
SYMPLECTIC TOPOLOGY AND HOLOMORPHIC CURVES,
WINTERSEMESTER 2018–2019, HU BERLIN

CHRIS WENDL

This is not a set of lecture notes, but merely a brief summary of the contents of each lecture,
with reading suggestions and a compendium of exercises. The suggested reading will usually not
correspond precisely to what was covered in the lectures, but there will often be a heavy overlap.

1. Introduction to symplectic topology (16.10.2018)

Topics and reading. A large portion of the contents of this lecture appear in §1.1–1.3 and §1.5
of [Wena]. For a more general basic introduction to symplectic geometry, the book [CdS01] is very
popular.

‚ Newton’s laws of motion and Hamilton’s equations
‚ the standard symplectic form ωst on R2n (see Exercise 1.1)
‚ symplectic forms and Hamiltonian vector fields
‚ Darboux’s theorem (proof postponed until next week)
‚ Hamiltonian flows conserve energy and preserve volume—moreover, they are symplecto-

morphisms (cf. Prop. 1.2.2 and Cor. 1.2.3 in [Wena])
‚ Examples of symplectic manifolds: R2n, T2n, oriented surfaces, products, CPn (mentioned

with details deferred; see [Wen18, Example 1.4]), and why S2n is not one unless n “ 1 (de
Rham cohomology)

‚ the canonical symplectic form on a cotangent bundle (see Exercise 1.2)
‚ Questions/results in symplectic topology:

(1) (open question) If T ˚M and T ˚N are symplectomorphic, must M and N be diffeo-
morphic?

(2) (Gromov [Gro85]) Every symplectic form on R4 that is standard near infinity is sym-
plectomorphic to the standard one (cf. [Wena, Theorem 1.5.1]). Sketch of proof via
J-holomorphic curves.

Exercises.

Exercise 1.1. Recall that a differential form ω on a manifold M is called closed if its exterior
derivative dω vanishes. If ω is a 2-form, it is called nondegenerate if there does not exist any
point p P M with a nontrivial tangent vector X P TpM such that ωpX,Y q “ 0 for all Y P TpM .

(a) Show that a 2-form ω is nondegenerate if and only if for every p P M , the natural linear
map TpM Ñ T ˚

p M : X ÞÑ ωpX, ¨q is an isomorphism.
(b) Prove that on R2n with coordinates pp1, q1, . . . , pn, qnq, the 2-form

ωst :“
nÿ

j“1

dpj ^ dqj

is closed and nondegenerate.
1
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(c) Prove that for any smooth function H : R2n Ñ R, a path xptq “ pqptq, pptqq P R2n satisfies
Hamilton’s equations of motion

9qj “
BH

Bpj
, 9pj “ ´

BH

Bqj

if and only if 9xptq “ XHpxptqq, where XH is the unique vector field on R2n satisfying

ωstpXH , ¨q “ ´dH.

(Note that this vector field exists and is unique due to the isomorphism in part (a) and
the fact that ωst is nondegenerate.)

Exercise 1.2. Given a smooth n-manifold M , the canonical 1-form λcan P Ω1pT ˚Mq on the
cotangent bundle is defined by λcanpξq “ τ 1pξq pTπpξqq, where

π : T ˚M Ñ M, τ : TM Ñ M, τ 1 : T pT ˚Mq Ñ T ˚M

denote the natural bundle projections and Tπ : T pT ˚Mq Ñ TM is the tangent map of π.

(a) Suppose U Ă M is an open subset admitting a coordinate chart pq1, . . . , qnq, and the
induced coordinates on T ˚M |U Ă T ˚M are denoted by pq1, . . . , qn, p1, . . . , pnq. (This
means concretely that if x P U denotes the point with coordinate values pq1, . . . , qnq, then
the coordinate values pq1, . . . , qn, p1, . . . , pnq represent the cotangent vector p1 dq1 ` . . . `
pn dqn in T ˚

xM .) Prove that

λcan “
nÿ

j“1

pj dqj on T ˚M |U .

Conclude that dλcan is symplectic and that the 1-form
ř

j p
j dqj is independent of the

original choice of coordinate chart pq1, . . . , qnq.
(b) Suppose x , y is a Riemannian metric on M , and use the same notation to denote the inner

product on cotangent spaces T ˚
q M induced via the isomorphism TqM Ñ T ˚

q M : X ÞÑ
xX, ¨y. With this understood, denote elements of T ˚M by pq, pq for q P M and p P T ˚

q M ,
and consider the Hamiltonian function H : T ˚M Ñ R defined by

Hpq, pq “
1

2
xp, py.

Show that a path xptq “ pqptq, pptqq in T ˚M satisfies 9x “ XHpxq if and only if pptq “
x 9qptq, ¨y and t ÞÑ qptq is a geodesic on M with respect to the metric x , y.

Hint 1: It helps to think in variational terms. Convince yourself first that on any ex-
act symplectic manifold pW,dλq with any function H : W Ñ R, a trajectory x : rt0, t1s Ñ
W is an orbit of XH if and only if it is a stationary point of the functional Apxq :“şt1
t0

rλp 9xptqq ´Hpxptqqs dt, defined on the space of smooth paths x : rt0, t1s Ñ W with fixed

end points. Then write down this functional explicitly for paths xptq “ pqptq, pptqq P T ˚M
with Hpq, pq “ 1

2
xp, py, and derive another characterization of its stationary points.

Hint 2: Any choice of connection on the vector bundle π : T ˚M Ñ M provides a convenient
identification of each tangent space Tpq,pqpT ˚Mq with TqM ‘ T ˚

q M if you think of these
two factors as containing the horizontal and vertical parts respectively of tangent vectors.

Agenda for the Übung (19.10.2018). Aside from the two exercises above, we will discuss the
standard (Fubini-Study) symplectic form on CP

n and the consequence that every smooth projective
variety is naturally a symplectic manifold.
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2. Basics on symplectic manifolds (23.10.2018)

Topics and reading. The Moser deformation trick is covered in [Wena, §1.4], and you’ll find a
more comprehensive discussion (including complete proofs of the Moser stability and Lagrangian
neighborhood theorems) in [MS17, Chapter 3]. For almost complex structures and compatibil-
ity/tameness, I recommend skimming [Wena, §2.2].

‚ Why the symplectomorphism group SymppM,ωq is infinite-dimensional
‚ Darboux’s theorem and proof via the Moser deformation trick
‚ Moser’s stability theorem (similar proof)
‚ The Fubini-Study symplectic form and symplectic deformations on CP

n

‚ Lagrangian neighborhood theorem (stated without proof)
‚ Almost complex structures, tameness and compatibility
‚ Proof that the space J pM,ωq of compatible almost complex structures is nonempty and

contractible
‚ Corollary: For any J0, J0 P J pM,ωq, the vector bundles pTM, J0q and pTM, J1q are iso-

morphic.

Exercises.

Exercise 2.1. Work through the details of [Wen18, Example 1.4] until you understand the defi-
nition of the Fubini-Study symplectic form ωFS on CPn. Then prove:

(a) Every complex submanifold Σ Ă CP
n is also a symplectic submanifold of pCPn, ωFSq,

i.e. the restriction of ωFS to Σ is also symplectic.
Hint: Since CP

n is a complex manifold, it has a natural almost complex structure defined
as multiplication by i in any local holomorphic coordinates. Show that this almost complex
structure is tamed by ωFS. (Why does that help?)

(b) For each k ď n, the embedding ι : CPk
ãÑ CPn : rz0 : . . . : zks ÞÑ rz0 : . . . : zk : 0 : . . . : 0s

satisfies ι˚ωFS “ ωFS.
(c)

ş
CP1 ωFS “ π. Hint: Find an embedding ϕ : C ãÑ S3 such that for the projection pr : S3 Ñ

CP1 “ S3{S1, pr ˝ϕ is a diffeomorphism of C to the complement of a point in CP1. Then
use the relation pr˚ ωFS “ ωst|TS3 to integrate ppr ˝ϕq˚ωFS over C.

Exercise 2.2. Let x0 “ r1 : 0 : 0s P CP2, and consider the holomorphic map

π : CP2ztx0u Ñ CP1 : rz0 : z1 : z2s ÞÑ rz1 : z2s.

Show that the closure of each level set π´1pconstq Ă CP2 can be parametrized by a holomorphic
embedding CP1

ãÑ CP2 that passes through x0, thus it defines a complex submanifold Σ Ă CP2

which is diffeomorphic to S2.

3. J-holomorphic curves and the linearized Cauchy-Riemann operator (30.10.2018)

Topics and reading. For a readable introduction to the first Chern class in the symplectic
context, see [MS17, §2.7]. (If you want to delve more deeply into the subject of characteristic
classes, try [Hat] or [MS74], though keep in mind that one can also make an entire course out of
that subject on its own.) Other than this, most of the contents of this week’s lecture (in particular
the derivation of the linearized Cauchy-Riemann operator) are covered in [Wena, §2.3–2.4].

‚ Axiomatic description of the first Chern class on complex vector bundles and c1pM,ωq :“
c1pTM, Jq for J P J pM,ωq

‚ xc1pTΣq, rΣsy “ χpΣq for closed oriented surfaces (Poincaré-Hopf theorem)
‚ Sketch of proof that c1pCP2, ωFSq “ 3e for the standard generator e P H2pCP2q
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‚ Almost complex manifolds, pseudoholomorphic curves and the nonlinear Cauchy-Riemann
equation

‚ Riemann surfaces = almost complex 2-manifolds = complex 1-manifolds (lemma of Gauss)
‚ The nonlinear Cauchy-Riemann operator B̄J : B Ñ E as a section of an infinite-dimensional

vector bundle E Ñ B

‚ Linearizaion at zeroes and the implicit function theorem (implying B̄´1
J p0q is a smooth

manifold near u if DB̄Jpuq : TuB Ñ Eu is surjective with a continuous right inverse)
‚ Computation of Du :“ DB̄Jpuq : Γpu˚TMq Ñ ΓpHomCpTΣ, u˚TMqq, i.e. for any symmet-

ric connection ∇ on M ,

(3.1) Duη “ ∇η ` Jpuq ˝ ∇η ˝ j ` p∇ηJq ˝ Tu ˝ j

‚ Statement of the index theorem for Du

Exercises.

Exercise 3.1. For any choice of area forms ω1, ω2 and complex structures1 j1, j2 on S2 such
that all are compatible with the standard orientation of S2, it is easy to show that the product
almost complex structure J :“ j1 ‘ j2 on S2 ˆ S2 is compatible with the product symplectic
form ω :“ ω1 ‘ ω2. By the Künneth formula, H2pS2 ˆ S2q – Z2 is generated by the two elements
e1, e2 P H2pS2ˆS2q represented by oriented submanifolds of the form S2ˆtconstu and tconstuˆS2.
Following the same procedure we used in lecture for computing c1pCP2, ωFSq, show that

xc1pS2 ˆ S2, ωq, e1y “ xc1pS2 ˆ S2, ωq, e2y “ 2.

This uniquely determines c1pS2ˆS2, ωq since H2pS2ˆS2q – HompH2pS2ˆS2q,Zq by the universal
coefficient theorem.

Exercise 3.2. Show that the operator Du : Γpu˚TMq Ñ ΓpHomCpTΣ, u˚TMqq defined in (3.1)
for any J-holomorphic curve u : pΣ, jq Ñ pM,Jq satisfies the following variation on the usual
Leibniz rule for covariant derivatives:

Dupfηq “ pB̄fqη ` fDuη for all η P Γpu˚TMq and f P C8pΣ,Rq,

where we associate to every smooth function f : Σ Ñ C the complex-valued 1-form B̄f :“ df`i df˝j
which vanishes if and only if f is a holomorphic function. (Note however that the values of f in
our Leibniz rule are required to be real, not complex.)

Agenda for the Übung (2.11.2018). This week’s Übung will not discuss exercises but will
instead be an extra lecture to cover background material from functional analysis, including as
much as possible of the following:

‚ Compact and Fredholm operators on Banach spaces (my favorite references for this material
are [Tay96, Appendix A] and [AA02], but there are plenty of other good options)

‚ Differential calculus in Banach spaces, Banach manifolds and the inverse/implicit function
theorem in infinite dimensions (good references for this material are [Lan93, Chapters XIII–
XIV] and [Lan99, Chapters I–III])

‚ A crash course in distributions and Sobolev spaces (see [Wena, §2.5] and [Wenb, Appen-
dix A])

1I am omitting the word “almost” here since S2 is a surface, so Gauss tells us that an almost complex structure
is equivalent to a complex manifold structure.
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4. Elliptic regularity, part 1 (6.11.2018)

Topics and reading. A quick overview of most of this week’s topics may be found in [Wenb,
§2.3], but you might also want to look at §2.5 of [Wena] for background on convolutions and
Fourier transforms of distributions, and §2.6 for a more detailed treatment of the fundamental
elliptic estimate and the bounded right-inverse for B̄. If you enjoy that stuff too much and have
unlimited free time, you’ll find the “hard” part of the proof of the main estimate (i.e. the Calderón-
Zygmund inequality) in Appendix 2.A of [Wena] and a more general discussion of elliptic operators
in Appendix 2.B. Finally, you will find some extra lecture notes on Sobolev spaces at

http://www.mathematik.hu-berlin.de/~wendl/Sobolev.pdf

which include (in §A.2) a detailed explanation of the norm on W k,ppEq and its independence of
the various choices. (These notes were written to be a new appendix for a revision of [Wena] that
is not yet finished, but a condensed version of this appendix also appears in [Wenb].)

‚ Linear Cauchy-Riemann type operators on vector bundles
‚ The Sobolev space of sections W k,ppEq of a vector bundle π : E Ñ Σ (see §A.2 in the notes

on Sobolev spaces mentioned above)
‚ Precise statement of the Fredholm theorem for Cauchy-Riemann type operatorsD :W k,ppEq Ñ
W k´1,ppHomCpTΣ, Eqq with k P N and 1 ă p ă 8

‚ The bounded right-inverse of B̄ : W 1,ppDq Ñ LppDq and the fundamental elliptic estimate
for B̄

‚ Construction of the right-inverse via fundamental solution; Fourier transform argument for
the case p “ 2

Exercises.

Exercise 4.1. This exercise concerns linear Cauchy-Riemann type operators on complex vector
bundles E over Riemann surfaces pΣ, jq.

(a) Show that if D : ΓpEq Ñ ΓpF q is any linear Cauchy-Riemann type operator, then every
other linear Cauchy-Riemann type operaor on E is of the form D

1 “ D ` A for some
smooth real-linear bundle map (i.e. a “zeroth-order” term) A : E Ñ F .
Hint: Show that if A :“ D

1 ´D : ΓpEq Ñ ΓpF q then A is C8-linear, i.e. Apfηq “ fAη for
all f P C8pΣ,Rq and η P ΓpEq.

(b) Show that by choosing suitable local coordinates and local trivializations, every linear
Cauchy-Riemann type operator can be identified in a neighborhood of any given point
with an operator of the form B̄ `A : C8pD,Cmq Ñ C8pD,Cmq, where B̄ :“ Bs ` iBt in the
standard coordinates s ` it on the unit disk D Ă C, and A P C8pD,EndRpCmqq.

Exercise 4.2. Define a function K : C Ñ C almost everywhere by Kpzq “ 1{2πz.

(a) Prove that K is in L1
locpCq and B̄K “ δ in the sense of distributions, where δ is the

distribution defined by xδ, ϕy “ ϕp0q for test functions ϕ, and B̄ :“ Bs ` iBt in coordinates
s` it on C.

(b) Prove that for B :“ Bs ´ iBt, BK is the distribution defined on test functions ϕ by

xBK,ϕy “ ´
1

π
lim
ǫÑ0`

ż

CzDǫ

ϕpzq

z2
dµpzq,

where Dǫ Ă C denotes the disk of radius ǫ and dµpzq is the Lebesgue measure for integrating
functions of z P C. (Note that informally, this just says BK “ 2 d

dz
K “ ´1{πz2, but the

latter is not a locally integrable function on C, so the limiting process is necessary in order
to define it as a distribution.)

http://www.mathematik.hu-berlin.de/~wendl/Sobolev.pdf
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Note: You’ll find these exercises worked out in detail in [Wena, Prop. 2.6.12 and Lemma 2.6.14],
but you might enjoy trying them youself first.

5. Elliptic regularity, part 2 (13.11.2018)

Topics and reading. Everything for the Tuesday lecture this week is contained in [Wena, §2.6],
and a more concise treatment of the same material can also be found in [Wenb, §2.4.1] (especially
Theorem 2.16). For more details on difference quotients and the use of the Banach-Alaoglu theorem
on weak convergence, see §A.1.4 in the extra notes on Sobolev spaces at http://www.mathematik.hu-berlin.de/~wend
The Übung this week was on Wednesday and was essentially a continuation of the Tuesday lecture:
its contents are covered (in much more detail) in §3.2–3.3 (for formal adjoints and the Fredholm
property) and §2.7–2.8 (for local existence and the similarity principle) of [Wena].

‚ Local regularity theorem for solutions of B̄u “ f (see [Wenb, Theorem 2.16])
‚ Difference quotients and the Banach-Alaoglu theorem
‚ Corollary: If u P W 1,ppD,Cmq and pB̄ `Aqu “ 0 for some A P C8pD,EndRpCmqq then u is

smooth
‚ If u P L1 and B̄u “ 0 weakly then u is smooth; proof via mean value property for harmonic

functions
‚ Corollary: If u P LppDq and B̄u P W k,ppDq then u is of class W k`1,p on any smaller disk

Exercises.

Exercise 5.1. As a corollary of what we proved in lecture about weak regularity for the equation
B̄u “ f , prove that for any p P p1,8q and A P C8pD,EndRpCmqq, if u P LppD,Cmq is a weak
solution to the equation pB̄ `Aqu “ f for some f P W k,ppD,Cmq, then u is of class W k`1,p on Dr

for any r ă 1.

5.1. Übung (14.11.2018). The Übung this week was a continuation of the lecture, and covered
the following topics:

‚ The global estimate }η}Wk,p ď c}Dη}Wk,p `c}η}Wk´1,p for Cauchy-Riemann type operators
D on a complex vector bundle E Ñ Σ over a closed Riemann surface

‚ Functional-analytic criterion for an operator D P L pX,Y q to have finite-dimensional kernel
and closed image (see [Wena, Prop. 3.3.3])

‚ The formal adjoint of a Cauchy-Riemann type operator and the splittings W k´1,ppF q “
imD ‘ kerD˚, W k´1,ppEq “ imD

˚ ‘ kerD (proof via the Hahn-Banach theorem using
weak regularity)

‚ Proof that Cauchy-Riemann type operators and their formal adjoints are Fredholm
‚ Local existence result for solutions to pB̄ ` Aqu “ 0 with A P LppD,EndRpCmqq and
2 ă p ă 8 (see [Wena, §2.7]

‚ Corollary 1: Complex-linear Cauchy-Riemann type operators are equivalent to holomorphic
vector bundle structures

‚ Corollary 2 (the similarity principle): solutions to pB̄`Aqη “ 0 look locally like holomorphic
functions in some continuous trivialization

‚ Every Cauchy-Riemann type operator D on a complex line bundle E Ñ Σ over a closed
Riemann surface satisfying c1pEq :“ xc1pEq, rΣsy ă 0 is injective.

6. Riemann-Roch and nonlinear regularity (21.11.2018)

Topics and reading. The proof of the Riemann-Roch formula for the genus zero case in this
lecture is explained in [Wena, §3.4]. For the nonlinear regularity theorem (stated mostly without

http://www.mathematik.hu-berlin.de/~wendl/Sobolev.pdf
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proof in the lecture), a mostly complete proof may be found in [Wenb, §2.4.2]; a slightly different
version with more details is also in [Wena, §2.11].

‚ The Riemann-Roch formula indpDq “ prankCEqχpΣq`2c1pEq, and why it suffices to prove
it for rankCE “ 1

‚ Every Cauchy-Riemann type operator D on a complex line bundle E Ñ Σ over a closed
Riemann surface satisfying c1pEq ą ´χpΣq is surjective.

‚ Corollary: On line bundles over S2, every Cauchy-Riemann type operator is either injective
or surjective (and both if c1pEq “ ´1).

‚ Proof of Riemann-Roch for line bundles over S2 (see Exercise 6.2 below)
‚ Quick sketch of Taubes’s proof of Riemann-Roch via large antilinear deformations (see

[Wenb, Lecture 5])
‚ Nonlinear regularity theorem for local J-holomorphic curves (see [Wenb, Theorem 2.22])

Exercises.

Exercise 6.1. Show that every complex vector bundle E over a surface Σ is isomorphic to a direct
sum of complex line bundles.
Hint: If rankCE ą 1, then by standard transversality results, every smooth section of E can be
perturbed to one that is nowhere zero. (Why?)

Exercise 6.2. For any integer k ě 0, let Eα
k and Eβ

k denote two copies of the trivial complex line
bundle C ˆ C Ñ C, and define

Ek :“
´
Eα

k > Eβ
k

¯L
„,

where the equivalence relation identifies pz, vq P Eα
k with p1{z, p1{zkqvq P Eβ

k for each z P Czt0u.
Identifying S2 with the extended complex plane C Y t8u, define a projection

π : Ek Ñ S2

by πpz, vq “ z for pz, vq P Eα
k and πpz, vq “ 1{z for pz, vq P Eβ

k .

(a) Construct a holomorphic vector bundle structure for π : Ek Ñ S2 such that all holomorphic
sections η : S2 Ñ Ek restrict to C and S2zt0u as holomorphic sections of the trivial bundles
Eα

k and Eβ
k respectively.

(b) Show that a holomorphic function f : C Ñ C (viewed as a holomorphic section of Eα
k )

extends over S2 as a holomorphic section of Ek if and only if the function gpzq :“ zkfp1{zq
extends holomorphically to z “ 0, and that the set of functions satisfying this condition is
the set of all complex polynomials of degree at most k.

(c) Show that for any of the nontrivial holomorphic sections η P ΓpEkq in part (b), the algebraic
count of the zeroes of η is k.

Part (c) proves c1pEkq “ k, so the lemma we proved in lecture about Cauchy-Riemann type
operators on line bundles implies that the standard Cauchy-Riemann operator B̄ on this bundle is
surjective. By part (b), ker B̄ is a complex vector space of dimension 1` k, so its real dimension is
2 ` 2k “ χpS2q ` 2c1pEkq, exactly what is predicted by the Riemann-Roch formula.

Scheduling note: There is no Übung either this week or next week; the next scheduled Übung
is on December 7 in the usual time and place.

7. Moduli spaces and Teichmüller space (27.11.2018)

Topics and reading. The topics of this week’s lecture are covered mainly in [Wena, §4.1–4.2],
up to the top of page 156 (which is where we will begin next week). Exceptions: We did not yet
state the main theorems about smoothness of MpJq and transversality for generic J , which take



8 CHRIS WENDL

up the second half of §4.1, and [Wena] does not say anything about pair-of-pants decompositions,
but you can find more on that topic in [Wenb, §9.3.3]. (We will come back to it later when we
discuss compactness.)

‚ Definition of the moduli space MpJq :“ Mg,mpA, Jq of unparametrized J-holomorphic
curves of genus g ě 0 with m ě 0 marked points homologous to A P H2pMq in an almost
complex manifold pM,Jq

‚ The evaluation map ev : Mg,mpA, Jq Ñ Mˆm : rpΣ, j,Θ, uqs ÞÑ pupζ1q, . . . , upζmqq for
Θ “ pζ1, . . . , ζmq

‚ Definition of convergence in MpJq
‚ The moduli space of Riemann surfaces Mg,m (i.e. the case M “ tptu)
‚ The automorphism group AutpΣ, j,Θq for rpΣ, j,Θqs P Mg,m

‚ Statement of the uniformization theorem (without proof)
‚ Concrete descriptions of M0,m for m ě 0 and M1,0, with the corresponding automorphism

groups
‚ Definition of stable Riemann surfaces (with marked points)
‚ Theorem (not yet proved): In stable cases (2g ` m ě 3), AutpΣ, j,Θq is finite and Mg,m

is a smooth orbifold of dimension 6g ´ 6 ` 2m with local isotropy groups AutpΣ, j,Θq
‚ Singular pair-or-pants decompositions and Fenchel-Nielsen coordinates (a sketch)
‚ Mg,m – J pΣq{Diff`pΣ,Θq
‚ The subgroup Diff0pΣ,Θq acts freely on J pΣq; proof via the Lefschetz fixed point theorem
‚ Definition of the Teichmüller space T pΣ,Θq; Mg,m as the quotient of T pΣ,Θq by the

(discrete) mapping class group Diff`pΣ,Θq{Diff0pΣ,Θq
‚ Theorem (not yet proved): T pΣ,Θq is a smooth manifold, and for any rpΣ, j,Θqs P Mg,m,
dim T pΣ,Θq ´ dimAutpΣ, j,Θq “ 6g ´ 6 ` 2m.

I failed to give any exercises this week but will make up for it next time.

8. Fredholm regular curves in the moduli space (4.12.2018)

Topics and reading. A more detailed presentation of the contents of this week’s lecture can be
found in [Wena, §4.2–4.3].

‚ Banach manifold setup for analysis of AutpΣ, j,Θq and Teichmüller space T pΣ,Θq “
J pΣq{Diff0pΣ,Θq

‚ The Cauchy-Riemann type operator Dpj,Θq : W
k,p
Θ pTΣq Ñ W k´1,ppEndCpTΣqq and natural

isomorphisms kerDpj,Θq “ TIdAutpΣ, j,Θq and cokerDpj,Θq “ TrjsT pΣ,Θq
‚ Teichmüller slices: definition, existence, and invariance under holomorphic group actions
‚ Banach manifold setup for analyzing a neighborhood of rpΣ, j0,Θ, u0qs in Mg,mpA, Jq
‚ Fredholm regular curves
‚ Theorem: the open set of Fredholm regular curves in Mg,mpA, Jq is a smooth orbifold

(with local isotropy groups Autpuq) whose dimension equals its virtual dimension

vir-dimMg,mpA, Jq :“ pn ´ 3qp2 ´ 2gq ` 2c1pAq ` 2m,

where 2n is the dimension of the target almost complex manifold pM,Jq, and c1pAq :“
xc1pTM, Jq, Ay P Z.

Exercises.

Exercise 8.1. Suppose pΣ, jq is a Riemann surface with a finite subset Θ Ă Σ, and ∇ denotes
the Levi-Civita connection on TΣ with respect to any Riemannian metric compatible with the
conformal structure defined by j (i.e. j and the metric define the same notion of “right angles”).
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Show that for any smooth family of diffeomorphisms ϕτ P DiffpΣ,Θq parametrized by τ P p´ǫ, ǫq
with ϕ0 “ Id, if Bτϕτ |τ“0 “ X P ΓpTΣq, then

Bτ pϕ˚
τ jq|τ“0 “ ´∇X ˝ j ` j ˝ ∇X “ jp∇X ` j ˝ ∇X ˝ jq “ jpB̄Xq,

where B̄ : ΓpTΣq Ñ ΓpEndCpTΣqq denotes the canonical Cauchy-Riemann type operator defined
via the holomorphic structure of the bundle TΣ Ñ Σ.

Exercise 8.2. For an even-dimensional real vector space V , let J pV q “ tJ P AutpV q | J2 “ ´1u,
i.e. J pV q is the space of all linear complex structures on V .

(a) Show that J pV q is a smooth submanifold of AutpV q – GLp2n,Rq, and any choice of
element J0 P J pV q gives rise to a natural bijection of J pV q with the homogeneous space
AutpV q{AutCpV, J0q, given by

AutpV q
L
AutCpV, J0q Ñ J pV q : rAs ÞÑ Aj0A

´1,

where AutCpV, J0q :“ tA P AutpV q | AJ0 “ J0Au.
(b) Show that for any J P J pV q,

TJJ pV q “ EndCpV, Jq :“ tA P EndpV q | AJ “ ´JAu.

(c) Given J P J pV q and a neighborhood O Ă EndCpV, Jq of 0, consider the smooth map

O Ñ J pV q : Y ÞÑ

ˆ
1 `

1

2
JY

˙
J

ˆ
1 `

1

2
JY

˙´1

,

which is well defined if O is sufficiently small since 1 ` 1
2
JY is invertible if Y is small

enough. Show that the derivative of this map at 0 P O is the identity map on EndCpV, Jq “
TJJ pV q, thus by the inverse function theorem, the map identifies a neighborhood of 0 in
O diffeomorphically with a neighborhood of J in J pV q.

Agenda for the Übung (7.12.2018). We will discuss the two exercises above, but if there is
demand for it, we can also talk about other exercises from the last few weeks. I would also like
to say some things about the construction of smooth Banach manifold structures on spaces like
W k,ppΣ,Mq for kp ą 2; the canonical reference for this is [El̆ı67].

9. Transversality for somewhere injective curves (11.12.2018)

Topics and reading. A complete proof of the theorem on generic transversality for somewhere
injective curves may be found in [Wena, §4.4] (excluding §4.4.2, which I plan to discuss briefly next
week). For the necessary background on simple curves vs. multiple covers, see [Wena, §2.15], and
for the Floer Cε-space, [Wenb, Appendix B].

‚ u Fredholm regular implies indpuq ě 0, where indpuq :“ vir-dimMg,mpA, Jq for u P
Mg,mpA, Jq

‚ Example: double covers of a J-holomorphic sphere v in an 8-manifold with c1prvsq “ ´1

must sometimes exist but can never be regular.
‚ Injective points, somewhere injectivity, simple curves vs. multiple covers (see [Wena, §2.15])
‚ Main transversality theorem: On any closed symplectic manifold pM,ωq, there exists a

comeager2 subset J regpM,ωq Ă J pM,ωq such that for all J P J regpM,ωq, all somewhere
injective J-holomorphic curves are regular.

‚ The Sard-Smale theorem for smooth Fredholm maps

2comeager := “a countable intersection of open and dense sets”; by the Baire category theorem, these are always
dense if the ambient space is metrizable and complete. In the symplectic topology literature, it is also common to
see the terms “Baire subset” and “set of second category” used as synonyms for “comeager subset,” though technically
“second category” means something slightly different.



10 CHRIS WENDL

‚ The Floer Cε-space J ε of perturbed almost complex structures near a reference structure
J ref P J pM,ωq

‚ The universal moduli space M :“ tpu, Jq | J P J ε, u P MpJq somewhere injectiveu
‚ Proof (via the Hahn-Banach theorem and similarity principle) that M is always a smooth

Banach manifold
‚ Conclusion via Sard-Smale: the space of J P J pM,ωq for which all somewhere injective
J-holomorphic curves are regular is dense

Exercises.

Exercise 9.1. Consider the following relaxation of the hypotheses for the transversality theorem
we proved in lecture. Suppose pM,ωq is a symplectic manifold (not necessarily compact), Jfix P
J pM,ωq, U Ă M is an open subset with compact closure, and let

J pM,ω ; U , Jfixq :“
 
J P J pM,ωq

ˇ̌
J ” Jfix on MzU

(
,

regarded as a topological space with the topology of C8-convergence. What can you prove about
Fredholm regularity of J-holomorphic curves for generic choices of J P J pM,ω ; U , Jfixq?

Exercise 9.2. Show that if u “ v ˝ ϕ : pΣ, jq Ñ pM,Jq is the composition of a closed somewhere
injective J-holomorphic curve v : pΣ1, j1q Ñ pM,Jq with a holomorphic map ϕ : pΣ, jq Ñ pΣ1, j1q
of degree d ě 1 between closed Riemann surfaces, then the group Autpuq of biholomorphic diffeo-
morphisms ψ : pΣ, jq Ñ pΣ, jq that satisfy u “ u ˝ ψ has order at most d. In particular, if u is
somewhere injective, then its automorphism group is trivial.

Exercise 9.3. Suppose M is a closed manifold, E Ñ M is a smooth vector bundle and tεku8
k“0 is

a sequence of positive numbers with εk Ñ 0. The Floer Cε-norm for smooth sections η P ΓpEq is
then defined by

}η}Cε :“
8ÿ

k“0

εk}η}Ck
,

where the Ck-norm can be defined via either a choice of connection or a finite collection of local
trivializations covering M (one can show that all such choices give equivalent norms since M is
compact). Prove that CεpEq :“ tη P ΓpEq | }η}Cε ă 8u is then a separable Banach space with
respect to the Cε-norm.
Hint: If you get frustrated and just want to read an answer, see [Wenb, Appendix B].

Exercise 9.4. The following functional-analytic lemma proves that the linearized operator

L :W 1,ppu˚
0TMq ‘ TJ0

J
ε Ñ LppHomCpTΣ, u˚

0TMq : pη, Y q ÞÑ Du0
η ` Y ˝ Tu0 ˝ j0,

which we proved in lecture is surjective, must have closed image. (This is a necessary step before
applying the Hahn-Banach theorem as we did in lecture.) Prove that if X , Y and Z are Banach
spaces, T : X Ñ Y is a Fredholm operator and A : Z Ñ Y is a bounded linear map, then the
linear map

L : X ‘ Z Ñ Y : px, zq ÞÑ Tx ` Az

has closed image.
Hint: Remember that since T is Fredholm, you can write X “ V ‘ kerT and Y “ W ‘ C such

that C – cokerT and V
T
Ñ W is an isomorphism.

Exercise 9.5. Under the same hypotheses as in Exercise 9.4, prove that if L is surjective, then
the projection

Π : kerL Ñ Z : px, zq ÞÑ z
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has kernel and cokernel isomorphic to the kernel and cokernel respectively of T : X Ñ Y .
Comment: Since Du0

is Fredholm, this is what proves that the projection π : M Ñ J ε : pu, Jq ÞÑ J

is a Fredholm map (i.e. its derivative at every point is Fredholm), so that the Sard-Smale theorem
applies. It also follows that for every J P J ε that is a regular value of this projection, all curves
u P π´1pJq are Fredholm regular.
Hint: See [Wena, Lemma 4.4.13].

Scheduling note: The Übung next week will take place on Wednesday from 15:00 to 16:30
in 1.315 (RUD25) instead of the usual Friday time. We will discuss some subset of the exercises
above (especially Exercise 9.1), and presumably also something about compactness, which is the
topic for next Tuesday’s lecture.

10. Compactness (18.12.2018)

Topics and reading. It’s a bit tricky to find a full and readable presentation of Gromov’s com-
pactness theorem in the literature. I recommend starting with [Wen18, §2.1.6], which at least
contains clean statements of the main definitions and results you need to know. For a more de-
tailed discussion of the degeneration phenomena we discussed in this lecture, see sections 9.1 and
9.3 of [Wenb]; the former introduces the Hofer lemma and the standard bubbling/rescaling trick
in the context of proving the C0-extension part of Gromov’s removable singularity theorem. In
reading §9.3, you need to keep in mind that the context in [Wenb] is somewhat more general than
we have been discussing, so e.g. you should probably completely skip §9.3.2 (the “breaking” phe-
nomenon is not relevant for closed J-holomorphic curves, though it is relevant in Floer homology,
for those of you who are learning about that at the same time).

‚ Review of M0,4 – S2zt0, 1,8u and its obvious “compactification” to S2

‚ Energy Epuq :“
ş
Σ
u˚ω for a J-holomorphic curve in a symplectic manifold pM,ωq with

tame J
‚ Energy is nonnegative, zero only for constant curves, and bounded by homology for closed

curves
‚ Statement of Gromov’s removable singularity theorem (see [Wen18, Theorem 2.36] or

[Wenb, §9.1]
‚ Uniform C1-bounds imply C8

loc-convergence (elliptic regularity)
‚ The rescaling trick for a sequence zk P Σ with |dukpzkq| Ñ 8
‚ Hofer’s lemma on complete metric spaces (see [Wenb, Lemma 9.4])
‚ Bubbling of holomorphic spheres
‚ Degenerating complex structures via pair-of-pants decompositions
‚ Understanding the three elements of M0,4zM0,4 in terms of degenerate pair-of-pants de-

compositions
‚ Definition of the compactified moduli space Mg,mpA, Jq of “stable nodal J-holomorphic

curves of arithmetic genus g”
‚ Statement of Gromov’s compactness theorem

Exercises.

Exercise 10.1. Show that if J is a tame almost complex structure on a symplectic manifold
pM,ωq and u : pΣ, jq Ñ pM,Jq is a J-holomorphic curve, then the 2-form u˚ω on Σ is nonnegative
(with respect to the orientation of Σ determined by its complex structure), and vanishes only at
points where the first derivative of u vanishes. In particular, Epuq :“

ş
Σ
u˚ω ě 0 always, with

equality if and only if u is locally constant.
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Exercise 10.2. Set pM,Jq “ pS2, iq and recall that any J-holomorphic sphere with three marked
points has a unique parametrization that fixes p0, 1,8q as the ordered set of marked points. It fol-
lows that the moduli space M0,3prS2s, iq can be understood as the set of all tuples pS2, i, p0, 1,8q, ϕq
where ϕ : pS2, iq Ñ pS2, iq ranges over all holomorphic maps of degree 1, i.e. biholomorphic transfor-
mations of the Riemann sphere S2 “ CY t8u. The latter are the fractional linear transformations,

ϕ : S2 Ñ S2 : z ÞÑ
az ` b

cz ` d
, for

ˆ
a b

c d

˙
P SLp2,Cq,

also known as Möbius transformations, and since two such matrices produce the same transfor-
mation on S2 if and only if they differ by a sign, we have thus identified M0,3prS2s, iq with the
projective special linear group

M0,3prS2s, iq – PSLp2,Cq :“ SLp2,Cq
L

t˘1u.

Notice that since S2 has dimension 2n “ 2 and c1prS2sq :“ xc1pTS2, iq, rS2sy “ χpS2q “ 2, the
index formula from Lecture 8 gives

vir-dimM0,3prS2s, iq “ pn ´ 3qχpS2q ` 2c1prS2sq ` 2p3q “ p´2q2 ` 2p2q ` 6 “ 6,

and this matches the dimension of the Lie group PSLp2,Cq.

(a) Prove by direct inspection of the linearized Cauchy-Riemann operator that every element
of M0,3prS2s, iq is Fredholm regular.
Hint: One cannot argue that i is a generic almost complex structure on S2, so the results
of Lecture 9 are of no help to you here. But the operator in this case is on a line bundle,
and we proved something useful in Lecture 6 about Cauchy-Riemann type operators on
line bundles over the sphere.

(b) Since any positive area form on S2 defines a symplectic form taming i, the space M0,3prS2s, iq

is subject to Gromov’s compactness theorem. Describe M0,3prS2s, iq concretely. What is
its topology? What can you say about subsequences of arbitrary sequences of Möbius
transformations ϕ P PSLp2,Cq?

Agenda for the Übung (19.12.2018). This week’s Übung will be only one hour (Wednesday
at 3pm sharp in 1.315) since I have to run a meeting in the same room at 4:00. We will definitely
discuss Exercise 9.1 on the localization of genericity conditions, and will then discuss how to
use Gromov’s compactness theory to extend the transversality results in Lecture 8 to produce a
comeager (rather than just dense) set of regular almost complex structures in J pM,ωq. If time
permits, we will also talk about Exercise 10.2.

11. Gromov’s nonsqueezing theorem (15.01.2019)

Topics and reading. The proof I gave for the nonsqueezing theorem is explained in detail in
[Wena, Chapter 5], though with one slight difference in presentation: the proof in lecture used
Gromov’s compactness theorem, whereas [Wena] avoids citing the general compactness theorem
and instead gives a direct compactness proof for the situation at hand, using a special case of the
same “bubbling off” argument that appears in standard proofs of Gromov compactness.

‚ The symplectic embedding question and volume obstruction
‚ Statement of the nonsqueezing theorem
‚ Reduction to Theorem: If there is a symplectic embedding pB

2n

r , ωstq ãÑ pS2 ˆM,σ‘ωq
for some area form σ on S2 and a closed symplectic p2n´2q-manifold pM,ωq with π2pMq “
0, then πr2 ď

ş
S2 σ.

‚ Monotonicity lemma: For nonconstant proper holomorphic maps u : pΣ, jq Ñ pB2n
r0
, iq

passing through 0,
ş
u´1pB2n

r q u
˚ωst ě πr2 for all r P p0, r0q.
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‚ Lemma 2: For all compatible J on pX,Ωq :“ pS2 ˆ M,σ ‘ ωM q with M closed and
π2pMq “ 0, every point in X is in the image of some J-holomorphic sphere homologous to
A0 :“ rS2 ˆ tconstus P H2pS2 ˆMq.

‚ Proof of monotonicity lemma, part 1: The function F prq :“ 1
r2

ş
u´1pB2n

r q u
˚ωst satisfies

limrÑ0 F prq “ kπ for some k P N. (Proof via Taylor series of u at a point z0 P Σ with
upz0q “ 0.) At the end of the course we will use some contact geometry to show that F prq
is also nondecreasing in r. (From a different perspective, this is a standard result in the
theory of minimal surfaces.)

‚ Proof of Lemma 2: Choose J0 “ i‘JM , so that the evaluation map evJ0
: M0,1pA0, J0q Ñ

S2 ˆ M is a diffeomorphism, then for a given (generic) J P J pX,Ωq, extend this to a
generic smooth family tJτ P J pX,ΩquτPr0,1s with J1 “ J and study the parametric moduli
space

MptJτuq :“
 

pτ, uq
ˇ̌
τ P r0, 1s and u P M0,1pA0, Jτ q

(
.

Idea is to prove evJ : M0,1pA0, Jq Ñ S2 ˆM is surjective because deg2pevJ q ‰ 0 P Z2.
– Step 0: All u P M0,1pA0, J0q are Fredholm regular. (This can be proved by explicit

examination of the linearized Cauchy-Riemann operator since the curves are so ex-
plicit: one can appeal to the fact from Lecture 6 that Cauchy-Riemann operators on
line bundles over spheres are always surjective if they have nonnegative index.)

– Step 1: Since A0 is primitive, all u P M0,1pA0, Jq are somewhere injective, thus they
are regular if J is generic, proving M0,1pA0, Jq is a smooth manifold of dimension
equal to vir-dimM0,1pA0, Jq “ 2n.

– Step 2: M0,1pA0, Jq is also compact. This is an application of Gromov’s compactness
theorem, using the assumption π2pMq “ 0 (see Exercise 11.1 below).

– Step 3: By the same arguments MptJτuq is a compact smooth manifold of dimension
2n`1 with boundary M0,1pA0, J0q>M0,1pA0, Jq, hence the map ev : MptJτ uq Ñ S2ˆ
M is a bordism between evJ0

: M0,1pA0, J0q Ñ S2ˆM and evJ : M0,1pA0, Jq Ñ S2ˆ
M , proving deg2pevJq “ deg2pevJ0

q. The latter is 1 since evJ0
is a diffeomorphism,

thus evJ is surjective.
– Step 4: This was not mentioned in the lecture, but if J is not generic, one can still

use a compactness argument to prove evJ is surjective, even if M0,1pA0, Jq is not
smooth (in which case deg2pevJq is not defined). Just pick a sequence Jk Ñ J such
that all the Jk are generic, find a sequence uk P M0,1pA0, Jkq passing through any
desired point, and repeat step 2 to find a subsequence of uk converging to an element
of M0,1pA0, Jq.

Exercises.

Exercise 11.1. Work out the details of the compactness argument we used in the proof of the
nonsqueezing theorem: namely, if pM,ωq is a p2n´2q-dimensional closed symplectic manifold with
π2pMq “ 0, σ is an area form on S2 and J P J pS2 ˆ M,σ ‘ ωq, prove that every sequence in
M0,1pA0, Jq for A0 :“ rS2 ˆ tconstus P H2pS2 ˆMq has a convergent subsequence.
Hint: According to Gromov’s compactness theorem, a subsequence must converge to some stable
nodal J-holomorphic curve with one marked point and arithmetic genus 0. The latter implies
that all components of the nodal curve are also spheres, and moreover, the graph that has the
components as vertices and nodes as edges must be a tree, i.e. it cannot have any cycles. The
Euler characteristic of this graph is therefore 1. The total homology class must be A0, but since
all maps S2 Ñ M are nullhomotopic, this will impose a strong constraint on the homology classes
of the individual components, making most of them constant. By stability, the number of marked



14 CHRIS WENDL

points plus nodal points on each constant component must be at least 3. Given all this information,
your task is to prove that there cannot be any nodes.

12. Gromov-Witten invariants (16.01.2019)

Topics and reading. For a brief introduction to Gromov-Witten invariants from the perspective
presented in the lecture, including a more detailed discussion of pseudocycles, see [Wen18, §7.2].
This section also carries out the proof that the evaluation map on the space of simple curves in
dimension four is a pseudocycle, but we’ll talk more about that (in slightly different contexts) over
the next few weeks.

‚ Basic question of enumerative geometry: given J P J pM,ωq, how many (up to parametriza-
tion) J-holomorphic curves u with a given genus and homology class exist with m ě 0

marked points ζ1, . . . , ζm satisfying the constraint upζiq P ᾱi for some given submanifolds
ᾱ1, . . . , ᾱm Ă M?

‚ “Theorem”: If suitably interpreted and vir-dimMg,mpA, Jq `
řm

i“1 dim ᾱi “ 2mn, the
question has a well-defined answer in Q that is independent of the choice of J P J pM,ωq,
depends on the submanifolds ᾱi only up to homology, and depends on ω only up to smooth
homotopy in the space of symplectic forms (i.e. symplectic deformation).

‚ Fantasy definition, assuming Mg,mpA, Jq is a closed oriented manifold of the correct di-
mension:

GW
pM,ωq
g,m,A :H˚pMqbm Ñ Q : α1 b . . . b αm ÞÑ ev˚rMg,mpA, Jqs ¨ rᾱ1 ˆ . . .ˆ ᾱms

“
@
ev˚

1 α1 Y . . .Y ev˚
m αm, rMg,mpA, Jqs

D
“

ż

Mg,mpA,Jq
ev˚

1 α1 Y . . . ev˚
m αm.

Here “ ¨” denotes the homological intersection number, αi P H˚pMq is the class Poincaré
dual to the submanifold ᾱi Ă M , the evaluation map is denoted by

ev “ pev1, . . . , evmq : Mg,mpA, Jq Ñ Mˆm

rpΣ, j, pζ1, . . . , ζmq,∆, uqs ÞÑ pupζ1q, . . . , pupζmqq,

and GW
pM,ωq
g,m,Apα1, . . . , αmq :“ GW

pM,ωq
g,m,Apα1 b . . . b αmq is defined to be 0 unless the di-

mensional conditions are correct for the intersection number to make sense, which meansř
i degpαiq “ vir-dimMg,mpA, Jq.

‚ Invariance under symplectic deformation: fantasy proof via parametric moduli space and
bordism

‚ Definition: pM,ωq is symplectically uniruled if there exists m P N, A P H2pMq and
α2, . . . , αm P H˚pMq such that

GW
pM,ωq
0,m,A

`
PDrpts, α2, . . . , αm

˘
‰ 0,

where PDrpts P H2npMq is the Poincaré dual to the homology class of a point. This implies
that for all J P J pM,ωq, there is a J-holomorphic sphere homologous to A through every
point in M .

‚ Example from previous lecture: if π2pMq “ 0, then pS2 ˆ M,σ ‘ ωq is symplectically
uniruled.

‚ Trouble: Mg,mpA, Jq is almost never actually a smooth manifold of dimension d :“

vir-dimMg,mpA, Jq, which makes the fundamental class rMg,mpA, Jqs P HdpMg,mpA, Jqs
difficult to define.
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‚ Science fiction (but not fantasy), assuming Mg,mpA, Jq is always a smooth manifold of
the correct dimension: then every curve in Mg,mpA, Jq with nodes belongs to a smooth
“stratum” with dimension ď vir-dimMg,mpA, Jq ´ 2 (see Exercise 12.1 below).

‚ Definition of Ω-limit set, d-dimensional pseudocycles and bordism between pseudocycles
(see [Wen18, pp. 148–153])

‚ Intersection number between pseudocycles and proof (in a special case) that it only depends
on bordism classes

‚ Example: In our science-fictional world where Mg,mpA, Jq is always smooth with the cor-
rect dimension (but not necessarily compact), ev : Mg,mpA, Jq Ñ Mˆm is a pseudocycle.

‚ Theorem (nonfiction): If dimM “ 4 and either g “ 0 or vir-dimMg,0pA, Jq ą 0, then
ev : M˚

g,mpA, Jq Ñ Mˆm is a pseudocycle for generic J , where M˚
g,mpA, Jq denotes the

open set of somewhere injective curves in Mg,mpA, Jq. In particular,

GW
pM,ωq
g,m,Apα1, . . . , αmq :“ ev ¨pᾱ1 ˆ . . .ˆ ᾱmq

is then well defined as the intersection number between a pseudocycle and a closed sub-
manifold. (In fact, in this case it is also an integer.)3

Exercises.

Exercise 12.1. If rpΣ, j,Θ,∆, uqs P Mg,mpA, Jq is a nodal curve, we say that u belongs to a
stratum in Mg,mpA, Jq consisting of all curves in the same connected component with u that
also have the same nodal configuration. Formally, one can define this as follows: suppose u

has connected components vi : pSi, jq Ñ pM, jq for i “ 1, . . . , N , so S “ S1 > . . . > SN . Let
Ai :“ rvis P H2pMq, let gi ě 0 denote the genus of Si, mi ě 0 the number of the m marked points
that lie on Si, and ni ě 0 the number of nodal points (i.e. individual points that belong to any of
the unordered pairs in ∆) on Si. We can then regard each vi as an element of Mgi,mi`ni

pAi, Jq
by treating each of the nodal points as a marked point, but moving each vi around independently
in its respective moduli space will not always produce nodal curves, because we also need to make
sure vipz`q “ vjpz´q for every matching pair tz`, z´u P ∆. In other words, pv1, . . . , vN q satisfy
condition

(12.1) pevpv1q, . . . , evpvN qq P Q Ă Mˆpm1`n1q ˆ . . . ˆMˆpmN`nN q,

for a submanifold Q determined by this matching condition, e.g. if m “ 0, and there are only
two components v1, v2 and one nodal pair tz1, z2u P ∆ with z1 P S1 and z2 P S2, then we are
considering two evaluation maps ev : Mgi,1pAi, Jq Ñ M for i “ 1, 2 with the incidence condition

pevpv1q, evpv2qq P tpx, xq P M ˆM | x P Mu Ă M ˆM.

We define the stratum of u to be the set of all tuples pv1, . . . , vN q that satisfy this incidence
condition, so that they all give rise to nodal curves in Mg,mpA, Jq by viewing the extra marked
points as elemenets in nodal pairs. If the spaces Mgi,mi`ni

pAi, Jq are always smooth manifolds of
the correct dimension and the intersection of the product of evaluation maps in (12.1) with Q is

3There are various reasons why the Gromov-Witten invariants need to be rational numbers instead of integers
in more general cases, but they are hard to explain since these are all cases in which the definition of the invariants
requires cleverer ideas that we haven’t discussed (e.g. Kuranishi structures, or polyfolds). One reason we can point
to is that if all J-holomorphic curves were regular, Mg,mpA, Jq would still not be a smooth manifold but would
have orbifold singularities wherever the curves have nontrivial automorphism group. One can define intersection

numbers between orbifolds, but in order to make the definition homotopy invariant, one must divide by the order
of the automorphism group wherever an intersection occurs, thus producing a rational number. This is irrelevant in
the 4-dimensional settings we are interested in, because one can show that for dimensional reasons, the curves that
need to be counted in those settings will never be multiply covered.
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transverse, compute what the dimension of the stratum should be. The answer should always be
at most vir-dimMg,mpA, Jq ´ 2 unless there are no nodes.

13. Blowups and Lefschetz fibrations (22.01.2019)

Topics and reading. Astonishingly, this week we actually talked about things that are covered
in the book [Wen18] I handed out to you at the beginning of the semester. The basic definitions of
symplectic submanifolds and symplectic deformation equivalence are described in Chapter 1, along
with the statement of McDuff’s theorem on rational and ruled symplectic 4-manifolds. Everything
else is covered (in much more detail) in Chapter 3.

‚ The notion of symplectic submanifolds
‚ Definition of symplectic deformation equivalence
‚ The tautological line bundle π : rCn Ñ CPn´1 and blowdown map β : rCn Ñ Cn

‚ Deifnition of the blowup operation M  ĂM at a point p P M for complex manifolds, and
the exceptional divisor CP

n´1 – E Ă ĂM
‚ Proof in case dimCM “ 2 that ĂM is diffeomorphic to M#CP

2
(where CP

2
denotes CP

2

with the reverse of its usual orientation)
‚ In the case dimCM “ 2, exceptional divisors S2 – E Ă ĂM have self-intersection number
E ¨ E “ ´1

‚ The symplectic form ωR :“ β˚ωst `R2 π˚ωFS on rCn and symplectomorphism
´
rB2n
r zCPn´1, ωR

¯
–

ÝÑ
´
B2n?

R2`r2
zB

2n

R , ωst

¯
.

‚ Definition of the symplectic blowup pM,ωq  pĂM, rωq along a symplectically embedded

standard ball pB
2n

R , ωstq ãÑ pM,ωq, with exceptional divisor as a symplectic submanifold
pCPn´1, R2ωFSq – pE, rω|TEq Ă pĂM, rωq

‚ pĂM, rωq is independent of R ą 0 and the embedding pB
2n

R , ωstq ãÑ pM,ωq up to symplectic
deformation equivalence

‚ Lemma (via symplectic neighborhood theorem): Any symplectically embedded 2-sphere
E Ă pM,ωq with E ¨ E “ ´1 (i.e. an exceptional sphere) has a neighborhood symplec-
tomorphic to a neighborhood of the zero-section in prC2, ωRq for πR2 “

ş
E
ω. One can thus

define the symplectic blowdown pM,ωq p|M, qωq by replacing this neighborhood with
a standard ball of radius slightly greater than R.

‚ Technical lemma: Any J P J pM,ωq such that J “ i on pB
2n

R , ωstq Ă pM,ωq determines
(and is determined by) rJ P J pĂM, rωq with rJ “ i near the exceptional divisor, such that
there is a pseudoholomorphic blowdown map

β : pĂM, rJq Ñ pM,Jq.

‚ Definition of a Lefschetz fibration π : M Ñ Σ for M a closed oriented 4-manifold and
Σ a closed oriented surface

‚ Definition of a Lefschetz pencil π :MzB Ñ CP1 for M a closed oriented 4-manifold and
B Ă M discrete

‚ Example: π : CP2ztr1 : 0 : 0su Ñ CP
1 : rz0 : z1 : z2s ÞÑ rz1 : z2s is a Lefschetz pencil whose

fibers all extend to holomorphically embedded spheres intersecting at one point.
‚ Big theorem of Donaldson and Gompf (stated without proof): A closed oriented 4-manifold

admits a symplectic structure if and only if it admits a Lefschetz pencil.
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‚ Easy direction (also stated without proof): existence and uniqueness up to deformation of
symplectic structures compatible with Lefschetz fibrations/pencils (i.e. so that fibers are
symplectic), assuming rfibers P H2pMq is not torsion

‚ Theorem of McDuff 1990 (our goal for the next few weeks): If pM,ωq is a closed connected
symplectic 4-manifold containing a symplectically embedded sphere S2 – S Ă pM,ωq with
S ¨S “ m ě 0, then for any choice of m points B Ă S, S is a fiber of a symplectic Lefschetz
pencil (or fibration in the case m “ 0) π : MzB Ñ Σ, and any smooth deformation
tωτuτPr0,1s of the symplectic form can be accompanied by a smooth isotopy of ωτ -symplectic
Lefschetz pencils/fibrations πτ :MzB Ñ Σ. Moreover:
(1) If m “ 0, then pM,ωq is a blowup of a symplectic ruled surface, meaning a smooth

S2-bundle with symplectic fibers over a closed oriented surface.
(2) If m “ 1, then pM,ωq is a blowup of pCP2, cωFSq for some c ą 0 (this is called a

rational surface).
(3) If m ě 2, then one can find another symplectically embedded sphere S2 – S1 Ă pM,ωq

with S1 ¨ S1 P t0, 1u so that one of the first two cases still holds.

Exercises.

Exercise 13.1. Show that a submanifold Σ in a symplectic manifold pM,ωq is symplectic if and
only if there exists J P J pM,ωq with JpTΣq “ TΣ.
Hint: For a point x P Σ, if ω|TxΣ is nondegenerate, then TxM “ TxΣ ‘ pTxΣqKω, where we define
the symplectic orthogonal complement of TxΣ Ă TxM by

pTxΣqKω :“
 
X P TxM

ˇ̌
ωpX, ¨q|TxΣ “ 0

(
.

Note that for arbitrary (non-symplectic) subspaces V Ă TxM , V and V Kω may generally have
nontrivial intersection, though one can show that they are always of complementary dimension.

Agenda for the Übung (25.01.2019). Unless there are other requests, we will discuss two
exercises from last week: Exercise 11.1 on the compactness argument for Gromov’s nonsqueezing
theorem, and Exercise 12.1 on the virtual dimensions of the strata in Mg,mpA, Jq.

14. Dimension four (29.01.2019)

Topics and reading. This week’s topics are sketched in reasonable detail in [Wen18, §2.2]. The
original proof of the automatic transversality result in [HLS97] is somewhat different from my
presentation but also worth looking at; my version follows more closely the approach in [Wen10].
For a more detailed account of intersection theory and the adjunction formula, see [Wenc], and
for a complete proof of the Micallef-White theorem (which lies in the background of positivity of
intersections and the definition of δpuq), see [MS12, Appendix E].

‚ The normal Cauchy-Riemann operator D
N
u :W k,ppNuq Ñ W k´1,ppHomCpTΣ, Nuqq for an

immersed J-holomorphic curve u : pΣ, jq í pM,Jq
‚ Du maps tangential part to tangential part
‚ Proof that u is regular if and only if DN

u is surjective
‚ Theorem (automatic transversality): If dimM “ 4, every immersed curve u : pΣg, jq í

pM,Jq with indpuq ą 2g ´ 2 is Fredholm regular (J need not be generic).
‚ Example: Exceptional spheres in blowups are automatically regular holomorphic curves

(with index 0)
‚ Definition of the local intersection index ipu1, z1;u2, z2q P Z for two maps ui : Si Ñ M of

surfaces S1, S2 into a 4-manifold M with an isolated intersection u1pz1q “ u2pz2q
‚ Easy lemma: If ui are both J-holomorphic and the intersection is transverse, ipu1, z1;u2, z2q “

`1 (never ´1)
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‚ Harder lemma (positivity of intersections; stated without proof): Isolated intersections
of J-holomorphic curves always have local intersection index ě 1, with equality iff the
intersection is transverse.

‚ Theorem: For two closed J-holomorphic curves ui : pΣi, jiq Ñ pM,Jq in an almost complex
4-manifold, if their images are not identical, then they have only finitely many intersections
and

0 ď
ˇ̌ 

pz1, z2q ˆ Σ1 ˆ Σ2

ˇ̌
u1pz1q “ u2pz2q

(ˇ̌
ď u1 ¨ u2,

where the second inequality is an equality if and only if u1&u2.
‚ Example: An exceptional sphere in a blowup is the only holomorphic curve in its homology

class.
‚ Lemma: If u : pD, iq Ñ pM,Jq has a critical point at 0 but is not constant, it admits a
C8-small perturbation to an immersed J 1-holomorphic curve u1 : pD, iq Ñ pM,J 1q, where
J 1 is a C8-small perturbation of J .

‚ Definition of the singularity count

δpuq “
1

2

ÿ

u1pzq“u1pζq, z‰ζ

ipu1, z;u1, ζq P Z

for u : pΣ, jq Ñ pM,Jq a closed somewhere injective curve and u1 an immersed perturba-
tion.

‚ Corollary: δpuq ě 0 for all simple curves u, with equality if and only if u is embedded.
‚ Adjunction formula: for simple closed J-holomorphic curves u : pΣ, jq Ñ pM,Jq,

rus ¨ rus “ 2δpuq ` c1prusq ´ χpΣq.

‚ Corollary: δpuq depends only on rus P H2pMq and the genus of Σ, hence it is homo-
topy invariant, i.e. no embedded curve has a simple but non-embedded curve in the same
component of the moduli space.

Exercises.

Exercise 14.1. Compute the local intersection index ipu, 0; v, 0q P Z for each of the following pairs
of holomorphic curves in C2 with an isolated intersection at the origin:

(a) upzq “ pz, 0q and vpzq “ pz, zkq for some k P N

(b) upzq “ pz3, z5q and vpzq “ pz4, z6q. Hint: The answer is 18.

Exercise 14.2. Show that the holomorphic curve upzq “ pz3, z5q in C2 has an immersed holomor-
phic perturbation u1 such that

1

2

ÿ

u1pzq“u1pζq
ipu1, z;u1, ζq “ 10,

where the sum is over all pairs pz, ζq P C ˆ C close to p0, 0q with z ‰ ζ but u1pzq “ u1pζq. Note
that this is an integer because for every pair pz, ζq appearing in the sum there is also pζ, zq. The
words “close to p0, 0q” mean concretely that for any neighborhood U Ă C ˆC of p0, 0q, this will be
the count of such pairs in U if the perturbation is sufficiently close to u.

Agenda for the Übung (1.02.2019). We’ll discuss Exercises 14.1 and 14.2, plus the theorem
of Micallef-White [MW95] that explains why, in some sense, polynomial examples like these tell us
everything we need to know about local intersections of pseudoholomorphic curves.
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15. Rational and ruled surfaces (5.02.2019)

Topics and reading. The lecture this week was basically a whirlwind survey of the contents of
[Wen18, Chapters 4–6]. The results are all due originally to McDuff and appeared first in the paper
[McD90].

‚ Definition: pM4, ωq is minimal if it is not a symplectic blowup (or equivalently, it does
not contain an exceptional sphere)

‚ Theorem 1: Symplectic deformations on closed symplectic 4-manifolds give rise to smooth
isotopies of disjoint collections of exceptional spheres (cf. [Wen18, Theorem 5.4])

‚ Corollary 1: Minimality is invariant under symplectic deformation equivalence
‚ Corollary 2: Blowing down pM4, ωq along a maximal disjoint collection of exceptional

spheres always produces something minimal (skipped the proof, but see [Wen18, Theo-
rem 5.5])

‚ Theorem 2: If S2 – S Ă pM4, ωq is a symplectically embedded sphere with S ¨ S “ m ě
0, then for any points p1, . . . , pm P S, S is a fiber of a symplectic Lefschetz pencil or
fibration π : Mztp1, . . . , pmu Ñ Σ such that every singular fiber has exactly one critical
point. Moreover, symplectic deformations on M give rise to smooth isotopies of symplectic
Lefschetz pencils/fibrations. (See [Wen18, Theorem 6.1])

‚ Topological operations on Lefschetz fibrations/pencils: (1) blowup at a regular point
(creates a new singular fiber with the exceptional sphere as an irreducible component);
(2) blowup at a point in the base locus (changes a pencil into a fibration with an excep-
tional section); (3) reversing operation (1) using Exercise 15.1

‚ Lemma: If π :Mztpu Ñ CP
1 is a symplectic Lefschetz pencil with one base point and fibers

of genus 0, then up to symplectic deformation equivalence, pM,ωq – pCP2, ωFSq#NCP
2

for some N ě 0.
‚ Lemma: If m ě 2 in the setting of Theorem 2, then there are singular fibers. (Otherwise

blow up m´ 1 base points and obtain CP
2, which is minimal.)

‚ Corollary (via Exercise 15.2): In Theorem 2, m P t0, 1u without loss of generality. If
m “ 0, then pM,ωq is a (possibly blown up) symplectic ruled surface, i.e. an S2-bundle
over a closed oriented surface, with symplectic fibers. If m “ 1, then pM,ωq is symplectic

deformation equivalent to pCP2, ωFSq#NCP
2

for some N ě 0 (thus it is a rational surface).
‚ Moduli spaces M2

emb
pJq “ M2

emb
pJ ; p1, . . . , pmq and M0

emb
pJq “ M0

emb
pJ ; p1, . . . , pmq of

embedded spheres with m constrained marked points and u ¨ u “ m or m´ 1

‚ Main lemma:
(1) All u P Md

emb
pJq are Fredholm regular for d “ 0, 2 (and for all J)

(2) dimMd
emb

pJq “ d, and every u P M2
emb

pJq belongs to a unique smooth 2-parameter
family of curves whose images foliate an open neighborhood of Mztp1, . . . , pmu

(3) If Jk Ñ J8 where J8 is generic (or belongs to a generic 1-parameter family), then
any sequence uk P Md

emb
pJkq has a subsequence convergent to either an element

of Md
emb

pJ8q or (only if d “ 2) a nodal curve with two embedded components, each
belonging to M0

emb
pJ8; pi1 , . . . , piqq for some subset tpi1 , . . . , piqu Ă tp1, . . . , pmu, and

intersecting each other once transversely.
‚ Riemann-Hurwitz formula and index relation for multiple covers
‚ Index relation for nodal curves
‚ Application of the adjunction formula as uk degenerates to a nodal curve

Exercises.
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Exercise 15.1. Suppose π : MzB Ñ Σ is a Lefschetz fibration/pencil with a singular fiber S
that has two irreducible components S1 and S2 intersecting at a single critical point, such that S1

has genus zero and does not intersect B. Show that S1 ¨ S1 “ ´1, i.e. if the fibration/pencil is
compatible with a symplectic structure, then S1 is an exceptional sphere.

Exercise 15.2. Suppose pM,ωq is minimal and π : MzB Ñ CP1 is a symplectic Lefschetz pencil
with m ě 1 base points and fibers of genus zero. Show that any singular fiber with one critical
point contains an irreducible component S with S ¨ S P t0, . . . ,m ´ 1u.

16. Contact manifolds and symplectic cobordisms (12.02.2019)

Topics and reading. The contents of this lecture are covered in [Wen18, Chapter 8 and §9.1],
though we did not have time to discuss Floer homology or any of the analytical issues summarized
in §8.3.

‚ Characteristic line field on a hypersurface Σ2n´1 Ă pM2n, ωq and the periodic orbit question
for Hamiltonian systems

‚ Theorem of Rabinowitz-Weinstein 1978: Every star-shaped hypersurface in pR2n, ωstq ad-
mits a periodic orbit.

‚ Liouville vector fields V and their dual 1-forms λ “ ιV ω

‚ Convex/contact-type hypersurfaces in symplectic manifolds
‚ Transverse Liouville vector fields and contact forms (see Exercise 16.1)
‚ The collar neighborhood of a convex hypersurface (see Exercise 16.2)
‚ Weinstein conjecture: Closed contact-type hypersurfaces always admit periodic orbits.
‚ Transverse Liouville vector fields are non-unique but belong to a convex (and therefore

contractible) space
‚ Statement of Gray’s stability theorem, definition of a contact structure ξ “ kerα and

contact manifold pS, ξq, why ξ is uniquely determined by ω up to isotopy on a contact-
type hypersurface

‚ Definition: symplectic cobordism from pM´, ξ´q to pM`, ξ`q, the concave and convex
boundary respectively; symplectic fillings (M´ “ H) and symplectic caps (M` “ H)4

‚ Example: p sB2n, ωstq is a filling of pS2n´1, ξstq (definition of ξst). So is any star-shaped
domain; in fact these fillings are symplectically deformation equivalent.

‚ For any closed symplectic 2n-manifold pW,ωq and an open Darboux ball pB2n
r , ωstq Ă

pW,ωq, pW zB2n
r , ωq is a cap for pS2n´1, ξstq, i.e. there is no meaningful restriction on the

possible symplectic caps of standard spheres.
‚ Theorem: Up to symplectic deformation and blowup, all fillings of pS3, ξstq are the same.
‚ Symplectization pR ˆ M,dpesαqq of a contact manifold pM, ξ “ kerαq, and Reeb vector

field Rα

‚ Reformulation of the Weinstein conjecture in terms of closed contact manifolds and Reeb
vector fields

‚ The space J pαq of almost complex structures on pRˆM,dpesαqq determined by a contact
form

‚ Trivial J-holomorphic cylinders over periodic Reeb orbits

4You should be aware that the literature contains slight inconsistencies about which manifold is the convex
boundary and which is the concave boundary when talking about a “symplectic cobordisms from A to B”. The
majority of authors use these terms the same way that I do, but not all.
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‚ Lemma: If u : p 9Σ, jq Ñ pR ˆM,Jq defined on a punctured Riemann surface 9Σ “ ΣzΓ has
no removable punctures and finite energy

Epuq :“ sup

"ż

9Σ

u˚dpeϕpsqαq
ˇ̌
ˇ ϕ : R Ñ r´1, 1s, ϕ1 ą 0

*

then u is proper and asymptotically approaches a trivial cylinder over a periodic Reeb
orbit at each puncture.

‚ Extension to completed symplectic cobordisms after adding cylindrical ends
‚ Sketch of a proof of uniqueness of fillings for pS3, ξstq using finite-energy holomorphic planes
‚ Sketch of a proof of Rabinowitz-Weinstein (i.e. the Weinstein conjecture for pS3, ξstq) using

finite-energy holomorphic planes

Exercises.

Exercise 16.1. For V a Liouville vector field in pM2n, ωq with λ “ ιV ω and Σ Ă M a hypersurface,
show that V&Σ iff α :“ λ|TΣ is a contact form, i.e. α ^ pdαqn´1 is a volume form.

Exercise 16.2. Given a closed convex hypersurface S Ă pM,ωq with transverse Liouville vector
field V , consider the embedding

Φ : p´ǫ, ǫq ˆ S ãÑ M : ps, xq ÞÑ ϕs
V pxq,

where ϕs
V denotes the time s flow of V . Show that for λ :“ ιV ω and α :“ λ|TS , Φ˚λ “ esα and

thus Φ˚ω “ dpesαq. Conclude from this that under the obvious diffeomorphisms between all the
hypersurfaces Φptsu ˆ Sq Ă M for different values of s, the characteristic line fields are the same.
Show moreover that if α is a contact form on S, then dpesαq is a symplectic form on R ˆ S.

Exercise 16.3. We didn’t have time for it in class, but here is part 2 of the proof of the monotonic-
ity lemma that I promised you in Lecture 11. We assume u : pΣ, jq Ñ pB2n

r0
, iq is a nonconstant

and proper holomorphic map whose image contains 0 P B2n
r0

Ă Cn, and consider the function

F prq “
1

r2

ż

u´1pB2n
r q

u˚ωst

for r P p0, r0s. We need to show that this function is nondecreasing. It can be reduced to an easy
application of Stokes’ theorem after reframing the problem in contact-geometric terms.

(a) Show that in the usual Darboux coordinates pp1, q1, . . . , pn, qnq on R2n “ Cn with ωst “ř
j dpj ^ dqj , V :“ 1

2

ř
j

´
qj

B
Bqj ` pj

B
Bpj

¯
is a Liouville vector field.

(b) Use the Liouville vector field V of part (a) to define a diffeomorphism

p´8, cq ˆ S2n´1 –
Ñ B2n

r0
zt0u : ps, xq ÞÑ ϕs

V psq

for a suitable constant c P R, so by Exercise 16.2, Φ˚ωst “ dpesαq where α :“ λ|TS2n´1

and λ :“ ιV ωst. Show that J :“ Φ˚i P J pαq.
(c) Since u is nonconstant, unique continuation implies that u´1p0q Ă Σ is a discrete set,

so define a punctured Riemann surface by 9Σ “ Σzu´1p0q. Now use the diffeomorphism
in part (b) to rewrite u : 9Σ Ñ B2n

r0
as a J-holomorphic curve in the symplectization of

pS2n´1, ξ “ kerαq,

u “ pf, vq : p 9Σ, jq Ñ pR ˆ S2n´1, Jq.

Show that for all values of r such that u : Σ Ñ B2n
r0

intersects the sphere of radius r
transversely, F prq can be expressed in terms of an integral of v˚α over the 1-dimensional
submanifold u´1pB sB2n

r q Ă Σ.
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(d) Show that for any contact manifold pM, ξ “ kerαq and any J P J pαq, if u “ pf, vq :

pΣ, jq Ñ pR ˆ M,Jq is J-holomorphic then v˚dα ě 0. Use this and Stokes’ theorem to
conclude that the function F prq is nondecreasing.
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