p : F — B with B path-connected, and any
space X, the induced sequence of free homotopy classes [X, F] — [X, E] — [X, B] is exact.
(Here the map F' — F is the inclusion of the fiber F' := p~1(by) c E over any chosen point
bo € B.)lo
Idea: If we can show that every map f : X — Y becomes a fibration after replacing X
with some space X' = X, then we can do this with the inclusion F' — E and thus extend

€

the exact sequence [X, F| — [X, E] — [X, B] one more term to the left. Then we can do
it again, and again, and extend the sequence as far as we want. . .
Example (path space fibrations): for (X,z) € Top,,, we define

— the free path space: C(I,X) := {continuous maps I — X} with the compact-open

topology

— the based path space: PX := P, X := {ye C(I,X) | 7(0) = 20}

— the based loop space: QX :=Q, X := {ye PX | v(1) = z¢}.
Notice: C(I,X) does not depend on a base point, and it has no natural base point of
its own. The spaces PX and QX do have natural base points defined by constant paths.
Define maps C(X,I) 2> X and PX - X by p(y) := (1); for the latter, we notice
p 1(z0) = QX c PX, making

0X - PX 54X

an exact sequence of pointed spaces.
Theorem: (1) C(I,X) % X and PX % X are fibrations. (2) The map C(I, X) 5 X is
also a homotopy equivalence. (3) The space PX is contractible.

The following is a digression, subtitled “The revenge of Topologie I":

e Why is p: C(I,X) — X continuous? More generally, is the map

ev: C(X,Y)x X ->Y:(f,z) — f(x)

continuous for all spaces X and Y? (One can show that it is always sequentially continu-
ous.)

¢ Counterexample: ev : C(Q,R) x Q — R is not continuous for the obvious (subspace)

topology on Q c R. Quick proof: If ev is continuous, then for every continuous fy : Q — R,
every 2o € Q and every neighborhood U < R of g := fo(z¢), there are open neighborhoods
foe O c C(Q,R) and zp € W c Q such that (f,z) € O x W implies f(x) € U. Without
loss of generality, the set O c C(Q,R) has the form

O={f|f(Ki)cViforalli=1,... N} c C(Q,R)

101y the lecture I somewhat sloppily asserted that this statement was equally valid in the unpointed and pointed

cases, but in fact the pointed case involves some subtleties that I brushed under the rug. These gaps got filled in in
Lecture 5.
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for some finite collection of compact subsets K; ¢ Q and open subsets V; c R,i=1,..., N.
But since compact subsets of Q cannot contain any open subsets, one can then find two
irrational numbers a < b such that

Wo :=(a, ) nQc W

is a nonempty open subset of W disjoint from K; u ... u Ky. Now define a continuous
function f : Q@ — R that matches fy outside of Wy but takes a value f(x) ¢ U for some
x € Wp; this is easy since a,b ¢ Q. Then (f,x) € O x W but f(z) ¢ U, a contradiction.
Message: Q is a terrible topological space. The main problem: It is not locally compact.
Lemma 1: If X is locally compact and Hausdorff,!' then ev : C(X,Y) x X — Y is
continuous. (For the proof, see Exercise 3.3.)

The exponential law: For two sets X, Y (not necessarily with topologies), let X denote
the set of all (not necessarily continuous) maps Y — X. Then there is a natural bijection

ZXXY ~ (ZY)X,

identifying each map f : X x Y — Z with the map f : X — ZY defined by f(z)(y) :=
f(z,y).

Lemma 2: For all t(A)pological spaces X,Y, Z,if f : X xY — Z is continuous, then the
corresponding map f : X — ZY is a continuous map into C (Y, Z). The converse also holds
if Y is locally compact and Hausdorff. (Proof: see Exercise 3.3.)

Corollary (since [ is locally compact and Hausdorff): Homotopies X x I — Y are naturally
equivalent to continuous maps on X with values in the path space C(I,Y).*?

End of Topologie I digression.

Proof of the theorem on path space fibrations: see [DK01, Theorem 6.15], supplemented by
the following remark. In this proof, there are several maps and homotopies to be written
down, most of which are pretty straightforward, one just needs to think a little about why
they are continuous. Thanks to the digression above, the fact that I is locally compact
and Hausdorff ensures this.

Lecture 5 (2.05.2024): Replacing maps with fibrations. This lecture began with some
minor extensions and clarifications to the main definition from Lecture 4.

Definition: A map p : E — B has the (free) homotopy lifting property (HLP) with
respect to some class of spaces € < Top if the lifting problem

x ™ g

B
70 // P

XxI-2,p

LWhether the Hausdorff condition here is truly necessary depends on what definition one takes for the term
locally compact. 1 typically define locally compact to mean simply that every point has a compact neighborhood, but
many authors (such as tom Dieck [tDO08]) prefer a stricter definition in which the compact neighborhood can always
be assumed arbitrarily small: concretely, for every point z € X, every neighborhood of x contains a neighborhood of
x that is compact. The latter is the condition that one really needs for proving ev : C(X,Y) x X — Y is continuous,
but it is equivalent to the simpler definition whenever X is Hausdorff. I have no plans to consider any examples in
which X is not Hausdorff.

12'm not certain, but in the lecture I may have stated this wrongly and said homotopies X x I — Y are
equivalent to paths in the space C(X,Y), i.e. maps I — C(X,Y). The latter is not true in general unless X is also
locally compact and Hausdorff.
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is solvable for all X € ¥, i.e. given a homotopy H and an initial condition H, for a lift,
the lifted homotopy H exists. Here iy denotes the inclusion X = X x {0} — X x I.
Notation convention: For a homotopy H : X x I — Y, we will often write

Hy:=H(,t): X ->Y for each ¢t € I.

Definition: p : E — B is a free (Hurewicz) fibration if it satisfies the HLP with respect
to all spaces X € Top. The word “free” (or the synonyms “unpointed” or “unbased”) is
included in order to distinguish this from the pointed variant below, but will be omitted
whenever possible. The word “Hurewicz” will almost always be omitted, but is meant to
distinguish this from certain useful weaker conditions, such as:
Definition: p : £ — B is a Serre fibration if it satisfies the HLP with respect to all
CW-complexes X. Note that F and B do not need to be CW-complexes. This condition
is often easier to verify, and has some very nice applications to higher homotopy groups
(we’ll get there in a few lectures).
Definition: A pointed map p : E — B has the (pointed) homotopy lifting property
with respect to some class of pointed spaces ¢ < Top,, if the lifting problem
Ho
(X, %) ———— (E, #)

(X x I,{#} x I) == (B, %)

is solvable for all X € ¢’; in other words, we require the HLP but with maps and homotopies
replaced by pointed maps and pointed homotopies.

Definition: A pointed map p : E — B is a pointed (Hurewicz) fibration if it satisfies the
pointed HLP with respect to all X € Top,,.

Theorem (“the main property of fibrations”): Assume p : E — B satisfies the (free or
pointed) HLP with respect to some class € in Top or Top, respectively; in the free case,
assume also that B is path-connected, so that sets of (free or pointed) homotopy classes
[X, B] have natural base points in either case. Denote the inclusion i : F':= p~1(by) — E,
where by € B is the base point in the pointed case, or any chosen point in the free case.
Then for every X € %, the sequence

[X,F] % [X,E] % [X, B]

is exact.

Convenient fact (see Exercise 3.2): Pointed fibrations are also free fibrations after forgetting
their base points.

Inconvenient fact: If p : E — B is a free fibration, choosing base points # € B and
#+ € p~ () € E to make p into a pointed map does mot automatically make it into a
pointed fibration! On the other hand, actual counterexamples are not easy to find, mainly
because. . .

Sufficiently convenient fact: The aforementioned pointed map p : £ — B does however
satisfy the pointed HLP with respect to all “reasonable” pointed spaces. This means that in
practice, one rarely actually needs to worry about the distinction between free and pointed
fibrations. (Giving more details on this will require some discussion of cofibrations, which
is coming next week.)

Definition: A sequence of maps Z 3, X 4 ¥ has the homotopy type of a fibration
if there exists a fibration p : F — B with fiber inclusion i : F := p~!(¥) — E and a
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homotopy commutative diagram

7zt ,x I,y

F—+E-"'3B
in which the vertical maps are all homotopy equivalences. (Note: This definition is sensible

in either the free or the pointed case—for the latter, one takes all maps and homotopies
to be pointed.) It follows that sequences of the form

Q.27 [Q. X153 [Q,V]
are exact for all ) (assuming as usual in the unpointed case that Y is path-connected).
Remark: There are obvious generalizations of this conclusion for cases where p : E — B
only satisfies the HLP with respect to some smaller class of spaces %’; then one must also
assume () € ¥ in writing down such exact sequences.

e Convention: Unless the words “free” or “pointed” are included explicitly, every statement
in the rest of this lecture is meant to be valid for both cases, with closely analogous proofs
in either context.

e Theorem 1: For every map f : X — Y, there exists a space Z (the “homotopy fiber”

of f) and a map j such that Z 3, X L ¥ has the homotopy type of a fibration. In other
words, “every map is a fibration up to homotopy equivalence”. Proof at the end of the
lecture.
e The dual perspective on the HLP: For topological spaces X, Y, abbreviate
Y* .= C(X,Y)
with the compact-open topology.'® This makes X’ the space of paths in X, and since I is
locally compact and Hausdorff, the evaluation map
ev: X x T — X :(y,t) = ~(t)
is a homotopy between evy := ev(+,0) and evy := ev(+,1); one can deduce from this (see
Exercise 3.3) that for every continuous map f: X — Y, the induced map
floXt =Yg foy
is continuous, thus defining a functor (-)! = C(I,-) : Top — Top. Moreover, the natural
bijection YX*! =~ (Y1)X identifies homotopies H : X x [ — Y with maps H : X — Y/
into path space, and this translates the HLP into the diagram

JILQEALENY
vl
Bl =, B.
Interpretation: the HLP is satisfied if and only if £ with its maps to F and B’ defines

a “weak fiber product” of the maps p: E — B and evy : B! — B, i.e. the map X — ET is
required to exist, but need not be unique (as an actual universal property would require).

13We had previously used the notation YX to mean all (not necessarily continuous) maps X — Y, but we are
now altering the definition of this notation in the context of topological spaces, because it’s a convenient shorthand.
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o Constructions of fibrations (proofs are straightforward and mostly consist of drawing some
diagrams and adding some dotted arrows):

(1)

(2)

Projection maps B x F' — B are always fibrations. (Note that here one can clearly

see the non-uniqueness of the lifted homotopy, outside of special cases such as when

F is a discrete space, which would make the projection a covering map.)

Path space: By a very slight extension of what we proved last time, the map
X7 x o x

is always a fibration.

Compositions: If p: ' — B and f: B — A are fibrations, then sois fop: E — A.

(Remark: If we didn’t already know this, we could now deduce from the first three

items on this list that the maps evg,ev; : X! — X individually are also fibrations.)

Products: Given two fibrations p; : F; — B; for i = 1,2, the product map p; X ps :

E, x E5 — B x By is also a fibration.

Pullbacks: Assume FE’ is a fiber product of p : E — B and another map f : B — B,

so we have a diagram

gL E

b

B —1.B
and E' can be identified with B’ ;x  E' ¢ B’ x E'so that f’ and p’ become the obvious
projections. For any b€ B’, writing E; := (p')~(b) c E’, it follows that

By, L B,

is a homeomorphism, thus we think of E’ as a union of the same collection of fibers
as I, but parametrized over B’ instead of B. Proposition: If p is a fibration, then so
is p’. (We then call p’ : E' — B’ the pullback of p : E — B via the map B’ — B, and
sometimes emphasize this by writing f*FE := E’. Tt is also often called an induced
fibration.) Sketch of proof: Given a homotopy X xI — B’, composing it with f gives
a homotopy to B, which can be lifted to E. The universal property of the pullback
determines from this a unique map X x I — E’, which turns out to be the lift we
need.

Path /loop spaces: Analogously to the free path space functor Top — Top : X +— X7,
the based path and loop spaces define functors Top,, — Top,, sending X to PX or Q.X.
Proposition: For any free fibration p : E — B, the map p’ : ET — B! is also a (free)
fibration; similarly for any pointed fibration p : E — B, the maps Pp: PE — PB and
Qp : QF — QB are pointed fibrations. Proof in the free case: The correspondence
YX*I ~ (Y1)X translates the HLP for p! : EY — B! with respect to a space X into
a lifting problem of the form

Xx] ——F

J{’L‘o x1d J{p )

XxIxI——B

which is solvable because p : E — B has the HLP with respect to X x I. The proofs
for the based path and loop spaces are Exercise 3.4.
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e Proposition: Every pointed fibration F' S EBB (we will often write the inclusion of the
fiber F' = p~1(x) c E as part of the data) determines a canonical pointed homotopy class
of maps

OB -% F.

Part 1 of the proof: The idea is the same as in covering space theory, where each based
loop v : I — B gets interpreted as a path and then has a (in this case non-unique) lift
¥ : I — E that starts at the base point but may end in some other point of F = p~!(x).
Since p : E — B has the HLP with respect to the space 2B, we can do this for all loops
at once by interpreting ev : QB x I — B as a homotopy and lifting it:

OB const E

~ 1
ev .~
\[ /// J/p '

OB xI = B

On OB, evg and evy are both constant maps to the base point of B, thus § :=¢év; : QB — F
takes values in F. (We will need some machinery developed next week in order to show
that the homotopy class of § is independent of the choice of lift.)

e Theorem 2 (just a preview of our goal for next week, with the caveat that the statement
may need minor modifications before it is strictly correct): For any pointed fibration
F 5 E 5 B, every triple of consecutive terms in the sequence of pointed (homotopy
classes of) maps

L EE B L ar M ar o S F L B2 B

has the homotopy type of a pointed fibration. (Note: Implicit in this sequence is the
observation that QF has an obvious identification with the fiber of QE 2% QB over the

base point of QB, such that Qi : QF — QF becomes its inclusion.)
¢ Remark: Theorem 2 gives us long exact sequences of sets of pointed homotopy classes

.= [X,Q%B] » [X,QF] > [X,QE] - [X,QB] - [X,F] - [X,E] - [X, B],
and since pointed fibrations are also free fibrations, the corresponding sequence of sets of
free homotopy classes is also exact wherever exactness makes sense (i.e. when the relevant

space is known to be path-connected).
e Definition: The (double) mapping path space of twomaps f: X - Zandg:Y — Zis

P(f,9) ==X ;Xopy Z' o0, %, Y = {(z,7,y) € X x Z' xY | v is a path in Z from f(z) to g(y)}.

This construction is “dual” to the double mapping cylinder, in the sense that it fits into all
the same diagrams but with the arrows reversed, e.g. with the obvious projections to X
and Y, the diagram

P(f,9) —= X
”Yl ~ |f
Y —— 7
commutes up to an obvious homotopy, and any homotopy commutative diagram of the

form
Q X

s

wl o
Y—g>Z
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naturally determines a map u: Q — P(f, g) for which the diagram

X
T
Q@ —— P(f.9)

N

Y

commutes. In summary: P(f,g) is a homotopy pullback of the maps f and g. (As with
homotopy pushouts: We are not claiming that P(f,g) defines an actual pullback in the
category hTop, which would require the homotopy class of u : @ — P(f,g) above to be
determined uniquely by the commutativity (up to homotopy) of the diagram. Exercise for
those who are so inclined: show that pullbacks in hTop do not always exist.)

e Remark: If f and g are pointed maps, then there is an obvious choice of base point for
P(f,g) that makes everything in the above discussion pointed. In contrast to the case of
mapping cylinders, this does not require any modification to the definition of the space
P(f,g) itself.

e Proposition: The map

(rx,my) : P(f,9) > X xY

is a fibration (and by composition, so therefore are the individual projections wx and 7y ).
Proof: It’s a pullback of the path space fibration Z! — Z x Z:

P(fvg) — ZI

(‘"XJTY)J( J{(evo,evl) )

XxY — ZxZ7
fxg

where the map P(f,g) — Z% is (z,7,y) — 7.
e Proof of Theorem 1: Define the mapping path space of f: X — Y as

P(f):=P(f,1dy) = {(z,7,y) € X x Y xY | 4(0) = f(z) and 7(1) = y}
={(z,7) e X x Y| 4(0) = f(x)}.

By contracting every path back to its starting point, we find a deformation retraction of
P(f) to an embedded copy of X, i.e. the map h : X — P(f) : x +— (x,consty(,)) is a
homotopy inverse of the projection 7x : P(f) — X : (x,7) — x. Moreover, 7x is a
fibration, and more importantly, so is the other projection

pi=my : P(f) =Y :(z,7) » (1),

which now fits into the commutative diagram

X s P(f)

e



TOPICS IN TOPOLOGY (“TOPOLOGIE IIT'), SOMMERSEMESTER 2024, HU BERLIN 35

in which h is a homotopy equivalence. One can now take the fiber Z := p~1(x) < P(f)
with inclusion i : Z < P(f) and define j := 7x oi: Z — X, producing the diagram

z—J9 ,x_ 1,y

e~ e

Z s P(f) —— Y

in which the vertical maps are all homotopy equivalences.

e To do list for next week: Clarify in what sense the fibration P(f) % ¥ and homotopy fiber
Z associated to f : X — Y are unique, why the homotopy class of § : 2B — F is well
defined, where the long exact sequence in Theorem 2 comes from, why free fibrations with
added base points are almost as good in practice as pointed fibrations, and along the way,
what a cofibration is and what this whole story looks like with all the arrows reversed.
That will keep us busy enough.

Suggested reading. The main nontrivial things we did this week can be found in [DKO01, §6.2,
§6.4 and §6.9]. An unfortunate omission in both [DKO01] and [tD08] is the pointed variant of the
homotopy lifting property, but there’s a fuller discussion of this and the associated subtleties in
the “Fibrations IV” section of Cutler’s lecture notes at https://www.math.uni-bielefeld.de/
“tcutler/.

Exercises (for the Ubung on 16.05.2024). Thursday the 9th is a holiday, so we’ll talk about
these exercises (and probably some others) in the Ubung for the following week.

Exercise 3.1. The following are two examples of maps p : £ — B with the property that all fibers
Ey, := p~1(b) are homotopy equivalent—we will see next week that this is a property that fibrations
must have, though in these examples, the fibers are not all homeomorphic, so they cannot be fiber
bundles. Determine whether each is actually a fibration.

(a) The projection E — R : (z,y) — x of the subset E := {(z,y) € R? | |y| < |z|}.
(b) The projection E — I : (z,y) + x of the subset E := (I x {0}) u ({0} x I).

Exercise 3.2. Prove that every pointed fibration becomes a free fibration after forgetting the base
points.

Hint: For any X € Top and Y € Top,,, unpointed maps X — Y are equivalent to pointed maps
X, - Y, for a pointed space X defined as the disjoint union of X with a one point space.

Exercise 3.3. For this exercise, let’s agree to call a space X locally compact if every neighbor-
hood of every point = € X contains a compact neighborhood of z.!* If you prefer the convention
that “locally compact” just means every point has a compact neighborhood, then feel free to add
the assumption that X is Hausdorff, which makes the simpler definition of locally compact equiv-
alent to the stricter one stated above. We assume as usual that the space C(X,Y") of continuous
maps X — Y carries the compact-open topology. The first three parts below add up to the proofs
of two lemmas that were stated without proof in lecture.

(a) Prove that if X is locally compact, then the evaluation map ev : C(X,Y) x X —» Y :
(f,z) — f(x) is continuous.

4T his definition presumes the term neighborhood of = to mean any set that contains an open set containing =z,
i.e. the neighborhood itself need not be open.
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Prove that for any spaces X,Y,Z and any continuous map f : X x Y — Z, the map

f:X - C(Y,Z) defined by f(z)(y) := f(=z,y) is also continuous, thus defining an injective
map

C(X xY,Z) - C(X,C(Y,2)): f — .

Remark: One would ideally also like to know that the map (3.1) is continuous, but let’s
not worry about that for now.

Prove that for two given spaces Y and Z, the evaluation map ev : C(Y,Z2) xY — Z is
continuous if and only if the map (3.1) is surjective for all spaces X.

Hint: The identity map is continuous on all spaces.

Comment: It follows in particular that (3.1) is a bijection whenever Y is locally compact;
we have already made ample use of the special case Y := I in the lectures.

Give a concrete example of three spaces for which the map (3.1) is not surjective.
Writing X! := C(I, X) for the space of paths in X, show that for any continuous map
f: X —Y, the induced map f!: X' - Y!:~v— for~ is continuous.

Before we continue, here is a definition: A continuous map q : X — X is called a quotient map
if it is surjective and the open sets U — X are precisely the sets for which ¢~ (/) < X is open.
Equivalently, ¢ is a quotient map if and only if it descends to a homeomorphism X/~ — X, for the

equivalence relation ~ on X such that = ~ y means ¢(x) = ¢(y). Most crucially, being a quotient
map means that in any diagram of the form

e

X —Y,

continuity of the map f implies that f is also continuous. (The converse is of course obvious, since
g is continuous.)

(f)

(g)

Given two quotient maps p : X — X and q: Y - Y, can you show that the product map
pXq: XxY > XxYisalsoa quotient map? Give it a try, but do not try too hard. .. Once
you’ve gotten stuck and realized that it isn’t obvious, take a look at [Mun75, pp. 143-144].
Prove that if Y is a space with the property that ev : C(Y,Z) x Y — Z is continuous for
every space Z, then for every quotient map ¢ : X5 X , the product

qXIdyIjZXY—)XXY

is also a quotient map. In particular, this is true whenever Y is locally compact.
In last week’s Ubung, I sketched an approach to proving S™ # S™ =~ §™+"+! (Exercise 2.7)
that led to the more general formula

X#Y = (CX xY)uxxy (X xCY),

obtained by splitting the double mapping cylinder in the middle and reinterpreting the
quotients that one sees in the two halves. I also mentioned however that it is not so
obvious how generally this formula holds, because e.g. CX x Y is a product of a quotient,
which is not always homeomorphic to the corresponding quotient of a product. Can you
name some conditions on X and Y that will guarantee that the formula holds? (Your
conditions should preferably include the special case with X = S™ and Y = S™!)

Exercise 3.4. In lecture, we exploited the natural bijective correspondence between maps X — Y/
and maps X x I — Y to prove that for any fibration p : E — B, the map p’ : Ef — Bl is also a
fibration, give or take some minor details (e.g. the continuity of p! is Exercise 3.3(e) above).
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(a) Describe a pointed space P’'X associated to every pointed space X with the property
that there is a natural bijective correspondence between pointed maps X — PY to the
based path space and pointed maps P’X — Y. Moreover, there should also be a bijec-
tive correspondence between pointed homotopies X x I — PY and pointed homotopies
PPXxI->Y.

Achtung: The detail about homotopies will require you to think about products of quo-
tients, so Exercise 3.3(g) may be useful.

(b) Do the same thing as in part (a) for pointed maps/homotopies to the based loop space QY.

(c) Prove the result stated in lecture that for any pointed fibration p : E — B, the induced
maps Pp: PE — PB and Qp : QF — QB are also pointed fibrations.

Exercise 3.5. Prove that if X is path-connected, then the homotopy type of the based loop space
QX is independent of the choice of base point.

Exercise 3.6. Formulate an analogue for mapping path spaces P(f,g) of the theorem we pre-
viously proved about mapping cylinders Z(f,g) defining a functor from a category of pushout
diagrams to hTop. Convince yourself in this way that the homotopy type of P(f,g) only depends
on the homotopy classes of the two maps f: X > Zand g:Y — Z.

Exercise 3.7. The mapping path space P(f) = {(z,7) € X x Y! | v(0) = f(x)} of a map
f: X — Y can be described as the fiber product of the maps f: X - Y and evy: Y! — Y, so by
the universal property of the fiber product, the diagram

X1 i 1
— Y

levo levo

x 1 .y

determines a map u : X! — P(f). Show that f : X — Y is a fibration if and only if the map
u: X! — P(f) admits a right-inverse X : P(f) — X7; in this situation, A is sometimes called a
lifting function for the fibration f: X —» Y.

4. WEEK 4

Thursday this week is a holiday, so there is only one lecture and no Ubung.

Lecture 6 (6.05.2024): The transport functor.

e Recall: We constructed for every (unpointed or pointed) map f: X — Y a diagram
F(f) — - x Ly

SRR

F(f) —— P(f) —— Y

where the bottom row is a (free or pointed) fibration with fiber F(f) := p~1(x) < P(f)
(preimage of the base point * € Y if pointed, an arbitrary point if not), and all the vertical
maps are homotopy equivalences. We call F(f) the homotopy fiber of f : X — Y. We
also had a homotopy inverse h : X — P(f) of mx fitting into the diagram

F x 1,y

b b e

F(f) — P(f) —> Y




38

CHRIS WENDL

which commutes on the nose (not just up to homotopy), where F' := f~1(x) ¢ X, thus
defining a comparison map

F - F(f)

from the “actual” fiber of f to its homotopy fiber.
Question: Does f : X — Y uniquely determine (up to what notion of equivalence?) the
fibration p: £ — Y in any diagram of the form

p

\/

For instance, if f : X — Y is already a fibration, are the two fibrations (and thus their
fibers) equivalent in some sense?'’

Inspiration from differential geometry: For a smooth fiber bundle p : E — B, any choice of
connection associates to each smooth path x NS y in B a parallel transport diffeomorphism

E, 5 B,

and it is compatible with smooth concatenation of paths: F,.g = Pg o P,. Connections
live in a contractible space of choices, so up to homotopy, P, is independent of this choice
and depends only on the (smooth) homotopy class of the path v. Given any smooth
homotopy H : X x I — B between maps Hy, H; : X — B, parallel transport determines
a correspondence

_E _E
lifts V l,, — lifts V l,,
x 2, pB x -1, B

defined by Hi(z) := Pr(z,.y 0 Ho(x). At the level of homotopy classes of lifts, this corre-
spondence is independent of choices, and depends on H only up to (smooth) homotopy
of homotopies. In homotopy theory, we have no smooth structures and cannot talk about
connections. .. but we probably can prove that things are unique up to homotopy!
Definition: Given B € Top, the category Topy of spaces over B has objects that are pairs
(X, f) with X a space and f : X — B a map, and the set of morphisms Hom((X, f), (Y, g))
consists of maps over B, meaning maps ¢ : X — Y that fit into the diagram

X —F 5y

N

Two such morphisms ¢, are homotopic over B if there exists a homotopy ¢ 4 Y
such that H; is a morphism (X, f) — (Y,g) for every t € I. This notion defines the
corresponding homotopy category hTopy, and isomorphisms in this category are called
homotopy equivalences over B. There are similar definitions for categories Topp , and
hTopg , in which all maps and homotopies are required to be pointed.

151 the lecture I stated this question a bit differently, involving a more complicated diagram, but I later realized

that that version was not exactly the question we are going to answer, nor is it the one that we really need to

answer.
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¢ Notation: Given two objects X,Y in Topg or Topp ,, we denote by
[X,Y]p := Hom(X,Y) in hTopy or hTopy , resp.

the set of homotopy classes of (unpointed or pointed) maps X — Y over B. We can also
write [(X, f), (Y, g)] s whenever the maps f : X — B and g : Y — B defining these objects
need to be specified.

e Definition: Given X,Y € Top, the homotopy groupoid II(X,Y) is a category whose
objects are maps f : X — Y, with morphisms

Hom(f,g) := {homotopies f & g}/ ~,
where the equivalence relation is “homotopy of homotopies™ H ~ H' means there is a
homotopy H 2 H of maps X x I — Y such that &, := ®(+,-,;s) : X x [ —» Y for each

s € I is also a homotopy f s g. Composition of morphisms is defined by concatenation
of homotopies. (Easy exercise: The equivalence relation makes this notion of composition
associative. The proof is essentially the same as the proof that multiplication in the
fundamental group is associative.)

e Remark: II(X,Y) is called a groupoid (and not just a category) because all of its morphisms
are invertible; one can always reverse homotopies.

e Special case: II(Y) := II(*,Y) is the fundamental groupoid of Y, and for each y € Y,
Hom(y, y) is then the (opposite of the) fundamental group 7 (Y,y).*°

e For XY € Top,, there is a pointed variant of II(X,Y") whose objects are pointed maps
and morphisms are homotopy classes of pointed homotopies. Amusing exercise: Is II(#,Y)
interesting in the pointed case?

e Theorem: For every (free or pointed) fibration p : E — B and every space X (unpointed
or pointed), there is a well-defined transport functor

II(X, B) — Set
which associates to each map f : X — B the set [(X, f), (E,p)]s of homotopy classes of
maps over B; we can interpret these as homotopy classes of lifts f: X - Eof f: X — B.

To each homotopy class of homotopies f g g of maps f,g: X — B, it associates the map

(X, 1), (B, p)]s 5 [(X, 9), (B, )]y

which sends the homotopy class of the lift f to the homotopy class of a lift g obtained by
liftingH:X><I—>Btoah0m0t0pyITI:X><I—>Efr0m ftog.

e Remark: It is educational to try using the HLP to prove that Hy is independent of choices,
but you will get stuck at some point and notice that the lifting problem you need to solve
is more complicated than the one addressed by the HLP. We will deal with this next week,
after talking a bit about the homotopy extension property and cofibrations. For the rest
of this lecture, we take the existence of the transport functor as a black box and explore
some of its applications.

165 slightly annoying detail here is that while Hom(y, y) has a natural group structure defined by composition
of morphisms—which in this case means homotopy classes of concatenation of paths—the conventions of category
theory then force multiplication in Hom(y,y) to be defined by [a][8] := [B8 - «]. This is why, strictly speaking
Hom(y, y) is the opposite group of m1(Y,y), rather than 71 (Y,y) itself. For any group G with multiplication of
elements g,h € G denoted by gh € G, the opposite group G°P can be defined as the same set but with a new
multiplication law “” defined by g - h := hg, so there is no difference if G happens to be abelian, but in general G
and G°P are different (though isomorphic!) groups. One occasionally sees claims in the literature that the “correct”
definition of m1(Y,y) really should be what we normally call 71 (Y, y)°P, so that it matches Hom(y, y) rather than
its opposite group. But this idea does not seem to have caught on.
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e Theorem: For any fibration p : E — B and any two homotopic maps fo, f1 : B — B, the

pullback fibrations fJE — B’ and f;E — B’ are homotopy equivalent over B’. It follows
in particular that for every b € B’, there is a homotopy equivalence (fFE), — (ffE)s
between corresponding fibers.

Corollary (the case B’ := #): For a fibration p : E — B, any two fibers over the same
path-component of B are homotopy equivalent.

Proof of the theorem: For each i = 0,1 we have pullback diagrams

e 15 E

b

B - .B

Let B’ 1% B for t € I denote the family of maps defined by a given homotopy

F

fo~ fi1.

The family fFE 1°P9 B then defines a homotopy

H
foopo~ fiopo

of maps ffE — B, and using the transport functor, we obtain a bijection Hy that asso-
ciates to each homotopy class of lifts of fy o py a homotopy class of lifts of f; o pg. Since
fo: fFE — Eis alift of foopg : f§E — B, we can feed this into Hyx and thus obtain a lift
g: ffE — E of fi opo, and by the universal property of the pullback f*E, this uniquely
determines the map ®r : ffE£ — fiE in the following diagram

I g

By Exercise 4.1 below, this construction defines a functor
II(B’, B) — hTopg

which associates to each map f : B’ — B the induced fibration f*F — B’ and to each

homotopy class of homotopies f & g the homotopy class of maps over B’ represented
by ®r : f*E — ¢g*E as constructed above via the transport functor. Since morphisms
in II(B’, B) are all invertible, the maps ®r obtained in this way are all isomorphisms
in hTopg/, meaning homotopy equivalences over B’'.

Theorem: If E % B and ' % B are two fibrations and f : E — E’ is a homotopy
equivalence of spaces that is also a map over B (with respect to p,p’), then f is also a
homotopy equivalence over B.
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e Remark: Using Exercise 4.2 below, it follows that whenever we have two ways of replacing
amap f: X — Y by fibrations p; : F; — Y as in the diagram

Eo(*Xg)El
NS

the two fibrations must be homotopy equivalent over Y, and their corresponding fibers
therefore homotopy equivalent. In particular, all reasonable definitions of the term “homo-
topy fiber” give the same thing up to homotopy equivalence.

e Preparation for the proof: Given a map X Ly and a space F, f induces a map

v, £] L [XE] o= ffpi=gpof,

which is obviously bijective if f is a homotopy equivalence. If we are also given maps
q:Y — Band p: E — B, then for any map ¢ : Y — E over B, the diagram

fEpi=gpof

X*>Y*>E

rom

means that f also induces a map

(Y20, (B.p)]5 L5 [(X, *0). (E.p)]5

e Lemma: In the situation above, if p: E — B is a fibration and f : X — Y is a homotopy

equivalence, then the map [(Y,q), (E,p)]s EAR [(X, f*q), (E,p)]s is also bijective.

e Proof of the lemma: Given a homotopy inverse g : ¥ — X of X, choose a homotopy
Idy 4 fog,sothat go H is then a homotopy of maps Y — B from ¢ to go fog = g* f*q.
We claim that the diagram

(qoH) %

T

[(Y,9), (B, p)] s —— [(X, £*0),(E,p)]5 ——— [(Y,g*f*a), (E,p)],

commutes. The reason is that for any given map (Y, q) — (E,p) over B, the following
diagram reveals that there is an obvious choice of lift for the homotopy ¢ o H :YxI—>B
with initial condition ¢ : Y — E:

Y i E

B

Choosing po H : Y x I — F as the lifted homotopy, it defines a homotopy from ¢ to
po fog=g*f*p and thus proves the claim. Since (g o H)x is a bijection, it follows that
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f* is injective and g* is surjective. Using a homotopy of g o f to Idx, one can apply the
same trick again to show that the composition

T

[(X, £20), (E,p)] 5 —2— [(V.g* F*0), (B,p)]p —— (X, [*6* %), (E,p)]
is also bijective, implying that the same map ¢* is also injective, and thus bijective. Since
the composition g* f* in (4.1) is bijective, it now follows that f* is bijective.

e Remark: The proof of the lemma should remind you of the proof that homotopy equiv-
alences induce isomorphisms of fundamental groups (in spite of the annoying detail that
the homotopy inverse need not respect base points). In fact, there is a dual version of
this lemma for cofibrations, a special case of which involves homotopy classes of maps
S1 — X over a one point space, and the result in that case is precisely the isomorphism
of fundamental groups.

e The proof of the theorem about homotopy equivalence of fibrations now follows from
abstract nonsense; see Exercise 4.3 below.

Suggested reading. The notions of “spaces/maps over B” and the homotopy groupoid are intro-
duced in [tD08, §2.2 and §2.9], with the special case of the fundamental groupoid treated at length
in §2.5. My presentation of the transport functor is based essentially on [tD08, §5.6], though tom
Dieck only gives very brief sketches of proofs in that section, since it appears after the corresponding
discussion about cofibrations (which is formally similar).

In [DKO1, §6.6], you will also find a fairly down-to-earth proof of the fact that for the fibration
P(f) — Y constructed out of the mapping path space of any map f : X — Y, the associated
homotopy equivalence h : X — P(f) is also a homotopy equivalence over Y whenever f : X —» Y
itself is a fibration. This is less general than what we proved, because it applies only to a specific
fibration P(f) — Y rather than an arbitrary fibration over Y that fits into a suitable diagram with
f: X — Y. Unfortunately, the proof of the main theorem about the long exact fibration sequence
in [DKO1, §6.11] sneakily uses the more general version of this uniqueness result, so as far as I can
tell, this is a logical gap in the book.

Exercises (also for the Ubung on 16.05.2024).

Exercise 4.1. In lecture we used the transport functor to associate to any fibration p : £ — B
and any homotopy class of homotopies F' between two maps fo, f1 : B’ — B a homotopy class of
maps over B’ in the form

O*ELJ“{“E
BI

relating the two pullback fibrations p; : f*E — B’ induced by f; : B — B for ¢ = 0,1. Complete
the proof that this construction defines a functor

H(B/7B) g hTOpB/,
which associates to each map f : B’ — B the pullback fibration f*E — B’, with the important
consequence that the map ®r determined by a homotopy is always a homotopy equivalence over B’.

Hint: Consider a family of maps B’ J B parameterized by t € [0,2], which you can think of
as a concatenation of a homotopy from fy to fi; with a homotopy from f, to f,. Defining the
induced maps f{E — fFE and f{E — f3FE requires choosing lifts of certain homotopies of maps
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fGE - B (for 0<t<1)and f{E — B (for 1 <t < 2) respectively. Let these choices determine
how you can continue the lift of the homotopy of maps f§E — B over the interval 1 <t < 2, thus
defining the induced map fJE — fFE
Exercise 4.2. Assume p: F — Y is a fibration and f: X — Y is a map.

(a) Show that if ¢ : X — E'is a map for which the diagram

e

commutes up to homotopy, then ¢ can be replaced with a homotopic map X — FE that
makes the diagram commute on the nose.

(b) Deduce the basic uniqueness result about fibrations associated to a map f : X — Y,
namely that for any diagram of the form

E()(iX*}El

AN 574

in which pg : Eg — Y and p; : E; — Y are both fibrations, the two fibrations are homotopy
equivalent over Y.

Exercise 4.3. Suppose ¢ is a category and X Lyisa morphism in % with the property that
the maps
Hom(Y, X) AN Hom(X X) and Hom(Y,Y) AN Hom(X Y)

defined via f*p := @ o f are both bijections. Prove that f is an isomorphism of ¢’. Then use this
to finish the proof of the theorem stated in lecture that every homotopy equivalence £ — E’ that
is also a map over B for two fibrations E, £’ — B is also a homotopy equivalence over B.

5. WEEK 5

Lecture 7 (13.05.2024): Cofibrations.

e Tricky lifting problem 1: If p : E — B is a free fibration and we choose base points = € B
and * € p~1(¥) c F to make it a pointed map, then it satisfies the pointed HLP with
respect to a pointed space X if and only if the lifting problem

X x {0} u{s}xT ﬂHOUCOHSi E

X xT - Ll B

is solvable. Having H prescribed on {#} x I and not just on X x {0} means that the usual
(free) HLP does not guarantee a solution to this problem.

e Tricky lifting problem 2: Showing that the transport functor for a free fibration p: £ — B
is well defined requires solving the lifting problem

Xx(@IquIx{O})ﬂE

[ - ).

X xI? - ¢ B

‘Qa
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Here, G : X x I> > B : (z,s,t) — H®)(x,t) is a l-parameter family of homotopies

) ~
{Hy B Hq}ser between two fixed maps Hy, H; : X — B, the lift G is prescribed on

X x 8I x I because lifts of the two specific homotopies H(®) and H(™ have already been
chosen, and it is prescribed on X x I x {0} because we are also given a homotopy {Hés) }ser

of lifts of Hy. The existence of G then implies a corresponding homotopy {ﬁ[l(s)}sel of lifts
of Hl.

More general question: Given a free fibration p : E — B and a map j : A —» X, under
what conditions is the problem

|

E
i 0|

B

At
N

T

solvable? We refer to this in the following as problem (FLP), for “fundamental lifting
problem”.

Theorem FLP (the “fundamental lifting property”): Problem (FLP) is solvable whenever
j: A — X is a free cofibration (see definition below) and either j or p is a homotopy
equivalence.

Remark: We will only need a special case of Theorem FLP and thus will not prove it in
full generality. Notice that the case where j : A — X is the inclusion Y x {0} — Y x [ for
some space Y is simply the HLP with respect to Y. Since the map evg : Y/ — Y is always
both a fibration and a homotopy equivalence, the HEP defined below is another special
case.

Definition: A map j: A — X satisfies the (free) homotopy extension property (HEP)
with respect to a space Y if the lifting problem

is solvable for all given maps Hy and h. Interpretation: Since maps A — Y/ are equivalent
to homotopies A x I — Y, the diagram asks that for any given homotopy h: A x [ - Y
and map Hy : X — Y satisfying Hypoj = hg, there should exist a homotopy H : X xI - Y
satisfying H; o j = h; for all ¢. In other words, the problem

A s AxT

b e

X <y X xT

is solvable, allowing us to interpret X x I as a weak pushout of the maps ig: A <—> A x [
and j : A - X. (The word “weak” is included because the map H is not required to be
unique, and in typical examples it is not.) We will see in Exercise 5.2 that without loss
of generality, j : A — X is always the inclusion of a subspace A ¢ X, in which case H is
literally an extension of h: A x I — Y to the larger domain X x I.

e Definition: j: A — X is a (free) cofibration if it has the HEP with respect to all spaces Y.
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e Main application: Assume for simplicity that j : A — X is the inclusion of a subspace A c
X, and let g : X — X /A denote the quotient projection. Given a path-connected space Y,

we can plug the maps A & X % X /A into the contravariant functor [-, Y] : hTop — Set,
and obtain a sequence of homotopy sets

[X/A,Y] 45 x,v] 25 (4,7,

Theorem: This sequence is exact whenever j : A — X has the free HEP with respect to Y,
so in particular whenever it is a free cofibration. (The proof is an easy exercise.)
e Terminology: for a cofibration j : A — X, we call A the cobase and X/j(A) the cofiber.
e There is an analogous pointed homotopy extension property and thus a notion of

poi

nted cofibrations in which all maps and homotopies are required to be pointed. For

these, the theorem above is true for sets of pointed homotopy classes of maps to Y, and

the

presence of a base point removes the necessity of assuming Y is path-connected. (Note

that we never need any path-connectedness assumption on A4, X or X/A, in contrast to

the

case of fibrations.)

¢ Convention: As with fibrations, any statement we make about cofibrations without spec-
ifying the words free/unpointed or pointed/based should be understood to be valid in two
parallel versions, one in the category Top or hTop, the other in Top, or hTop,. This is,
however, possible less often with cofibrations than with fibrations, due to the more-than-
cosmetic differences between spaces such as X x I and (X x I)/({=} x I).

e Constructions of cofibrations (analogous to the list in Lecture 5 for fibrations; for proofs,

see

(1)

(2)

e Pro

Exercise 5.3):
Inclusions in coproducts: For all spaces A,Q € Top, the inclusion A — AL Q is
a free cofibration, and for pointed spaces A, Q € Top,, the inclusion A —> A v Q is a
pointed cofibration.
Cylinders: Inclusions of the form

X xI

{#} x I

are free or pointed cofibrations respectively, where i;(x) := (x, t).

Compositions: The composition of two cofibrations is a cofibration.

Coproducts: Given two (free or pointed) cofibrations j; : A; — X; for i = 1,2, the
map

XX ™ x 7 or X v X oy

j1Hj22A1HA2—>X1HX2 or j1Vj21A1VA2—>X1VX2

is a (free or pointed) cofibration respectively.
Pushouts: Assume X' is the pushout of two maps j: A —» X and f: A —» A’, giving
rise to the diagram

AL w

G

x 1 x

If j: A — X is a cofibration, then so is j' : A’ — X’. In this case we call 7/ : A’ —» X’
the cofibration induced from j : A — X by the map f : A — A’; this construction is
sometimes called change of cobase.

position: For any two maps f: Z — X and g: Z — Y in Top or Top,, the natural

inclusion of X 1Y or X v Y respectively into the (unreduced or reduced) double mapping
cylinder Z(f,g) is a (free or pointed) cofibration.
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Proof: Present it as the pushout of the maps Z11Z — Z x I and flig: Z1UZ - X1Y
in the unpointed case, or Z v Z — (Z x I)/({*} x I) and f vg: Z v Z — X vY in the
pointed case.

Corollary: Every map f : X — Y has the homotopy type of a cofibration whose cofiber
(known as the homotopy cofiber of f) is the mapping cone of f. Proof:

L}Y

d

X Z(f) —— Z(f)/X = CX ux Y = cone(f),

>

oy
—

=

where h: Z(f) — Y is the homotopy equivalence defined on Z(f) = ((X x I) LIY)/ ~ by
h([(z,t)]) := f(z) for (z,t) e X x I and h(y) :=y forye Y.

Remark: Following our usual convention, this result is equally valid in the unpointed and
pointed cases. In the latter version, Z(f) and cone(f) are the reduced mapping cylinder
and cone respectively.

In the following, we redefine the unreduced mapping cylinder of a map j: A — X by

Z(j) = Z(3,1d) = X u; (A x 1),

where A x I is glued to X along A x {0} instead of A x {1}.

Theorem: There is a natural map ¥ : Z(j) — X x I such that the following conditions are
equivalent:

(1) j: A— X is a free cofibration;

(2) ¥:Z(j) > X x I admits a right-inverse r : X x I — Z(j);

(3) j: A — X has the HEP with respect to the space Z(3).

(For the pointed version of this theorem and its consequences, see Exercise 5.1.)

Proof: Look at the diagram

Ay AxT

b

X 255 Z(5)

JxId

The top left square is a pushout square, with ¢4 and ¢x denoting the maps canonically
associated with the pushout. The universal property of the pushout implies that the maps
U and w exist and are unique; in light of uniqueness, it also implies that r o ¥ = Id if r
exists. The map r does exist (but need not be unique) if j has the free HEP with respect
to Z(j), and in that case, u o r solves the homotopy extension problem with respect to an
arbitrary given space Y.
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Remark: If j : A — X is the inclusion of a subspace A ¢ X (which is not a loss of
generality according to Exercise 5.2), then (5.1) shows that ¥ is the canonical bijection

Z(j) > X x{0}uAxI,

which need not be a homeomorphism in general because the subspace topology on X x
{0} A x I c X x I may be different from the topology of Z(j) = (X1 (A xI))/~. But if
A — X is a cofibration, then r restricts to X x {0} u A x I as a continuous inverse of this
bijection, meaning we have a homeomorphism Z(j) =~ X x {0} u A x I, and 7 can then be
interpreted as a retraction

XxIT-—-Xx{0juAdxlI.

Corollary: The inclusion A — X of a subspace A c X is a cofibration if and only if there
exists a retraction X x I — X x {0} U A x I.

Definition: For a closed subset A c X, we call (X, A) an NDR-pair (stands for “neighbor-
hood deformation retract”) if there exists a continuous function u : X — I and a homotopy
p: X x I — X such that

p1 = ldx, pila =1ds forallte I, and po({u<1})c A

Further, we call it a DR~pair if additionally © < 1 everywhere on X, in which case the
open subset {u < 1} is all of X and p is therefore a deformation retraction of X to A.
Lemma (see Exercise 5.4):
(1) If (X, A) and (Y, B) are NDR-pairs then sois (X x Y;A xY u X x B), and it is a
DR-pair whenever either of (X, A) or (Y, B) is a DR-pair.
(2) If A c X is a closed subset such that there exists a retraction r : X x I — X x {0} u
A x I, then (X, A) is an NDR-pair.
Corollary: For a closed subset A < X, the inclusion A — X is a free cofibration if and
only if (X, A) is an NDR-pair.
Proof: Cofibration = retraction = NDR-pair according to the lemma and the previous
corollary. Conversely, one easily checks that (I, {0}) is a DR-pair, so if (X, A) is an NDR-
pair, then (X x I, X x {0} u A x I) is a DR-pair, implying the existence of the required
retraction.
Theorem (a useful special case of Theorem FLP): The lifting problem (FLP) is solvable
whenever j : A — X is the inclusion of a subspace A ¢ X and (X, A) is a DR-pair. (For
applications to tricky lifting problems 1 and 2, see Exercise 5.5.)
Proof: Assume v : X — [ and p: X x I —» X make (X, A) a DR-pair, so in particular,
u™1(0) = A, p1 =Idx, pi|a =1da for all t € I and po(X) = A. The problem to be solved
is
A1, E
T
j 7 p-
X+ B
As an ansatz, we try to define h : X — FE in the form

h(z) = H(z,u(x)),
where H : X x I — F is a lift of the homotopy
H:X xI— B, H(z,t) :== gop(z,t).

The condition h(a) = f(a) for a € A is then satisfied if and only if Hy|4 = f, which we
can arrange by requiring the initial lift of the homotopy to be Hy := f o pg. The condition
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poh(x) = H(z,u(z)) = gop(x,u(x)) = g(x) is then satisfied if p(z, u(x)) =z forall x € X,
which is not necessarily true in general, but can be arranged without loss of generality.
Indeed, for each z € X, p(z,-) € X! is a path starting in A and ending at z, and is a
constant path for every x € A. It therefore suffices to reparametrize p by speeding up each
of these paths so that for each x ¢ A, p(x,-) reaches the end already by time ¢t = u(z) > 0.
(Exercise: Write this down explicitly and reassure yourself that the modified version of p
can be made continuous—in X\A and in the interior of A this is obvious, but one needs
to think more carefully about the boundary of A.)

Lecture 8 (16.05.2024): The Puppe sequence of a fibration. Coming soon. ..
Suggested reading. Coming soon. ..

Exercises (for the Ubung on 23.05.2024).

Exercise 5.1. Write down an analogue of the diagram (5.1) for pointed cofibrations, in which Z(j)
becomes the reduced mapping cylinder and X x I is replaced by the quotient (X x I)/({x} x I).
Deduce from this a theorem characterizing pointed cofibrations A — X in terms of the existence
of a retraction of pointed spaces.

Exercise 5.2. A continuous map f : X — Y is called an embedding if it is injective and is a
homeomorphism onto its image f(X) c Y with the subspace topology. Embeddings can also be
characterized via the following universal property: an injective continuous map f: X — Y is an
embedding if and only if for every space Z and every (not necessarily continuous) map g : Z — X,
g is continuous whenever the composition f o g is continuous. Before proceeding, take a moment
to make sure you understand why these two versions of the definition are equivalent.

(a) Show that for any two maps f : Z — X and g : Z — Y, the natural inclusions of X and
Y into the (unreduced or reduced) double mapping cylinder Z(f, g) are embeddings.

(b) Prove the following dual version of the statement in Exercise 4.2(a): For any cofibration
j:A— X and maps f: A— Y and ¢ : X — Y such that the diagram

A
7N
X——Y

commutes up to homotopy, ¢ can be replaced with a homotopic map X — Y that makes
the diagram commute on the nose.

(c) Use the universal property of embeddings to deduce from parts (a) and (b) that all cofi-
brations are embeddings.

Hint: What can you conclude from an embedding that is the composition of two other
continuous maps?

(d) Recall that a continuous map f: X — Y is a closed map if it sends all closed subsets of
X to closed subsets of Y; in particular, if f is a closed map, then its image f(X) c Y is
necessarily a closed set in Y. Show that if f is also an embedding, then the converse also
holds, i.e. the closed embeddings are precisely those embeddings f : X — Y whose images
in Y are closed.

(e) Show that if j : A — X is a free cofibration and X is Hausdorff, then j is a closed
embedding.

Hint: You can now assume without loss of generality that A — X is a subspace with
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inclusion j. We showed in lecture that whenever such an inclusion is a free cofibration,
there exists a retraction

X xT -5 (X x{0)u(AxI),

so for the inclusion X = X x{1} < X xI, it follows that x € A if and only ifroiy (x) = i1(x).
Use this to present A as the preimage of the diagonal subset for some map from X to a
Hausdorff space.

Remark: This has the convenient consequence that the cofiber X /A of a cofibration j : A —
X will be Hausdorff in all examples we ever want to consider (cf. [Wen23, Exercise 6.20]).
Under what assumptions on a pointed space X can you also conclude for a pointed cofi-
bration A — X that A is closed?

The natural statement dual to the result of part (c) would be that all fibrations p : £ — B
are quotient maps (cf. Exercise 3.3), but this is unfortunately not quite true. Show that if
p: E — B is a fibration and the base B is locally path-connected, then p is an open map,
and is therefore a quotient map if and only if it is surjective. Can you find counterexamples
in which p is not a quotient map, either because it is not surjective or because B is not
locally path-connected?

Hint: Thanks to Exercise 4.2(a), you should have the freedom to replace p : E — B with
the natural fibration P(p) — B built out of its mapping path space.

Exercise 5.3. Prove the claims stated in lecture about constructions of cofibrations via inclusions
into coproducts or cylinders, compositions, coproducts of maps, and pushouts. If you don’t have
time for all of these, focus on pushouts.

Exercise 5.4. For an NDR-pair (X, A) with associated function v : X — I and homotopy
p: X xI— X, the data (u, p) are sometimes called an NDR-presentation of (X, A). Parts (a)
and (b) below give the proof of a lemma that was quoted in lecture; the precise formulas are
adapted from [May99, §6.4].

(a)

Prove that if (X, A) and (Y, B) have NDR-presentations (u, p) and (v, o) respectively, then
we obtain an NDR-presentation (w, ) of (X xY, A xY u X x B) by setting

w(z,y) := min{u(z),v(y)}

o(x,y,t) == <p (a:,t-min{l, ugg }) o (y,t-min{l, ZE;;}) )

and in particular, (X x Y, A x Y u X x B) is a DR-pair whenever either (X, A) or (Y, B)
is a DR-pair.

Remark: We are following a convention that min{1, p/q} := 1 whenever ¢ = 0. Nonetheless,
it is not entirely obvious from the formula that ¢ : X xY x I — X x Y is continuous,
especially near points where x or y lies on the boundary of A or B respectively.

Prove that if A ¢ X is a closed subset and r = (p,7) : X x I — X x I is a retraction onto
the subset X x {0} U A x I, then (u, p) is an NDR-presentation of (X, A), where u: X — I
is defined by

and

1

u(zx) :=sup [t — 7(z,t)].
tel

What goes wrong here if you do not assume that A ¢ X is closed?
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(c) If (like most of us) you learned the basics of homology from [Hat02], then you may have
noticed some similarity between NDR-pairs and Hatcher’s notion of “good pairs”.'” They
are not quite equivalent notions, however; reread both definitions to make sure that you
understand why neither implies the other.'®

(d) Suppose A ¢ X is closed and is a deformation retract of an open neighborhood U c X
of A, and that X admits a metric (compatible with its topology) for which the distance
between A and X\U is positive. Show that (X, A) is then an NDR-pair.

(e) Show that all CW-pairs (X, A) are NDR-pairs.

Hint: Construct u : X — I so that it equals 1 on every cell closure does not touch A,
and also on a neighborhood of the center of every cell that is not contained in A. Start
with A U XY, then extend inductively from A u X"~ to A U X" for each n € N.

(f) Let R’ denote the vector space [[; R, equipped with the product topology; equivalently,

you can think of R” as the set of all (not necessarily continuous) maps J — R, with the
topology of pointwise convergence. Show that if the set J is uncountable, then {0} c R’
is closed but is not the zero set of any continuous function u : R/ — I, and deduce that
the inclusion {0} — R” is not a cofibration.
Hint: If such a function u : R? — I exists, how can you characterize neighborhoods of the
form u=1([0,1/n)) for n € N? Use this to construct a sequence of functions f, : J — R
that satisfies u(f,) — 0 but converges pointwise to a nonzero function f : J — R. The
latter will be possible specifically because J is uncountable.

Exercise 5.5. Let’s start with something easy:

(a) Show that for every free cofibration j : A — X, any choice of base points that makes j
into a pointed map makes it also into a pointed cofibration.

Going from free to pointed fibrations is more complicated, and requires the following notion: A
pointed space X is called well-pointed if the inclusion of its base point {#} < X is a closed free
cofibration.

(b) Show that if p: E — B is a free fibration, then for any choice of base points that makes p
into a pointed map, it satisfies the pointed HLP with respect to all well-pointed spaces.
Hint: If (X, *) is well pointed, then (X x I, X x {0} u {#} x I) is a DR-pair. (Why?)
The result in part (b) is the reason why, in practice, one rarely needs to worry about the distinction
between free and pointed fibrations. It suffices for most purposes to restrict attention exclusively to
well-pointed spaces, and many books on homotopy theory impose this condition across the board,
simply for convenience, even though it is often not really necessary.!” Pointed spaces that are

17Hatcher calls (X, A) a good pair if A c X is closed and is a deformation retract of some open neighborhood
Uc X of A.

181 will not suggest searching for examples that satisfy one of the definitions but not the other—in practice,
almost all of the examples of interest satisfy both. We will see when we study the homotopy-theoretic perspective
on homology that the role of good pairs is played in that setting by inclusions that are cofibrations.

197 have been noticing a tendency in the homotopy theory literature that strikes me as unhealthy. It seems to be
widely assumed that “most” of the important results in homotopy theory will not reliably work unless one restricts
to some “convenient” category of spaces that have better “formal” properties than Top or Top,. One of the common
restrictions is to consider only the well-pointed spaces within Top,,, the standard intuition (so far as I understand
it) being that this is what is required in order to make every result about fibrations or cofibrations equally valid
in the free and pointed cases. I find that intuition to be a dreadful oversimplification of reality. For example, one
cannot simply prove that the transport functor for a free fibration is well defined, and then immediately claim that
it is therefore also well-defined in the pointed case as long as everything is well-pointed; that summary does not
bear a close resemblence to the correct proof in the pointed case (see Exercise 5.6), in which well-pointedness is not
actually relevant at all. I have noticed several places in textbooks where well-pointedness is assumed without being
necessary, and this even seems to cause some confusion among experts (see e.g. https://math.stackexchange.com/
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not well-pointed are typically quite peculiar, cf. Exercise 5.4(f). One can improve part (b) to the
statement that for any closed free fibration p : E — B with a choice of base points such that p is
a pointed map and B is well-pointed, p : E — B is also a pointed fibration.?® There is also a dual
result, stating that any pointed cofibration j : A — X becomes a free cofibration after forgetting
the base points if both A and X are well-pointed. This result is apparently trickier to prove, but
we will not make any use of it in this course.”!

(c) Use DR-pairs to complete the proof that the transport functor for a free fibration is well

defined. But if you don’t like doing it that way, skip this and proceed to Exercise 5.6.

Exercise 5.6. As mentioned in lecture, the lifting problem

X x (@I xI0Ix{0}) ———3 E
\[ //f;,/”/ J{p
X xI? G B

can indeed be solved by showing that (X x I2, X x (oI x I uI x {0})) is a DR-pair, but a few of
you ganged up on me after that lecture and convinced me (with some difficulty) that there is an
easier way, based on choosing a homeomorphism of pairs

(I2,01 x T U I x {0}) -2 (1%, 1 x {0}).

Draw enough pictures to convince yourself that such a map exists.

(a) Use the homeomorphism ® to reduce the lifting problem in the diagram above to an
application of the standard homotopy lifting property. This completes the proof that the
transport functor is well defined for every free fibration.

(b) What about the transport functor for pointed fibrations? Determine what lifting problem
needs to be solved in order for the transport functor in the pointed setting to be well-
defined, and use the homeomorphism ® to solve it.

Hint: The most useful way to view pointed homotopies X x I — Y in this context is as
pointed maps {if}ixx’} — Y. This also applies to homotopies of pointed homotopies, which

you can view as pointed maps {):}XixI; — Y. Now just check whether what you wrote down

in part (a) descends to the relevant quotients.

(c) Without looking up the definition, what do you think the transport functor of a cofibration
A — X should be, and what extension problem needs to be solved in order to prove that it
is well defined? Solve it in the unpointed case by combining a well-chosen homeomorphism
with the knowledge that X x {0} U A x I is a retract of X x I. Then adapt your solution
to the pointed case by letting things descend to quotients.

There may be more exercises coming after Thursday, though this does seem like enough. ..

questions/175590/importance-of-well-pointedness-in-particular-for-the-pointed-mapping-cylinder-c). I
am therefore making a big effort to avoid imposing such assumptions when they are not truly relevant. In the case
of well-pointedness, the price we pay is that we must always keep in mind two parallel definitions of the HLP and
HEP—one for the free case and another for the pointed case—but this strikes me as the natural thing to do.

20For a proof of this statement, see Proposition 1.8 of Cutler’s lecture notes Fibrations IV at https://www.
math.uni-bielefeld.de/ tcutler/. The proof uses the characterization of fibrations in terms of lifting functions
(Exercise 3.7), which is the dual variant of the characterization of cofibrations in terms of retractions. It also uses
a weaker assumption than {#} < B being a closed cofibration; it is sufficient in fact to assume that the base point
in B is the zero set of a continuous function B — I.

21The full details take about three pages in [MP12, Lemma 1.3.4], where they appear together with a de facto
apology for having stated the result casually in [May99, §8.3] as if it were a self-evident fact with no need for
justification.
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