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81 INTRODUCTION

In [7], Steel constructs an alternative inner model which he calls K€ and then derives
a true core model K from it to anticipate one Woodin cardinal. It is assumed that there
is a measurable cardinal in the working universe. A natural question is whether such
measurable cardinal is needed in order to construct such a core model. Steel conjectures
that one can do without such hypothesis. It is therefore desirable to understand where the
complexity in deriving this core model occurs at which level of large cardinals. Schindler [6]
isolates the core model below the level where an overlapping pair occurs by rediscovering an
idea of Dodd. In his construction, Schindler requires that the extenders are w—complete and
are of type 0. By constraining to type 0 extenders, iterations are almost linear iterations,
namely, iteration trees are finite branching and each extender is applied somewhere on the
same branch leading to the point where the extender is produced.

In this paper, we start our investigation along this line. We shall deal with type 1
extenders. We allow one level overlapping but not two levels. In order to handle such
extenders, we require that the extenders are supercomplete, a property that is stronger
than being w—complete but derivable from other known “backgrand conditions”. After a
short introduction to our fine structure set up in this section, we carry out our analysis
of normal iteration trees of type 1 premice in Section 2. The main result of Section 2 is
that a normal iteration tree of type 1 premice of limit length has a unique cofinal branch.
In Section 3, we prove that every type 1 premouse with only supercomplete extenders is
simply normally iterable. The proof shall indicate the main idea which shall be applied in
the last section to show that each N¢ is normally iterable. In Section 4, we carry out a
K€ type construction of an inner model by putting only type 1 supercomplete extender on
at each potential level and show that the levels of the construction are normally iterable
and, granting an inaccessible cardinal in the universe, they are fully iterable. This type of
construction is basically the one given in [5].

Our general set theory usage is [1], which we take as our basic reference book. We
refer [8] as our fine structure theory standard reference book. Any undefined terms are
taken from there, although we try to minimize the number of times of checking with the
book while reading this paper.

We intend to construct an inner model to host larger cardinals by changing our current
A-indexing schema to a new A—indexing schema, as called by now T—indexing in [4], in a
sequential work. Since it has been a tradition to use T' to denote an iteration tree relation,
we decide to change T-indexing to A—-indexing. This in fact is our main interest and the
current work is just a warm up. We also intend to work out a fully iterable K¢ model by
requiring a stronger backgrand condition and by removing the hypothesis of an inaccessible
cardinal which we put in our last section in our later reports.

Fine Structure Theory Set Up

Let us recall that a structure M of set theory is amenable if its universe is transitive
and if 4 is a EO(M), and v is in the universe of M, then A N w is in the universe of M.
Also recall that a J—structure is an amenable structure M of the form

<J&41""’Am,Bl7‘ . 7Bn>-
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DEFINITION 1.1 A J-structure M (JA, B) is acceptable if and only if for all
€ < a,forall T <wg,if P()N (J€+1 ) # (0, then there is an f € Jﬁkl such that f is
a surjective function from 7 to wé.

The language in our fine structure theory set up is the £* language which consists of
predicate symbols €, =, B, D and variables v* of type ¢ € w.

E(()n) is the smallest set ¥ of formulae containing all basic formulae v* € v/, vt = 17,
B(v'), D(v?); containing all formulae which are in Egm'); closed under propositional logic
connectives; and closed under bounded quantifiers of the forms: (V v™ € v*), (I v™ € v*),

where 1 > n > m.
Egn) is the set of all formulae of the form 3 v™ ¢, where ¢ € Egn).

> ===

ncw ncw
DEFINITION 1.2 Let M and N be acceptable J—structures.
T M —gm N if and only if 7 preserves all Egn) properties.

m: M —yx« N if and only if 7 preserves all E(()n) (for n < w) properties ( if and only

if7r:M—>E(n)Nforalln<w, ifand only if 7 : M — ) N for all n < w.)

n®

Let M = (JA, B) be an acceptable J-structure. Fine structure theory provides us the
following objects:

(1) n(M) € w.

(2) A sequence of projectums:

v=ht(M) = ply > phy > - > it = pp O

and n(M) is the least m such that p7y = p7ot* for all i < w, and if pit! < p§, then wpik?
is a cardinal in M for 7 < w. o

(3) Forall 1 <i < w, wpﬁw is the least 7 < v such that P(7) N Z}&Z_l)(M) 7 M.

(4) Two sequences of families of functions: ngn)(M) and gﬁgn‘)(M), the families of
good E(n)(M) —functions, as they are called, which are defined below.

Fori < w,let Hi; = HM,

wpyr

DEFINITION 1.3 Let F : dom(F) C HZJV} X e X H]]\Z, — Hi, be a partial function,
where 2,71,---,7k < n. Let G; be partial functions with range C Hﬁ, for 1 <[ <k and
with the same domain and the types of the arguments are of < n. Then we say that
F(G1,---,Gy) is a type—matching composition of these functions.

DEFINITION 1.4 F e ngn)(M) if and only if F' € Egi)(M) and F' is a function such
that range(F') C H}; and
dom(F) C HIL x -+ x HI:
with 7:7j17 e 7jk < n.
gzgn)(M) is the type—matching composition closure of fE(n)(M).
gﬁg_l)( M)={f e M| fis afunction }.
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(5) For 1 < n < w, h}, € gEEn_l‘)(M) (light face), which are appropriate type—
matching compositions of certain uniformly definable ¥;-Skolem functions h},’s, and each
of A%, is a binary function. Notice that in Zeman’s book [8], they are denoted by iLK/‘, We
hope that some notational difference from [8] shall not cause the reader too much trouble.

The key properties of these functions are the following:

Ifo: M 5 N, then a(hé\}'l(w,p)) = hj{','l(a(:c),a(p)).

If 6 : M —5+« N, then for all 7 < w, a(hé\}'l(w,p)) = hé{'{l(a(:c),a'(p)).
(6) Two sequences of parameter spaces: Py, R}, for 1 <n < w, which are subsets of
JA. They are identified by the following:
(6a) For all 1 <i < w, for p € M, p € Pi, if and only if there is a relation B C wv
which is Egi_l)(M) in p and such that B Nwph, ¢ M.
(6b) Py = Piy= () P, and Py #0.
1<n<w
(6c) For 1 <i < w, for pe M, p € Ry, if and only if JA = k', (wpi, U {p}).
(6d) Ry = Riyr= (| Rir
1<n<w
(7) A standard parameter py € Pjy, which is the <* least member of P* N [v]<¥,
where <* is the canonical well ordering of finite sets of ordinals defined by, for two finite
sets of ordinals a and b, a <* b <= max(A(a,b)) € b.

We shall need to take cores of premice in our inner model construction. Let us recall
relevant definitions here.

DEFINITION 1.5 Let M = (JA, B) be an acceptable J-structure such that n(M) > 0.

(1) Let core(M) be the transitive collapse of hnM(M)(wpf/‘,U{pM}). core(M) is called the
core of M. [Here we are using the convention that Aps(aU{p}) to denote hps(w x (e x {p})).]

(2) For a € [wpé\}'l,wp}'v‘,), let coreo (M) be the transitive collapse of hé\j‘,—l(aU{pM—a}).
coreq(M) is called the a—core of M.

(3) For a € [wp}.\"/i‘,'l,wp}'v‘,), let core (M) be the transitive collapse of hé\}'l(a U{pm —
(a+1)}). core; (M) is called the minus—a—core of M.

Let us run a little more fine structural illustrative construction to redefine these core’s
to give a slightly more information about these functions.

Let us assume that n(M) > 0. Let (¢; | ¢ < w) be a recursive enumeration of ¥
formulae with one free variable in an appropriate language.

The first thing we do is to reconstruct the sequence of reducts determined by pps. For
i < n(M), write

pum(i) = pm N [wpir', wpiy)-
Let
: M
A1 = {(i,2) € HYy | M = 6w, pue ()},

and let My = (M|p};, A1).



Inductively, for i < n(M), let My = M and
Ay = {(i,2) € HY | Mi = ¢i(z, pm(3))},

and let M1 = (Mi|p}y., Ait1). Notice that wptl = wpyy, for i < n(M).
For each of these reducts M;, let hps be the ¥j—skolem function of M;, which is
uniformly ¥; definable over J—structures.

We can now define hn(M)(pr U {pm}) as the result of iterating the hpz,’s along pas
as follows.
Let X1 = hn,, p_ 1(pr}M) U{pm(n(M) —1)}). Inductively, for 1 < i < n(M), let

Xit1 = Aty ary— i) (Xi U{Pm(n(M) — (2 +1))}).

Then core(M) is the transitive collapse of X,,(az). ki ™M) is the result taking compositions
of (hp; |t < n(M)).

coreq(M) and core (M) can be redefined in the same way.

LEMMA 1.1 Let M = (J2, B) be an acceptable structure.

(1) Let o be the inverse mapping of the transitive collapse in forming core(M). Then
(la) 0 : N = core(M) —x+ M,
(1b) wpf = wpir,
(1c) of gy is identity,

pr

(1d) pp € range(o) and o~ (pm) € Ry,
(le) core(M) is sound < o(pn) = pm-
Let o, be the inverse mapping of the transitive collapse in forming core,(M).

Then
(2a) 0o : N = coreq(M) 5 M,
(2b) o4, is identity,
(2¢) (pm — @) € range(o) and o7 (ppr — @) € Ry
(3) Let o, be the inverse mapping of the transitive collapse in forming core_ (M).
Then

(3a) o, : N = core_ (M) 5 M,
(3b) o, is identity,
(3¢) (pm — (@ + 1)) € range(o) and o~ (pM —(a+1)) € Ry.
(4) (Indiscernibility of pas) Assume that n(M) > 0. Let a € [wp4,,wr).
(4a) If core (M) € M, then a € py.
(4b) coreq (M) ¢ M.
(4c) @ € pym if and only if coreq(M) # core, (M) if and only if 0, , |, = ¢d and
o, (a) > a.
DEFINITION 1.6 Let M = (J#, B) be an acceptable J—structure.
(1) M is n—sound if and only if Py, = R}%;.
(2) M is sound if and only if P;, = R},.



A basic fact of fine structure theory is that M is sound if and only if par € R},

Let us prove one elementary lemma on soundness that we shall use in our application.

LEMMA 1.2 Assume that M = (JA, B) be an acceptable J-structure. Assume that
n(M) =1 and wp$y is the largest cardinal in M. Then M is sound.

Proof Let k = wp}; < wa be the largest cardinal in M. Let X = hp(wplh; U {pm})
(1) k € X.
Assume not. Let v be the least » € X — k. Then v > k. Since « is the largest cardinal
in M, M thinks the following ¥, property of 4, denote it by ¢(v), is true:

BB <y N f:8—=vAVne~IE <€ B(n=f(§)).

By Xj—elementarity, X |= ¢(v). Let 3 and f be witnesses to the truth of ¢(y) in X. Then
B < k since k ¢ X. But then in M the following 3, property of f,3,x and v holds:

B<k<y ANf:B—=vAVner3EepB(n=f(£)):
This is a contradiction since « is a cardinal in M.
(2) X is transitive.
Let w € X. In M, the following ¥, property ¢(x,u) holds:
df 1 K —onto u.
Hence X |= ¢(k,u). Let f € X be such that

X Ef:1r—=ontou.

Then

ME f:k —onto u.

For v € k, we have f(y) € X since
X |= 3o € u(e = f(x).

Therefore, u C X.

(3) X = Jg.
This follows from ¥; elementarity.
(4) @ = .

Let N = <J§,B ), where B = BN X. Then N is a ¥;-elementary submodel of M
with par € X.
Let D be ¥1(M) in ppsr be such that

AP — pn JA



is the standard code of M. Let D = DN Jg. Then D is X1(N) in pps and
Al =D JA

If @ < a, then D € J2. Hence if @ < « then A'?¥ ¢ JA, Therefore, @ = .
Hence, pypr € R}, and M is sound.
O

DEFINITION 1.7 Let M = (JA, B) be an acceptable J-structure. M is solid if and
only if for all a € pps, core (M) € M.

Let us take a notice that in the literature of fine structure theory, these structures
core_ (M) are called witnesses.

LEMMA 1.3 (Preservation Lemma) Let M and N be two acceptable J—structures.
(1) If 0 : N -3+ M and M is solid, then N is solid and o(pn) = pum.
(2) If M is solid and N = core(M), then N is both sound and solid.

Premice

DEFINITION 1.8 Let M be an acceptable J—structure. Let x < A be primitive recur-
sively closed and k € M.

F:P(k)NM — P(X)

is a (k, A)—extender on M if and only if for all vq,---,v,, < K, forall 4;,---,4,, € P(k)NM,
for all B € P(k) N M, if B is primitive recursive in A;,---,A,, and vy,---,v,,, then F(B)
is primitive recursive in F'(4:),---,F(4,) and v1,---,v,, by the same definition.

For a (k,A)—extender F, X is called the length of F, denoted by A = [h(F'), and & is
called the critical point of F', denoted by x = crit(F).

A (k,X)-extender F' on M is whole if and only if A = F(k).

DEFINITION 1.9 M = (JE E,.) is a coherent structure if JZ is acceptable and there
is a unique triple (k,7, ) such that

(i) Eua is a (k,))-extender on JZ and 7 = («7)M < X < wa;

(ii) k = erit(Eye) and A = Eyq(K);
(iii) JZ = ult(JE, Eya);
(

iv) & is the largest cardinal in JZ and X is the largest cardinal in M.

Definition of the restriction of an extender:
Let M = (JE, F) be coherent. Let « be the critical point of F. Assume that ()M <
n < v. Then define that F||n with dom(F'||n) = dom(F') by (F||n)(X) =nn F(X).

DEFINITION 1.10 M = (JE E,.) is a prepremouse (ppm) iff the following four
conditions hold:

(a) M is acceptable

(b) E = {(v,n,X) | <v <wa A né€ E,(X)}, where E, = 0 or E, is a whole
extender on JZ and (JZ E,) is coherent. (Hence, Ih(E,) = A\ = E,(crit(E,)), which is

the largest cardinal in the sense of JZ.)
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(c)If7:JE g N, then EYN = () (taking well founded core of N as transitive in
case that NV is not well founded).

(d) The restriction of M to v, denoted by M||v =4.5 (J¥, E,,), must be sound for
all v < a.

DEFINITION 1.11 Let M be a prepremouse. For v < ht(M), we say that E, is a total
(or surviving) extender of M if E, # 0 and, letting x = crit(E,),

() = ()M,

DEFINITION 1.12 A premouseis a prepremouse satisfying an initial segment condition
(IS).

Initial Segment Condition

Let v < ht(M), EM +£ 0, M||lv = (JE,E,). & = crit(E,), A = Ih(E,), 7 = (7)™ in
M. CM is the set of all B € (k, ) such that if a < 3,f € ("k)MII", 7 : JF =5 JF then
7(f)(a) < B. CM is the set of cutoff points of E, over M.

If 3 € CM then E,||f € JE.

DEFINITION 1.13 Let A be a set of ordinals which is closed under Godel pairing. A
function A : A — Ord is a Godel homomorphism if and only if for all «,3 in 4, (1) if
a < 3 then h(a) < h(B); and (2) k(< a,B>) =<h(a),h(B) > .

DEFINITION 1.14 A measure preserving mapping is a pair
(o,k) : (B, F) — (M, F)

such that
(1) F is a (K, X )—extender on M and F is a (k, \)-extender on M,
(2)o: M —x, M,

E ) k=0(k),

4) h: X — Xis a Godel homomorphism, and B
(5) forall « < X and for all z € P(R)N M , if o« € F (z) then h(a) € F(o(z)).

DEFINITION 1.15 A ¥, -measure preserving mapping is a pair
(o,h) : (M ,F) —* (M,F)

such that (o, h) is a measure preserving mapping
(o,h) : (M ,F)— (M,F)

and for each a < A, there is a p € M such that
={z € P(R)NM |ac F(z)}

is ¥1(M ) in p and
Fia) ={z € P(k)N M | h(a) € F(z)}



is X1(M) in o(p) with the same definition.

We now turn to iteration.
First, we define a one step iteration, namely a fine structural ultrapower construction.

The *—ultrapower construction

Let M be a premouse and let F = EM be an extender on the extender sequence of

M. Let k = crit(F) and let A = l[h(F) = F(x). Let m(x, M) be the unique n such that

wpit < k <wphy if wpg, < k. Otherwise, let m(x, M) = w.

Define _
(s, M) = [ J{"M N g2 (M) | =1 <n < m(s,M)}.

For o, < A, for f,g € I'(k, M), define

(a,f) =r (B,9) = (a,8) € F({(&n) | £(§) = 9(m)})

and

(a,f) €r (B,9) <= (a,8) € F({(&n) | £(§) € g(n)})-

This defines an equivalence relation on A x I'(k, M) and € respects the equivalence rela-
tion.

Let ult*(M, F') be the set of = equivalence classes. Identify its € p—well founded part
with its transitive collapse. Let

m: M -5 ult"(M, F)

be the induced canonical embedding.
DEFINITION 1.16 An (k,\)-extender E over M is weakly amenable to M if for every
sequence (A, | @ < k) € M of length x of subsets of x and for every n < A,

{a<k|neE(A,)} € M.

DEFINITION 1.17 An (k,A)—extender E over M is ¥; amenable to M if for every
n < A, the ultrafilter E, generated by nis X (M), where

E,={zCk|zec M N nec E(z)}.

DEFINITION 1.18 An extender F is close to an acceptable structure M if F' is both
weakly amenable and ¥; amenable to M.

The fundamental fact is that if F' is close to M then the *—ultrapower embedding is
Y*—preserving.

THEOREM 1.1 Let M = (JE F) be an active premouse. Let x be the critical point
of F and A = F(k). Let # : M —% N be the *—ultrapower of M by F. Assume that this

is well-founded (say, F' is w—complete).
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(1) If n < min{m(x, M)+ 1,w} then 7 is an Egn)—embedding.
(2) If n < m(k, M) then 7 is an Eén)—embedding and w[Py;| C Py.
(3) If wp$y > K, then 7 is fully ¥* and «[P};] C Py
(4) Assume that m(k, M) < w (i.e., wpy; < k) and F is close to M (i.e., both weakly
amenable and ¥;—amenable to M). Then
(a) = is cofinal in N.

(b) for all n > m(k, M), Hy; = H; and
P(H}) N 5™ (M) = P(HE) 0 20 (V)

and w[Py;] C PR.
(c) mis fully ¥*.
() [Py C P,
(e) If M is solid, then so is N and 7(pym) = pn.
(f) P(x)N 3" (M) = P(x) 0 B{7(N) for all n < w.
(g) Forall n > m(k, M), wphy = wph.

Iteration Trees

DEFINITION 1.19 Let 0 < 8 < Ord. T C 0 x 8 1is an iteration tree of length 6 if and
only if the following conditions are satisfied:

(1) T is a tree order with least point 0, and if & <7 8 (i.e., (,3) € T'), then a < 3,

(2) if B < 6 is a successor ordinal, then § has an immediate predecessor, denoted by
T(B),in T, (i.e., T(B) <7 B and if £ <7 B then £ <7 T(B) or £ = T(B)).

(3) if B < 6 is a limit ordinal, then the following set

[0,8)r ={£ | € <r B}

is €—cofinal in 3.

DEFINITION 1.20 Let T be an iteration tree of length 8. We write o <7 g if and
only if o <7 8 or a = 3.

For a <71 3, we define

[OL,/B]T:{5|OZS€ A fST/B}7

[OL,/B)T:{€|OZS€ A €<T/6}7

(Bl ={€ |« < € A £ <7 B}, and

(cnf)r = {€|a <& A & <1 B},

If ¢ < 8, [0,t]r is called the branch of T upto ¢ and [0,¢)r is called the branch of T to
i.

b C 0 is called a branch of T' if and only if b is a maximal linearly ordered by 7'. T
has a cofinal branch if there is a branch b such that b is €—cofinal in 6.

DEFINITION 1.21 A generalized iteration of premice of length 6 is an iteration tree
T on 6 associated with a sequence of premice, called iterates, (M; | ¢ < 6), two sequences
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of indices, (v; | i € D) and (n; | i+ 1 < ), and a sequence of iteration maps (m;; |1 <t j7),
denoted by
T=(<M; > (<v;>D),<n><m;>T),

satisfies the following requirements:
(a) each M; is a premouse,
b) each 7;; is a partial map from M; to M;, and if ¢+ <7 h <7 j, then m;; = mp; ™1,
c)if i +1 < 6, then n; < ht(Mrp(;q1)),
d)if j <@, then {i|i+1 <737 A 1 <ht(Mg11))} is finite,
e)ifi ¢ Dandi+1 <6, thent=T(i+1), Miy+1 = M;||n;, and 7; ;41 is the identity

(f)if ¢ € D, then i +1 < 6 and E,I,\f” £ 0, letting £ = T(: + 1), k; = crit(Ei\f’i),
7 = (k7 )Millvi then 7; = (k] )Melln: | JMi = Jf-\z./‘r8 and e ;41 + Me||n; — o Mita,

(g) if 7 < 0 is a limit ordinal, then (M, (m;; | i <7 j)) is the direct limit of ((M; | i<t
) (mie | i <7k <7 7).

Remark By (d), the finiteness of truncation condition, if j is limit ordinal, then for
sufficiently large : <7 k <7 j, the maps m;; are total maps from M; to My, hence the
direct limit is well defined and for sufficiently large « <7 j, 7;; is total.

DEFINITION 1.22 Let T = (< M; >,(< v; >,D),< n; >, < m; >,T) be a generalized
iteration of premice of length 6.

(1) Let D be the domain of the v—indices. For i € D, let x; = crit(Ei\f’i), T =
(nj’)M"””i, and A; = o;(k;) be the largest cardinal in M;||v;, where o; : Jf_\i/"" — M;||v; is
the canonical embedding given by Ei\f”', which agrees with mp(;41) 41 on 7.

(2) ¢ + 1 is a truncation point of 7 if and only if ¢ +1 < 6 and 7; < ht(Mriy1y)-

(3) A branch b in T is simple in T if and only if b has no truncation point. ¢ < 6 is
simple in 7 if and only if the branch [0,]7 upto ¢ has no truncation point.

(4) 7 is direct if and only if ¢ € D for all 1 +1 < 6.

(5) T is smooth if and only if for all : +1 < 6, if ¢ ¢ D then n; = ht(M;); if : € D
then ¢ = T'(: + 1) € D and 7; is the maximal 5 < ht(M¢) such that

(el = (I,
(6) 7 is normal (with A—index) if and only if 7 is smooth and for all s € D, v; > v,
for h € DN and T(i 4+ 1) is the least £ € D such that x; < Ag.
(7) T is a piecewise normal iteration with a marking sequence < a; |1 < I' > if and
only if the following hold:
(a) the marking sequence < «; | ¢ < I' > is normal (continuous and strictly
increasing) and g = 0 and ar = 4.
(b) a; ¢ D for all : < T'.
(¢) If a; < j < atjy1 and j € D, then n; = ht(M;).
(d) If o; < 7 < aj+1 and j € D, then
(i) v; > vy, for all h € (a;,7) N D,
(ii)) T(j + 1) = the least £ > «; such that £ € D and k; < A¢, and
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(iii) n; = max n < ht(Mr(;11)) such that (kT)Mri+nlln = (gT)Millvs
(8) 7 is a smooth piecewise normal iteration with a marking sequence < a; |1 < T >
if and only if it is a piecewise normal iteration and no; = ht(My,) for all ¢ < T, i.e, it is a
piecewise normal iteration and it is smooth.
Remark For readers of [2], piecewise normal iterations are called good iterations there

and smooth piecewise normal iterations are called smooth iterations there.

DEFINITION 1.23 Let 7 be a normal iteration of length §. We say that 7 can be
uniquely continued if and only if the following hold:

(1) If @ is a limit ordinal, then 7 has a unique well founded cofinal branch b = [0, )1
and 7 can be extended to 7' in the following way: Set

T' =T U{(6)|ic b}

and let (Mpy, (m;p | ¢ € b)) be the direct limit along the branch b. We have a normal iteration
7' of length 6 + 1.

(2) If = € 4+ 1 and v € M, satisfying that EM: # 0 and v > v; for all j € D, then
7T can be extended to 7' in the following way: Set D' = D U {{}, let j € D' be the least
such that k = crit(E,I,VIé) < A; and let ¢ be the maximum n < ht(M;) such that

(K+)MJ||7I - (K+)Me||'/’

and let Iy
Tie1 : Mjl|lne — Mgy = ult™(Mjl|ne, Ev*),

and set 7' =T U{(¢,6 + 1)1 <7 j} and ve = 1.

DEFINITION 1.24 Let 7 be a piecewise normal iteration of length 6 with marking
sequence < a; | 1 < T' >. We say that 7 can be uniquely continued if and only if the
following hold:

(1) If @ is a limit ordinal, then 7 has a unique well founded cofinal branch b = [0, )1
and 7 can be extended to 7' in the following way: Set

T' =T U{(6) |ic b}

and let (Mg, (m9 | ¢ € b)) be the direct limit along the branch b and let o) = «; for all
1 <TI and O‘II‘—|—1 = 0 + 1. We have a piecewise normal iteration 7' of length 6 + 1.
(2)If0=¢+4+1,T =h+1and v € M; satisfying that E,],V‘re # 0 and v > v; for all
J € (an,€) N D, then T can be extended to 7' in the following way: Set D' = D U {¢},
a; = o; for ¢+ < h and O‘Ih—|—1 = ¢ 4 2 (we change the last marker from £ + 1 to £ + 2) and

let j € (an,€] N D' be the least such that x = crit(E,],VIé) < Aj and let n¢ be the maximum
n < ht(M;) such that
(K+)Mj||n — (K+)M§||V,

and .
Tier1 : Mjllne — Mgy = ult™(Mj||ne, E,°°),
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and set 7' =T U{({, + 1)1 <7 j} and ve = v.

(3)If0=¢+1,I'=h+1, and n < ht(M;), then 7 extends to 7' in the following
way: Set n; = n and o) = «; for all e <h+1and o), =&+ 2, and Mgy = M¢|[ne and
T¢e4+1 is the identity map and set 7' =T U {([,€ + 1) |l <7 €}, and D' = D.

DEFINITION 1.25 (1) A premouse M is (uniquely) normally iterable if every normal
iteration of M can be uniquely continued.

(2) A premouse M is (uniquely) smoothly iterable if every smooth piecewise normal
iteration of M can be uniquely continued.

(3) A premouse M is (uniquely) iterable if every piecewise normal iteration of M can
be uniquely continued.

(4) A premouse M is a mouse if it is uniquely iterable.

The following is a special form of a general theorem of Jensen which provides exact
information on these iterabilities.

THEOREM 1.2 (JENSEN) Assume that there is an inaccessible cardinal. If a type 1
premouse is normally iterable, then it is smoothly piecewise normally iterable.
O
We believe that the assumption of existence of an inaccessible cardinal can be removed
for type 1 premice. But at this point, we have not yet checked in detail. Hopefully, we
shall report in our sequential work.

THEOREM 1.3 (JENSEN) A premouseis a mouse if and only if it is smoothly piecewise
normally iterable.
O
THEOREM 1.4 (STEEL) If M is a mouse, then M is solid. Hence, the core of a mouse
is always a sound and solid mouse, and if M is a mouse, then core(core(M)) = core(M).
O

THEOREM 1.5 (CONDENSATION LEMMA, JENSEN)
Let M be a mouse and let v < ht(M) be such that if 7 < v is a cardinal in M||v then
7 is a cardinal in M. Let ¢ : M —yx, M be such that

v =max{{ | o , = id}

and o is Egn)—preserving whenever anH > v. Then M is a mouse. Moreover, if wp?_ < v

and M is sound above v, then one of the following holds: M

(a) M = core,(M) and o is the core map;

(b) M = M||n for some n < ht(M);

(c) m: Mlln —>*EM M , where
(rv<n< ht(M) and wpyy, <v,
(i) p < wn,
(iil) v = (s T)MI", x = crit(EM),
(iv) E} is generated by {x};
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(d) M = M,||n, where n < ht(M;) and 7 : M — g M.

To study type 1 mice, we shall need a condition stronger than acceptability, strong
acceptability, which provides us very nice reflection property.

DEFINITION 1.26 Let M = (JE F) be a J-structure. M is strongly acceptable if
and only if whenever 7 < a, £ < wr, JZ | | ¢(€) and JE = —¢(¢) for a ¥; formula ¢,
then Card(r) < max(g, w)in JEZ .

LEMMA 1.4 Let N = (JZ F)bea J-structure. Assume that N is strongly acceptable.
Then N is acceptable.

Proof Toward a contradiction, assume otherwise. Let 7 < a be the least counter exam-
ple. Let £ < wT be the least witness. Then ¢ must be a limit ordinal and ¢ > w. Consider
the following ¥; sentence ¢(&,w):

Jz Elfy(cc§§<7/\w€J5A3m<ww€wa+m/\¢1(§,7))

where ¢1(&,7) if and only if Ym < wVf € wa_i_mf is not a surjective function from ¢ to
wA.
Then J7E+1 = ¢(¢,w) and by minimality, JZ = —¢(£,w). But this contradicts to the
fact that N is strongly acceptable.
O
Strongly acceptable structures have nice reflection properties as indicated by the fol-
lowing lemma.

LEMMA 1.5 Assume that N = (JE F) is strongly acceptable. Let w < 3 < a be a
cardinal in N. Then JBE <5, JE.

8

Proof Let §< B. Let ¢ be a ¥; formula. Assume that JZ |= qﬁ(g) and Jﬁf" = ﬁ¢>(§)
Let 8 < 7 < a be maximum such that JZ |= ﬁ¢>(§) Then7+1<aand JZ, E qb(g)

By the strong acceptability of N, 7 has cardinality at most max(g,w) in N. But this
contradicts to the fact that 3 < 7 is a cardinal in N.
0
Another easy consequence of strong acceptability is the following preservation prop-
erty.

LEMMA 1.6 Assume that both M and N are J-structures and ¢ : M —yx, N. Then
M is strongly acceptable if and only if N is strongly acceptable.

Proof Notice that being not strongly acceptable is a 3; statement.
O
Although we have disqualified a class of premice to be our objects of studying, we
don’t lose any information on our study of mice.

THEOREM 1.6 Mice are strongly acceptable.
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We need to prove several lemmas first.

LEMMA 1.7 Let N be an acceptable J—structure. Let p € R%. Let [ > 1 and ¢ be
Yi(N). Then ¢ is uniformly Egk) in p, i.e., there is ¢ € Egk) such that for all p € R and
forall £ € N,

N [ ¢(z) <= N ¢(2).

Proof Assume that k¥ > 1. For simplicity of notations, we assume that [ = 1. Let
¢ = Jz2¢0(&, 2), where ¢y is Tg. Let h* be the canonical Egk') Skolem function for N. Set

f(=€&i=) = h*(i, < &p>)

for £ < wpk and i < w. Then f is a partial good Egk) function from wpf% to N. We take

¢ as

FEP o F (2 = FIERYA -z = F(EF) A TP € D ¢o(£(€), £(n*))),

—

where D = dom(f) and ¢o(f(£), f(n)) is Agk) in z,7n, and p.

]
LEMMA 1.8 Let N = (JE  F) be acceptable. Let k = n(N). Let p € R%;. Then every
Egk')—condition is uniformly Egk—m in p.

]
LEMMA 1.9 Let N = (JZ,F) be a sound mouse. Let §< wa. Let ¢ be 3, such that

N E ¢>(§) and N||8 |E —|¢>(5) whenever # < a and §< wfB. Then wp%, < max(g,w).

Proof Suppose not. Let o be the least counter example. Assume without lose of
generality that {, = max({) is primitive recursive closed (hence £ = max(£,w)). Let
k= n(N), ie., wpk = wprH for all [ < w and is the least with this property. Let ¢ be
Yi(l > 1) and let n >> [ + k be sufficiently large.

Let p = py be the standard parameter of N (hence pN wpk = 0). Let N™P? be the
reduct. Let X = hnno(€o +1). Let @ : M — N™P be induced by the transitive collapsing
of X. Let 0 : N — g IV be such that ¢ C o and M = N™P,andp € RnN and
p=0(p) .

laim that for k < h < LRy L

We claim that for k < h < n, wpgr = WPy

To see this, suppose not. Then h < n. Let © € HhN — H"N Then o(z) € HY and

N =W (y" = o(z)).

Hence

N E W™ (y" = z).

We get a contradiction.

Now by Lemma 1.8, every Efzk_)  condition in p is uniformly Egn) in p. Hence
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(1) o: N —yx,_, N.

Since n >> k, we have
(2) o(wpls) = wpls (b < k).

Moreover,

(3)p = Py~ pr and N is solid above pr.

To see this, let v € PN pr. We show that 7 has a witness in N. Since

p N wpkN (0, for some h < k, we have wp?\";l <v < wth. Let v = o(v). Then

wp?.fl < v < wpl . The fact that v has a witness in N is expressed by the following:

there is W € N,q € W such that for all §< v, and for all Egh)—formu]a ¢, we have
W|_ ( 7Q) Aand N|_ ( 7P_V+1)

By (1) and that n >> k, the same holds of 7,p in N .
This shows (3).
Since for v < &y, o(v) =v and N = 3 y"(y" = v), we have §; < wp“N. It follows that

NP = h (fo + 1) by the construction of N. Since p € R and p = PN — (& +1),

we conclude that

N

(4) N is sound above & + 1.
Let v = crit(o). Then £y + 1 < v and
(5) N is sound above v.

Since n >> k + [ was chosen large enough to express mousehood in a 3, _; way, N
is then a premouse. We now apply the Condensation Lemma to obtain a contradiction.
According to the lemma, we consider each of the four cases (one of them must occur).
Case 1 N = core,(N) and o is the core map. Then wp“’ﬁ = wpR < v <wph. Contradicts

to that « is a counter example.
Case 2 N = N||n for n < ht(N). By(1), N |= #(¢ ) Hence N||n = ¢(¢ ) But < a.
Case 3 7 : N|jn =>4y N, where
(i) v <79 <uht(N) and wpy, <V,
(i) p < wn,
(iil) v = (s )N, & = crit(EiV),
(iv) EIZLV is generated by {x}.
Then & is a cardinal in N, since 0 : N —x, , N and o , = id.
Let ¢*(y0,- - ,7Ym) be the condition:
70 = max(¥) is primitive recursive closed and ¢(¥) and for all 3, if w@ € Ord, then

(75 Bup) | —(7)-
Then N |= ¢*(¢ ) Since n >> I, we have N |= ¢ (f) by (1). Moreover, since n >> [, we
know that the condition “N |= ¢*(¥)” is uniformly E( "in p for ¥ < pr
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(n+1)
Nlln
WP | then m(¢g) = p and the condition “(N||n) = ¢*(¥)” is uniformly E(()n)(NHn) in g by
the same definition (since N||n is sound above wp?\,”n).

Set X = {<7~< x| N|n = ¢*(7)}. Then X € N||n since £ < wpyy,-

Hence o(X) = {<7y~=< o(k) | N = ¢*(7)}

It follows that X # 0 since < ¢ ~€ o(X). Let <4 =€ X. Then N||n | ¢(¥) and
N||B E —¢(7) for all B < n such that 4 € JﬁE.

. . w .
Since a > 1 was a minimal counter example, we have WP = Yo < K, where N||n is

Also, wp <k < wp?\’lln and N||n is sound above wp?\,Hn. Hence, if ¢ = pyj, —

sound. H_ence x 1s not a cardinal in N. This is a contradiction.
Case 4 N = Ni||n, where n < ht(N1) and 7 : N — gy Np.
Then v = MM is a cardinal in Ny, where A = Agy . However, N = ¢>(§) and

N |8 = N:||8 | —¢(€)

for all B < n = ht(N) by (1) and that n >> [. But then waN < &o by minimality of o

since 1 < ATN < a. But 17 > v. Hence v is not a cardinal in N; since N = Ni||n is sound.
We have our last contradiction.

O

Proof of the Theorem
Let N = (JZ F) be a mouse. We show that N is strongly acceptable.

Let 7+ 1 < a be such that J;E_H = ¢(§) and JE |= ﬁgé(g), where §< wTt and ¢ is Y.

We assume that max(g) = max(g, w) is primitive recursive closed. Let £, = max(g).

Let ¢(Z) < 3 z ¢o(2,&). Then

—

J7_E+1 |: dz - JTEQZSO(t(Z,JTE,EWT),é)

where ¢ is rudimentary (since JZ ; = (rud(N||7), E)). Hence

— —

JE L ¢(€) < N||r = ¢1(é)

uniformly, where ¢, is X,,.
Since N || is sound, it suffices to show that wpRy|- < €o- Note that N||ln E —¢1(€) for

7 < T such that_§_)< wn. This is because otherwise one would have by the same reasoning
that Jqﬂ_l = ¢(€) and hence JZ |= ¢(£) since ¢ is T and n+1 < 7.
Now we have set up to apply the previous lemma to conclude that wp%HT < &.

O

To end this introduction, we wish to record our acknowledgements here. The first
author wishes to thank DFG for providing a Mercator Guest Professorship, which allowed
him to visit Humboldt University twice to work with the second author on this joint work,
and to thank Humboldt University for its hospitality during his visits.
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82 NORMAL ITERATIONS OF TYPE 1 PREMICE

In this section, we carry out an analysis of iteration trees of type 1 premice. We shall
prove that every iteration tree of type 1 premice of limit length has a unique cofinal branch.
First, let us give a definition of type 1 premice.

DEFINITION 2.1 Let M be a premouse.
(1) Let 7 < k < ht(M). We say that T is strong upto s, denoted by o™(7) > &, if

VB <kIv<ht(M)(r=crit(EX) N IWEM) > p).

(2) & is of type 0 in M iff there is a v < ht(M) such that k = crit(EM) and
{r < k| oM(1) > &k} is bounded in .

(3)  is of type > 1 in M iff there is a v < ht(M) such that x = crit(EM) and
{r < k| oM (1) > K} is unbounded in «.

(4) & is of type > 2 in M iff there is a v < ht(M) such that k = crit(EM) and

{r<rk|o™(r)>r ATisof type >1in M}

is unbounded in k.

(5) K is of type 1 in M if k is of type > 1 and x is not of type > 2.

(6) For v < ht(M), we say that EM = () is of type 0 (of type 1, or of type > 2) if
crit(EM) is of type 0 (of type 1, or of type > 2).

DEFINITION 2.2 (1) A premouse M is of type 0 iff for all v < ht(M) if EM £ () then
crit(EM) is of type 0 in M.

(2) A premouse M is of type 1 iff M is strongly acceptable and for all v < ht(M) if
EM £ () then crit(EM) is of type < 2 (i.e., not of type > 2) in M.

Remark Type 0 mice are those iterable premice whose iterations shall never result to
infinite branching iteration trees. Hence for type 0 premice, the iterations are almost
linear iterations, as studied by Dodd and rediscovered by Schindler [5]. Type 1 mice are
those iterable premice which may result to infinitely branching iteration trees.

In almost linear iterations, every iteration tree is finitely branched. Namely, in any
iteration tree of type 0 premice, at any point of the tree, the number of immediate suc-
cessors is finite. However, when we deal with type 1 premice iterations, infinite branching
occurs, as indicated in the following example.

Example 2.1 Assume that M =< JZ,E, > is an iterable type 1 premouse. Assume

that F, # 0. Let « be the critical point of E, and let A = F, (k). Assume that x is of type

1in M. We define a normal iteration of M of length w so that 0 is infinitely branching.
First, we observe a basic property which M has.

Define that

Ala,m,k) <= VB <kIn< k(B <nandcrit(E,) =7 > a),
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and
B(k,A) < Va<kdr <k Ala,7,)).

We observe that M |= B(k, A).

Since k is of type 1, M satisfies the following sentence:
Va<rkdr <k Ale,7,k),

Let My = M. Let My, = ult(M, E,) and let m; be the induced canonical map. Let
a < k and let 7 < k be such that @ < 7 and My E A(e,7,x). Then M; = A(e,7,)). By
coherency, My = A(a,7,A). Hence, My = B(k, ).

By elementarity, M; = B(\,m1(A)). Applying this to the pair (x,v), we have an
extender on the sequence EM1, indexed by vq, such that vy = v < 1y < mo1(A) and

K,():K,<K,1:CT"I:t(E£\141)<A0 =\

Then we apply Ei‘f’l to My and let M> be the ultrapower and let mys be the induced
canonical mapping.
Let E%z be the top extender of M;. Let k2 be the critical point of it. Then x, =
mo2(ko). Let Ay = mo2(Ao) and let v = ht(M>). Notice that k2 = K¢ since k1 > Ko.
Apply E%""‘ to My to get an ultrapower M3 and let my3 be the induced canonical
mapping. Then
Ms | B(mos(0), mo3(Ao))-

Since Az = mo2(Ao) = mos(ko) and v2 = me2(rg) = ()\;)M“”, we have 1] < Ay < 1y <
mo3(Ao). Applying B(Az,mo3(Ao)) to the pair (v1,v2), we get an extender on the M; se-
quence, E%S' indexed by v3, such that v; < k3 = crit(E,I,\s/‘rs) < Ay and vy < vz < mo3(Ag).

Now E%S' must be applied to M by the iteration rule of A-indexing. Let M, be the
ultrapower and let 724 be the induced canonical mapping. Let E%‘* be the top extender
of My with vy = ht(M,) and k4 = kg is the critical point and Ay = m24(A2).

Then Ei\f‘* must be applied to My. Let My be the ultrapower and let w5 be the
induced canonical mapping. Notice that Ay = mo5(k0). So

Ms = B(Ay,mo5(Xo))

by elementarity. Apply this property to the pair (v3,vs4). We get E%L" with v3 < kK5 < A4
and v4 < vs < mo5(Ag). Then this extender must apply to My.

Inductively, at stage n = 2k + 2, we apply E,],\:‘r,fifl to Msy, to get Mspy2 and the

top extender Ef,‘f,’jij“ with critical point ksp42 = ko etc. Then we apply it to My to get

M, 1. Using mg 25+3 to B(ko, o), by elementarity, we get E%’Hl which must be applied
to M2k+2.
By this way, we have seen that 0 is an infinite branching point.
O
We shall eventually prove that every normal iteration tree of type 1 premice of limit
length has a unique cofinal branch. We need to establish some basic facts first.

Let T be a normal iteration tree with A-indexing.
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LEMMA 2.1 Fori4+1 < Ih(T), T(i + 1) ¢ [0,¢]r if and only if there is a unique h
such that » +1 <77 and Ap(j41) < ki < Ap.

In case of that T'(: + 1) € [0,¢]r, we let h(7) be the unique h to witness this fact and
we say that h(¢) is defined.

Proof (<) Let h be such that 0 <7 R+ 1 <7 ¢ and Ap(41) < K < Ap. Then
T(h+1)<T(t+1)<h<h+1. Hence T(z + 1) ¢ [0,3] .

(=) Assume that (¢ + 1) &€ [0,3]7. Then 0 < T(: + 1) < 1.

Casel. 1 = j + 1 and x5 < k;.

If T(: + 1) < T(3), then k; < k; < Apgiy1). But we have Api11) < &5 < Ag(y).
Hence, T'(: + 1) > T(z). Since T'(¢) <t t, we have that T(:) < T(i + 1) < j. Hence,
Ar(i+1) < ki < Ar(i+1) < Aj and j +1 <7 i. Take h = j. We have our desired conclusion.

Case2. Otherwise.

(a) There is an m such that m +1 <7 ¢ and &; < Ap(m41)-

If 7 is a limit ordinal, then let m; <7 % be such that T'(¢ + 1) < m;. Then let m be
such that m + 1 <7 ¢ and m; = T'(m + 1).

If : = 57+ 1, then k; < k; (otherwise we are back to the previous case). Hence
ki < Kj < Ap(j+1)- Let m = j.

From (a), let m be the least n such that n + 1 <7 ¢ and x; < Ap(n41).-

(b) T(m + 1) is not a limit ordinal.

First, T(m + 1) > 0. Secondly, if T'(m + 1) is a limit ordinal, then [0,7(m + 1))r is
cofinal in T'(m+1) and for all A < T'(m+1), letting {4+1 > h be such that [+1 <7 T'(m+1),
then A\, < Aiy1 < k;. Hence T(¢ +1) = T(m + 1) since T(: + 1) < T(m + 1). But
T(m+1) €0,1]r.

Let h be such that T(m + 1) = A+ 1. Then

Th+1)<rT(m+1)<rm+1<ri,
and

AT(ht1) S Ki < Agie1) < A

since k; < Ap(m41) and T(¢ +1) & [0,i]7, and T(m + 1) € [0,i]7 and hence T(i + 1) <
Tim+1)and T(z + 1) < h.
U

Let M be a type 1 premouse. Let 7 = ((N;), (vi), (n:), (mi j),T) be a normal iteration
of M.

LEMMA 2.2 For all ¢, if there is some 7 > ¢ such that
ki < Kj < A < )\j
then k; or E,, is of type 1.

Proof We prove Lemma 2.2 by induction on the length of normal iteration trees.
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Let 6 be an ordinal and let 7 be a normal iteration tree of length 6. Our induction
hypothesis reads that for all normal iteration trees of length smaller than 6, lemma 2.2 is
true.

Start with 6§ = 2.

Let 7 : Ny — N; be given by E,, and let E,, be the next extender on N;. Assume
that kg < k1 < Ag < A1. We want to show that E,, is of type at least 1.

Claim E,, cannot be a top extender of Nj.

Toward a contradiction, we assume that F,, is a top extender of N;.

By elementarity of 7, let F' be a top extender of Ny and k be the critical point of F
such that 7(K ) = k1.

If K > ko, then k1 = 7(K)

If K < Ko, then k1 = 7(K)

This shows the claim.

(ko) = Ao, contradicting to the fact that k1 < Ag.
< Kg, contradicting to the fact that x; > k.

IV

T
K

We then must have that E,, € N;. It follows that
N; [ k1 is strong upto ).
Let 8 < k9. Then
Ny = Jk < Xo(k > B & & is strong upto A).

Hence,
No E & < ko(k > B & & is strong upto ko).

Hence E,, is of type at least 1.

Assume that 8 > 2 and assume that every normal iteration tree whose length is strictly
smaller than 6 satisfies the Lemma.

Let 7 be a normal iteration tree of length € having an overlapping pair i < 7 < 0,
namely x; < k; < A; < Aj.

If 6 is a limit ordinal, then it follows by our induction hypothesis that 7 must satisfies
the lemma.

If § = v+ 1 and that v is a limit ordinal, then 5 < «. If 7 < v, then it follows from
induction hypothesis. So let us assume that j = ~.

First let us assume that E,, is the top extender of N;.

Since N; is the direct limit along the branch [0, j]7, let m < j be such that i < m and
[m, j]r is simple and ® € N,, and X € N,, and Tmj(K) = k; and ij(X) = Aj.

Let n + 1 € [0, 7|7 be such that m = T'(n + 1).

We then have A\; < k,,. Let 7 = m,, ; be the embedding from N,, to N;. Notice that
K < K.

We change the iteration to 7' of length m + 1 by setting 7’|, = 77, and set
v,, = ht(N,,) and E!, to be the top extender of N,,. This shorter iteration tree allows us
to apply induction hy"f)othesis to finish this case.

Secondly, we assume that v; < ht(N;). Let m > i be sufficiently large such that
[m, j]r is simple and E,, = my,;(Eg ).



22

Let n + 1 € [0, 7|7 be such that m = T'(n + 1).

Since crit(mm,,;) = Kn, Tm,j(K) = k;, and wm,j(X) = );, we have K = k; and
X > kn > A

Let F' = 7I'm’n_|_1(E§). Let v = 7I'm’n_|_1(f).

If v < v, then by agreements, F' is on EN» with an index v > \,,. Hence v,, < v. If
v, = v, then v is a cardinal in N, ;; and F'is on ENvt1 and F € N,,+1 whose index is a
cardinal. Therefore, v,, < v.

We can now change the iteration tree 7 to 7' of length n + 2 by setting 7', =
T, and setting v;,, to be v and E; ; = F. This shorter iteration tree allows us to
apply induction hypothesis to conclude the lemma in this case.

Assume now that 8 = 5 + 2.

If + < j is an overlapping pair, then induction hypothesis applies.
Let ¢ < j be such that (,j + 1) be an overlapping pair.

Let m = T(j + 1) and let

™ Nullnj =5, Njt+1:

If + = 7, then similar to the case of § = 2 we conclude that E,, is of type at least 1.

We assume that ¢ < j and (7,j) is not an overlapping pair. So either k; < x; or
A < Kj.
Case 1 E,,_, is a top extender.

In this case, we show that the induction hypothesis can be applied to a tree 7* of
length m + 1 which agrees with the tree 7 upto m.

Let F be a top (E,X)—extender on Ny, |[nj(nj > vm) corresponding to E,, , such that
m(k) = Kjt1, T(A) = Ajta.

Notice that 7(k;) = A;.

First, & < k;. Otherwise,

Ai > ki1 =m(R) > w(kj) = A; > A

Secondly, A > k. [m(k;) = Aj < Ajqy1 =7(X).]
Since either k; < k; or k; > A;, we show that k; < k; cannot occur. Otherwise, we
have
E<l€j<l€i§l€j+1

and K = m(K ) = kj4+1. Contradiction.
Hence we have k; > A; and m > 1. Then we have

Ki§E:Kj+1<)\i§l€j<X.

We then change the iteration by setting v, = 5, etc., from 7 to get a normal iteration
tree of length m 4 1 which agrees with 7 up to m. Hence E,, is of type at least 1.
This finishes the argument for Case 1.

Case 2 F,, ., € Njy1.
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[Notice that the extender may not be in the range of w. If it is in the range of 7, we
then could proceed as in the previous case.|
Subcase 1 x; > A;. Hence : < m < j.
Then we have
Ki <Kjp1 < A < Kj < Aj < Ajga.

Since m(Kkj4+1) = Kjt1, Njy1 thinks that w(k;41) < A; is the critical point of an extender
on the sequence whose length is strictly larger than ;. It follows that N,,||n; thinks that
Kj+1 < kjis the critical point of an extender on the sequence whose length is strictly larger
than ;.

Since [ < m implies that A\; < k;, we have there is an E,],Vm”m whose critical point is
kj+1 and such that v > v for all [ < m.

We can then change the iteration using this extender, replacing the original E,  in
the construction of the tree 7, by setting k., = kj41, etc., to get an iteration tree of length
m + 1 which agrees with 7 upto m. We then apply the induction hypothesis to conclude
that E,, is of type at least 1.

Subcase 2 k; < k;.

Let o : Np(it1) — Niy1 be given by the iteration with extender E,, and x; is the
critical point.

Sincet < 7,14+ 1 <7 and Ji:’“l = Ji:’”l. We have

Kj < Ki < Kjpr1 < Ai < Aip1 < )\j < )\j_|_1.
Let Nj_|_1 = <J£;,F> Since EVj-|—1 € Nj_|_1,
JE EVB < X\iFv(kjy1 = crit(E,) NIWE,) > B.
Since A; is inaccessible in Nj;1, by strong acceptability,
N, N,
in j+1 _<21 Jf J+1‘

Hence ;1 is strong upto A; in JﬁNHl.

By the agreements of N1, and Niy1, K41 is strong upto A; in Niy4.

It follows that for v < ki, Np(;41) thinks that there is 7 such that vy <7 < k; and 7
is strong upto ;. Therefore, E,, is of type at least 1.

This finishes the proof of Lemma 2.2.
O

We are going to prove eventually the following structure theorem of normal iteration
trees of type 1 premice. We prove it first under the assumption that the iteration tree has
no truncation and then later remove this assumption. This theorem is needed in proving
our iterability theorem.

THEOREM 2.1 Let 7 be a normal iteration tree of type 1 premice. If «; is of type 1,
then T'(: + 1) <7 ¢ and x; < crit(mp(it1);)-
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We first prove a weaker version of this theorem with the assumption that there is no
truncation in the tree. We split the proof into three lemmas. Let M be a type 1 premouse.

Let T = ((M;),(vi), (n:),(mi ), T) be a normal iteration of M.

LEMMA 2.3 If T(j +1) <r j and E,; is a top extender, and x; < crit(mpgjt1),;)s
then k; < crit(mp(jt1),5)-

Proof To see this, assume that x; = crit(mp(j41),;). Let ® be the critical point of
Ef\f;(Hl). Then 77(;41),;(K) = k; = the critical point of Ei\fl’) If & > k; then

Kj = mr(i+1),i(R) = m1(i41),5(85) > K-

If K < k; then

K = 7r(j11),i(K) = K;.

So in any case, we have a contradiction.

O

LEMMA 2.4 Assume that there is no truncation. If there is some ¢ < 7 such that
ki < k; < A; and E,, is of type 1, then the following holds:
(a) E,; is a top extender (i.e., v; = ht(Mj;));
(b) T(j 4+ 1) <7 j and T(5 + 1) is the least m such that m <7 j and crit(m, ;) > &;;
(c) erit(mp(jp1),5) > Kj-

Proof First we show that (a) v; = ht(M;).

Suppose not. Since A; is a cardinal in M;, A; < wp}v‘,jnyj, kj is strong to A; in M;||v;,
by strong acceptability, it follows that for all ¢ < k;, JAiMi = inMj satisfies the sentence
6(¢) that there is a K > ¢ such that o(k) = co and there are unbounded many 7 < k with
o(T) > k.

By elementarity, J,ﬁMi satisfies the same sentence 6(¢) for each £ < ;. This contra-
dicts to the fact that E,; is not of type 2.

This shows (a).

To see (b), let h = the least m <z j such that x; < crit(m,, ;). We show that
T(7+1)=nh.

(i) R < T(5 +1). Namely, if [ < h then A; < ;.

Otherwise, there is an | < h such that x; < A;. Then h must be a successor ordinal
since otherwise

SUP,, < Am = SUP 1< n Kl < Kj

by definition of h. Let h = [+1. By minimality of h again, x; < ; since k; = crit(mp(p).n)-

By our assumption, T'(j + 1) < h. So k; < A;.
Let k = crit(Eff;(h)).
If ¥ < ki, then

R =7mrm),;(R) =K; = crit(Ey; ) < Ki.
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If k; <k, then
rj = mrn),i(R) 2 M > K.

This contradiction shows that 7'(j + 1) > h.

(ii)) A > T(7 +1). Namely, x; < Ap.

Otherwise, we have A, < k;. So h <7 j by definition of h. Let [ be such that
h=T({+1)and I+ 1 <7 j. Then

C’I‘it(ﬂ'h’j) =K < Ap < Kj.

Contradicts to the definition of A.
Hence we have (b) and (¢).
O

LEMMA 2.5 Assume that there is no truncation. If E,; is of type 1, then T'(j41) <7 j
and x; < erit(mTr(jq1),5)-

Proof First, T(j+1) <7 j. If not, by (1), h(j) is defined and A(j) < j and k() < K; <
An(jy < Aj. By Lemma 2.1, we have T'(j + 1) <7 j.

Secondly, k; < crit(Tr(j11),;)-

If T(5 +1) = 7, it’s trivial. So we assume that T(;7 + 1) <7 j. Let [ be such that
[+1<7jand T(3+1)=T(+1). If ki < kj, then we have I < j and k; < k; < A < Aj.
But by Lemma 4.4, k; < k1. So k; < ki = crit(Tr(j11),5)-

Now we want to prove the full structure theorem by removing the assumption that the
iteration has no truncation. To carry out our analysis in case of truncations, it is necessary
to develop some technical objects first.

DEFINITION 2.3 For a normal iteration 7 = ( (N;), (vi), (n:), (mi;),T) of a type 1
premice, we define (uniformly with respect to iterations) the following sequences A;j,U;
and k;;j, which are naturally associated to iteration trees, as follows.

(1) For ¢ < j, we define A\;; = min{kj |1 <h <j Akp < A A Kp is type 0} if there
is some h such that : < h < 7 and k;, < A; and &}, is of type 0; and define A;; = A; if
otherwise.

(2) Let Uj = {3 < j | Aij > sup;; A}

(3) For each 1, let x;; = A;.

Induction on j, we define «;; for i € U; so that (*) if i« < h <7 j then ki, = k;; as
follow:

Forj=h+1,let £ =T(h+1). If £ € Uj, then set k¢; = K5 if ¢ € U; N €, then set
kij = Kig; and if 1 € Uj; — (€ + 1), then set k;; = min(kp, Kin).

The property that we demand is satisfied: if ¢ € U; and | <7 j and 2 <[, then [ <¢.
Hence ki = ki¢ = Kij.

For limit 7, if : € Uj;, let h <7 j be the least such that i < h, then we set x;; = K.

We list some basic properties of these sequences here for later on usage.
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LEMMA 2.6 Let the notations of the previous definition stand. Then
(2) Ajj < A; iff there is an index m such that ¢+ < m < j and k,,, < A; and &, is of type 0.
(3) If e < 3 <k, then A;; > Ajj. Also, if 1 < j and k; is of type 1, then A;; = A;jq1.

(6) If h < j, then U; Nh C Uy,

(7) If k1, is of type 0, then for all ¢ € [T'(h + 1),h] (in the sense of ordinal interval),
Aint1 = Ky and Up 1 N (T(h +1),h] = 0, and for all j > A, max{An;, Ar(r+1);} < Kp. In
particular, if there is some [ such that T(h+1) <! < h and [ € Ujp41, then k;, must be of
type 1.

(8) If xy, is of type 1, then for all ¢ < h, A, = Ajpy1 and hence Upqq N A = Uy,

(9) If i € U; and ¢ <7 j, then k;; is the critical point of the canonical mapping =;;. Le.,
let £ +1 > ¢ be the least such that £ +1 <7 7, then k;; = xy.

[By induction on j. Assume that ¢ € U; and ¢ <7 7. When j is a limit ordinal, it
follows by induction hypothesis and the eventual constant value property of the x;; along
the branch to j. Let j = A+ 1. Since ¢ <7 j, and ¢ € Uj, either i < T(j) and x;; = ki7(j),
reducing to induction hypothesis, or 1 = T'(j) and k;; = kj, which is the critical point of
ij.]

(10) For h < ’I:, [(T(’L + ].) € Uh_|_1 and T(h + ].) < T(’L + ].)) 5 ()\T(h—l—l) <Ky < )\h)]

[Let b < ¢. Assume that T(¢ +1) € Up41 and T(h+1) < T(¢+1). Then T'(s+1) <h
and Ap(py1) < K3 < Ap. Assume that Appyq) < £ < Ap. Then T(h 4+ 1) < T(i + 1) and
since h + 1 < 1, supl<T(i+1))\l < ki < Ar(it1)ht1- Hence T(i 4 1) € Upqa.]

(11) Let 3 = h+1 and € = T(j). If kp, is of type 0, then A¢; = k), = K¢;j.

[Notice that if £ <1 < h and k; is of type 0, then x;, < x;.]

LeMMA 2.7 (Continuity Lemma) Let 7 and 7' be two iteration trees of type 1
premice. Let n +1 < min{lh(7),lh(7")}. Assume that 7,6 =T'[,. Then
(1) Forall i < n, A7 = A7
T _ 777’
2)U0; =0, . ,
(3) IfiEUg,thenmz;]:mg).

Proof Both (1) and (2) follow from the definition and the agreements of the two trees.

(3) is proved by induction on 7. If  is a limit ordinal, then it follows from the basic
property of the k., sequences and induction hypothesis. If n = £ 4+ 1, then it follows from
induction hypothesis and the fact that x¢ is the same on both trees.

The following is the key lemma in proving the structure theorem. This lemma is
actually a weaker version of the theorem, as we shall see later.

LEMMA 2.8 Let 7 =h+1and £ = T(j). If xp, is of type 1 and ¢ € Uj, — £, then
Ky < Kih-
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Proof Suppose the lemma is false. Let 7 be a counter example of minimal length. Then
J+1=1Ih(T)and j =h+1and h =k + 1. Let £ be the least such that k;, < A¢ and let
n = T(h).

(1) There is some ¢ € [{, k) such that k; < ky,.

Otherwise, for every ¢ € [, h), k; > Kp,. We claim that if £ <7 <! < h and ¢ € U},
then x;; > kj. This shall give us the desired contradiction.

Let ¢+ < [ be a minimal pair of counter example to the claim. Then | = m + 1, and
¢ <T(l) <m. Ifi <T(l), then ki = kipq) > kp. 4 = T(l), then Ky = Ky > kg If
¢ > T(l), then k;; = min(Km,Kim). If ¢ = m, then ki, = Ap. If ¢ < m, then ¢ € U,,.
Hence, ki > kp, and k., > k. Therefore, our claim follows.

(2) E,, is a top extender.

Let i € [{,h) be such that x; < k;,. Then x; and kj, are both of type 1. If F,, is
not a top extender, then ); < wp}\,hnuh. Hence &}, is strong up to A;. Therefore, there are
arbitrarily larger 7 < k; of type 1 such that 7 is strong up to «;. It then follows that ; is
of type 2. We get a contradiction.

(3) Let

Ty 2 Ny l[mk _’*E,,k Np,.

Then s > Ky,

Let F be the top extender of N,||n; be such that x;, = m, (k) with k = erit(F).
Then k < k. Hence, k = ky,.

(If K > kg, then kp = 7y 1(k) > Ap. Hence, £ = h. But { < h is assumed.)

(4) If k € Uy, then ki, = K.

If Kk = T(h), then k € Uy, implies that kg, = k. If T(h) < k, then k € Uj, implies
that kg, = min{kg,Krr} = K-

Now let ¢ € U}, be such that £ <¢ < h such that x;;, < kj,. Then ¢ < k by (4) above.

(5) n <.

Otherwise, then i < n < h and k;;, = Kiy. Hence ki, < kp. By (3), &, is the critical
point of the top extender F' on N,||n;. We define a new iteration tree of shorter length as
follows:

If T(h) = k, then replace E,, by the top extender F' of N, ||n;. We then have a tree
of length h. If T(h) < k, then we take the initial part of the tree 7 up to n+ 1 and change
the extender at the index v, to take the F'. We also get a tree of length n + 2.

Let 7' be the new tree. Then (A(7") < Ih(T).

By the Continuity Lemma, U, is invariant. So ¢ € U,, since it is true for 7. Also k;y
is invariant by passing from 7 to the new tree 7".

But, T'(n + 1) = £ and k,, = kj. So we have that «, is of type 1 and £ < ¢ < 7 and
¢ € U,. By minimality of l(h(7), we have k, < k;,. However, ki, = ki, < k,. We have a
contradiction.

(6) ki, is of type 0.

Assume otherwise. Then A;p = A;;,. It follows that ¢ € Uy since ¢ € Uj,. By the mini-
mality of j, kK < Kkik. If ¢ = T'(h), then x;;, = k. If ¢ > T'(h), then ki, = min(kg, Kik) =
k. In any case, k;;, = K > K. We have a contradiction.

(7) ¢ = T'(h). This is because i € U}, and ki is of type 0 and x; < A; and hence
Kk = i, > SUPI<iAl.
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It now follows that x;;, = A\;;, = ki, > k. We get a contradiction.

This finishes the proof of the lemma.
O

THEOREM 2.2 Let 7 be a normal iteration tree of type 1 premice. If «; is of type 1,
then T'(: + 1) <7 ¢ and x; < erit(mr(it1);)-

Proof We prove the theorem by induction on :. We just need to show that if x; is of
type 1, then T'(: + 1) <7 ¢. The second part of the conclusion follows from the fact that
T(¢ 4 1) € U; (in the nontrivial case) and the previous lemma and the fact (9) of Lemma
2.6 above.

Let us assume that ¢ is a minimal counter example. Then T'(: + 1) ¢ [0,¢]r and for
all b <1, if K}, is of type 1, then T'(h + 1) <7 h. By Lemma 2.1, we have a unique h such
that T'(h+ 1)< T(i+1) <hand h+1 <p1.

Claim 1 «}, is of type 1.

This follows from that T'(h+1) < T(:+1) < h <iand T(: +1) € Up4+1 and the basic
fact 7 above.

Hence by our induction hypothesis, T'(h + 1) <7 h. Also

K < KT(ht1)h = CTIH(TT(ht1)R)

by the previous lemma and the basic fact Lemma 2.6(9) above.

Claim 2 If I € [h+ 1,]7, then T(i 4+ 1) € U; and Kr(i+1)1 = Kn-

We just need to check that kp(it1)n41 = Kn.

By definition, Kp(i11yp+1 = min{kp, £7i41)0}-

If T(+ + 1) = h, then xpp, = Ap. If T(¢ + 1) < h, then by the previous lemma,
Kn < KT(i+1)h- Hence, Kp(it1)nr1 = Kh-

The rest of the claim follows from the basic property of the x,,, sequences abstractly.

Claim 3 T(h+ 1) <7 T(i +1).

Granting this claim, we finish our induction proof as follows. First, x;, < Ap(p41) < k.
Secondly, since k; is of type 1 and T'(i 4 1) € U;, by our previous lemma, x; < Kp(iy1)i-
Thirdly, by claim 2 above, kK7(;11); = £1. We have a contradiction.

Now let us proceed to prove Claim 3.
First let us observe the following fact: if [ is such that

T(h+1)<TI+1)<TGE+1)<1<h,

then (I + 1) <7 [, and x; < crit(mp(iy1),1)-

To see this, for such I, we have that T(I + 1) < T(: + 1) < I < h < ¢ implies that
T(¢+ 1) € Uiy1. Applying the basic fact Lemma 2.6(7) above, we conclude that x; is of
type 1. By minimality of ¢, we have that T'(I + 1) <7 [ and ; < crit(mr(141),1)-

We now define a minimal walk from ¢ to T'(¢z + 1) as follows.

Let s(0) = the least m <g i such that T'(: + 1) < m. (Hence s(0) = k() + 1.)
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If (0) = T(: 4+ 1), then we stop.

If not, let ¢(0) = h(7) and so s(0) = ¢(0)+1. We now move to the branch from T'(h+1)
to ¢(0), [T'(h 4+ 1),t(0)]7. We have that T'(h + 1) <7 ¢(0), T(h+ 1) < T(: + 1) < (0) and
Kh = Ki(0) < Crit(rT(h+1)’t(0)).

Let s(1) = the least m <7 ¢(0) be such that T'(: + 1) <m

If s(1) = T(z + 1), then we stop. Otherwise, T(: + 1) < s(1). Since s(1) <7 t(0),
T(h+1)<T(¢+1)and T(h+1) <r t(0), by minimality of s(1), s(1) must be a successor
ordinal. Let s(1) = ¢(1) + 1. Then we have

T(s(0) =T(h+1) <7 T(s(1)) <T(z+1) <t).
Hence, by the first observation above, we have
T(s(1)) <7 (1)

and

Ke(0) < erit(Tr(s(0)),1(0)) < Ke(1) < erit(Tr(s(1)),2(1))-

Now by induction, assume that s(n) has been defined and we have the following:
s(0) =t(0)+1 <71,
(1) <7 1(0), (1) = (1) + 1, T(s(0)) <r T(s(1)) <1 £(1),
s(n) <rt(n—1),s(n ) t(n) 4+ 1, and
T(s(0)) <z T(s(1)) <p--- <7 T(s(n)) <T(:+1) <t(n)and
T(s(n)) <1 t(n), and
Ri(0) < Crit(Tr(s(0)),100) = 00 S Kyn) < r(TT(o(n)) 1(m))-
Let s(n + 1) be the least m <7 ¢(n) such that (s + 1) < m
If s(n+1)=T(¢+ 1), then stop.
Otherwise, s(n+1) > T(¢+1) and by minimality, s(n+ 1) must be a successor ordinal
and let s(n +1) =¢(n+ 1) + 1. Then we are in the situation as above to define s(n + 2)
while maintaining our induction hypothesis. Namely,

T(s(n)) <rT(s(n+1)<T@E+1)<t(n+1),

T(s(n+1)) <rt(n+1),

and
Crit(Tr(s(n)) u(n)) < Ki(nt1) < PR(TT(s(nt1)) 8(n41)-
Since s(0) > s(1) > s(2) > ---s(n) > s(n+1) > ---, we must stop at some stage, i.e.,

we must reach a stage m + 1 such that s(m+1) = T(: + 1). When we stop at stage m +1,
we have that

Tt(m)+1)<s(m+1)=T(E+1) <rt(m)

and

T(t(m)+1) <rt(m)+1<gt(m—1).
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Since T'(i 4+ 1) € Uy(mm)41 and T'(¢(m) +1)
induction hypothesis, we have T'(¢(m) + 1
This gives us that T'(h + 1) <7 T'(3 + 1).

< T(i+1) <7 t(m), Ky(m) is of type 1. Hence by
) <7 t(m). Therefore, T(t(m) +1) <7 T(: + 1).

O

We abstract the following useful fact from the previous proof.

LEMMA 2.9 (Minimal Walk to 7'(z + 1)) Assume that T'(¢ +1) ¢ [0,%]7. Then there
is a sequence < ¢(0),%(1),%(2),---,t(m) > such that

(1) ¢(0) +1 <riand T(: + 1) <7 t(m),

(2) t(n+1) + 1 <7 t(n) for all n < m, (hence, t(0) > ¢(1) > --- > t(m)),

3) T(tn)+1)<r T((n+1)+1)<T(:+1) for n < m, and

(4) each Ky, is of type 1 for n < m.

Proof Assume that T'(s+ 1) ¢ [0,¢]7. We now define a minimal walk from 7 to 7'(z 4+ 1)
as what we did in the previous proof.

Set n = 0 and ¢(—1) = ¢. Start the Minimal Walk to 7'(¢ + 1) process.
Step 1 Let s(n) = the least m <r t(n — 1) such that T'(¢ + 1) < m
Step 2 If s(n) = T'(¢ + 1), then we stop and output ¢ : n — 7 with success. Otherwise,
continue to Step 3 to define t(n).
Step 3 We have T'(¢ + 1) < s(n) <z t(n — 1) and s(n) is a successor ordinal. Let ¢(n) be
the ordinal predecessor of s(n). Then T'({(n) +1) < T'(i + 1) < t(n), t(n) +1 <rt(n —1)
and if n > 0 then T(¢(n — 1) + 1) <7 T'(¢(n) 4+ 1). It also follows that T'(s + 1) € Us(n)+1
and Ky, is of type 1 and T'(¢(n) + 1) <7 t(n). (Notice that if T'(i + 1) = #(n), then in the
next round of the process, s(n+1) = ¢(n) = T'(: + 1) and we exit in Step 2 of next round.)
Continue to Step 4 to increase the counter n.
Step 4 Set n = n + 1 and go to Step 1 to repeat the process one more round.

This gives the description of the process.

Since t(0) > t(1) > ¢(2) > --- > T'(¢ + 1), there must be a stage m for the process to
stop. When it stops at m, we have the following:

TtO0)+1) <rT#(1)+1)<gp---<gT({t(m)+1) <T@ +1) <rt(m) and

t(0)+1 <7 i and each ky(,) is of type 1 for n < m. It also follows that T'(¢(m)+1) <t
T(¢+1).

U

DEFINITION 2.4 Let 7 be an iteration tree. For i < j < [h(7), we define the point
of joint of 1 and j on the tree, Th(7,J), to be the maximum of the intersection of the two
intervals [0,¢]7 and [0, 7], i.e., Ta(¢,7) = max{m | m <ritand m <r j}.

COROLLARY 2.1 Let 7 be a normal iteration of type 1 premice. If T'(: + 1) ¢ [0, 7],
then Ta(T(¢+1),7) = T(h(z) + 1), where h(z) is the unique h such that Ay 1) < £y < Ap.

We now give a geometric explanation of the x;; sequence. This will make it clear why
our key lemma is indeed a weaker version of the structure theorem.

THEOREM 2.3 Assume that ¢ < j are two ordinals less than the length of a normal
iteration tree 7 of type 1 premice.
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(1) If ¢ € Uj, then Th(s,7) € U;.
(2) If i € Uy, then k;; = min{kr, (; j),i» KT (i,j),j > hence,

rij = min{erit(mr, (ij).i), erit(rr, (ij),5)}-

(3)If j=h+1and T(j) <t < h and ¢ € Uj, then Th(z,7) = T(j).

Proof We prove (1) and (2) by induction on j. We prove (1) first.
Case 1 7 is a limit ordinal.

Assume that ¢ € U;. Let b <7 j be such that ¢+ < h. Then Th(z,7) = Tha(¢,h) <7
h. Notice that if T/\(’L,]) <t hy <7 hs < j, then ATA(z,])] < )‘T/\(i,j)hz < )\T/\(’L’,j)hf
Therefore, we can choose our h so large that, in addition, Az, (;j); = Az, (ijjn- Then
for such an h, by induction hypothesis, Tr(¢,57) = Ta(i,h) € U, since ¢ € Uj. Hence,
SuPl<TA(i,j))\l < )‘T/\(i,j)h = )‘T/\(i,j‘)j' Therefore, T/\(’L,]) € U]

Case 2 j3=h+1.

Let ¢« € U;. If i <7 j, then Tx(3,j) = ¢. Nothing needs to be proved. So we assume
that Th(3,) <7 .

Subcase 1 kj, is of type 1.

Then by Theorem 2.2, T(j) <7 h. Hence Tx(3,7) = Ta(Z, h).

If ¢ < h, then ¢ € Uj),. By induction hypothesis, Th(¢,7) = Ta(¢,h) € Uj. Since
Tr(i,7) <1 < h and ky, is of type 1, U; N h = Uy. Hence, Th(3,7) € U;.

If : = h, then Ta(3,7) = T(j) <7 ¢ = h. Hence, T(3) € U, = N U;.

Subcase 2 kj, is of type 0.

We are in that ¢ € U; and Ta(¢,7) <7 i. Since kj, is of type 0, ¢ < T(j). Since
Tr(3,7) <t t and Ta(z,5) <1 T(j) <r j, we must have ¢ < T(j), Ta(z,7) <7 T(j) and
T/\(’L,]) = T/\(’L,T(])) It follows that )‘T/\(z,])] = )‘T/\(i,j)h since >‘T/\(i,j) S Kh.

Since i < T'(j) ands € Uy, 4 € Up(;). By induction hypothesis, Tx(z,7) = Ta(¢,T(3)) €
Ur)-

Since T'(j) < h, we consider two cases.

= h.

(a) T'(j) Then Tx(3,7) € Uy, Hence,

SUP <, (1, ) Al < AT (i,4)h = ATa(i5)4-

Hence, Tx(z,5) € U;.

() 7(7) < h.

£ A7, (i j),h = AT, (i), 7(i)s then Az, i), = A1y (ig),my)- Since Ta(4,5) € Ury), we
have Th(¢,7) € Uj.

So let us assume that Az, (; j),n < A1, (4,5),7(j)- In this case, there is an m such that
T(j) < m < h and Ky, is of type 0 and k., < Ar, (i) and Kyn = Ap, (55,0 and if | €
[TA(2,7),T(7)), in the ordinal sense, and ; is of type 0 and xk; < Ap,
This gives us that

(i,7) then k, < k.

AT, (i) b 2 AT() b
Since T'(j) < h, T(3) € Uy,. Hence

SUP <7, (i,7) M < SUPI<T(j) < AT(j)h S AT(iyj),h = ATa (i) -
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Hence T'x(3,5) € Uj.

This finishes the proof of (1).

We now move to prove (2).

To keep certain uniformity, let us make a convention that crit(m;) = A;.

From (1), we conclude that if i € Uj, then kr,(; j),; = crit(nr, 5,5),:) and &1, (i,5),; =
crit(mr, (i,5),;)- (In case that Tx(é,j) = ¢, we use our convention above. If Tx(4,5) < ¢,
then Tx(3,7) € U; since : N U; C U;.)

Therefore, we prove (2) by showing that if ¢ € U;, then

Kij = min{crit(wTA(i’j)’i),crit(rTA(i’j)’j)}.

We prove this by induction on j.
Let us define that k ;; = A; and for ¢ < j, we define that

Kij = min{erit(rr, (ij),0), crit(rr, (i4),5)}-

Notice that & ;; is defined for all 7,7 within the length of the iteration tree, including those
1 < j but ¢ ¢ U; in particular.
We proceed now by induction to show that if ¢ € Uj;, then x;; = k5.
Case A j=h+1.
Let 2 € U;.
Subcase 1 : < T'(j).

Then k;; = k;7(;) by definition. Also Th(%,7) = Ta(¢,T(5)) and K5 = K;7¢j). By

induction hypothesis, we have k;7(;) = K i7(;)-
Subcase 2 1 = T'(j).

Then T'(j) € U;. By definition, x;; = k5, and K;; = Kp,.
Subcase 3 T(j) <1 < h.

By definition, x;; = min{k, ki }.

Subcase 3.1 ¢ = h.

Then k;; = k. Since h =1 € U; and j = h+ 1, K}, is of type 1. Hence T'(j) <r h =1
and kj, < crit(mp(;)p) by our Lemma. Therefore, K;; = &y, since Ta(2,5) = T(j). So we
have Kij = K ij-

Subcase 3.2 T(j) <1 < h.

Then ¢ € Uy, and &y, is of type 1. By Lemma and Lemma, x;, < ki, and T(j) <1 h
and crit(wT(j)h) > k. Hence, k;7 = k. By induction hypothesis, ¥ ;;, = ;7.

Subcase 3.2.1 T(j) = Ta(%,5) <7 Ta(3,h).

Then &, < K;, = ki, and Kij = Ki, = Kij.

Subcase 3.2.2 Th(3,7) <7 T(j)-
This cannot happen. Since if this were the case, then we would have had that

K = min{crit(wTA(i’j)yi),crit(wTA(i’j)yh)} < K},

and k;;, = K ;p, by induction hypothesis, and k}, < k; since kj, is of type 1 and ¢ € U}, and
T() < 3.
Subcase 3.2.3 T'(5) = Ta(3,7) = Ta(Z, h).
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By definition, k;; = min{crit(mp(;;),crit(mrg);)}. Since p, is of type 1, x; <
C’I"I:t(?l’T(j)h).
If crit(mr(j);) < K, then

C’I‘it(ﬂ'T(j)i) =Kih = Kiph < Kp-

Hence, Kij = Kih = Kij.
If crit(mr(j)) > Kn, then Bi; = kp, and Ry, > Ky, (since Ky < crit(mr(j,)). Since
Kii, = K45 by induction hypothesis, x;; = k. Therefore, k;; = K ;.

This finishes the Case A.

Case B j is a limit ordinal.
Let s € U;. Let h <7 j be large enough such that : < h. Then ¢ € U;. Hence,

Kij = Kih = Kih = Kij.
This finishes the proof of (2).
(3) follows from the proof of (2) that Subcase 3.2.2 cannot happen.
]

LEMMA 2.10 Assume that « < j and both E,;, and E,, are of type 1 and x; < x; < A;.
Then F,; is a top extender and there is some h such that : < h < j, h+1 <r j, and

Kj <Kp <A <Ap <Aj and k; = crit(Ei\fE).
Proof By the first part of the proof of the previous lemma, F,, is a top extender.
Let £ =T(h+1) <7 h+ 1 <7 j be the least such that either
(a) ¢ > ¢ and Mg # Mj, or
(b) ¢ <i<h-+1.
Let & = crit(me ;).
(1) K > Kj.
Otherwise, let kg = crit(EM’t ). Then m¢ j(ko) = k;. Hence kg > K by our assumption.

top
Then
Kj > Tent1(ko) = Tepp1(K) = Ap.

But x; < A < Ap.

(2) Hence k; = crit(Ei‘fg) < K.

(3) The first alternative doesn’t hold. Otherwise, Eé‘fg € M¢. If @ < A; is a limit
cardinal in JﬁMi, then Ei‘o/[g ||la € M; and is indexed below A; and is of type 1. This shall
give that k; is of type 2.

Therefore, ¢ # h since kj, # k;. Hence 2 < h.
This finishes the proof of the lemma.

LEMMA 2.11 Let 7 be a normal iteration of type 1 premice. Then
(1) There is no infinite sequence (i,, | m < w) such that i,, < ipq1 and &, < K4, <

Ai, and all of these k;, are of type 1.

o
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(2) For each 7, the set {k; |1 <j A k; < A;} is finite.

Proof (1) First we notice that there are only finitely many k > 7 such that x5 < A; and
K, 1s of type 0.
Suppose that we had such an infinite sequence

i0<i1<"'<il<il+1<"'

such that
Kig < Kiy <00 <Ky <Kgyyy <--- < Xio
and all x;, are of type 1. Hence for all 0 < | < w, E,,H_’, is the top extender of M;,.
Now for each [ > 0, we repeatedly apply the previous lemma finitely many times to
get a unique sequence

i > h(1,0) > h(l,1) > -+ > h(l,k; — 1) > h(l, k) > 1o

such that
1) ki < Ki,0) < Ky < 000 < Kk < Ags

h(l m)

2) Kp(1,m) is of type 1 and E,,h(l is the top extender of M},(; ,) for m < ky,
3) Kn(1,ky) is of type 0,
4) T(h(l,m) +1) < T(h(l m+ 1)+ 1) for m < k,
5) h(l,m) + 1 <7 h(l,m — 1) for m < k;, where h(l,—1) = ¢,
6) Kr(l,m) < CT%t(ﬂ'T(h(l m)+1),k(l, m)) for m < ki,
Nif T(h(l,m)+1) <r T(h(l m+1) 4+ 1), letting A*(I,m)+ 1 <z T'(h(I,m + 1) + 1)
be such that T'(h(l,m) + 1) = T(h*(l,m) + 1), then

dom(Tr(h(1,m)+1),h(1,m)+1) 7 GOM(TT(h(1,m)+1),h*(1,m)+1)s

h (1,m)

i.e., a truncation must have occurred when E,,h*(l

is applied to Mr(h(1,m)+1)-
Since the set

{h|h>i9 N kp < Xij; A K1, is of type 0}

is finite, by passing to an infinite subsequence if necessary, we may assume without loss of
generality that h(l,k;) = h for all 1 <! < w.

Let £ =T(h+1).

Claim There is an infinite subset H C w and some v <7 ¢ such that T'(h([,0) + 1) =
foralll € H.

To see this, for | < m, define p({{,m}) = 0 if T(h(l,O) 1) = T(h(m,0) + 1), and
p({l,m}) = 1f T(h(1,0) + 1) < T(h(m,0) + 1), and p({l,m}) = 2 if T(R(I,0) +1) >
T(h(m,0) +1).

Let H C w be an infinite homogeneous set for this partition.

We show that p’/[H]?> = {0}. Assume not. Then it must be 1-homogeneous since there
is no infinite decreasing sequence of ordinals. Then for I < m in H, we have T'(h(l,0)+1) <
T(h(m,0) + 1) and hence T'(k(1,0) + 1) <g T'(h(m,0) + 1) <r €. But this means that
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[0,&]7 has infinitely many places of truncations. This is impossible. Therefore, for I < m
in H, we must have T'(h(l,0) + 1) = T'(h(m,0) + 1).

So without loss of generality, we may assume that for all 1 <[ < w, T'(h([,0)+1) = v,
ie., H=w—{0}.

Again, since there are only finitely many places in [0, £]7 where a truncation may have
occurred, we have that the following set

{T(h(l,m) + 1) | T(h(l,m) +1) <7 € A m <k A l€ H}

is finite.
Let £ > & > --- > &, > v be an enumeration of these points.
In Mg, let

Ag ={x| EM¢ is of type 1l A k= crit(E,],VIs) < Kp < lh(E,],V‘rs)}

Then A, is a finite set since M; has no type 2 extender on its sequence and hence there
are no overlapping pairs of the form x; < k; < A\; < A; with both k; and «; are of type 1
in the extender sequence of M.

It follows that {kp(;,r,—1) | I € H} C Ay is finite. By a simple induction, we have that
for each 1 < k < n,

{£ram) | € =T(R(I,m)+1) Nl € H A m < ki}

is finite. Hence we conclude that {kj(,0) | I € H} is finite since there are only finitely
many places to apply extenders to stretch to generate these critical points.
Therefore, there is an infinite subset Hy; C H such that ;) = « for all [ € H;.
Now look at the extender sequence of M., for each [ € Hy, let E; be the extender to

'. Notice that crit(m, ;) = k, which

be stretched by . ; to produce the top extender E,,;

is larger than the critical point of F;, for [ € H;.

Define a partition of [H1]? by p({l,m}) = 0 if dom(my n(1,0)+1) = don(Ty p(m,0)+1)s
and p({{,m}) = 1 if [A(E;) < lh(E,,) and p({l,m}) = 2 otherwise.

Let H, be an infinite homogeneous set. If it has value 0, then the two top extenders
must have the same critical point, which is a contradiction. If it has value 1, then there is
an overlapping pair of two type 1 extenders on the sequences of M., which is impossible.
If it has value 2, then we have an infinite decreasing sequence of ordinals, again which is
impossible.

Therefore, there is no infinite sequence as stated at the beginning of the proof. Hence
(1) is proved.

(2) follows from (1). Assume that {x; | 7 > ¢ A k; < A;} is infinite. Let X; be this
infinite set. For each x € X;, let j(k) be the least j > ¢ such that x = ;. Since there are
only finitely many type 0 k5, < A; for A > ¢, by removing these finitely many objects, we
may assume without loss of generality that every k € X is of type 1. We may also assume
that X; has order type w, by taking the first w many elements if necessary.

Now define p({x,7}) = 0 if j(k) < j(7) and define p({k,7}) = 1 if j(k) > j(7) for
k < T1in X;.
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Let H C X; be an infinite homogeneous set. Since there are no infinite decreasing
sequences of ordinals, p"[H|?> = {0}. Hence for k < 7 in H, we have j(x) < j(7). Let
im = J(k) if k is the m—th element of H. This gives us a sequence which should not exist
according to (1). So we have a contradiction.

O

We now prove the uniqueness and the existence of a cofinal branch in a normal iteration
tree of iterating a type 1 premouse.

THEOREM 2.4 Let T = (< M; >, < v; >,<n; >,< m; >,T) be a normal iteration
of a type 1 premouse of limit length . Then
(a) 7 has at most one cofinal branch. In fact, set

b=br={i|Vk<03j>k(i<rj)}

Then b is a chain under the tree ordering and if 7 has a cofinal branch, then b is the unique
cofinal branch of the tree.

(b) 7 has a cofinal branch.

Proof Let b = by be as given in the theorem. Let us prove several general facts about

b first.

LEMMA 2.12 Forleb,if k >l and T(k + 1) <, then k;, is of type 1.

To see this, let | € b and let k > [ be such that T'(k + 1) < [. Let n > k be the least
such that I <rn+1 (since [ € b). Thenn > k and [ <7 T'(n + 1).

We claim that T'(n + 1) < k by minimality of . Let us assume that T'(n + 1) > k. If
Tn+1)=m+1,then k <m <nandl <rm+ 1. If T(n+ 1) is a limit ordinal, let m
be such that [ <z m+1 <y T(p+1) and m+1 > k, then m < 5. This contradicts to the
minimality of 7.

Hence 1, < Ar(pt1) < £y < Are1) < Ak < Ay

This gives the first general fact.

LEMMA 2.13 Assumethat 1 =h+1€b. Let : <k and !l € : N Uy. Then k3, < k.

Assume otherwise. Let p be the least counterexample.

Case 1. p =1.

ForleT(E)NU,, kii <X <kp. Forl e U, —T(¢), kii = min(kp, k1) < Kp.

Case 2. 1 < p. By minimality of g, p = v + 1.

Assume that T(p) >4 and I € i N U,. Then k;, = Ky 7(,. Since I < T(p), I € Up(y.
By minimality of u, we have k; 7(,) < k. Hence ;, < kp.

Assume that T'(p¢) < i. By the above general fact, k. is of type 1 and T(p) € U,.
Then by the previous lemma, ., < £7(,) 4. By minimality of u, we also have k()4 < Kp.

Hence T'(p) < T'(2).

Now for l € T(:) N U, kip < A\ < kp. Forl e enNU, —T(i), we have | > T'(u), and
hence either k;, = K or k;, = min(k~,Ky). In any case, k;, < Ky < Kp,.

This shows the second lemma.

We now proceed to prove (a), the uniqueness.
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Let d be a cofinal branch of 7. Then d C b.

We prove that b7 is a chain.

Suppose not. Let 7 be a counterexample of minimal length. Let b = b7. Let ¢ € b be
the least such that there is some j € i N b such that j £ <.

(1) ¢ = h + 1 for some h. This follows from the minimality of 7.

(2) ¢ N bis a chain by minimality of ¢ again.

Let C ={k€b|k <iA;k £ri}. Then C is not empty. Let j = sup(C).

(3)j<iandinNbdbCj+1.

If ; = ¢, then j is a successor ordinal and hence 7 = maxC € C. This is a contradiction.

IfiNnb—(5+1)is not empty, let £ be the minimal member of this set. Then 5 < k < ¢
and k € b. But now k <7 7 and by minimality of 7, each | € C must satisfy that | <7 k.

Let £ = T(¢). Then £ <7 min(C).
(4) k1, is of type 1 and if ¢ < k and T'(k + 1) < ¢, then ki is of type 1.

We now finish the proof by deriving a final contradiction.

Casel. j € C.

Hence j = max C = max(s N b).

Let n be the least such that n+1 >4 and j <7y n+1 (since j € b). Let vy = T(n +1).
Then v € U, and v < 7 < 5. Hence «, is of type 1 and k, < K,. By the second lemma
above, ky, < k1. Hence, kyy < Ap(;). Therefore, v < T'(:) < j. But j <z n+1andy > j.
This is a contradiction.

Case2. j ¢ C.

In this case, 7 must be a limit ordinal and C is cofinal in j and C C:Nb=730Nb.

Let d={k < j| k <t j}. Then both d and j N b are cofinal in j.

For k < j, let

kebT“ = Vm<jIl>m(l<jy A k<gl).

Then dU (3 Nb) C bej' Hence b,[r _is cofinal in j. By minimality of 6, bej must be a
cofinal branch of the tree T'N (5 x ]]) Therefore, d = bT[j‘ Since bNj = bN<tis also a

cofinal branch of the tree TN (5 x 7),d=73N%b.

Since j € C, j ¢ b. Since T'(3) € tNb, T(¢) € d. Hence T'(¢) <1 j and T'(3) <7 min(C)
and C = (T(3),7)r-

Let ¢ = min(C). Then p € b and p <7 and p £ @. Let k < 6 be the least such that
for all m € (k,0), j £ m. Let m > k be such that m > ¢ and g <7 m.

Let 77 be the least such that 7 € (u,m|7. Then 7 = n+1 for a unique 1 by minimality.
Hence n +1 > ¢ and p <7 n+1and T(n+1) € e N U,. By (4), K, is of type 1. Let
v = T(n+1). Then by previous lemma, &, < K~,. By the second lemma above, k., < k.
So, ky < Ap(;). Therefore, v < T'(i) <7 p <t n+ 1. But v = T(n + 1) and hence p < 7.
This is a contradiction.

This finishes the proof of the uniqueness.

We now prove that b7 is cofinal.
Fori < 6,let S(3) ={j <0 |i<rj}. Hence i € b if and only if S(7) is unbounded in
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We decompose S(7) into disjoint union of maximal intervals of ordinals as follows:
Let v;(0) =4 and &;(0) = sup{€ < 6| [t,{] C S(3)}.

Assume that ('yzfﬁ,éz[ ) has been defined.

Let n = sup{&i(j) | j < B}

If S(¢) C n, then we stop.

Otherwise, let 7i(8) = min(S(i) — 7) and let &(8) = sup{¢ < 8 | [:(8),€] € S(0)}.

LEMMA 2.14 Let j € dom(7;).

(a) T €(7) < 6, then £(j) € (i) and T(&(j) +1) & S().

(b) If 5 > 0 and 7;(j) is a successor ordinal, letting v;(j) = 7:(7) + 1, then K7 () 18
of type 0.

(c) If = R+ 1, then 7;(j) is a successor ordinal and T'(v;(7)) < &i(h) < vi(7).
(d)If 5 =h+ 1 and T'(&;(h) + 1) < 7i(0), then k¢ (p) is of type 1. In particular, if
J =1, then k¢, (g) is of type 1.
)i

is bounded in 6, then

= | Ik )] | k € dom(v;)}

and if dom(;) > 1 then Kei(0) is of type 1 and for all k +1 € dom(~;), vi(k + 1) is a
successor ordinal and K i (h41) is of type 0.

COROLLARY 2.2 If S(z

LEMMA 2.15 If S(7) is bounded then S(¢) has a maximum.

Proof Let vy < 6 be the least upper bound of S(¢). We claim that v must be a successor
ordinal.

Suppose not. v is a limit ordinal. Let § = dom(~;). Then (£(I) | I < ) is an
increasing cofinal sequence of v from S(¢) C «.

Let £ = Ta(¢,7). Then £ <7 i and £ <t 7.

Let m1 +1 <7 v be such that £ = T(np; + 1) and let 52 + 1 <7 ¢ be such that
€ =T(n2 4+ 1). Then ny # ns.

Since v < 0, [n1,7)r is cofinal in 4. Consider the tree 7] . Since S(z) C 7, 5(3) is
the same as computed in 7] . But then S(i) C v N S(n2 + 1) and hence be contains

Y
two incompatible elements 7; + 1 and 7, + 1. This contradicts the uniqueness.

Therefore, S(¢) has a maximum.

LEMMA 2.16 Assume that : € band n +1 £7 ¢ and T(yp + 1) <7 3. Assume that
S(n+1) —1# 0. Then n > ¢ and &, is of type 1.

Proof Let m be the least £ € S(n + 1) —i. Then m > ¢ and m is a successor ordinal.
Let m = m 4+ 1. Then T(m) < i. Since 7 € b, by our first general fact about b, k7 is
of type 1. Therefore, m cannot start any maximal interval of S(n + 1) but the first one.
Hence m =np+1 and m =1.

COROLLARY 2.3 Assume that ¢+ € b and m > ¢. Then there is some n > 7 such that
n+1<rmand T(n+1) <.
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To see this, let £ = Tx(¢,m). If £ = ¢, then we are done. If £ <7 i, thenlet n+1 <7 m
be such that T'(n + 1) = €. Then n > 1.

LEMMA 2.17 Assume that 7 < 0 is a limit ordinal and 7z N b is cofinal in 7. Assume
that 1 ¢ S(n+1) and T(n + 1) <7 3. Assume that S(p+1) —¢ # 0. Then n > ¢ and &, is
of type 1.

Proof Let m be the least k € S(n+ 1) —i. Then m > ¢ and m is a successor ordinal
and T'(m) < i. Let j € b4 be such that T'(m) < 5. Let m = m + 1. Then m = 5 and &,
is of type 1.

COROLLARY 2.4 Assume that 7 < 0 is a limit ordinal and that 2 N b is cofinal in 7. If
m > 1 then there is some 7 > ¢ such that n+1 <pm and T'(n + 1) <7 1.

We now proceed to prove the existence.

Since S(0) =6, 0 € b. In order to show that b is cofinal, we simply need to show that
b has no maximum element and that b is closed.

We first show that b is closed.

Let 2 < 6 be a limit ordinal and 5N ¢ is cofinal in :. We show that ¢ € b.

Let C={ky, |n>1 AN T(n+1)<ri A Ky is of type 1}. Then C is a finite set.

Assume that S(¢) is bounded.

First we conclude that C' # 0.

Let no be the least upper bound of S(¢). Let n > ¢ be such that n + 1 <7 7y and
T(n+1) <ri. Then T(n+ 1) <rt. Let 3 € bN < be such that T(n + 1) < 3. It follows
that &, is of type 1. Hence C # 0.

Let K = maxC. Let 79 > ¢ be such that k,, = xk and T'(no + 1) <7 2. Let j <7 1 be
such that T'(no + 1) <7 j. Notice that j € b.

Let 5 be such that j <7 n and S(z) C 7.

Let £ € (3,n]T be least such that ¢ < {. Then £ is a successor ordinal and T({) <¢ < ¢
and T'(§) ¢ S(3). Also 7 <T(¢) < 1.

Let m <7 i be such that T(¢) < m. Then j <7 T(§) <z m € b. Let £ = € + 1.
Then /s;z is of type 1. Hence lzz € C and /cz < k. This is a contradiction since then

T() <7 T(no+1) <7 j.
Therefore, S(¢) is unbounded in 8. Hence ¢ € b and b is closed.

Claim b has no maximum.
Let ¢ € b. We show that there is n > ¢ such that ¢t =T (n+1) and n+ 1 € b.
Let t7()) ={j+1|:=T(G + 1)}
Let tg(3) ={j +1|i=T( +1) A &j is of type 0}.
Let t7 (i) ={j +1|i=T( +1) A &; is of type 1}.
Casel There is some 7 +1 € tT — (2 + 2) such that S(j 4+ 1) is unbounded.
We are done in this case.
Case2 Otherwise.
If ¢ (i) # 0, then let jo + 1 = max(¢§ (i)). Otherwise, let jo = i.
Let Ao = {jo + 1}. Let ko = Kj,.
Let A =t (3) — (jo + 2).
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First let us notice that if 741 € A, then k; < k¢. This follows from the following fact.

Assume that tg'(i) =0. Thenz+1¢€ ti"(z) and for all ¢ <7 j, crit(m;;) < k;.

To see that 1 = T'(s + 1), let j + 1 = min(¢*(2)). Then «; is of type 1. So ¢ <7 j by
our structure theorem since ¢+ = T'(j + 1). By minimality, 7 = 1.

We prove the second part by induction on j. When 7 =2+ 1 or j is a limit ordinal,
the conclusion is clear.

Assume that i <7 j = h+1 and ¢ < h. If k, is of type 0, then : <7 T(j) <r j and
crit(mi;) = erit(mr)) < ki If Ky is of type 1, then either i <7 T(j) or i = T(j). In
case that ¢ <7 T'(y), induction hypothesis applies. In case that ¢ = T'(j), then ¢ <7 h and
kp < erit(min) < K.

Case2.1 A = 0.

If t§ (i) = 0, then jo =4 and t*(4) = {i + 1}. Hence S(i 4+ 1) is unbounded in 8 since
S(7) is unbounded.

If ¢ (i) # 0, then for all 5 +1 € t*(3) N (jo + 1), we have S(5 +1) C jo + 1 and hence
S(jo + 1) is unbounded in 6.

Case2.2 A # ().

Let

d(jg—l—l):U{S(n—l—l)|772j0—|—1 ANTm+1)<rjo+1 A Kyis of type 1}.

Case2.2.1 d(jo + 1) is bounded.

If ko is of type 1, then jo = ¢ and S(i) C S(jo + 1) Ud(jo + 1). Hence S(jo + 1) is
unbounded.

If ko is of type 0, then jo + 1 = max(¢§ (i)) and S(:) C S(jo + 1)U d(jo + 1) U jo + 1.
Hence S(jo + 1) is unbounded.

Case2.2.2 d(jo + 1) is unbounded.

We have now that forall j+1 € A, S(j+1) is bounded and k; < k¢, and there is some
n+1 € t"'(i) such that jo+1 <n+1<jandj € S(n+1). Alsoforall j+1 € t"'(i)ﬁ(jo +1),
S(j+1)Cjo+1. And d(jo + 1) is unbounded.

Let

K1 > K2 > > Ky > Kyl > 20 > Km4l

be an enumeration in strict decreasing order of the set
{r|3n>50 (T(n+1) <7i A £ =ry)}

and K, is the least such that there is some 7 with ¢: = T'(n + 1) and &, = &,,.

Let AO = {]0 -+ ]_}

For1<n<m+llet A, ={n+1|n>350 AN T(n+1)<ri A Ky =EKp}.

Notice that 4 = U{4,, | 1 < n < m}. Also notice that for all 1 < n < m + [, for all
n+1eA,, S(n+1)is bounded.

Forp+1 € A, we call S(n+ 1) a subtree of level n.

LEMMA 2.18 Assume that n+1 € A4,, and [y,€] € S(n + 1) is a maximal closed
interval.
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(1) If n < m + [ and k¢ is of type 1, then for somen >n, £ +1¢€ Ay.

(2) If n < m+1 and k¢ is of type 1, then there are two sequences ng =n < n; < ny <
-<mnpand § =& <& <& < -+ < g such that §, +1 € Ay, ., for b < k and kg, is of
type 0 and S(ér—1 +1) = [€r—1 + 1, &)

(3) If0 <n <m+1 and { = maxS(n+ 1) and k¢ is of type 1, and there is some
m + 1 € A, such that { < 7;, then there are k > {, m < n and j + 1 € Ay such that
Tk+1) <& k+1€ 5@ +1) and kg is of type 0.

(4) If 0 < n < m + [ and k¢ is of type 0, then there are somen < n and £ +1 € A5

such that { +1 € S(¢ +1).

Proof (1) Since k¢ is of type 1, we have T'({ + 1) <7 £ and hence T({ +1) <7 n+1 and
Ke < Ky

(2) Start with &y = £ and ng = n. Let {, and nj; be defined. Assume that k¢, is
of type 1 and that £;, ends a maximal closed interval of a subtree of level n;. By (1), let
npt1 > np, be such that §, +1 € A, ,,. Let {41 be such that [£, 4+ 1,&,41] is the first
maximal closed interval of S(&;, +1). If k¢, ,, is of type 0, we stop. Otherwise, we continue.
Since the k¢, ’s form a decreasing sequence of ordinals, we must reach a stage at which we
stop.

To see (3), let 7, +1 € A, be such that n; > £. Then there arem <mn and j+1 € Ay
such that n; € S(j + 1) since x,, is of type 1.

We claim that there are k > ¢, = < n, and j + 1 € Ay such that T'(k + 1) < ¢,
k+1€S(+1)and kg is of type 0.

Let 7 be the least such that there are j +1 € A3 and k € S(7 + 1) such that k& > ¢.

Let j +1 € A5 be a minimal witness and let k& € S(j + 1) be a minimal witness.

Then k is a successor ordinal. Let k = k + 1. We have k > ¢. Since T(k) € S(j + 1),
T(k) < ¢ Also k € S(j +1).

If K > j + 1, then k starts a maximal closed interval of S(j 4+ 1) other than the first
one. Hence k5 is of type 0. We are done in this case.

k

If k=3 +1,then k = j. If 5; is of type 1, then there are n* <7 and j* +1 € A,-
such that j € S(3*+1) and 5 > {. This contradicts to the minimality of =. Therefore, x;
must be of type 0.

This shows (3).

(4) follows from Minimal Walk to T'({ + 1) Lemma. Since £ +1 & S(n+ 1), TA(€,€ +
1) <r n+ 1. Hence Tr(&,€ +1) < T(n + 1). Since ¢ € b, we have actually T'(n + 1) =
Tr(€,€ +1). Then apply the Minimal Walk to T'(¢ + 1) Lemma to conclude (3) since
erit(Tr(p+1)T(e41)) > Ky

For each 1 <n <m +1[ and for each n+1 € A,,, let 7 be the maximum of S(n + 1).

Foreach 1 <n <m +1, let

A ={n+1 EAn|/<;ﬁ is of type 0}
and let A,}l = A4, — Aon.
By (2) of the lemma above, since d(jo + 1) is unbounded, we have that

min+t1e |J 40
1<n<m+l
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is unbounded.
Let m be least such that

{min+1eAl}

is unbounded.
Case2.22.1 {7 |n+ 1€ U,<,ci 4n} is bounded.
Let v be an upper bound of this set. Then

{MlIn+ledl A7 >}

is unbounded. For any such 7, we have jo + 1 <77 + 1. Hence S(jo + 1) is unbounded.

Case2.2.2.1 {7 |n+1€ ;<5 Ar} is unbounded.
Then m > 1. Let n* > 1 be the least n such that

min+1e AL}

is unbounded. Then n* < 7.
Let X ={7 |n+1€ AL}
Let 4 be an upper bound of

min+tie |J 4.}

1<n<n*

Then for each 7 € X — v, let k > 77 be such that T'(k + 1) < 7 and there are n** < n*

and j+1 € A« such that k+1 € S(j+1) and &y, is of type 0, given by (3) of the lemma

above. Then n** must be 0 since v is a bound and k > 7% > «. Therefore, jo +1 <7 k+ 1.
Since X is unbounded, S(jo + 1) is unbounded.

This proves that b has no maximum.

Actually, the proof shows something slightly more. Let
d(z) = U{S(U‘|‘1) In>1 AN T(n+1)<ri A Ky is of type 1}

and

B(@i)={n|i<rT(n+1) A &, is of type 0}.

Then the proof shows that for all ¢ € b, either d(¢) is bounded or B(t¢) is unbounded.
]

§3 NORMAL ITERABILITY

In this section, we prove our iterability theorem for type 1 premice with supercomplete
surviving extenders.
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DEFINITION 3.1 Let F be an extender on M = JA. Let k = crit(F) and 7 = ()M,
Letm:J4 —F J;f}l. Let ¢ be the {~th element of J;_‘}I. Let a(F, M) be the largest cardinal
of M below m(x) + 1.

(1) We say that F'is supercomplete on M if and only if for every countable X C 7(x),
and every countable W C P(x) N JA, there is a § : X — & such that

(a) <8(6) =€ Z — <€ F(Z) for Z € W and &1,---,&, € X, and
(b)if Y C X and U te is a well-founded relation, then so is U t(e)-
£ey tey
Any 6 as above will be called a strong connection with respect to (X, W). If § : X — &
satisfies only (a) with respect to (X, W), we say that é is a weak connection.
( ) We say that F'is supercomplete with respect to M if and only if for every countable
), and every countable W C P(x) N JA, there is a § : X — & such that

(K
(a) ()%EZ <Z><§>€F(Z)forZ€Wand§1, -, & € X, and
(b)if Y C XNa(F,M) and U t¢ is a well-founded relation, then so is U ts(e)-
¢y teYy

Notice that if F'is the top extender of M, then F'is supercomplete on M if and only if
F is supercomplete with respect to M. But in general, the later is weaker. [Notice that if
v < ht(M) and E, # 0, then A = A(E,) is a cardinal in M if and only if E, is superstrong

in M. This cannot occur in type 1 mice.]

Example 3.2 Assume that 0% exists. Let xk = X} and let A be the next Silver indis-
cernible of L above k. Let 7 : L — L be the elementary embedding generated by an order
preserving map that sends & to A\. Let 7 = (k7)L and let v = (AT)L. Let

F:J.NP(k)— J,NP(A)

be such that F(z) = j(z) for all z € dom(F'). Let M = (J,,F). Then M is a fully iterable
premouse and core(M) = 0%. F is a supercomplete (k, \)-extender on M.

The key point here is that if @ < A, then there is a Skolem term ¢ such that for
some finite set indiscernibles ¥ from &, a = #(7, x,RY ,---,XY) by Remarkability of Silver
indiscernibles. In what follows, we shall write X,, simply for XY .

Also let us observe that if z € P(k) N L and z = t(¥,x,A, N2, --,N,,), then z =
t(’77’€7N27N37"'7Nm+1)'

Assume otherwise. Let & be a counter example. Let @ < k be the least in the
symmetric difference of ¢(¥,x, A, Rz, -+, N, ) and ¢(7, &, N2, N3, -+ -, ¥, 11). Let 7 be a finite
set of indiscernibles below x such that o = s(7) (again, by Remarkability). Then we have

3(77) € t(’77K7A7N27 o )Nm) — S(ﬁ) S t('?)K')NZ,NZS, e 7Nm—|—1)
by indiscernibility. This is a contradiction.

Now let W C P(x)NL be countable and let A C X be countable. Let W = {z; | i < w}
and let A = {a; |t < w}.
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Let {ui,s; | 1 < w} be a countable set of Skolem terms and let C' C k be a countable
set of indiscernibles such that o; = u;(¥i,k,Na, -+, Ry, ) and z; = (7, K, N2, - -+, N,,,) for
each ¢ < w, where each 4; and 7; is from the set C.

Let 8 < k be a Silver indiscernible such that C' C 8 and ( is a limit of smaller Silver
indiscernibles.

We then define A : A — & by setting

h(ui(’?i)K7N27"')Nmi)) = ui(’?i7/87N27"'7Nm,’)

for each ¢ < w. By indiscernibility, we have
ui(’?ﬁ’%N%' e 7Nmi) € sk(ﬁ/ﬁ)‘)NZ)' : 7Nnk) <
ui(?i7/87N27' v )Nmi) S Sk(ﬁkyK',NZ,' ' 7Nnk)
for all 1,k < w.
This shows that F' is w—complete with respect to the pair (W, 4).

Let Y C w be such that U tﬁi(%,n,Nz,---,Nm?) is a well founded relation. We need to
icY "
show that U tﬁi(%,ﬁ,Nz,---,Nm») is also a well founded relation.
i€Y

Suppose for the contrary that it is not. Let R denote the above relation. Let by € J,
(k < w) be such that by Rby, for all k < w. For each n < w, let

_ L
Rn - U tui(ﬁ;iaﬁaNZV"aNmi)'
1€Y Nn

Then R,, € J...
Let i < k be the next indiscernible above 3. We claim that

ui(’?in)N?)"WNmi) <K

for all : < w. Otherwise, let n < w be the least counter example. Then

un(’?’an) N27' . 7Nmn) Z M-
By indiscernibility, we have that
Un(Fry £, Nay oo+, Ry ) > A

This is a contradiction.
Since p is a strong inaccessible cardinal in L, each b3, € J, for k < w. Therefore, each

by, is defined by a skolem term cj and a finite set gk of indiscernibles from 3, 3, p and
some larger N’s. Namely,

b = Ck(€k7ﬂ7#7N27"')le)

for k < w. .
Let b} = ci(€k, 5, A, Ry, -+, Ry, ) for each k£ < w.
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Let

* L
Rn - U t“i('ﬁ"ﬁ“v&2a"'a&mi)
1€EY Nn

for each n < w.
Then we have
(VeE<wIn<wVIi<w(l>n— byy1Riby).
We want to show that
() Vk<wIn<wVI<w(l>n— bj,,Rbp).

This shall give us a contradiction to that R* = U R} is well founded.

I<w
Fix k < w. Let n < w be given by (*). Let [ > n be in w. Since bg41 R;by holds, by

indiscernibility, we must have b;_ , Ryb} holds.
Therefore, (**) holds.
This shows that h is a witness to that F' is supercomplete with respect to the pair
(W, A).
O

Example 3.3 Assume that there is a measurable cardinal in V and let x be the first
measurable cardinal. Let U be a normal k—complete ultrafilter on . Let

J:V —-ult(V,U)=M

be the canonical elementary embedding given by the ultrapower of V by U. Let 7 = (x1)F
and let u = (j(k)T)L. Let F* = U N L. Then F* is an L-ultrafilter. Let

i:Jr = N =ult(J,, F*).

Since LM = L and il g o Jr — Jy, setting k([f]) = j(f)(x) for all f € J; and f:x — J,
we have that

E:N—J,

and j(z) = k(i(z)) for all z € J.. Hence N must be an initial segment of J, by condensa-
tion of L. Let v be such that N = J,. Let A = i(x) = erit(k). Let F(X) =4(X) = 7(X)NA
for all X € P(k)N L. Then F'is a (k,A)—extender on J,.

Claim (J,, F) is a premouse and F' is a supercomplete extender on J,.

We just need to check the supercompleteness.

Let W C P(k) N J; be countable and let B C X be countable. Let A : w — B be an
enumeration of B. Let (X,, | n < w) = W. We may assume that B is closed under Godel
pairing.

First we show that there is an G6del homomorphism § : B — & such that

h(n) € F(X,,) < é(h(n)) € X,

for all n,m < w.
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Let f, € J; be such that f, : K — s and h(n) = [f,]F-. Then h(n) = k(h(n)) =
J(fn)(x) for all n < w and hence we have

h(n) € F(Xn) < h(n) € k(F(Xn)) < j(fa)(r) € 5(Xm)
for all n,m < w. We also have that

J(fa)(k) €j(Xm) <= {B<k|fu(lB) € Xn}ecU

for all n,m € w.

For n,m < w,if {# < x| fu(B) € X} € U, then let

Anm == {/8 <K | fn(/B) € Xm};

otherwise, let

Apm =k —{B < k| fn(B) € Xm}.
For n,m < w,if {8 < x| fn(B) < fm(B)} € U, then let

Dnm = {8 <k | fn(B) € Xm};

otherwise, let

For n,m, s < w, i {8 < 5 | =< fu(B), fun(B) == f(8)} € U, then let

Bums = {8 < | <fu(B), fm(B) == f+(B)};

otherwise, let

Bums = £ —{B < & | <fn(B), fm(B) == f«(B)}

Let
C = ﬂ (Anm N Dij N Bkst)-
=<n,m,i,j,k,s,t-€w

Then C € U. Let § € C. Let §(h(n)) = fn(B). Then § : B — k is a Gédel homomorphism
showing that F'is w—complete with respect to the pair (W, B).
To see that F' is supercomplete with respect to the pair (W, B), we argue as follows.

Claim There must be a 8 € C such that §(h(n)) = f,.(8) is a strong connection. (In fact
there is a measure one subset of C' of such 3’s.)

Suppose not. For each 8 € C, there is some Y3 C w such that U ti’(n) is a well
nEYﬂ
founded relation but U téLﬂ(h(n)) is not a well founded relation. Let Cy € U and ¥ C w

nEYﬂ
be such that 'y C C' and for all 3 € Cy, Y3 =Y.
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Hence in V, we have U tﬁ(n) is a well founded relation but for all 3 € C), U t{?ﬂ(ﬁ)

ney neyY
is not a well founded relation.

It follows now that in M, U tf( fa)(x) 1s Dot a well founded relation.

ney
But, h(n) = j(frn)(k) for all n < w. By absoluteness, we get a contradiction.

This finishes the proof of the above claim.

Notice that |F| = k. Hence (J,,F) € M. It follows that if there is a measurable
cardinal, then there are many premice (J,/, F') with supercomplete top extenders F' below
the first measurable cardinal.

O
DEFINITION 3.2 We say that a premouse M is simply normally iterable if every
normal iteration of M without truncation can be continued.
THEOREM 3.1 Let M be a type 1 premouse such that every surviving extender is
supercomplete with respect to M. Then M is uniquely simply normally iterable.
First we prove the following realization theorem.
THEOREM 3.2 Let M = (JE F) be a type 1 premouse. Let o : N —x« M be such

that N is countable. Let 7 = ((N;), (vi), (7:i), (mi,;),T) be a normal countable iteration of
N. Assume that either 7 has no truncation and every surviving extender is supercomplete
with respect to M or 7 has truncations and every surviving extender is supercomplete on
M. Then there are o; : N; — M and 6; : \; — op(;+1)(k;) such that

(a) o9 =0, ojm;j = oy for i <7 j;

(b) oi(ki) < or(it1)(ri);

(c) if 0i(ki) = or(i4+1)(ki), then

61j . )‘1, — O-T(i—|—1:)(/€i)

is a strong connection in that é; = g;0;[ A, and g; oi[Ai] — oi(k;) is to witness the super
completeness, and

(d) oit1(Tr(i41),i41(F)(a)) = o(ir1)(F)(8i(a)), where f € T(ks, Np(ir)|lni), @ € AT,

(e) Set 7 (0) = w,

— . w if opivn) (ki) < wply

n(z+1) = . nd1 n

G+1) {n if wops ! < ot (ki) < wply,

7 (1) = min{n(j) | 7 <7 1} for limit ordinal 3.

Then o; is E(()n(i'))—preserving and if @ (¢) = 0, then, in addition, o; is cardinal preserving.

Proof Suppose that we have o;. We need to define §; and o;11. All we need is a right
connection é; since ;41 is canonically determined by é; and 77 (;11),i41-
Casel T(: +1) <7 i.

Let I be such that T(: + 1) =T(l+ 1) and [+ 1 <7 ¢.

Casel(a) k; < K;.
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Then op(it1)(ki) = oi(ki) and or@yn)l,, = i - In particular, if z C &;, and
€ € Mry(;q1), then opiyq)(z) = oi(z).

Let g; : 0;[Xi] — oi(k;) be a witness to the supercompleteness with respect to the
range of o;. Then define §;(a) = gi(oi(e)) for a < A;.

This gives us a strong connection.

We then define that

oit1(mriv1),i+1(f)(a)) = oriv1)(f)(6i(a))

for f € T(ki, Nr(it1)||m:) and a € A5,

Casel(b). k; < k;.

Notice that in this case x; must be of type 0 and E,],\Z’ € N;. Also, k; is of type 1 and
hence k; < &;.

In this case we have the following:

orirn) (ki) = orirn (k) = o (Trasay,41(ki)) = oip(A)
and 0'l—|—1()\l) Z U'i()\l) Z a'i()‘T(i—l—l)) > Ui(Ki).
Let j =T(¢ 4+ 1).
Since ] < 1, N; = A; is inaccessible, and J,,]’ = Jivl, we have that for all @ € A%,
EN:i e Jf
We ﬁx two 1-1 enumerations:
(am | m <w) =X

and

(2 |m < w) = |J (P(=I)™.

nw

For n < w, we define D ,, and R,, as follows:

={s|s:n—r; ANVbEN|"VEk<n(zy €E )= s, € zr)}.

v;,a

Ry, ={(ts)|t,se |J Dm A t=sy}

m<n

Then D ,, and R,, are all in ijMj and

O'T(i—i—l)(ﬁ n) = Ui(7l'T(i+1),i(F n))

Let R, = JT(i_i_l)(ﬁn) and D,, = JT(Z-_i_l)(En). Then
s €D, < s:n — op(it1)(ki) and Vb € [n]<"Vk < n we have

ori+n)(@k) € (B, 5 ) = [y € orgirn) (k).

1,0 b

IfS= U R,, is ill-founded, letting f be a branch of the tree S, then we define

nw

bi(am) = f(m)
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for m < w. We check that

oitr1(mr(iz1),ir1(F)(a)) = or@ir1)(F)(6i(a))

works, where F' € I'(k;, Nr(;+1)||n:) and a € AT, [Notice that in this case, «; is of type 0
and §; is only a weak connection.]
Now we proceed to show that the tree S is indeed ill-founded.
Let RY = 0;(R,) and D = 0;(D,). By w—completeness, U R} is ill founded. We
nw
need to make a connection of the two trees, U R,, and U R} in such a way that the ill

n<w n<w
foundedness of the later shall guarantee the ill foundedness of the former. This is where

the super completeness and the strong connection property of é7(;11) is applied.

EN: 1 7ENi . .
Let us compare UT(i+1)[J>\T(i+1)] and Uz[J)‘T(i+1)]' We have a canonical connection of

the two structures:

8 i(or(it1)(e)) = o).
Since j = T(i + 1) <1 <1, and x; < k;, we have

k< K < A < A

By Lemma 2.2, x; is of type 1.
In summary, we have that j <gpl+1<p¢,7=T({+1)=T(i+1), 7 <!l and k; is of
type 1. By Theorem 2.2, j <7 [ and k; < crit(m;;). Hence

(ki) = 0T(l+1)(/‘il) = (k1)

By induction hypothesis, §; must be a strong connection:

o1 =gmh,-

We now prove a minimal walk lemma which allows us to successfully perform a serious
reductions to get our desired ill-foundedness.

LEMMA 3.1 (Minimal Walk Around 7'(z + 1)) Let  =T(¢ 4+ 1) < @ < ¢. Assume
that j <7 a. Then there is a sequence ¢(0) = a > (1) > --- > t(n) of ordinals such that
J=T{(m)+1) < t(m) +1<rtlm —1)for 1 <m < n, and ky1) < Kyz) < -+ < Ky(n)
are all of type 1, and either #(n) = j and kyn) < K4 OF Kyn_1) < Ki < Ky(n)-

(Remark: When there is no truncation, the second alternative cannot happen and we must
have searched successfully 7 + 1. When there are truncations, the second alternative may
happen and we may have that 7'(j + 1) < 7.)

Proof of the lemma.
Let t(0) = a.
Set k =1 and start the Minimal Walk Around 7'(: + 1) Process.
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Step 1 Let s(k) be the least m such that j <7 m <7 ¢{(k — 1). By minimality, s(k) must
be a successor ordinal. Let t(k) be the ordinal predecessor of s(k).

Step 2 If k; < K1), then we stop with success. Otherwise continue to Step 3.

Step 3 Now k; > Ky(k), and hence ky(y) is of type 1. By our lemma, j = T'(t(k)+1) <t t(k)
and Kyg) < erit(Tjyr))-

Step 4 If j = t(k), then we stop with success. Otherwise continue to Step 5.

Step 5 Currently we have j <7 ¢(k). We then increase value of the counter k£ by 1, i.e.,
set k = k4 1, and go to Step 1 to repeat the Minimal Walk Around 7'(¢ + 1) Process one
more round.

Since t(0) = a > t(1) > ¢(2) > ---, the process must stop after finitely many rounds.
We have our Minimal Walk Around 7'(¢ + 1) Lemma proved.
]

We now apply the Minimal Walk Around 7'(¢ + 1) Lemma to derive that U oi(R )
nw
is ill founded from our assumption that U Oo (ﬁn) is ill founded with o = 3.

nw

Let < ¢(0),%(1),¢(2),---,¢(a) > be the trace of our minimal walk, where 0 < a < w.
First notice that for 1 < n < a,

Ki(n) = Pt (Tjyn—1)) < Aj < Ag(n) < erit(Ty(n)41,4(n—1))-

Hence for 1 <n < a, if U at(n_l)(ﬁm) is ill founded then U Ut(n)_i_l(ﬁm) is ill founded
m<w m<w
since all the parameters are fixed by my(p)41,4(n—1)-

Now we show that for 1 <n < aif U at(n)_i_l(ﬁm) is ill founded then U Ti(n) (R,)

m<w m<w

is ill founded.
We assume that U a't(n)_i_l(ﬁm) is ill founded.
m<w
We need to show that U Ti(n) (R ,,,) is ill founded.

mw
Since Ky(y) is of type 1, and Ky, < erit(m; 1)),

0i(Kt(n)) = Tt(n)(Ft(n))-

Hence 64y, is a strong connection by induction hypothesis,

Su(n) = 9um)Te(m) | 5,
If j <t(n), then A; < Ay,). It follows that A; is a cardinal in Ny(,,) and hence o4y, (A;) is
a cardinal in M.

If j =t(n), then a difference shows up. If n; < ht(NN;), then we must use the stronger
assumption on extenders of M, i.e., every surviving extender is supercomplete on M. If
n; = ht(N;), then 7; is a cardinal in N; and hence o(7;) is a cardinal in M, so the weaker
requirement is sufficient.
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N
Let ryn) @ Ayn) — JAEt(:)(n) and T y(pn) 1 Kyn) — JH( ™ be the respective canonical

)
enumerations Let s(n ) =t(n —1). Then

= ("t(n)+1(7°( m))

= 04(n)+1(r)(T4(n)+1(Em))

= Ut(n)—l—l( 75 t(nH—l(T t(n) )(€m))

= (7 4(n) )(Gt(n) (T4(n) (Em)))

= 04(n)(T 1(n) )(91(n) (T1(n)(€m))). [Notice that k) < erit(m;4(n)) and o; agrees with
O4(n) on this critical point.]

Since U Ts(n) (ﬁm) is ill founded, we have that U Ti(n) (Ft(n))(gt(n)(Ut(n)(ém))) is

m<w m<w

ill founded.
Since gy(y,) is a strong connection, U T4(n)(Te(n) )(T4(n)(&m)) is ill founded.
mw

Therefore, U Ti(n) (R ,,,) is ill founded.

m<w

This finishes the induction step.

Now we have that U Ti(a) (R ,,,) is ill founded.
m<w

We need to derive finally that U o;(R ) is ill founded.

mw
If 7 = ¢(a), then we have finished.
Otherwise, we must have k; < Kyq) = crit(mjyq—1)). Since U at(a_l)(ﬁn) is ill

n<w
founded, the parameters in the definition of R,, and D ,, are fixed by Tit(a—1)s Oj (R,) =
at(a_l)(ﬁn). We are done.
This finishes the ill foundedness proof. Case 1 is completed.

Case2. 1 =T(¢ + 1).
Then oi(k;) = ory1)(K:). Let g; : 05[Ai] — 0i(k;) be given by the super completeness
and let é; = g;0;] x;+ Then we define

oit1(mii+1(f)(a)) = 0i(f)(8:(a)),

where f € I'(k;, N;) and a@ € A%,
This takes care Case?2.

Case3. T(¢ +1) ¢ [0,3]7.
Let < ¢(0),t(1),---,t(k) > be the Minimal Walk to 7'(¢ + 1) sequence given by the
Minimal Walk to 7'(¢ + 1) Lemma. Let A = ¢(0).
Then T'(h+1) <7 T(i+1) and T(h+1) <7 h+1 <7 ¢ and let x; = crit(Tr(p+1),i+1)
and kp, = crit(mp(j41),;). Then we have Ay, > k; > k1 > k. It follows then
oriv1)(Ki) = oK)
> o7 (n+1)(Kn)
= on+1(An)
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> ont1(Arit1))
> 0i(Ar(it1))
> O'i(K,i).
We will get a weak connection in this case. Notice that in this case k; is of type 0 and
there will be no m > ¢ such that : = T'(m + 1). So a weak connection is all we need.

Let j = T(i + 1). We can then define D, and R, in JﬁNj as before and let R, =
oi(R,) and R = a;(R,). We have that U R} is ill founded. Also, for I € (j,1], Aj is a

nw
cardinal in NN;, and hence oy(};) is a cardinal in M.

We need to show that all U Ti(n) (R ,,) are ill founded for n < k.

m<w

This is done by induction on n < k.
We are given that, letting t(—1) = ¢, U Ut(_l)(ﬁm) is ill founded. Since the critical
mw
point of mygy41; is larger than «;, it follows that U Ut(o)_H(ﬁm) is ill founded.
m<w
We show that U T4(0) (R ) is ill founded.

m<w
Since ky(g) is of type 1, 84 is a strong connection (ko) < crit(Tr(40)+1)¢(0)) and

hence o7 (4(0)+1)(K1(0)) = T4(0)(K+(0))), Where
84(0) = 910)7u0) [ 5,0y

and gy(g) is a witness to the supercompleteness of the target extender with respect to the
appropriate family in consideration.
— . ENn = . ENn . .
Let n= t(0). Let r, : X, — I and 7, : Ky — J, " be the respective canonical
enumerations.

Then o;(R ) = 0i(r(€m))
= oy41(r(€m))
= oyt1(r)(ont1(€m)
= oy41(mj041(7 ) (€m))
= 0;(Ty)(gn(o(Em)))
= (7 4)(gn(o4(&m)))-
Hence U oy (7 5)(gn(0oy(€r))) is ill founded.
mw
It follows that U on(ry)(on(ém)) = U an(ﬁm) is 11l founded.
m<w m<w
In general, letting s(n) = ¢(n) + 1, we have that T'(s(n)) <r t(n) and T'(s(n)) <r
s(n) <t t(n—1) and Ky(,) < crit(Tr(s(n))t(n)) a0d Ky(y) is of type 1. Therefore exactly asin
the case that n = 0, we can argue that U Jt(n)(ﬁm) is ill founded since U Ti(n—1) (R,)

m<w m<w
is ill founded and é(,,) is a strong connection.

)

Now let us consider what could happen when we finish our minimal walk from 7 to

j=TGE+1).
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There are two cases. And the first case that T'( + 1) = t(k) is the same as in the
last step of reductions of Case 1b when j = t(a). So let us assume that j <7 ¢(k). Then
we have that T(¢(k) + 1) <7 j <7 t(k) and T(¢(k) + 1) <7 t(k) + 1 <p t(k —1). If
crit(m; 4(k)) > Ki, then by the agreements of the two mappings ¢; and o), we are done.
Otherwise, We can now apply the Minimal Walk Around 7'(¢ + 1) Lemma as in the Case

1(b) (the part following the Lemma) to derive that U 0;(R ) is ill founded from the
m<w
fact that U a’t(k)(ﬁm) is ill founded.

m<w

This finishes the subcase.
We then let e be a branch of the searching tree and let é;(a,,) = e(m) for m < w.
Then we check that

oit1(mji+1(f)(a)) = a;(f)(éi(a))

works, where j = T'(i + 1), f € I'(ki, Nj||n:), and a € AS.
This finishes the Case 3.

So we are done with the successor step.
Let ¢ be a limit ordinal. We define o; in a canonical way along [0,i]7. Then we
continue to define é; in the next step 7 + 1.
This finishes the proof of the theorem.
O

We can now prove our iterability theorem.

Proof of Theorem4.1. Let M be a type 1 premouse such that every surviving extender is
supercomplete with respect to M. Let 7 = (< M; >, <v; >, < >,<m; |t <r 3 >,T)
be a simple normal iteration of M of limit length 6. Assume that 7 has an ill-founded
cofinal branch. Let b = by be the unique cofinal branch of 7. Let (Mg, < mjp | 1 € b >)
be the direct limit of (M;,7;; | ¢ <7 7 € b). Assume that My is ill founded and that 6 is
minimal among all such counter examples.

Let I' be a regular cardinal sufficiently large such that all the objects of our interests are
all in Hr. Let X < Hr be a countable elementary submodel such that {M,7,5,0, Mg} C
X. Let ¢ : H — Hr be the inverse mapping of the transitive collapsing of X. Let
{N,T,E,g,Na} be such that ¢(N) = M, o(T ) =T, o(b) = b, o(8) = 6, and O'(Na) =
My. Let T = (< N; >, <v; >,<n > <m; >,T). Then 7T is a normal iteration of N

of length @ and b is the unique cofinal branch of the iteration and Nﬁ is the ill founded

direct limit of (N;,m;; |1 <7 j € 8). Let o = ol n+ Then
op: N —s+ M.
Applying theorem 4.5, we have an embedding

"g‘Ng — M.
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But M is transitive. We get a contradiction.
Therefore, My must be well founded and b7 must be the unique well founded branch.
Hence M is uniquely simply normally iterable.

O

84 THE MODEL L[E].

In this section, we construct an inner model L[E] using type 1 supercompleteness as
our backgrand conditions. In order to apply Jensen’s theorem that normal iterability of
basic premice implies full iterability [3] in our situation [every type 1 premouse is a basic
premouse|, we assume that there is an inaccessible cardinal in our working universe in
this section when we argue that each N¢ is iterable. Jensen’s theorem reduces us to show
only the normal iterability. Otherwise, there is no usage of this inaccessible cardinal. We
believe that this hypothesis is redundant in our situation but not yet checked in detail.

DEFINITION 4.1 Let M = (J%, B) be an acceptable J-structure. Let v € M. We
define (7)™ to be the least 7 € M such that 7 > v and 7 is a cardinal in M, if there is
such; otherwise, we set (v)™™ = ht(M).

DEFINITION 4.2 A premouse M is a weak mouse if every countable ¥* elementary
submodel has a countably iterable transitive collapse, namely if ¢ : Q —x+ M and Q is
countable and transitive, then () is countably iterable.

We are going to inductively define the following sequences: for an ordinal £,

(I) a premouse N¢, and Mg = core(N¢) in case that Ng is iterable (otherwise, M is
undefined and stop the inductive definition),

(IT) pe, e, ;ésa 2257 7;;57 and ﬁc%g for a0 < ¢.
They are related by the following specifications:
(S1) pe = hi(Ne) i n(Ne) = 03 g = (wp, )* e if () > 0
(S2) 5 = min{wpy |a<v < f}
(S3) If £ is a limit ordinal, then x5 5 = min{wpy, | a<v<E)

(S4) If ¢ is a limit ordinal, then 1 5 = ht(M,) if &5 oe = = ht(M,); ,Ti;g = (%;@"'Mﬂ
otherwise. N N
(S5) ﬁsg = ht(M,) if &55 = ht(M,); ’ﬁf = (K§£)+M" otherwise.

(S6) If £ is a limit ordinal, then

e = sup{¥S, | a< €.

(ST) (Agreement Condition) For all a < ¢,

Mo ||T5, = Me|[35,.
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Our main concerns here are the iterability of N¢ and (ST7), the Agreement Condition.
As long we can maintain these two requirements, all other values are all determined by
the specifications.

With all these set ups, we can now define our sequences as follows.

No = My = (0,0).

Successor Stage

Suppose that N and M, are defined and M; = core(N¢). The following two cases
set up to define N¢y;. If it is a premouse and normally iterable , then we define M¢, =
core(Ngy1); otherwise, we stop and M, is undefined.

Case 1. M = (JE,0) and there exists an F such that (JZ, F) is a premouse and F
is a extender of type at most 1 and F' is supercomplete with respect to M.

Then we set Neyq = (JE, F).

Case 2. Otherwise. If My = (JZ,0), then Neypq = (JE ,,0); if M = (JE,E.,.), then

Nepq = <Jf_|1_vf+1 ,0), where ENet+1 extends EMe¢ to length wa + 1 by adding E, to its last
position.

We need to check that N¢y; is a premouse and if it is normally iterable, then M,
obeys the agreement conditions.

Notice that if M, is defined, then it is the core of a mouse and hence it is a sound
mouse.

The following Inductive Step Lemma justifies that all we need to concern at this stage
is the iterability of N¢y;.

LEMMA 4.1 (Inductive Step Lemma)
(1) Assume that M = (JZ ) is a sound premouse. Then
P = <JE_H,(Z)> is a premouse and wp$; is the largest cardinal in P and wpp < wpf;.
(2) Assume that M = (JZ 0) is a premouse. Let F be an M-extender such that
N = (JE F) is a premouse. Then
(i) n(M) = 0, and hence M is sound.
(ii) wp%y, < the largest cardinal in M.
(i) wp%y < the largest cardinal in N if and only if there is some 5 < [h(F') such
that 3 generates F'. (Including definition here if not yet defined.)

1v) core(N) = J—E F') is a premouse.
(iv) ( = p

(v) If core(N) is sound, then P = <J§E+11;1 ,0) is a premouse and wp$ < wp¥.

(3)If M= <Jf"_|_1,(2)> is a premouse, then core(M) = <JE

y+1’®> is a premouse.

LEMMA 4.2 (Core Mouse Agreement Lemma)

If M is a mouse and wp%; € M and v = (wp%,)t™, then v = (wp%, )M and
core(M)|ly = Ml||y.
LEMMA 4.3 (Agreement at £ +1) Assume that Mg, is defined. Then for o < £+1,

Ma||#&5+1 = ME‘+1||N&5+1'



56

Proof First, we show that M€+1 and' M agree upto ﬁé_i_l. '
N¢yq1 and M; agree fully since M is an initial segment of N¢y;. Since WP, € Neyas
by Jensen’s lemma quoted above, N¢1 and M1 agree upto peyi1. Since

~

< _ W W w
Keer1 = WPMeyy = WPNyw S WPM

and :‘7?5—1—1 = pe41, we have our desired agreement between Mg, and M.
Let a < €. Then

Katt1 S Bae N Poepn S mm{#;g,,&sﬂ}-
Therefore,
M, ||:“a5+1 - M£||#a5+1 - M€+1||Ha5+1
O
Limit Stage
Let A be a limit ordinal. Assume that N¢ and M have been defined for all { < A. We
would like to define Ny and M.

LEMMA 4.4 (1) fa < B <A, then u5, < Wg,.
(2) % is a limit ordinal.
(3) For each a < A, there is a sequence E® such that

JE — JEMf

a)\ a)\

for all £ € [a, \). More over, if @ < 8 < ), then JE7 is an initial segment of Jﬁi
ai B8

Proof (1) follows from the fact that if & < 8 < A then /<;< < xS
We show (2) and (3) at the same time. N
For oo < ), let £, be the least £ > o such that x5, = wp“]\’/‘,s.

We claim that %S, < ﬁé +1)» and M, is an initial segment of M, for n € [{q, A)

BAX*

RS S

and Fax = lu’afa
Then (2) and (3) follow from this claim and the Agreement Condition.
To see the claim, observe that

WM, = WPNpsr = wp}V§a+1
and it is the largest cardinal in N¢ 1. Hence, by Lemma 1.2, N¢ 41 is sound. Therefore,
M¢,+1 = N¢, 41. It follows that

Now let £ € (€4 +1,A). Then ‘-"Pf/.rga < 2‘(Ssa—i—l)é"

N¢o41 = Mg 11, we have ﬁ(sé’a—i—l)é' = ht(M¢,+1). Therefore, by our Agreement Condition,

Since WP, is the largest cardinal in

Mg, 41 is an initial segment of M. Hence, for € € [€,, ), M, is an initial segment of M.
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Equipped with this lemma, we let

SUER

a<A
Define Ny = <J,lm7®>' If N, is iterable, then let My = core(Ny). Otherwise, we stop and
M is undefined.

LEMMA 4.5 (Limit Step Lemma)
(1) N, is a premouse.
(2) Assume that N is iterable. Then for all a < A,

M ||lu’a)\ - MAH/‘I’Q)\

Proof (1) follows from the fact that 7, is a limit ordinal and every initial segment of a
mouse is sound and J‘EA is a stack of a sequence of initial segments of mice.
For (2), notice that for all & < A,

o< < ~< ~<
Kax < Kax A Hax < Hoone

Therefore,

Mo ||B3, = NallES, A BSy < oo
If n(Ny) =0, then N, is sound and My = N. Otherwise, wpy, € N). By Jensen’s lemma
above, N, and M) agree upto p). Hence,

M ||lu’a)\ - MAH/“’(X)\

O

Before we go on to show that each M, is defined, we introduce some technical devices
that shall be used in the proof.

DEFINITION 4.3 (1) Let M be a premouse. Let v € M be such that EM # (). Define
B(M,v) = the least 3 < ht(M) such that v < 8 and wphris < WP for v < € < ht(M).

(2) Define 81 (M,v) = the least 8 < ht(M) such that v < 8 and wphrs < WP for
v <& < ht(M).

Hence, B(M,v) is the first realization of the minimum of all the w—th projectums of
proper initial segments M||¢ for € € [v, ht(M)).

We are going to use the S—operator iteratively to search the origin of EN¢ for v <
ht(N¢). We define two Minimal Walks below to achieve such searching.

LEMMA 4.6 (Minimal Walk from ht(M) to v)
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Let M be a premouse and v € ht(M). Assume that EM - (). Then there is uniquely a
sequence (3; |1 < k(M,v)), the Minimal Walk from ht(M) to v, with the following three
properties:

(MW1) B9 = ht(M), and v = ﬂk(M v)-
(MW2)5k(Mu)<5k(Mu) 1 < o< B1 < Bo.
f W3) Bit1 = (M||ﬂl, v) for all + < k(M,v).

Sometimes, we write 8 ;[M,v] for §;.]

Proof [Iterating the 8 operator, we define the sequence by induction as follows.
Bo = ht(M). B B B B
If B, is defined and 3, > v, then define 3,41 = B(M||B m,v). Otherwise, 8 41 is
undefined and we stop. When we stop, we set k£ = k(M,v) to be the maximum m such
that 3., is defined. [Hence, 81 = v.]
O

Notice that if v < B(M,v), then for all £ € [v,3(M,v)), we have PN IB(Mw) < WP
It turns out that this property alone can be used to compute the 3—operator. In our
applications, we shall use this property to compute.

DEFINITION 4.4 Let M be a premouse. Let v € M be such that EM £ (). Define
B(M,v) by the following:

n€BM,v) < v<n Ane€ht(M) A (v<n—VEE [v,n) (wphy, < wPire))

B(M,v) # 0 since v € B(M,v). B(M,v) is finite since if n < 3 are in B(M,v) then
wp“M||ﬁ < wprlln' The precise relationship between the Minimal Walk to v sequence and
the set B(M,v) is given by the following lemma.

LEMMA 4.7 Let M be a premouse and let v < hi(M) be such that E} 2 (. Then the
Minimal Walk to v sequence (8 o[M,v],B1[M,v],---,B r(pmw)[M,v]) is a strict decreasing
enumeration of B(M,v) U {ht(M)}. In fact, 8 ;11 = max(B(M,v) N B;) for i < k(M,v).

Proof By induction on i < k(M,v), we show that Bit1 = max(B(M,v) N B i) B
Let 81 = B(M,v). If 31 =v, then f1 € B(M,v). If v < 31, then for all £ € [v,51),

we have wp” B < (.upf/‘,”5 by definition of the 3-operator. Hence 8, € B(M,v).
M||F 1
Let n = max(B(M,v)). If 81 < 7, then WPy < W p — and n < ht(M). Hence

B M||34
B1=n. _ _
Assume that 8, = max(B(M,v) N B pm—1) for m > 0.
If m = k(M,v), then 3,, = v. Then we have done. So assume that m < k(M,v).
Hence 8, > v.
Let Bmy1 =
then for all ¢ € [v

Bmi1 € B(M,v)N

ﬂ(MHﬂma ) Ifﬂm—}-l = v, then ﬂm+1 - B(M V) If Bm—l—l > v,

B mt1), wp® w3 < pr”5 by definition of the f—operator. Hence
_ m+1
Bm
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Let n = max(B(M,v) N B ).

If > B.mt1, then prIIU <w p This contradicts to the definition of 8 ,,41.

MI|B mis
Hence B i1 = max(B(M,v) N B ).
L]

The following lemma explains that the g—operator has certain invariant character
under ¥;—embeddings.

LEMMA 4.8 Let M and N be two premice and let ¢ : M —x, N. Let v < ht(M) be
such that EM +£ (). Then o(v) < ht(M) and EN n 7 0 and k(M,v) = k(N,o(v)) and for

all 1 <3 < k(M,v), o(B;[M,v]) = B:[N,o(v)].

Proof The first part of the conclusion is trivial but included in order for the second part
to make sense.
We just have to prove that o(3;[M
We prove that o(3(M||3 ;,v)) =
ht(N).

Let us first observe the following general fact.

Fact If A < £ < ht(M) is a cardinal in M||¢, then o(}) is a cardinal in N||o(¢).

v]) =B iN,o(v)] for all 1 <i < k(M,v).
(NHU(ﬂi),O'(V ) for all ¢ < k(M,v), where o(B¢) =

To see this, assume that o(A) is not a cardinal in N||o({). Then

NEdu<o(X)Ife Jf(g) f i —onto o(A).

By Y;—elementarity,
MEI<XIfedB” fip—omo

But M||€ |= X is a cardinal. This is a contradiction.

Let B i1 = B(M||B m,v) <_Bm. Then o(8 m+1) < o(8 m).
By definition, for all n € [v,3,,), we have

w

w — <
PMIB gy =

w
“PM||n:

Hence wp® is a cardinal in M||ﬂm since v < ﬂm+1 < B and wp <v. It
M||B i M| i
follows that a(wp I8 ) is a cardinal in N||o(8 ) by Xi-elementarity of o.
m+1

Hence o(wp®” <wp? - .
( ||ﬂm+1) Nljo(Bm+1)

Let kK = wp?

M[IB s’
Let f: kK —onto @B my1 bein JEY by acceptability since k = wp B < B 1
m+1+1 m41
and hence P(x) N (JEY — JEY 0.
()N (E B )z N N
Then o(f) : 0(k) —onto o(w ﬂm_H) and o(f) € (JE- —-JEZ ).

(B my1)+1 (B m41)
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w > wpw - .
Theref A(4||Bm+1) ) Nllo(B m+1)
erefore, o(wp® — =wp® = .
LT MIIB Nllo(B m+1) B
This gives us that wp¥ — is a cardinal in N||o (8 m).
Nllo(B m+1)

It follows that for all § € [6(8 mt1),0(Bm)), wp®  — < wp .
ollows that for all 7 € [o(Bms1),o(Bm)) wpy, = <wpiy,

Hence o(8 m+1) 2 B(N|o(B m),o(v)). _

1 B s = v, then 0B msr) = o(v) and o(v) < BV |[o(B ), o(v))

Hence if B s = v then 08 nsr) = BV |[o(B ), (1)), )

Now we assume that 3,41 > v. We show that o(3 ,+1) = B(N||e(8 ), o(v)).

Let 7 = (wp“’M”B )TMIl¥, Then 7 < wpyy)|» 1 @ cardinal in M||v. Since for n €
m41

[V, 8 mt1), wp:/-’llﬁ < WPy T is a cardinal in M||8 41 and T < v.
m+1

It follows that o(7) is a cardinal in N||o(8 m+1) and o(7) < o(v).

Let n € [0(v),0(8 m+1))- Then

Hence o(wp

w

M||/Em+1) < o(1) < wpRy-

wp o(wp

w J— =
N|lo(B mt1)

Therefore, (B 1) = BNV|B 1, o(v)).

The following lemma explains one of their usages of these two S—operators.

LEMMA 4.9 Let us assume that N¢ is defined and the induction hypothesis are main-
tained below . Then

(i) Let v < ht(N¢) be such that EN # (. Let 8 = B(N¢,v). There is exactly one
n < € such that N¢||3 = M,,.

(ii) Assume that N is iterable. Let v < ht(M¢) be such that EM: # 0. Let B =
BT (Mg,v). There is exactly one n < ¢ such that M¢||8 = M,,.

Proof By induction on ¢, we prove (i) and (ii).
We prove (i) first. For £ = 0, nothing needs a proof.
Case 1 { =~ + 1.
If My = (JE Q) and N¢ = (JE F), then wphy, = Ord™~ and hence

ﬁ(Nfay) = ﬂ—i_(M’YaV)'

The conclusion follows from our induction hypothesis on (ii).

If My = (JZ,0) and N¢ = (JE |,0), then
ﬁ(N&V) :ﬂ+(M,y,y).

The conclusion follows from our induction hypothesis on (ii).

Assume now that M., = (JZ E,) with E, # 0 and N; = <J£—|—1a®>-
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If v < a, then

ﬁ(NEﬁV) = ﬂ—i_(M’WV)'

The conclusion follows from our induction hypothesis on (ii).

If v = o, then B(N¢,v) = @ and N¢||a = M. Hence in this case, the unique n = a.
Case 2. £ is a limit ordinal.

First let us observe two simple facts about the ;jg—sequence for a < €.

Fact 1. For a < f, Koels a cardinal in M,.

Let a < €4 < & be the least realization of k< oy 1€ the first place that wphy, = mjg.
Then
~s _ N_ N<
Fag = Rag, = Fatat1

and
N< =S
lu’aE - lu’af(,—l—l'
Slnce M, ||,ua£ = M5a+1||,u,a£ and either i< o¢ = ht(M,) or ,u is the cardinal successor

of k< ot in M,, and &= ot is a cardinal in M¢_ 41, we have that K< ot is a cardinal in M,.

Fact 2. If the sequence (Naé. | @ < €) is not eventually constant, then

SUP{K§5 |a < &} = sup{ﬁig | a < £}

Let a < €. Let a < fa < ¢ be the first realization place of k< oer Let v < € be the
least such that £, < v and k< e > /<c< Let &, > 7 be the first realization place of k< Ser

+Me, 41 g

Then &75 is the largest cardlnal in M¢_ 41. Hence (/<; 5,) is a cardinal in Mg ; and

<
is < K e Therefore, 71 :“as < K’Yf'

NOW let us go back to our inductive proof in case that ¢ is a limit ordinal.
Case 2.1 /<c<5 > v for some « <§
Let ap < € be such that n o€ > v. Then for all a € [a,{), & ;5 > v. Pick a large

enough such that 7 Poe > B = ﬂ(Ng, v).
It follows that

ﬂ:ﬂ(Nfa ) (NfHHag’ )
By our Agreement Condition, Ma||ﬁ§£, = N5||:L\[§€. Hence
B = /B(Ng,l/) = ,B(MaHﬁ;é,V)-
We observe that if € [ﬁsg,ht(M)], then

w ~<
“PMa||n z Fag:

This is because K,;€

This gives us that

is a cardinal in M, and wpiy. = Zjé by definition.

min{wply 1, | v < 1< hUMa)} = minf{wply ), | v <7< W)
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since N
min{wpy, I |v <np < ht(My)} <v < &55.

Hence, we have 31 (M,,v) = B(M, ||,ua5)
Therefore, B( N, ) = BT (M,,v). By induction hypothesis on (ii), we are done.

Case 2.2 For all a < ¢, & a5<1/

Since this sequence is bounded by v < ht(N¢) = ¢, the sequence must be eventually
constant by fact 2 above. Let x be such eventual constant of this sequence. Then « is the
largest cardinal in Ng.

Pick a < £ large enough such that k< o¢ = K and /'ZZEE > B = B(Ne,v).

It follows that M, ||,ua5 = N5||,ua5.

We observe that pr 18 = “Phr s =<

First, wp“&énﬁ >k since k is a cardinal in N¢ and 8 < ht(Ng).

Secondly, wp%ellﬁ < k. This is because x is the largest cardinal in N¢ and wp% ||ﬁ is
a cardinal in N¢. [By definition, we have that for all n € [v, ht(N¢)), pr s < prgIIn
wpi, || i a cardinal in N¢||B. Hence remains to be a cardinal in Ng.]

Hence wWPR 18 = K

By definition, we have for 5 € [v, §),

w
K < praH")

and for n € [ﬂ,ﬁjg), ;
Kk < PN ||y
Since k = 75;5 is a cardinal in M, and wpy, > 75;5 = k, we have that for all n €
[#agaht(M )], & < wp“’Ma“n.
Therefore, 8 = B(N¢,v) = 87(My,v). By induction hypothesis on (ii), we are done.
This proves (i).
To prove (ii), let 8 = BT (M¢,v). If B = ht(M;), then the unique n = £. So we assume
that 8 < ht(M¢). Hence v < ht(M;) and B+ (Me,v) = B(Me,v).
Then
P, = B, 2 i
If PR, = ht(N¢), then Ne = M;, and B(M¢,v) = B(Ne,v). By (i), we are done.
Let us assume that p%, < ht(N¢). Since Ng is iterable, letting 7 = (wp%s)'i'Nf, we
have that 7 = (wpf/‘,é)'i'Mﬁ and
Ne|lr = Me||r.
If 7 = ht(N¢), then Mg = N¢ and B(N¢,v) = B(Me,v). By (i), we are done.
So assume that 7 is a cardinal in N¢. Let n € [7, ht(N¢)). Then

w w w
WPN|ly = T > WPN, Z WP, ||

If 7 = ht(M;), then 8 < T by our assumption.



63

So assume that 7 is a cardinal in M. Let n € [7, ht(M;)). Then

w w w
WPM |y = T > WPM, = WP |5-

Therefore, 8 < 7 in any case.
Hence,

/B(Mg,l/) :ﬂ(MfHTaV) = B(N5||T7V) = /B(Ng,y).

By (i), we are done.

O

We now define our second Minimal Walk to search for the origin of an extender ED

for v < ht(Ng).
LEMMA 4.10 (Minimal Walk to the Origin of E,Z,Vﬁ)

Assume that N¢ is defined and our induction hypothesis of the construction are main-
tained below {. Let v < ht(N¢) be such that E,I,Vﬁ # (. Then there is uniquely a sequence,
Minimal Walk to the Origin of Eiv ‘,

<(ﬂ07707 CO)7 (/81771701)7 e 7(ﬂe(f,u,))’)/e(f,u)ace(E,u))>

satisfying the following specifications:

(MWOl) Bo = ht(Ng),v0 = €,¢0 = idrz\Q

(M )0<e(§, v) <wand o > 71 > > Ye(e)-

(MWO3) c;io---0co(v ) < ht(N%.) and Ec Z’ woco(v) # ( for i < e(&,v).
(MWO4) Biy1 = B(Ny;,ci0---0co(v)) for i < e(€,v).

(MWO5) 441 is the unlque n < 7; such that M, N7 ||Bit1-
(MWOG6) c;11 is the core map o : M., , N7 4, fori < e(&,v).
(MWO7) /89(5 v) — ht(M’ye(&y)) = e(f,u) 100 C()(I/).

Proof Assume that v < ht(N¢) and that ED # 0.
Set v0 = &,80 = ht(Ng),cO = zd[‘ N
Let 81 = B(Ng,v), 71 be the unique n < ¢ such that N¢||3; = M,, and

¢y = the core mapo: M, — N,

We have (31,71,c¢1) defined.
If 81 = v, then set e(¢,v) = 1 and we stop.
If #1 > v, then we continue as follows:
Since v < ht(M,,) and E) # 0, we have ¢;1(v) < ht(N,,) and E_ Z;) # 0.
Let By = B(N,,c1(v)).
Let 742 be the unique n < 747 such that M, = N, ||c1(v).

Let ¢, be the core map o : M,,, — N,,
We have (82,72, ¢2) defined.
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If B2 = c1(v), then we set e(£,v) = 2 and stop.

Otherwise, we continue.

Inductively, assume that (B, Ym,cm) is defined, B, > ¢m—1 0 -+ 0 ¢o(v), Bm =
ht(M,,,), Ei\:‘rn"’_"lo'_‘oc()(u) # 0 and ¢,, is the core map o : M, — N, .

Then ¢, 0 -+- 0 ¢o(v) < ht(N,,,) and ECN":’;’T__OCO(V) # 0.

Let ﬂm—l—l = ﬂ(N’Ymacm O---0 CU(V))‘

Let 4m+1 be the unique < v, such that M, = N, |/cm 0+ 0co(v).

Let ¢/t1 be the core map o : M,,,, ., — N, .

We have (Bm+1,Ym—+1, ¢m+1) defined.

If Bnt1 = €m0 ---0co(v), then we set e(§,v) = m + 1 and stop.

Otherwise, we continue.

Since v9 > v1 > -+ > Ym > Ym+1 -+, we must stop at some point. This proves the
lemma.

0

LEMMA 4.11 Let N¢ be defined and our induction hypothesis are maintained below

€. Let v < ht(N¢) be such that ED # 0. Then k(N¢,v) = e({,v). Namely the lengths
of the two Minimal Walk sequences are the same. Further more, 8,11 = c(i)(ﬂ i+1) for all
i < e(€,v), where ¢!¥) = ¢;0---0¢.

Proof Let ((Bo,70,¢0),(B1,715¢€1), 5 (Be(e,v)>Ye(e,v)s Ce(e,vy)) be the Minimal Walk to
the Origin of ED sequence. Then we have that for all 0 < ¢ < e(¢,v), k(M,,ci—q10---0
co(v)) = k(N ,ci0---0co(v)).

Then by induction, we have k(N.,,c;0---0co(v)) = k(Ng,v)—tfor all 0 < i < e(€,v).

Hence k(N¢,v) = e(€,v).

By induction on k(N¢,v), we show that B;11[N¢,v] = ¢'P(8 i11[Ng,v]) for all 0 < i <
k(Ng,v).

5 —Bi—a@i). )

By definition, we have 5 ;[M.,,,v] = B i+1[N,,v]. Hence

c1(Bi+1[Nyy,v]) = B[Ny, c1(v)]

for 1 <1¢ < k(Ny,,v), and k(N,,c1(v)] = k(Nq,,v) — 1.
By induction hypothesis, we have for all 0 <37 < k(N,,, c1(v)),

Bis1[ Ny, e1(v)] = €[Ny, e1())(B i1 [Ny s 1 ().
Hence for 1 <1 < k(N,,,c1(v)),
/Bi-l-l[N’YmV] = /Bi[N’YUCl(V)] = c(i_l)[N’Yucl(y)](cl(/?i-l-l[N’YmV]))

and

DN, ex ()] (e1(B i1 [Nog, 1)) = (i) N ] (B 141 [N v]):
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Therefore, B;11 = c(i)(ﬁ it1) for all 0 <7 < k(N,,,v).

For each m < e(£,v), let ¢(™ = ¢, 0+ 0¢p. Let ¢* = (&),

LEMMA 4.12 Let 0 <m < e({,v). Then
(1) "™ : N¢||Bm =5+ Ny, |
(2) If k < v is a cardinal in N, then ¢{™ is identity on x.
(3) If k < v is a successor cardinal in N¢, then ¢{™) is identity on  + 1.

Proof (1) is clear form the definition of the Minimal Walk sequence.
To see (2) and (3), we do induction on m. Let m = ¢+ 1. Then

Cm : N72||/8m - N’Ym

is the core map. Since c¢!?(x) is a cardinal in N.,, and ¢(V(x) < ¢/¥(v), and B,, € N,, we
must have wp%; 1B 2 ¢(k). Hence ¢y, is identity on ¢V (k).
¥ 11Pm

If k is a successor cardinal, so is ¢(¥(x) and we have that ¢,,(c'?(k)) = ¢'¥ (k).
Since ¢(™) = ¢,, o ¢¥), we are done by induction hypothesis.

O

LEMMA 4.13 Every surviving extender of N¢ is supercomplete with respect to V.

Proof Let F = E,I,Vs be a total extender on N¢. Let k = ¢rit(F) and 7 = (K,)+N5||V. Then
T is a cardinal in N¢. Let ¢* and £* be such that ¢* : N¢||v — 5+ Ng« is the core map. Let
a(F, N¢) be the largest cardinal of N¢ below v. Let A = [h(F'). Then 7 < a(F,N¢) < A.

By the above Lemma, ¢* is identity on a(F, N¢) and c*(a(F, N¢)) is a cardinal in N«
and c¢*(a(F, N¢)) < ¢*(A), which is the largest cardinal in Ng«.

Let X C X be countable and let W C P(x) N N¢ be countable. Let F* be the top
extender of Ng« and let k* = crit(F*), A* = ¢*()A). Then x* = k and ¢*(a) = a for all
a € P(k)N N¢. Let W* = {c*(a) |a € W} and let X* = {c*(y) | v € X}. Then W* = W.
Since F'* is supercomplete on N¢«, there is a strong connection § : X* — k* with respect
to (X*,W*). We then define that §(y) = §(c*(y)) for each v € X. It follows that § is a

weak connection with respect to (X, W) since

<y >-€ F(a) < <c*(7) =€ F*(c*(a)) <= <8(c*(7))~€ c*(a) <= <é(7)~€a.

Let Y C X N a(F, N¢) be such that U ty is a well founded relation. Since c¢* is iden-
yeY

tity on «(F,N¢), it is the same as U tex(y), hence well founded in Ng«. Therefore,
yeY

U tg(c*(w)) = U t5(y) is well founded.
yeY yeY

Now we are finally ready to show that our construction never breaks down.
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LEMMA 4.14 M is defined for all ¢.

Proof Let £ be the least such that M; is undefined. Hence, N¢ is not a weak mouse,
i.e., there is a countable @) such that o : Q —x+ N¢ and @ is not countably iterable.

Let 0 : ) —x+ N¢ be such a witness. We derive a contradiction.

Let 7 = (< Q; >,<v; >,<m; >, <m; >,T) be a direct normal iteration.

We are going to show that 7 can be uniquely continued. This shall give us the desired
contradiction.

Let (A\ij | ¢ < 3 < IR(T)), (U; | 5 <Ih(T)), and (xi; | ¢ € Uj,j < lh(T)) be the
objects associated with the iteration as defined in Definition 4.1.

We need to define two integral valued functions associated with the iteration in the
following.

For each ¢ < [h(7), we define t(¢) € w as follows:

Recall that 7; = the maximum 5 < ht(Qr(;4+1)) such that

(KT)QT(i+1)||77 _ (,{;i-)QiIIVi_

Let 7, = (fcj)Q"””i. Since 7; is a cardinal in Qr(it+1)||vr(i+1), We have vr(ipq) < 7 <
ht(Qreiv1y)- I vrgipry < mi < ht(Qr(i11)), then n; € B(Qr(i11), Vr(i+1)) since

w . w
YCPQr (vl <Ti < “PQritln

for all 1 € [vrgsr1),m):

Let (80,81, 7Bk(QT(i+1)’VT(i+1))> be the Minimal Walk to VT(i+1) Sequence. Then
there is a unique m such that 0 < m < k(Qr(it1),vri+1) and 7; = B .

We then define t(i) = m <= n; = B m[Qr@+1), VT(i+1))-

Next, we define s(¢,7) € w for 7 € Uj.

Let i € U;. Recall that T\(¢,7) is the joint point of 7 and j on the tree and Tx(%,5) € U;
and Kij = min{K'T/\(i,j),i’K“T,\(i,j:),j}' Hence Kij < )\T/\(i,j) < ;.

Let 7;; = (&Z)Qi””".

Let 7;; = the maximum n < ht#(Q;) such that 7;; is a cardinal in @Q;||n. We have
vi < mij < ht(Q:).

By the maximality, n;; € B(Q;,v;) U {ht(Q;)}, since if n;; < ht(Q;), then

w . w
“PQ;||ns; < Tij < “PQ;||n

for all n € [vi,nij;).

Let {B 0,B1,,08 k(Qi,w)> be the Minimal Walk to v; sequence. Then there is a unique
m such that 0 < m < k(Q;,v;) and Nij = Bm-

We then define s(i,5) = m < nij = Bm[Q:,vi]-

We are going to construct o; : Q); — N¢; so that
(a') §o=¢&, 00 =0,

(b) If i <7 j and j is simple above ¢, then §; = ¢; and o;m;; = 0y, and
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(c) Let j =i+ 1 and h = T(j) and let n = #(:). (Hence n; = 8 ,[Qn,vs].) Let (™ =
™ [¢, a1 (v1)], derived from the Minimal Walk sequence associated with (Ng, , o5 (v)).
Then _
o = Mol g
(Here, c® = id, By = ht(Q1).

(d) Let i € U;. Let n = s(i,5). (Hence, 7:;; = B,][Qi,vi].) Let ¢™ = c™[¢; a:(v;)],
c* = c*[&,0:(vi)] and & = Ye(ei,04()) be derived from the Minimal Walk sequence associ-
ated with (N, ,0:(v;)). Then o;] . = ¢™a;]
X C Ay such that

Kij wi; o ond oi[Xij] € ¢™o;[ki;], and whenever

{te € Nex | @ € c*oi[ XT}

is well founded, then
{ta € Ne; | @ € 05[XT}

is well founded.

We construct these o; by induction on j, verifying the four requirements at each stage.
Casel. j = 0. This is already given.
Case2. j=t+ 1. Let h =T(j). Then if h < ¢ then h € U; and if b = ¢ then ky; is Ay, by
definition.

Case2.1 h = :. Hence Khs = )\hi = )\Z

Let (8. | m < k(Q;,v;)) be the Minimal Walk to v; sequence.

Let n = n;, which is the maximum v < ht#(Q;) such that 7; is a cardinal in Q;||y.
Let n = ¢(¢). Hence n; = 3 ,[Q:,v:].

Let

<(/807707 CO)7 (/61771 ) Cl)7 Tty (/Be(fi,o'i(lli))776(51',0'1'(1/,':))7 ce(fi,ai(ui:))»

be the Minimal Walk Sequence of Ui(E%’).

Let p = k(Qi,v;) = e(&, 0i(v:)).

Let ¢* = ¢y 0---0co = P&, 0:(1s)], € = [, 04(vi)] and ™ = (¢, 03(v;)],
where n is given above, i.e., determined by 5 = 3,, [Q:, v;].

Set &' = v,[&i, 0i(vi)]. Then

™ N,

and
¢* = o oc™ : N, |loi(vi) =g Nex

such that ;rc(")(oi(n—i—l)) = id. In particular, for X € P(k;) N JfQi, we have
cfooi(X) = ™ o oi(X).

Let N = N¢g«. Then N = <JfN,E,,> with E, # 0 and E, is supercomplete with

respect to N. ¢* o ai[Jf:_Qi] is a countable subset of JfN.
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Choose o. o.
) :c*oai[J)]i_ ] —>c*oai(Jb: )

such that, setting é(a) = Socto oi(a) for a < Ay,

(i) <é8(a) =€ c*0i(X) < <c*oi(@) =€ Ey(c*oi(X)) < <are€ EVQZ’(X) for all
X € P(k;)N JfQi and @ € [A;]<“.

(i) If X C JAiQi is such that U c*o;[X] is a well founded relation, then U §[c*os[ X]]
is a well founded relation.

Set o;(mi;(f)(@)) = ¢™ai(£)(8(a)) and set &; = P

Then o; : Q; — Ng;,

oj[Aij] C ™ ooy [Kij] = ™ o gi[k;] = ¢* 0 o3[k,
and o;m;; = o™ o g; since Kij = min(ki, ki) = Ki, and A is A; if k; is of type 1 and Ay
is k; if k; is of type 0.

Thus (b) and (c) holds at j.

We verify that (d) holds at (¢,5). Let X C JAZ,Qi be such that Uc* 0 0;[X] is well
founded. Note that in our case, : € U; if and only if A;; > sup;, ;A if and only if either
k; is of type 1 or k; > supy;An. Let b < i. Then Ap; < A < k; and hence Ay = A,
and Kp,; = kp;. Hence h € U; if and only if : € U;. Let h € U;. Then

oj[Ans] = 0i[Ans] € "M 0 oy [mny).

(Recall that c(th) = c(t(h))[fh,ah(vh)].) Moreover, if Y C Jﬁfh is such that U c; oop|Y]
is well founded, then U o;lY] = U o;[Y]is well founded. (Recall that ¢} = ¢*[€n, on(v1)] =

C(e(éh,ah(uh))[gh,ah(yh)],)
This verifies (d).
Case2.2 h < t. (Hence h € U; since h =T(1+1).)
Case2.2.1 k; < Kp;.
Let n = t(¢). Set cgn
c* = c*[&;, oi(v)]. B B
Let m = s(h,t). Then np; = B.m[@n,vn] and n; = B,[Qn,vs]. Then ni; < n; since
(m) _ ~ _(n)
h

) = o; and ¢; = c¢*o;, where ™ = C(n)[fi,ffi(’/i)] and

ki < Kpi- Hence m > n and n = miff n;; = 7;. Then ¢ = o10¢;, , where 04|

c;ln)(m)—l—l =
td. Hence . o
n; _ (m)
&l kid1 = | rit1e
But ¢; = oc; 7, where Urcgm)(nhri-l) = id. Hence
* _ (m)
Sl (hnit1) = Ch | (kit1)
and

)
czrni—|—1 = cgzn‘ rni+1'
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:Jihh.

We know that ngn)[nh,- = o;| xp; e Since Ay < A; is a cardinal in @;, we have cﬂ)\h
)), there is a

Since F™* = the top extender of N¢r is supercomplete, (where & = Ye(g;,04(vs)
strong connection

~/

§etlI ] = ()
such that, letting 6 = lgc;-‘, we have

(a) <é(d) =€ cf(X) < <ar€ F(X) for all X € P(x;)N JfQi and a < A;, where
F = EVQZ,", and

(b)if X C JAZ,Qi is such that U ci[X] is well founded, then U §[X] is well founded.

We then define that

7i(mni(£)(@) = & ()(6(e)).
(n

Hence (i) ojm,; = ¢, ) and oil 5, =&

(i) o5, = €T

(iii) 05[] € e ().

(iv) Let X C JAiQi be such that Uo}[X] is well founded. Then Uo;[X] is well founded.

In particular, (b) and (c) hold. We prove that (d) holds as well.

If k; is of type 1, then A;; = A; and Ap; = Ap; for b <o,

If k; is of type 0, then A;; = min(A;;, x;). Hence, if k; is of type 0, then Aj; = k; < Ay,
for h <1 < j. It follows that | € U; for h <1 < j.

For [ < h, (d) follows (with [ in place of 7) exactly as before, since k;; = K15, Aii = Ayj
and o;[, = ol -

For | = h, (d) follows as before.

Now let [ > h. Then k; is of type 1 since otherwise [ ¢ U;. Hence k; < ky; since
ki3 < ki < Ay; is impossible for k; of type 1. Then we have x;; = x; and Aj; = Ay

Let X C Jflfj = J)\E“_Qi = J)\E“_Ql be such that Uc][X] is well founded. Then Ucs;[X]| C
J,ffi is well founded. A; is a cardinal in @;. It follows that ¢i[, = = o] . and Uc;[X] is
well founded. Hence Uo;[X] is well founded.

Case2.2.2 Khs S Ki.

Then k; is of type 0. It then follows that x; < Ap;.

We also have that n,; > 7;. Let m and n be such that n,; = 8 [Qn,vs] and 7; =
B n[Qn,v1]. Then m < n.

Let e(h) = e(&n,on(vr)) and let

<(/80)70) CU)) (ﬂ17717cl)7 o 7(/8e(h:)77e(h)7ce(h))>

be the Minimal Walk Sequence associated with (Ng,,o(vp)). Let cgln) = ¢(™g;, and ¢ =
Mgy, Let €8 = v, [€n, on(vn)] and & = ve(n)[€n, on(vn)]-
We want to define § : A\, — cgln)(/zi) so that whenever @ < Aj, and X € P(x;)N JiQh,

we have that
<6(@)-€ (X)) = <a-ec B (X).

We can then set
oi(mi (£)(@)) = ¢ (F)(6(e)
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for a < Ay and f : k; — QF = Q||n; within the domains.
Let (o, | m < w) be an enumeration of A;, and let (X,, | m < w) be an enumeration

of P(k;)N J;’\E;Qi. The existence of § says that a certain relation is not well founded. Let
U, (p < w) be the set of all f:p — k; such that for all k< pand all [ < p,

< f(k)-€ X; = <y, o € BY(XD).

i
Then v, € Q7 since v, € Q;||Ar, = Qnl|An.

Let v, = c%n)(ﬁp) c Ng;;. Note that ¢} = ;c%n) with

~

51

C;‘n)(ﬁq-i—l) = ld.

(In fact, o is identity on cgln)(n) + 1 since cgln)(n) < Cgln)(l/h) is a successor cardinal in
N.,, where 7; = (k] )@nllvn )

Hence o(v,) = v, and v, = ¢} ().

Set 7, = the set of (a,b) and (¢,d) such that p > a > cand b € v,, d € v, and d C b.

Let v, = cgln)(Fp). Then r, = ¢*(7 ) for the same reason as above.

Set R = U{rp | p < w}. The existence of § reduces to show that R is ill-founded.
To see this, let R = U{Ui(Fp) | p < w}. Note that 7, € Jﬁcji. By the w—completeness

of F'*, the top extender of N¢:, there is a §' : w — 0y(k;) such that for all k < w and all
m < w, we have that

<8'(k)-€ 0i(Xm) <= <di =€ F*(c}(Xm))-

Recall that Jifkh = cz‘[xh since A\, > k; is a cardinal in @; and A, < A; < v;. It follows
then for all m < w,

(6" (1) 81 ) € R
Hence R' is ill-founded. So R is ill-founded since (d) holds at <.

This gives us a desired 6 and hence this completes the construction of ¢; in the case
that 7 = ¢+ 1 and kp; < k;. We now verify the required properties.
First we observe the following:

(1) o4l ., = cgln)fm. For a < k;, let X = {a}. Then

§(8) € (X)) = {cM (@)} <= B e ES({a}) = {a}.

Also, é(a) = oj(a).

(2) ojmp; = cgn). Hence (b) and (c) holds.

To see that (d) holds, notice that since k; is of type 0, we have that A,; = k1; = k.
Thus A;; = k; for I > h. Hence [ € U; for [ > h.

Let [ € U; (hence I < h). If [ = h, then (d) is trivial since K3; = Ap; = k; and hence

(n)
Uj[xhj =cj, rxhj-
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For | < h, we have that A\; < k; and k;; = ky, and A;; = Az, Then we have

)
Cgln' [‘)\l = a-hrA,

since \; is a cardinal in @)}, and A\; < vy,. Hence oj] , and (d) holds for [ at j
since it holds for [ at z.
This finishes the case 2.2.2.

Case3. j is a limit ordinal.

y — a-hr)\lj

Let ¢« <7 j be such that j is simple above :. Then we simply set {; = {; and oy is
defined canonically so that o;7,; = oy, for all h <7 j. The requirements are satisfied by
induction hypothesis and the properties of the sequences k., and A,,,.

This finishes the definition of ;. We now show that 7 can be uniquely continued.
Case 1 [h(T)=1+1.

Let v > v; be the least such that E¥i # (). Notice that if there is no such extender
available from ();, then we are done as far as normal iterability concerned.

Let v;11 = v and ki1 = crit( EQ?) and \j1; = EQi(kiy1).

Let h < i be the least such that (h =1t or ki1 < Ap).

Let n;+1 = the maximal n < ht(Q},) such that

Tit1 = ("3;;1)@””“ = (K’;"——H)Qh"n‘

Then Ni+1 € B(Qh,vh) U {ht(Qh)}
Let o, : @, — x5~ Ng, and let

Qit1 = ult*(Qh||77i+1aEgi1)'

We check that ;11 is well founded. To see this,_ let n be such that n;4; = Bn[Qh,I/h].
Let c(™ = C(n)[Nﬁh son(vn)], ¢ = C(e(Sh’Uh(Vh'))[Nﬁh »on(vh)]; and £, = 7*[N5h son(vn)]-
Then we define 7((a, f)) = ¢™ar(f)(c*on(a)). It then follows that

T Qit1 —xn, Ner.

Therefore, ();+1 is well founded.

Case 2 [h(7) = 6 is a limit ordinal.

Let b be the unique cofinal branch of 7. Let 7 € b be large such that [z,8)r is simple.
Let ¢ = ¢&;. Then for all j € [1,0)7, £ =¢; and 0 : Q; —x+ N¢. Therefore, the direct limit
along the branch b is well founded since it can be embedded into N,.

This finishes the proof that M; is defined for every .
O

We now show that at Successor Stage, in Case 1, there is a unique supercomplete
extender F of type at most 1 such that (JZ, F) is a premouse.
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LEMMA 4.15 Let M¢ = (JE,0) be defined at stage £. Assume that both F and G are
supercomplete extenders of type at most 1 and that both (JZ, F) and (JE,G) are premise.
Then F = G.

Proof Let Mg = (JE,0) be defined at stage ¢ and assume that both F' and G are
supercomplete extender of type at most 1 and both (JZ F) and (JE,G) are premice.
Consider the structure N = (JZ F,G). N is presolid, namely, for 3 < v, N||3 is solid. So
N is a presolid prebicephalus.

DEFINITION 4.5 A prebicephalus is a structure (JZ, F,G) such that both (JZ F)
and (JE G) are premice and both F and G are not empty.

The proof now is to show that N is a bicephalus.

DEFINITION 4.6 A bicephalus is a presolid prebicephalus M such that for all Q, if Q
is countable and there is 0 : Q —x, M, then @Q is countably normally ¥,—iterable.

We are going to explain what the Y(—iterability of a prebicephalus means in just a
moment. The basic point here is that if N is a bicephalus, then F' = G. Therefore, the
uniqueness of next extender is reduced to define ¥y—iteration of prebicephalus and to show
that every bicephalus trivializes and to show that N is a bicephalus.

We first recall the basic theory of ¥y—iteration.

DEFINITION 4.7 Let M = (JE F,G) be a prebicephalus. For v < « and h < 2, set
Ei\’/"h = EM. Set Eg\x/{o = F and Eg\x/{l =G.

For a premouse M, we also set Ei\’/"h = EM for v < ht(M) and h < 2.

With these notation convention, we can now define that a generalized ¥,—iteration of
a prebicephalus or a premouse M,

T:<<Ml |i<0>7<< Vi7hi> |7:ED>7<77%' |i+1<0>7<7riji§Tj>7T>

is as that of a generalized iteration with one exception, the requirement (f), where all the
occurrences of the index v; are replaced by the double index v;, h; and the clause that

*

Teit1 : Me|lni =7,

Mi Mi—l—l
is replaced by the following: if 2 4+ 1 is simple, then

Teiv1 2 Me||n; —EM 3, M,

(namely, M;yq1 = ult(M¢||n;, Ei\,/[:h,) using only functions which are elements of the model
Mg¢||n;) and if ¢ + 1 is not simple, then

Te it Mellni = a,  Miga.

vish;
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Then all relevant concepts of Yy—iteration and ¥—iterability are defined in the same
way.

DEFINITION 4.8 Let M" be a premouse or prebicephalus (h = 0,1). The coiteration
(T°,7T') of M® and M" is the pair of normal Xy—iterations:

Th = (< M} >, (< v, 1l >),<nl >, <l >,T"

defined by setting
M} = M
v; is the least v such that there are [,k < 2 with E%? # Eiv‘r’,;l;
i€ D HL,#0;
if i ¢ D1=" then set I = 0;

if i € DN D" let (19,1}) be the lexicographically least (I, k) such that Ei\:‘r”j + EM:

vi,k*

LEMMA 4.16 (Comparison Lemma) If M° and M'! are normally Xy-iterable, then
the coiteration terminates. If both are presolid and N° and N'! are the two last iterates,
then one side of the coiteration is simple on the main branch and if M" to N" is nonsimple
then N'~" is a segment of N".

Applying this comparison lemma, we can now that bicephali trivialize.

LEMMA 4.17 Let M = (JE F,G) be a bicephalus. Then F = G.

Proof By Lowenheim—Skolem, taking a countable elementary submodel if necessary, it
suffices to prove the lemma for countable M. Coiterate M against itself and the coiteration
terminates in less than w; steps, resulting two structures N and N'. Without loss of
generality, we may assume that N is an initial segment of N' and N is a simple iterate

of M. Let N = <JEE,F,@>. Then F = G = Eg’l (I = 0,1). Hence FF = @G since
g i M —x, N.

LEMMA 4.18 N is a bicephalus.
Proof Let o:@Q —x, N. Assume that ) is countable. We show that @ is countably

normally Yy—iterable.
Let 7 be a countable normal Yy—iteration of @) of length 8, with

T = (< Qi > <<l >>,<n > <y >,T).
We now carry out the proof just as that of showing that M, is defined by defining

0; : Qi — Ng, in such a way that 0,1, is ¥y preserving and cardinal preserving if 7 4 1

is simple in 7 and o4 is Egni) preserving and cardinal preserving (if n; = 0) otherwise,
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where n; = m(crit(EVQi’;li),QT(i_i_l)), ie, n; = wif crit(ngl ) < wp‘féT(i_l_l), and n; is the

. +1 . Qi 1
unique n such that wpgT(i_l_l) < crzt(Euhlz_) < wpgT(i_l_l).
There is no any complication involved in modifying that proof to this new environment.
This shows indeed that N is a bicephalus. Hence F' = G.
This finishes that proof of the uniqueness of next extender.

O
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