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K WITHOUT THE MEASURABLE

RONALD JENSEN AND JOHN STEEL

Abstract. We show in ZFC that if there is no proper class inner model with a Woodin cardinal, then

there is an absolutely definable core model that is close to V in various ways.

§1. The main theorem. If the universe V of sets does not have within it very
complicated canonical inner models for large cardinal hypotheses, then it has a
canonical inner model K that in some sense is as large as possible. K is absolutely
definable, its internal structure can be analyzed in fine-structural detail, and yet it
is close to the full universe V in various ways.
If 0♯ does not exist,1 then K = L. Set forcing cannot add 0♯ or change L, so
KV = KV [G ] = LwheneverG is set-generic overV . The fine-structure theory of [7]
produces a detailed picture of the first order theory ofL. Jensen’s Covering Theorem
[1] describes oneof themost importantwaysL is close toV : any uncountableX ⊆ L
has a superset Y of the same cardinality such that Y ∈ L.
If 0♯ does exist, then L is quite far from V , and so K must be larger than L.
Dodd and Jensen developed a theory of K under the weaker hypothesis that there
is no proper class inner model with a measurable cardinal in [2], [3], and [4]. This
hypothesis is compatible with the existence of 0♯, and if 0♯ exists, then 0♯ in K , and
henceK is properly larger thanL. Under this weaker anti-large-cardinalhypothesis,
K is again absolutely definable, admits a fine structure theory like that of L, and
is close to V , in that every uncountable X ⊆ K has a superset Y of the same
cardinality such that Y ∈ K .
Several authors have extended the Dodd–Jensen work over the years. We shall
recount some of the most relevant history in the next section. In this paper, we
shall prove a theorem which represents its ultimate extension in one direction. Our
discussion of the history will be clearer if we state that theorem now.

Theorem 1.1. There are Σ2 formulae øK(v) and øΣ(v) such that, if there is no
transitive proper class model satisfying ZFC plus “there is a Woodin cardinal”, then

(1) K = {v | øK(v)} is a transitive proper class premouse satisfying ZFC,
(2) {v | øΣ(v)} is an iteration strategy for K for set-sized iteration trees, and
moreover the unique such strategy,
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1One can think of 0♯ as a weak approximation to a canonical inner model with a measurable cardinal.
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(3) (Generic absoluteness) øVK = ø
V [g]
K , and øVΣ = ø

V [g]
Σ ∩ V , whenever g is

V -generic over a poset of set size,
(4) (Inductive definition) K | (ùV1 ) is Σ1 definable over Jù1(R),
(5) (Weak covering) For any ë ≥ ùV2 such that ë is a successor cardinal of K ,
cof(ë) ≥ |ë|; thus α+K = α+, whenever α is a singular cardinal of V .

It is easy to formulate this theorem without referring to proper classes, and so
formulated, the theorem can be proved in ZFC. The theorem as stated can be proved
in GB.
For definiteness, we use here the notion of premouse from [25], although the
theorem is almost certainly also true if we interpret premouse in the sense of [9]. See
the footnotes to section 3.5 below.2 A proper class premouse is sometimes called
an extender model. Such models have the form (L[ ~E],∈, ~E), where ~E is a coherent
sequence of extenders, and what (1) says is that the distinguished extender sequence
of K is definable over V by øK . One can show thatK satisfies V = K .3

The hierarchy of an iterable premouse has condensation properties like those of
the hierarchy for L, and this enables one to develop their first order theories in
fine-structural detail. For example, sinceK is an iterable extender model, it satisfies
� at all its cardinals. (See [18] and [19].)
Items (1)–(4) say thatK is absolutely definable. Notice that by items (3) and (4),
for any uncountable cardinal ì, K | ì is Σ1 definable over L(Hì), uniformly in ì.
This is the best one can do if ì = ù1 (see [22, §6]), but for ì ≥ ù2 there is a much
simpler definition of K | ì due to Schindler (see [6]).
Theweak covering property (5) is due toMitchell andSchimmerling [13], building
on [14]. The strong covering property can fail once K can be complicated enough
to have measurable cardinals. Weak covering says that K is close to V in a certain
sense. There are other senses in which K can be shown close to V ; for example,
every extender which coheres with its sequence is on its sequence [17], and if there
is a measurable cardinal, then K is Σ13-correct [22, §7].
The hypothesis that there is no proper class model with a Woodin cardinal in
Theorem 1.1 cannot be weakened, unless one simultaneously strengthens the re-
mainder of the hypothesis, i.e., ZFC. It is in this respect that Theorem 1.1 is the
ultimate result in one direction. For suppose ä is Woodin, that is, V is our proper
class model with aWoodin. Suppose toward contradiction we had a formulaøK(v)
defining a class K , and that (3), (4), and (5) held. Let g be V -generic for the full
stationary tower below ä.4 Let

j : V →M ⊆ V [g],

where M<ä ⊆ M holds in V [g]. We can choose g so that crit(j) = ℵVù+1. Let

ì = ℵVù . Then

(ì+)K = (ì+)V < (ì+)M = (ì+)j(K) = (ì+)K ,

2The authors are quite sure that there is at most one core model, but the project of translating between
the two types of premouse is not complete. See [5].
3This follows easily from [22, 8.10], for example.
4The reader who is not familiar with stationary tower forcing needn’t worry, as we shall not use it in

this paper.
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a contradiction. The first relation holds by (5), the second by the choice of j, the
third by (5) applied inM , and the last by (3) and (4), and the agreement between
M and V [g].5

As a corollary to Theorem 1.1, we get

Corollary 1.2. If ZFC+ “there is a pre-saturated ideal onù1” is consistent, then
ZFC + “there is a Woodin cardinal” is consistent.

The corollary follows from the theorem via a straightforward transcription of the
argument in section 7 of [22]. Shelah has proved the converse relative consistency
result. The proof of the corollary illustrates one of themain ways core model theory
is applied: if there is a pre-saturated ideal on ù1, then there cannot be a K as in
the conclusion to 1.1, and therefore there is a proper class model with a Woodin
cardinal.
Core model theory can be used to produce inner models with more than one
Woodin cardinal. In this respect, 1.1 is not the end of the line. But so far, what
takes its place are relativizations of 1.1 that are proved by the same method. See
[23] for one example of such an argument.

§2. Some history. Our theorem grows out of, and in some sense completes, a
long line of research in core model theory. In order to set the stage properly, we
review some of this prior work.
Coremodel theory began in themid-1970’swith theworkofDodd and Jensen, [2],
[3], [4], whoprovedTheorem1.1with its anti-large-cardinal hypothesis strengthened
to “0† does not exist”, and indeed reached much stronger conclusions regarding the
covering properties of K under that assumption.
The theorywas further developedunder theweaker anti-large-cardinal hypothesis
that there is no sharp for a proper class model of ZFC with a measurable κ of order
κ++ by Mitchell [12], [11]. Mitchell’s work introduced ideas which have played
a prominent role since then. Of particular importance for us is the technique of
constructing a preliminary model K c which is close enough to V to have weak
covering properties, and yet is constructed from extenders which have “background
certificates”, so that one can prove the model constructed is iterable. The weak
covering properties of K c are then used to obtain the true, generically absolute K
as a certain Skolem hull of K c .
In 1990, Steel extended Mitchell’s work so that it could be carried out under
the weaker anti-large-cardinal hypothesis that there is no proper class model with
a Woodin cardinal. He needed, however, to assume that there is a measurable
cardinal Ω. Under that hypothesis, he could develop the basic theory of KVΩ ,
including proofs of (1)–(4) of Theorem 1.1. (See [22].) At this level, the iterability
of K c required a stronger background condition than the one Mitchell had used,
which had just been countable completeness. Steel introduced such a condition,
and used it to prove iterability, but he was not able to prove that his preliminary
K c computed any successor cardinals correctly without resorting to the ad hoc
assumption that there is a measurable cardinal in V . As a result, one could not
obtain sharp relative consistency results at the level of oneWoodin cardinal, such as

5The same proof shows there is no formula ø such that (3) holds, and (5) holds in all set generic
extensions of V .
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Corollary 1.2, using the theory Steel developed. Our work here removes the ad hoc
assumption that there is a measurable cardinal, and thereby remedies this defect.
In 1991–94Mitchell, Schimmerling, and Steel proved weak covering for the one-
Woodin K Steel had constructed in [22]. See [14] and [13]. The techniques of [14]
will be important for us here, as we shall use them in a measurable-cardinal-free
proof of weak covering for one of our preliminary versions of K . Thus by 1994
all parts of our main theorem had been proved, but in the theory Kelley–Morse
augmented by a predicate ì, with axioms stating that ì is a normal, non-principal
ultrafilter on the class Ω of all ordinals.
The first step toward eliminating the measurable cardinal from the theory of [22]
was to find a background condition weaker than Steel’s which would suffice to prove
iterability. This was first done in early 2001 byMitchell and Schindler. They showed
that if Ω ≥ ù2 is regular, and 2<Ω = Ω then (provided all mice are tame), there is
an iterable mouseW of height Ω which is universal, in the sense that no premouse
of height Ω iterates pastW . The existence of such Ω follows from GCH, but it is not
provable in ZFC alone. Subsequently, in 2003, Jensen [8] found a probably weaker6

background condition, showed it suffices for iterability, and showed without any
GCH assumptions that it allows enough extenders on the sequence of K c that K c

is universal. The reader should see [10] for further discussion of these background
certificate conditions, their relationships, and the resulting universal models.
The construction of a “localK c” of height some regular Ω, and universal among
all mice of ordinal height Ω, was an important advance. Previously, the universality
ofK c andK hadbeen generally understood, so far as their basic theory is concerned,
in terms of proper-class sized comparisons with proper-class sized competitors.7

However, once one gets close to Woodin cardinals, it becomes possible that there
are definable, proper-class sized iteration trees on K c (whatever K c may be) which
have no definable, cofinal branches. This makes class-sized comparisons of class-
sized premice prettymuch useless, once one gets nearWoodin cardinals. In contrast,
lemmas 2.3 and 2.4(b) of [22] easily imply

Theorem 2.1. Suppose there is no proper class model with a Woodin cardinal, and
letM be a countably iterable premouse of height Ω, where Ω is regular; then for any
cardinal κ, there is a unique (κ, κ)-iteration strategy forM .

If there is no proper class model with a Woodin cardinal, then K c constructions
of [15] and [8] produce countably iterable premice, and hence by 2.1, they produce
fully iterable premice. Thus the fact that they produce mice which are universal at
regular Ω is potentially quite useful. In the context of ZFC, universality at a regular
cardinal is much more useful than universality at OR.
Nevertheless, universality at regular cardinals is not enough to implement
Mitchell’s method for obtaining true K as a Skolem hull of K c . For that, one

6The precise relationship between the two conditions is not known. There is a common weakening
of the two which seems to suffice for iterability, but this has not been checked carefully.
7It is shown in [17] thatK | Ω is universal vis-a-vis “stable” competitors of height Ω, whenever Ω is a

regular cardinal ≥ ù2. (Stability is defined in section 3.1 below. The need to restrict attention to stable
competitors was overlooked in [17].) However, this is “after the fact”, so to speak, in that one needs
the basic theory of K from [22] in order to prove it. In similar fashion, [14] and [13] imply that K | Ω
is universal vis-a-vis stable competitors of height Ω, whenever Ω is the successor of a singular cardinal,
but the proof uses the theory of [22].
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needs some form of weak covering, and a corresponding notion of “thick hull”.
Jensen took the key step forward here in 2006, with his theory of stacking mice.
Jensen’s results are described in section 3 of [10], and we shall make heavy use of
those results here. Jensen described this work to Steel in early May of 2006, and
after some ups and downs, in summer 2007 the two of them finished the proof of
Theorem 1.1.

Acknowledgement. The authors would like to thank the BordRestaurant on
Deutsche Bahn’s ICE 374 for its hospitality, during what proved to be a very
pleasant trip from Offenburg to Berlin on May 6, 2006.

§3. Plan of the proof. Ourmain goal will be to constructmice which are universal
at some regular cardinal because they satisfy weak covering. Having done that, it
will be a routine matter to adapt Mitchell’s notion of thick sets to define local K ’s,
and show they fit together into a single K using the local inductive definition of K
from section 6 of [22].
We reach our main goal by proving:

Theorem 3.1. Assume there is no proper class model with a Woodin cardinal. Let
κ be a singular strong limit cardinal; then there is an iterable mouse M such that
(κ+)M = κ+.

Ordinarily, one would expect that the mouseM witnessing 3.1 would beK itself,
and the proof of 3.1 would involve the basic theory of K , as it does in [14]. Thus
we would have no way to get started. But we shall show that one need not go all
the way to K to get the desired M . Instead, the mouse M witnessing 3.1 will be
a psuedo-K , constructed using versions of thick sets and the hull and definablitity
properties in which the measurable cardinal Ω of [22] is replaced by a large regular
cardinal. All of the new work lies in carrying over enough of the [22] theory of K
to psuedo-K ; having done that properly, it will be completely routine to adapt the
proof of weak covering in [14].
The construction of psuedo-K goes roughly as follows. Let κ be as in 3.1, and
let κ < ô < Ω, where ô and Ω are regular, 2<ô < Ω, and ∀α < Ω(αù < Ω). Let

W = output of the robust-background-extenderK c-construction
up to Ω, with background extenders having
critical point of V -cofinality ô forbidden.

Jensen [8] shows thatW is countably iterable. As there is no proper class with a
Woodin cardinal,W is fully iterable.
There are three cases:
Case 1. W has no largest cardinal.
In this case, Jensen [8] shows thatW is universal, in that no mouse of height≤ Ω
iterates pastW . By the bicephalus argument, any robust extender that coheres with
the sequence of W is on the sequence of W . Let S(W ) be the stack over W as
defined in section 3 of [10]. By the proof8 of theorem 3.4 of [10], we have

cof(o(S(W )) ≥ Ω,

8This is very nearly the statement of 3.4 of [10], but unfortunately, a superfluous instance of GCH
crept into the definition of “certified K c” given there.
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where we use the notation o(H ) forH ∩OR. This enables us to define thick sets as
ô-clubs in o(S(W )). Mitchell’s arguments carry over, and one can then define our
psuedo-K , call it K̃(ô,Ω), as the intersection of all thick hulls of S(W ). Sharpening
some arguments which in [22] brought in the measurable cardinal again, we show
that

ô ⊆ K̃(ô,Ω).

This is done in 4.31 below. It is not hard then to show that K̃(ô,Ω) | ô satisfies
the inductive definition of K in section 6 of [22]. So in this case, our psuedo-K , up
to ô, is the real K . In particular, the proof of weak covering in [14] easily shows
thatM = K̃(ô,Ω) witnesses the truth of Theorem 3.1.9

Case 2. W has a largest cardinal ã, andW |= cof(ã) is not measurable.
This case is much easier. It is easy to see thatW is universal. We now just take
thick sets to be ô-clubs in Ω, and define K̃(ô,Ω) to be the intersection of all thick
hulls ofW . Again, K̃(ô,Ω) | ô is trueK in the sense of the local inductive definition,
and witnesses the truth of 3.1.
Case 3. W has a largest cardinal ã, andW |= cof(ã) is measurable.
The trouble here is that if ì is a measure ofW on cof(ã)W, then Ult(W,ì) has
ordinal height > Ω. So W is “unstable”, making the notion of universality for it
problematic. So what we do is replaceW by

W ∗ = Ult(W,ì) | Ω,

where ì is the order zero measure of W on cof(ã)W. It is not hard to see ã is
also the largest cardinal of W ∗, and not of measurable cofinality in W ∗. So W ∗

is stable, and universal vis-a-vis other stable mice of height ≤ Ω. We can then use
the procedure of case 2 to derive K̃(ô,Ω) fromW ∗. We won’t have that K̃(ô,Ω) | ô
is true K in this case, however, because replacing W by W ∗ may have gotten rid
of some measures at ordinals of V -cofinality ç, where ç is the V -cofinality of ã,
which are in true K . Nevertheless, the proof of weak covering for K in [14] goes
through for K̃(ô,Ω) with only minor changes, so that again, K̃(ô,Ω) witnesses the
truth of 3.1.

We now turn to the details. Section 4 is devoted to constructing K̃(ô,Ω). Sec-
tion 4.5 shows that ô ⊆ K̃(ô,Ω). Section 5 contains the routine adaptation of [14]
needed in case 3, and there by completes the proof of Theorem 3.1. Finally, in
section 6 we prove Theorem 1.1.

§4. Psuedo-K . We assume for the rest of this paper that there is no proper class
model with a Woodin cardinal.
We fix throughout this section a regular cardinal ô ≥ ù3, and a regular car-
dinal Ω such that 2<ô < Ω, ô++ < Ω, and ∀α < Ω(αù < Ω). We shall con-
struct a psuedo-K of ordinal height ô. Psuedo-K will depend on ô and Ω, but
there will be no other arbitrary choices involved in its definition. We shall call it
K̃(ô,Ω).

9In this case, we have already produced true K up to ô, so we don’t really need to prove 3.1, and
produceK | ô again by the procedure we outlined after the statement of 3.1.
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4.1. Stably universal weasels.

Definition 4.1. A weasel is an iterable premouse of height Ω.

Definition 4.2. LetW be a weasel; then

(a) W is amini-universe iffW |= “ there are unboundedly many cardinals”.
(b) W is a collapsing weasel iffW |= “there is a largest cardinal”. In this case, we
let ãW be the largest cardinal ofW , and çW be theW -cofinality of ãW.

(c) W is stable iffW is a mini-universe, orW is collapsing and çW is not the critical
point of a total-on-W extender from theW -sequence.

(d) W is stably universal iff W is stable, and whenever R is a mouse such that
o(R) < Ω, or R is a stable weasel, then R does not iterate pastW .

Farmer Schlutzenberg [21] has shown that for iterable 1-small miceM satisfy ing
enough of ZFC, M |= ç is measurable iff ç is the critical point of a total-on-M
extender from theM -sequence. So clause (c) above could be re-phrased as: çW is
not measurable inW . We shall not use this fact, however.

Definition 4.3. A mouseM is stable iff o(M ) < Ω, orM is a stable weasel.

With this definition, we can sayW is stably universal iffW is a stable weasel, and
no stable mouse iterates pastW . Moreover, if T is an iteration tree of length < Ω
on a stable mouse, then all models of T are stable.

Proposition 4.4. (1) IfW is an unstable collapsing weasel, thenUlt(W,U ) | Ω
is a stable collapsing weasel, where U is the order zero measure ofW on çW.

(2) Any stable collapsing weasel is stably universal.
(3) If there is a collapsing weasel, then there is no universal mini-universe.
(4) IfW and R are collapsing weasels, then ãW and ãR have the same V -cofinality.

Proof. This is all straightforward. ⊣

We shall adopt the terminology of CMIP concerning phalanxes, and iteration
trees on phalanxes. See [22, 9.6, 9.7, 6.6]. Here is definition 9.6 of [22], slightly
revised.10

Definition 4.5. A phalanx is a pair of sequences

Φ = (〈(Mâ , kâ ) | â ≤ ã〉, 〈(íâ , ëâ) | â < ã〉),

such that for all â ≤ ã

(1) Mâ is a protomouse (possibly a premouse),
(2) if â < α < ã, then íâ < íα and ëâ ≤ íα ,
(3) if â < α ≤ ã, then ëâ is the least ç ≥ íâ such thatMα |= ç is a cardinal, and
moreover, ñkα (Mα) > ëâ ,

(4) ëâ ≤ o(Mâ), and
(5) if â < α ≤ ã, thenMâ agrees withMα (strictly) below ëâ .

We say Φ has length ã + 1, and callMã the last model of Φ. Roughly speaking,
the ëâ measure the agreement ofMâ with later models, while the íâ tell you which
model to go back to when forming normal trees on Φ.11 We demand that ëâ be a
cardinal in Mα , whenever â < α. The kâ bound the degrees of ultrapowers taken
of models lying aboveMâ in a tree on Φ, in the case one has not dropped reaching
that model.

10Clause 2 is now a bit stronger.
11ëâ is determined by íâ andMâ+1, as the least cardinal ofMâ+1 which is≥ íâ .
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IfT is a normal iteration tree of length ã+1, then Φ(T ) is the phalanx of length
ã + 1 withMâ = M

T

â , kâ = deg
T (â), íâ = í(E

T

â ), and ëâ = lh(E
T

â ) if E
T

â is of

type II, while ëâ = í(E
T

â otherwise.

If Φ is a phalanx, and 〈M,k, í, ë〉 is a 4-tuple such that lengthening each sequence
in Φ by the corresponding entry of 〈M,k, í, ë〉 yields a phalanx, then we write

Φ⌢〈M,k, í, ë〉

for this new phalanx.
The phalanxes with which we deal are mostly of the form Φ(T )⌢〈M,k, í, ë〉 for
T some normal iteration tree on a mouse, or generated from such a phalanx by
lifting it up via a family of extender ultrapowers.
Normal (i.e., ù-maximal) iteration trees on phalanxes are defined in [22, 6.6].
One thing to notice is that we require lh(ETî ) ≥ ë

Φ
â whenever these are defined.

ThusMΦâ agrees with all non-root models of T up to ëâ .

Remark 4.6. Suppose Φ⌢〈M,k, í, ë〉 is a phalanx, and í is the sup of all the íΦâ .

Then no normal iteration tree on Φ⌢〈M,k, í, ë〉 ever visits the last model of Φ, so
for iteration purposes, one can think ofM as having replaced the last model of Φ.

We need a notion of stability for phalanxes as well.

Definition 4.7. A phalanx (〈(Pî , kî) | î ≤ α〉, 〈(íî , ëî) | î < α) is stable iff

(1) each Pî is stable, and
(2) if î < α andPî is a collapsingweasel such that for ç = ç

Pî , we have (ç+)Pî ≤ ëî ,
then for all ã ≥ î, çPî is not a measurable cardinal of Pã .

Lemma 4.8. Let Φ be a stable phalanx, and T an iteration tree on Φ such that
lh(T ) is a successor ordinal< Ω; then Φ(T ) is stable. In particular, all models ofT
have ordinal height ≤ Ω.

Proof. Let Φ(T ) = (〈(Pî , kî) | î ≤ ã〉, 〈(íî , ëî) | î < ã). Clause (2) of stability
is an easy consequence of the agreement of models in an iteration tree. For let î < ã
and Pî be a collapsing weasel such that for ç = ç

Pî , we have (ç+)Pî ≤ ëî . Suppose
that ç is measurable in Pã , say via the normal measure U . Let α + 1 = lh(Φ). If
α ≤ î, the agreement of models in an iteration tree gives U ∈ Pî , contrary to the
stability of Pî . If î < ã ≤ α, we have a contradiction to our assumption about Φ.
Finally, if î < α < ã, thenU ∈ Pα by the agreement properties ofT, noting that its
first extender has length at least ëî . But this then contradicts our assumption on Φ.
Clause 1 of stability now reduces to: o(Pî) ≤ Ω for all î ≤ ã. We prove this
by induction on ã. The base case of the induction is Φ(T ) = Φ, and is given by
hypothesis.
Assume first that ã is a limit ordinal. We must see that o(Pã) ≤ Ω. But suppose
not, and let Ω = iTç,ã(ì), where ç < ã. By induction, iç,í(ì) < Ω for all í <T ã. But

letting Xí = ií,ã“(iç,í(ì)), we have Ω =
⋃
ç<T í<T ã

Xí . Thus Ω is a union of ã sets of
size < Ω, contrary to Ω being regular.
Now let ã = α + 1. Let î = predT (ã), and Pã = Ultk(Q,E), where Q ✂ Pî and
E = ETα . If o(Pã) > Ω, then Pî is a collapsing weasel and ç

Pî = crit(E). Since Pα
is stable, we must have î < α and crit(E) < í(ETî ) ≤ ëî . Moreover, α + 1 /∈ D

T ,

so (çPî)+,Pî ≤ ëî . So ç
Pî is measurable in Pα , contrary to the fact that Φ(T ↾ ã)

satisfies clause 2. ⊣
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4.2. Thick sets and K c . The efficient K c constructions give stably universal
weasels, with universality insured by thick sets. To see this in the case that our
K c is a mini-universe, we need some results on stacking mice from [10]. We now
briefly recall them.

Lemma 4.9. Let W be a countably iterable mini-universe, and let W ✂M , where
M is a countably iterable k-sound mouse, with k < omega such that ñk(M ) = Ω;
then

(a) ñù(M ) = Ω, and
(b) if also W ✂ N , where N is countably iterable, i-sound, and ñi(N) = Ω, then
eitherM ✂N or N ✂M .

Proof. For (a), suppose A is a bounded, M -definable subset of Ω such that
A /∈ W . Let ð : H → Vè with è large, and crit(ð) = α < Ω, and ð(α) = Ω, and
ð(M̄ ) = M . By condensation (see [16, §8]), we have M̄ ✂W . But A is definable
over M̄ by the elementarity of ð, so A ∈W , a contradiction.
The proof of (b) is similar: we reflect the incomparability of M and N to the
incomparability of some M̄ and N̄ , where M̄ and N̄ are both initial segments ofW .
This is a contradiction. ⊣

So if W is a mini-universe, we can stack all mice extending W and projecting
exactly to Ω into a single mouse S(W ) extendingW .

Definition 4.10. Let W be a mini-universe; then S(W ) is the stack of all sound
miceM extendingW such that for some k, ñk(M ) = Ω. IfW is a collapsing weasel,
then we set S(W ) =W .

The following observation is useful:

Proposition 4.11. LetW be amini-universe, andM a premouse such thatW ✂M ,
and ñk(M ) = Ω where k < ù. The following are equivalent:

(1) M ✂ S(W ),
(2) for club many α < Ω,HM (α ∪ pk(M )) ✂W ,
(3) for stationary many α < Ω,HM (α ∪ pk(M )) ✂W .

Proof. (1) implies (2) by condensation. To see (3) implies (1), we must show
M is countably iterable. But this follows from (3) and the fact thatW is countably
iterable. ⊣

We call S(W ) the completion ofW . IfW is a mini-universe, we also call S(W )
the stack overW . Notice that in either case, S(W ) has a largest cardinal.

Lemma 4.12. LetW be stably universal, andM be a countably iterable premouse
such that S(W ) is a cutpoint initial segment ofM ; then ñù(M ) ≥ o(S(W )).

Proof. This is easy if W is a stable collapsing weasel, so assume W is a mini-
universe. LetM be a minimal counterexample. If ñù(M ) = Ω, thenM is one of
the mice stacked in S(W ), contradiction. So let ñ = ñù(M ) < Ω. Let M̄ be the
transitive collapse of X , where X ≺M with X ∩Ω = Ω̄ with ñ < Ω̄ < Ω. Thus M̄
agrees withW up to Ω̄. Using condensation applied to the proper initial segments
of S(W ) which are in X , we get M̄ agrees withW up to the collapse of o(S(W )).
But M̄ has the collapse of o(S(W )) as a cutpoint, so using the universality ofW ,
we get that M̄ is an initial segment ofW . This implies the new subset of ñ defined
overM is actually inM , a contradiction. ⊣
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Remark 4.13. So far as we can see, there could be a mouseM such thatM | Ω
is a universal mini-universe, but ñù(M ) < Ω. One could not have Ω = ñk(M ) for
some k, however, by 4.9.

Corollary 4.14. Let W be stably universal; then L[S(W )] |= o(S(W )) is a
cardinal.

Definition 4.15. Let W be a weasel, and let C ⊆ o(S(W )); then we say C is
stronglyW -thick iff

(a) cof(o(S(W ))) ≥ Ω, and C is ô-club in o(S(W )), and
(b) for all ç ∈ C , cof(ç)S(W ) is not the critical point of a total-over-W extender
from theW -sequence.

We say a set Γ ⊆ S(W ) isW -thick iff Γ has a stronglyW -thick subset.

It might bemore natural to say thatC is strongly (ô,W )-thick, but we have fixed ô
for this section.

Proposition 4.16. LetW be a weasel.

(a) The intersection of < Ω stronglyW -thick sets is stronglyW -thick.
(b) If S(W ) isW -thick, thenW is universal, and the collection of allW -thick sets
constitutes an Ω-complete filter.

Let us say a K c construction forbids critical points of cofinality in X iff whenever
F is the last extender of some level Nã of the construction, then crit(F ) does not
haveV -cofinality in X . We say a construction is X -maximal iff it puts on extenders
whenever possible, subject to this restriction, and towhatever backgroundcondition
the construction employs.
We shall use robustness as our background condition on the extenders added in
a K c-construction. See [8], or [10, 2.5] for the definition. Robustness follows from
being hull-certified in the following sense.

Definition 4.17. Let M be an active premouse with last extender F , where κ =
crit(F ) and í = í(F ). We sayM (or sometimes, F ) is hull-certified by ð iff

(1) ð : H → Hî is elementary, H is transitive, H and Hî are closed under ù-
sequences, andM | (κ+)M ∈ H , and

(2) F ↾ í = (Eð ↾ í) ∩M ; that is, F is the (trivial completion of ) the (κ, í)-
extender overM induced by ð.

This is close to the notion of being certified by a collapse in [10, 2.2], but unfor-
tunately that definition required î be regular and 2<î = î, which is too much GCH.
One still has, by a straightforward proof:

Lemma 4.18. LetM be hull-certified ; thenM is robust.

Proof. See [10, Lemma 2.6]. ⊣

The following is a preliminary weak covering theorem for the robust K c . It
is essentially Theorem 3.4 of [10], although unfortunately that theorem had the
superfluous hypothesis that 2<Ω = Ω.

Theorem 4.19. Let R be the output of the {ô}-maximalK c -construction of length
Ω all of whose levels are robust. SupposeR is a mini-universe; then S(R) is R-thick.

Proof sketch. Let C = {α < o(S(R)) | cof(α) = ô}. We claim that C is
strongly R-thick. Clause (b) in the definition of strong R-thickness follows easily
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from the fact that critical points of cofinality ô were forbidden in the construction
of R. For clause (a), we need to see that

cof(o(S(R))) ≥ Ω.

This is proved exactly as in the proof of 3.4 of [10], using “hull-certified” in place
of “certified by a collapse” everywhere.12 ⊣

Preliminary weak covering in the collapsing weasel case is easier:

Theorem 4.20. Suppose there is a collapsing weaselW, and let ç be theV -cofinality
of çW. Let R be the output of the {ô, ç}-maximal K c-constructions of length Ω, all
of whose levels are robust. Then R is a stable collapsing weasel, and Ω is R-thick.

Proof. IfW |= çW is measurable, letW ∗ = Ult(W,ì) | Ω. where ì is the order
zero measure on çW. Otherwise, letW ∗ = W. By part (1) of proposition 4.4,W ∗

is a stable collapsing weasel, whose largest cardinal has V -cofinality ç.
By [8], if R is a mini-universe, it must be universal. (This also follows from
4.19 and 4.24 below.) But that contradicts proposition 4.4, part (3). Thus R is
a collapsing weasel. We claim that R is stable. If not, letting ã = cof(çR)V , we
have ã = ç by part (4) of proposition 4.4. But critical points of V -cofinality ç
were not allowed in the construction of R, contradiction. Thus R is stable. Letting
C = {α < o(S(R)) | cof(α) = ô}, it is clear that C is strongly R-thick. ⊣

Combining 4.19 and 4.20 we have

Corollary 4.21. There is a stably universal weaselW such thatS(W ) isW-thick.

4.3. Preservation of thickness under hulls and iterations. For iterations, we have:

Lemma 4.22. Let Φ be a stable phalanx, let W be a weasel on Φ, and suppose
i : W → R is an iteration map coming from a normal iteration tree U of length
≤ Ω+ 1 on Φ, and that i”Ω ⊆ Ω. Let E be the long extender of of length Ω overW
derived from i ; thenUlt(S(W ), E) = S(R).

Proof. This is trivial ifW is a collapsing weasel, so assumeW is a mini-universe,
and that 4.22 fails for W. Let ð : H → Vè be elementary, where H is transitive,
crit(ð) = α < Ω, ð(α) = Ω, and everything relevant is in ran(ð). Let

ð(Ū ) = U , ð(N̄ ) = N, ð(S(W )) = S(W ),

where U is the tree giving rise to i , andN is the first collapsing level of S(R) above
Ult(S(W ), E).
Now N̄ is a level of R projecting to α by condensation. Thus N̄ is an initial

segment of MUα . Also Ult(S(W ), Ē) is a proper initial segment of N̄ . It follows

that there is a first levelW | ã ofW such thatW | ã projects to α, and S(W ) is an
initial segment ofW | ã.
But then

N̄ = Ult(W | ã, Ē),

so we get W | ã in H as Ē and N̄ are there. (Note that W | ã is the transitive

collapse of H N̄n (i“α ∪ pn(N̄ ), and Ē determines i ↾ α.) But α is a cardinal ofW,

12It is at this point that we use ô++ < Ω, which gives us two regular cardinals that are allowed as
cofinalities of critical points in the construction of R.
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so ñù(W | ã) = α. ThusW | ã witnesses that S(W ) is not the maximal stack over
W | α in H . This contradicts the elementarity of ð. ⊣

Theorem 4.23. LetΦ be a stable phalanx, letW be amodel ofΦ such thatS(W ) is
W-thick, and suppose i : W → R is an iteration map coming from a normal iteration
tree U of length ≤ Ω + 1 on Φ, and that i”Ω ⊆ Ω. Let E be the long extender of
lengthΩ overW derived from i , and let i∗ : S(W )→ Ult(S(W ), E) be the canonical
extension of i ; then

(1) Ult(S(W ), E) = S(R),
(2) {α | i∗ is continuous at α} isW-thick, and
(3) ran(i∗) is R-thick.

We show now that the universality of a mini-universe is determined by the cofi-
nality of the stack over it.

Theorem 4.24. LetW be a mini-universe; thenW is universal iff

cof(o(S(W ))) ≥ Ω.

Proof. Suppose first thatW is a universal mini-universe. LetR be the robustK c

of Theorem 4.19. Then R is also universal, and by 4.23 and 4.9, the comparison of
W with R is in fact a comparison of S(W ) with S(R), and yields iteration maps

i : S(W )→ S(Q) and j : S(R)→ S(Q).

It follows from the continuity of i and j at o(S(W ) and o(S(R)) that

Ω ≤ cof(o(S(R))) = cof(o(S(Q))) = cof(o(S(W ))),

as desired.
Conversely, supposeW is not universal, and letM be a mouse of height≤ Ω that
iterates pastW. LetT andU be the comparison trees on theW andM respectively.
Let R be the last model ofT, andN =MUΩ be the last model of U , so thatW-to-R
does not drop, and R ✂N . Let

j : S(W )→ S(R)

be the iteration map, extended to S(W ) via 4.23.

Claim 1. S(R) ✂N.

Proof. If not, we have P such that P ✂ S(R), ñù(P) = Ω, and P 5 N . Let

ð : H → Vè

be elementary, with everything relevant in ran(ð), and

ð(α) = Ω, for α = crit(ð).

For notational simplicity, let us assume T has been padded so as to keep pace
with U , which has length Ω becauseM is iterating pastW. We then have

α = crit(iUα,Ω) ≤ crit(i
U

α,Ω),

and

M
U

α | (α+)M
U

α = MTα | (α+)M
T

α = R | (α+)R,

by standard arguments. But let ð(P̄) = P; then by condensation, P̄✂R, and hence
P̄ ✂MUα . But ð(M

U
α ) =M

U

Ω = N , so P ✂N , contradiction. ⊣Claim 1
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Claim 2. S(R) = N | (Ω+)N .

Proof. Otherwise, noting that Ω is a cardinal of N , we get that S(R) is not the
full stack over R, a contradiction. ⊣Claim 2
Now let α < Ω be large enough that i = iUα,Ω : M

U
α → N is defined. Let i(κ) = Ω.

Then i maps (κ+)M
U

α cofinally into (Ω+)N = o(S(R)). Thus o(S(R)) has cofinality
< Ω. But j maps o(S(W )) cofinally into o(S(R)), contradiction. This completes
the proof of 4.24. ⊣

For hulls we have the following. Let Γ ⊆ S(W ); then we put

H S(W )(Γ) = {x | x is definable over S(W ) from parameters in Γ}.

Then

Lemma 4.25. Let Γ beW-thick, and let ð : N ∼= H S(W )(Γ) ≺ S(W ), where N is
transitive; then

(a) H S(W )(Γ) is cofinal in Ω,
(b) N = S(N | Ω),
(c) {α < o(N) | ð(α) = sup ð“α} is N -thick
(d) N | Ω is universal.

Proof. (a) is clear if W is a collapsing weasel. SupposeW is a mini-universe,
but H S(W )(Γ) is bounded in Ω. It is clear then that N is a collapsing weasel. This
contradicts part (3) of proposition 4.4.
For (b), it is clear that N ✂ S(N | Ω). Suppose that P is least such that
P ✂ S(N | Ω) and P 6✂ N and ñù(P) = Ω). We can form

Q = Ultk(P,Eð | Ω),

and we have that ñk(Q) = Ω, and Q properly extends S(W ) because Γ is cofinal

in o(S(W )). But for club many α < Ω, HullQk (α ∪ pk(Q))✂W, so Q ✂ S(W ) by
proposition 4.11, a contradiction.
Part (c) is clear, and (d) follows from (c) and Theorem 4.24. ⊣

4.4. The hull property. The proof from [22] thatK c has the hull property at club
many α < Ω does not generalize to our current situation. However, there is in fact
a much simpler proof.

Definition 4.26. Let S(W ) beW-thick, and suppose α < Ω; then we sayW has
the hull property at α iff whenever Γ is W-thick, then P(α)W is contained in the
transitive collapse ofH S(W )(Γ ∪ α).

Lemma 4.27. Suppose S(W ) isW-thick; then there are club many α < Ω such that
W has the hull property at α.

Proof. Since L[S(W )] |= Ω is not Woodin, we can pick A ∈ S(W ) least such
that no κ < Ω is A-reflecting in Ω in L[S(W )]. Thus there are club many α < Ω
such that whenever κ < α and E is on theW-sequence and crit(E) = κ, then

iE(A) ∩ α 6= A ∩ α.

We claim thatW has the hull property at any such α.
To see this, let Γ beW-thick, and let ð : S(H ) ∼= H S(W )(Γ ∪ α) ≺ S(W ), where
H is transitive. Note A ∈ ran(ð). We now compare (W,H,α) withW. By Dodd–
Jensen, the comparison ends up above H on the phalanx side, and yields iteration
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maps

i : H → P,

and

j : W → P,

such that crit(i) ≥ α. We can extend i and j so they act on S(H ) and S(W ), and
since A is definable over L[S(W )], we have that

i(ð−1(A)) = j(A).

But then if crit(j) = κ < α, wewould have that the first extender used in j witnesses
that κ is A-reflecting up to α inW. So crit(j) ≥ α. But then

P(α) ∩W = P(α) ∩ P = P(α) ∩H,

which is what we need to show. ⊣

Remark. For the duration of this remark, we drop our assumption that there
is no proper class model with a Woodin cardinal. Indeed, suppose instead that
Ω is Woodin in V , that VΩ is fully iterable. Let N be the output of the full
background extender K c construction of VΩ. Our iterability assumption implies
that this construction does not halt before Ω, so thatN is a mini-universe, and that
N is fully iterable. Lemma 11.1 of [24] shows thatN is universal. In fact, the proof
of 4.24 goes over to this situation, and one has that cof(o(S(N)) ≥ Ω. We can
thus define ô-thick sets, for example with ô = Ω. If we could show that N has the
hull property at club many α < Ω, we could go on to define true K up to Ω as the
intersection of all thick hulls of S(N). This could be very useful, for example, in
proving the Mouse Set Conjecture. (See [24].)
Unfortunately, our proof of Lemma 4.27 used very heavily thatΩwas notWoodin
in L[S(W )]! This certainly fails for L[S(N)]. It is open whether N has the hull
property at club many α < Ω.

4.5. K̃(ô,Ω) contains ô. We now define our psuedo-K , and show it contains ô.

Definition 4.28. Suppose S(W ) isW-thick; then we set

DefW =
⋂

{H S(W )(Γ) | Γ isW-thick}.

Lemma 4.29. Suppose S(W ) is W-thick and S(R) is R-thick; then (DefW,∈) ∼=
(DefR,∈).

Proof. Comparing W with R, we get i : W → Q and j : R → Q, iteration
maps to a common weasel. By 4.23, these give rise to i∗ : S(W ) → S(Q) and
j∗ : S(R) → S(Q). It is easy then to use 4.23 to see (i∗)”DefW = DefQ =
(j∗)”DefR. ⊣

Our psuedo-K is

Definition 4.30. K̃(ô,Ω) is the common transitive collapse of all DefW, for W
such that S(W ) isW-thick.

The proof in [22] of the counterpart to the following lemma used the measurable
cardinal a second time.

Lemma 4.31. K̃(ô,Ω) has ordinal height at least ô.
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Proof. The collapsing weasel case is easy: letW be any stable collapsing weasel,
and ã its largest cardinal. For each î < ã, let Γî be stronglyW thick and such that

î /∈ HW (Γî),

with Γî = Ω if there is no thick hull omitting î. Let

Γ =
⋂

î<ã

Γî .

So Γ is stronglyW-thick, and

HW (Γ) ∩ ã = DefW ∩ ã.

But then

HW (Γ) = DefW,

because if Λ ⊆ Γ is strongly W-thick, and î ∈ HW (Γ), we can find a function
f ∈ HW (Λ) with domain ã such that î ∈ ran(f). But then î = f(ì) for
ì ∈ HW (Γ), so î = f(ì) for ì ∈ DefW, so î ∈ HW (Λ). Since HW (Γ) = DefW,
we have Ω ⊆ K̃(ô,Ω), which is more than we claimed.
Now let W = K cô be the output of the robust K

c-construction of length Ω,

and suppose W is a mini-universe. Suppose toward contradiction that DefW∩Ω
has order type â < ô. As above, we can find a strongly W -thick set Γ0 such that
HW (Γ0) ∩ΩhasDef

W for its firstâ elements. Letb0 be least inHW (Γ0) ∩Ω \DefW.
Now pick a decreasing sequence 〈Γí | í < Ω〉 such that letting

bí = least ordinal in H
W (Γí) \Def

W,

we have that í < î ⇒ bí < bî , for all í, î < Ω.
The proof of the following claim is due to Mitchell [11].

Claim. There is no í < Ω such that ∀î < í(bî < í) and í ∈ H
W (í ∪ Γí+1).

Proof. Fix such a í. We can then find c < í and d ∈ (Γí+1)<ù , and a Skolem
term ô, such that í = ôW [c, d ]. But then we have î < í such that c < bî , so

HW (Γî) |= ∃c < bî(bî < ô[c, d ] < bí+1).

But the witness e to the existential quantifier here is in HW (Γî) ∩ bî, and hence in

DefW. It follows that

bî < ô
W [e, d ] < bí+1,

and ôW [e, d ] ∈ HW (Γí+1), a contradiction. ⊣

Because the lemma fails, we have an ô+-club C ⊆ Ω such that for all í ∈ C ,
cof(í) = ô+, and

(1) î < í ⇒ bî < í,
(2) í /∈ HW (í ∪ Γí),
(3) W has the hull property at í.

For í ∈ C , let

óí : Ní ∼= H
W (í ∪ Γí+1) ≺W,

where Ní is transitive, and let Fí be the (í, óí(í)) extender of óí . Note Fí measures
all sets inW, by the hull property at í. Fí coheres withW, and not all of its initial
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segments are of type Z, on theW-sequence, or an ultrapower away. (OtherwiseW
has reached a Shelah cardinal.) So we have some â such that (W | â, Fí ↾ â) is a
non-type-Z premouse, but is not robust. (Note here that í is not forbidden as a
critical point.) Let â(í) be the least such â .13 14

So for each í ∈ C , we pick a witness Uí that Fí ↾ âí is not robust with respect to
W | âí . This means the following: for any â , let Câ,î be the î

th level of the Chang
model built over W | â . (See [8] or [10].) Let L0 be the common language of
the Câ,î . If U ⊆W | â and sup(U ∩Ω) = â , put

Sat(U ) = {(ϕ, x) | x ∈ Uù and

ϕ is a Σ1 formula ofL0 and Câ,Ω |= ϕ[x]}.

If U ⊆W | â and ø : U →W | ã, with sup(ran(ø) ∩Ω = ã), we set

Sat(U,ø) = {(ϕ, x) | x ∈ Uù and

ϕ is a Σ1 formula ofL0 and Cã,Ω |= ϕ[ð ◦ x]}.

Then our counterexample Uí to robustness has the following properties:

(1) Uí is a countable subset ofW | â(í),
(2) there is no map ø : Uí → W | í with the properties that, setting â =
sup(Uí ∩ â(í)) and â̄ = sup(ø“â), we have
(i) ø ↾ Uí ∩ í is the identity,
(ii) Sat(U ) = Sat(U,ø), and
(iii) for all a ∈ [Uí ∩ â(í)]<ù and all X ⊆ [í]|a| such that X ∈ Uí , we have

a ∈ óí(X )⇔ ø(a) ∈ X .

Since ∀α < Ω(αù < Ω), we can simultaneously fix ù-many regressive ordinal
valued functions on a ô+-stationary set. In particular, we can fix Uí ∩ í on an
ô+-stationary set. Let S0 ⊆ C be ô+-stationary, and yn for n < ù such that

Uí ∩ í = {yn | n < ù}

for all í ∈ S0.
Let us pick enumerations

• 〈zín | n < ù〉 of Uí ,
• 〈aín | n < ù〉 of [Uí ∩ â(í)]

<ù ,
• 〈X ín | n < ù〉 of Uí ∩

⋃
n<ù P([í]

n).

Let ãí = sup(Uí ∩ âí). Let L1 be the expansion ofL0 with constant symbols żn,
ȧn, Ẋn, ẏn, for all n < ù, as well as constant symbols ḟ for all f ∈ ùù . Let U ∗

í

be the obvious expansion of Câí ,Ω to a structure for L1, where we interpret ḟ by

13In fact, â is unique by the initial segment condition. At this moment, in order to be accurate
with the details, one must choose between using ë-indexing as in [9], and using ms-indexing, as in [16]
and [25]. No doubt either would do, but we shall be following the weak covering proof of [14], which
uses ms-indexing, so we have chosen it. This means that the iterability and universality arguments using
robustness of [8] have to be translated to ms-indexing, so as to prove that theorems 4.19 and 4.20 do
indeed holdwith thems-indexing. We see no difficulty in doing this, and it may be less work than re-doing
the weak covering proof of [14] in ë-indexing. Schindler [20] proves weak covering in ë-indexing for a
K c with many strong cardinals, but no one has written up a full analog of [14].
14In any case, one could avoid re-doing the robustnesswork inms-indexing by forcing 2<Ω = Ω, using

[15] (which is done in ms-indexing) wherever we are using [8] in this paper, thereby obtaining K̃(ô,Ω) in
the generic extension, and then arguing that K̃(ô,Ω) is in V by homogeneity.
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the function h(n) = zí
f(n)
. (So U ∗ is a structure for a language of size 2ù.) Then,

let S1 ⊆ S0 be ô+ stationary, and such that the first order theory of U ∗
í is constant

on S1.
Now let î, í ∈ S1 be such that âî < í. There is a bijection ø between Uí and Uî
given by

ø(zín ) = z
î
n .

Since U ∗
î and U

∗
í are elementarily equivalent, we have that Sat(Uí) = Sat(Uí , ø).

Also, ø ↾ Uí ∩ í is the identity. So we just have to see that for a proper choice of
î and í, ø satisfies the “typical object” condition (iii) above.
For each í ∈ S1, and n < ù, we can write

óí(X
í
n ) = ô

í
n [α

í
n , d

í
n ],

where ôín is a Skolem term, α
í
n < í, and d

í
n ∈ Γ

<ù
í+1. By Fodor again, we can thin S1

to a ô+ stationary set S2 such that we have ôn and αn for n < ù with

ôín = ôn and α
í
n = αn

for all í ∈ S2.
For í ∈ S2, let

f(í) = {〈n, k〉 | aín ∈ óí(X
í
n )}.

We thin S2 to a ô+-stationary S3 such that f is constant on S3.
Finally, for í ∈ S3, put

Rí(n, è, ì)⇔ è ∈ ôn[ì, d
í
n ]
W and è, ì ∈ DefW.

We thin S3 to an ô+-stationary S4 such thatRí is constant for í ∈ S4. This is where
we use 2<ô < Ω.
Now let î, í ∈ S4 be such that óî(î) < í. Let ø(z

í
n) = z

î
n . It will be enough

to show that ø satisfies the typical object condition (iii) above. This amounts to
showing that for all n, k

aín ∈ óí(X
í
k )⇔ a

î
n ∈ X

í
k .

But because we are in S3, we have aín ∈ óí(X
í
k )⇔ a

î
n ∈ óî(X

î
k ). Thus it is enough

to show

óî(X
î
k ) = X

í
k ∩ [óî(î)]

<ù ,

for all k. Suppose this fails for k. Notice now that óî(î) ≤ bî+1, since the latter is
above î and in HW (Γî+1). Then we get

W |= ∃è < bî+1∃ì < bî+1(è ∈ ôk [ì, d
î
k ]⇔ è /∈ ôk [ì, d

í
k ]).

The displayed formula is a fact about elements ofHW (Γî+1), so there are witnesses

è, ì to it in HW (Γî+1). Since è, ì < bî+1, we must have è, ì ∈ DefW. But this
implies Rî 6= Rí , a contradiction which completes the proof of lemma 4.31. ⊣
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§5. The weak covering proof. In this section, we prove Theorem 3.1. From this
point on, the proof is so much like that in [14] that there is no point in writing it all
down again. We shall describe here the relatively minor changes needed, assuming
that the reader has [14] in hand. We begin at the beginning of §3 of [14].
Let κ be singular strong limit cardinal. Let Ω be a regular cardinal large enough
that K̃(κ+,Ω) has height at least κ+. We now adopt the terminology regarding
stable weasels, thick sets, and so forth given above, associated to ô = κ+ and our
choice of Ω. We shall show that K̃(κ+,Ω) computes κ+ correctly.
Fix a very soundness witness W0 for K̃(κ+,Ω) | κ+; that is, let W0 be such

that S(W0) is W0-thick, and κ+ ⊆ DefW0 . Suppose toward contradiction that
(κ+)W0 < κ+. Set ë = (κ+)W0 .

Remark 5.1. The proof in [14, §3] delays the moment where one enters a proof
by contradiction, and so could we, but we won’t.

If W0 is a mini-universe, or W0 is a collapsing weasel with cof(ãW0)V > κ, set
W =W0.
IfW0 is a collapsing weasel, and cof(çW0)V < κ, we sayW0 is phalanx-unstable.
In this case, W0 is not suitable for the role of the weaselW in [14]. The reason is
that although çW0 is not measurable inW0, nevertheless the phalanxes which show
up in the weak covering proof may not be stable. Let us set

í = cof(çW0)V .

What we need forW is a weasel none of whose measurable cardinals below κ+ have
V -cofinality í. We obtainW by linearly iteratingW0 via normal measures: letting
Wα be the αth model of this iteration, we set

Wα+1 = Ult(Wα , U ),

where U is the order zero measure ofWα on the least measurable cardinal ì ofWα
such that ì < κ+ and cof(ì)V = í. If there is no such ì, the iteration is over. The
critical points in the iteration are increasing, so it is normal, and ends in≤ κ+ steps.
LetW be its final model. Note that in this phalanx-unstable case

(1) W is a stable collapsing weasel, and cof(ãW )V = í,
(2) W has the hull property at all ì < κ+,
(3) for ì < κ+,W has the definability property at ì15 iff ìwas not a critical point
in the iteration; in particular, W has the definability property at all ì such
that cof(ì)V 6= í, and

(4) if ì < κ+ and cof(ì)V = í, thenW |= ì is not measurable.

This completes our definition of the weaselW. It is easy to see that in either case,
(κ+)W = (κ+)W0 . So we have (κ+)W < κ+.
Now let

ð : N → VΩ+ù

be such that N is transitive, |N | < κ, ran(ð) is cofinal in ë, everything of interest
is in ran(ð), and N is closed under ù-sequences. We further demand that ifW is
collapsing, and í = cof(çW )V < κ, then N is closed under í sequences.

15This means that ì ∈ HS(W )(ì ∪ Γ), for allW-thick sets Γ.
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We have now reached the top of page 233 in our transcription of [14]. As there,
we now compareW with W̄ , and the main thing we have to show is that W̄ does
not move in this comparison. Here, we find it convenient to depart a bit from
the way [14] is organized: we shall organize our argument as an induction on the
cardinals of W̄ , rather than as an induction on the cardinals of the last model above
W̄ in its comparison withW. Of course, if W̄ does not move, these two models are
the same.
So let

κα = α
th infinite cardinal of W̄

enumerate the cardinals of W̄ . Let

ð(κè) = κ
+.

Thus κκ̄ = κ̄, κκ̄+1 = ë̄, and κ̄ + 2 ≤ è. We shall prove by induction on α:

Iα There is a normal iteration tree onW whose last model agrees with W̄ below
κα + 1.

Main Lemma 5.2. Iα holds, for all α ≤ è + 1.

Remark 5.3. Iκ̄+1 is all we really need.

Proof of 5.2.

Claim 5.4. I0 holds, and if α ≤ è is a limit ordinal such that Iâ holds for all â < α,
then Iα holds.

Proof. Let Tâ be a normal tree of minimal length witnessing Iâ . Then â < ã
impliesTã extendsTâ . LetT be the union of theTâ for â < ã, extended by adding
the direct limit along its unique cofinal wellfounded branch if this union has limit
length. Let P be the last model of T, so that P | κα = W̄ | κα . The tree witnessing
Iα is T if P | κα is passive, and otherwise it is T extended by using the extender
from P with index κα . ⊣Claim 5.4

We now work towards showing Iα ⇒ Iα+1.

Claim 5.5. Assumeα ≤ è, Iα holds, and letT be the normal tree of minimal length
onW which witnesses Iα ; then Φ(T )⌢〈W̄ ,ù, κα , κα〉 is a stable phalanx.

Proof. We first check that Φ(T )⌢〈W̄ ,ù, κα , κα〉 is a phalanx. By assumption,
W̄ agrees with the last model of T below κα + 1, and κα is a cardinal in W̄ . If
î < lh(T )− 1, then lh(ETî ) ≤ κα , and lh(E

T

î ) is a cardinal in the last model ofT,

so lh(ETî ) is a cardinal of W̄ , and W̄ agrees withM
T

î below lh(E
T

î ).

By 4.8, Φ(T ) is stable. Thus if Ψ = Φ(T )⌢〈W̄ ,ù, κα , κα〉 is unstable, we must

have some î ≤ lh(T ) − 1 such thatMΨî is a collapsing weasel, and for ç = ç
MΨî ,

(ç+)M
T

î ≤ ëΨî and W̄ |= ç is measurable.16 But then çW ≤ ç < o(W̄ ) < κ

(our singular cardinal), so we are in the phalanx-unstable case in the definition of
W. Letting í = cof(çW )V , we have that iT0,î is continuous at points of cofinality

í, so that í = cof(ç). But also, ð is continuous at points of cofinality í, so
í = cof(ð(ç)). But then ð(ç) is not measurable inW, while ç is measurable in W̄ ,
contradiction. ⊣Claim 5.5

16At this point we are using that κα is a cardinal in the full W̄ .
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Claim 5.6. Assumeα ≤ è, Iα holds, and letT be the normal tree of minimal length
on W which witnesses Iα . Suppose also that the phalanx Φ(T )⌢〈W̄ ,ù, κα , κα〉 is
iterable; then Iα+1 holds.

Proof. WecompareΦ(T )withΦ(T )⌢〈W̄ ,ù, κα , κα〉. Note the two lastmodels
agree belowκα+1, so all extenders used are at least that long. We thinkof the tree on
Φ(T ) as a tree U onW extendingT . Let V be the tree on Φ(T )⌢〈W̄ ,ù, κα , κα〉.
Let N be the last model of U and P the last model of V ; then P ✂N becauseW
stably universal, and Φ(T )⌢〈W̄ ,ù, κα , κα〉 is stable.

Claim. P is above W̄ in V , and the branch W̄ -to-P does not drop.

Proof. IfW0 is not phalanx unstable, the proof is completely standard. But we
must take a little care with the phalanx unstable case.
Suppose P is aboveM = MTî instead. By stable universality ofW, we get that
the branchesW-to-M andM -to-P do not drop, and that P = N . Let E be the first
extender used inM -to-P, and ì = crit(E), so that ì < κα . Using the fact thatW
has the hull property everywhere, we see that P has the hull property at ì, and fails
to have the hull property at all cardinals ñ in the interval (ì, κα).

Suppose first (ì+)W̄ < κα . Then looking at the pattern of the hull property
in N determined by the branch W-to-N of U , we see there is an extender F with
critical point ì used in this branch. F is also applied to M in this branch of U .
Letting i : M → P and j : M → N be the embeddings given by V and U , we have
ran(i) ∩ ran(j) is thick in N = P. Standard arguments with the hull property at ì
then show E is compatible with F , contradiction.

Suppose then that (ì+)W̄ = κα . We claim thatM has the definability property
at ì. This is well-known in the case that W0 is not phalanx unstable. Suppose
instead that í = cof(ãW ) < κ. In this case,W has the the hull property everywhere.
This implies by a well-known induction thatM has the definability property at all
points ñ ≥ sup({í(ETä ) | ä + 1 <T î}) except those of the form i0,î(ä), where the
definability property fails inW at ä. Each such ä has cofinality í, and since i0,î is
then continuous at ä, i0,î(ä) has cofinality í. Now ì ≥ sup({í(ETä ) | ä + 1 <T î})
because E was applied to M and T is normal. Thus if the definability property
fails at ì inM , then cof(ì)M = í. However, W̄ |= ì is measurable, so cof(ì) 6= í.
Since crit(E) = ì, P = N does not have the definability property at ì. This
implies that the first extender F used in the branch M -to-N of U has critical
point ì. Again, the hull property at ì in M yields E is compatible with F ,
contradiction. ⊣Claim

Thus P is above W̄ in V . By the universality ofW, we get that W̄ -to-P does not
drop, and P ✂N . All critical points in W̄ -to-P are ≥ κα , so

W̄ | κα+1 ✂ P ✂N.

LettingMTã be the last model of T, lh(E
T

î ) > κα for all î ≥ ã, and thus

W̄ | κα+1 ✂M
T

ã .

The tree which witnesses Iα+1 is then T if MTã | κα+1 is passive, and the normal

extension of T via the extender ofMTã with index κα+1 otherwise. ⊣Claim 5.6

The claim in the proof of 5.6 gives:
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Corollary 5.7. Assume α ≤ è, Iα holds, and let T be the normal tree of minimal
length onW whichwitnesses Iα . Suppose also that the phalanxΦ(T )⌢〈W̄ ,ù, κα , κα〉
is iterable; then there is a normal iteration tree U extendingT, and an initial segment
P of the last model of U , and an embedding j : W̄ → P such that crit(j) ≥ κα .

So our proof of the Main Lemma 5.2 is done when we show:

Claim 5.8. Let T be the normal tree of minimal length onW which witnesses Iα ;
then the phalanxΦ(T )⌢〈W̄ ,ù, κα , κα〉 is iterable.

To prove this, it helps to re-organize Φ(T ), and in doing this, we shall rejoin the
notation established on page 233 of [14]. For â < α, set

ç(â) = least î < lh(T )− 1 such that í(ETî ) > κâ ,

= lh(T )− 1, if there is no such î,

ëâ = κâ+1,

Pâ = M
T

ç(â) | ã, where ã is least s.t. ñù(M
T

ç(â) | ã) < ëâ ,

= MTç(â), if there is no such ã,

and

kâ = largest k ≤ ù such that ëâ < ñk(Pâ ).

Notice here that for â < α,MT
ç(â)
agrees with the last model ofT, and hence with

W̄ , below ëâ . (If ç(â) < lh(T )− 1, then lh(Eç(â)) is a cardinal of the last model of
T and lh(Eç(â)) ≤ κα , so ëâ = κâ+1 ≤ Eç(â)), and we have the desired agreement.
If ç(â) = lh(T )− 1, then the fact that ëâ ≤ κα gives the desired agreement.) Thus

our definition of Pâ makes sense, and Pâ agrees with W̄ below ëâ . It is possible

that ëâ is active in Pâ , in which case Pâ disagrees with W̄ at ëâ , and ëâ = o(Pâ ).
Note also that for î + 1 ∈ [0, ç(â)]T , we have í(ETî ) ≤ κâ . This easily yields

Claim 5.9. Let â < α; then either

(1) kâ < ù, ñkâ+1(Pâ ) ≤ κâ < ñkâ (Pâ ), and Pâ is κâ -sound, or

(2) kâ = ù, Pâ is a weasel such that S(Pâ ) is Pâ -thick, Pâ has the hull property at
all ì ≥ κâ , and for all ì ≥ κâ , either Pâ has the definability property at ì, or
W0 was phalanx unstable, and cof(ì) = cof(çW ).

Note that in a normal tree U on Φ(T )⌢〈W̄ ,ù, κα , κα〉, if an extender E = EUç
with crit(E) < κα is used, then we have a â < α such that crit(E) = κâ , and ç(â)
is the U -predecessor of ç + 1, and MUç+1 = Ultkâ (Pâ , E). Thus normally iterating

Φ(T )⌢〈W̄ ,ù, κα , κα〉 is equivalent to normally iterating the phalanx Φα , where

Definition 5.10. For any î ≤ α, Φî is the phalanx

(〈(Pâ , kâ ) | â ≤ î〉⌢〈W̄ ,ù〉, 〈(ëâ , ëâ ) | â < î〉).

Our proof of 5.5 shows

Claim 5.11. For all î ≤ α, Φî is stable.

We shall show by induction on î ≤ α:

(4)î Φî is iterable.
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(The numbering here corresponds to the numbering of inductive hypotheses in
[14, p. 236].)
Simultaneously, we show the iterability of somephalanxes associated toΦî . First,
set for â < α:

Râ = Ultkâ (Pâ , Eð ↾ ð(κâ )),

and let

ðâ : Pâ → Râ

be the ultrapower map, and

Λâ = ðâ(ëâ) = sup(ð“ëâ).

Note that Râ agrees withW below Λâ , since Pâ agrees with W̄ below ëâ . It is
possible that some of the Râ are protomice, but not premice.
We need

Claim 5.12. For all â < α, o(Râ ) ≤ Ω.

Proof. In the case that o(Pâ ) < Ω, or Pâ is a mini-universe, this is easy. So
suppose that Pâ is a collapsing weasel. Let ã = ã

Pâ be its largest cardinal. We are
done if we show the ultrapower map from Pâ toRâ is continuous at ã. Assume not;

then we have a finite set a ⊆ ð(κâ) and a function f : [ì]
|a| → ã, where [ì]|a| is the

space of (Eð)a , such that f is not bounded on any set of (Eð)a measure one. But
then

cof(ã) ≤ ì ≤ κ̄ < κ.

Set í = cof(ã), and note

cof(ãW )V = cof(ãPâ )V = í,

by 4.23. We are then in the phalanx-unstable case, so that N is closed under
í-sequences.
Because of this, (Eð)a is í-complete: if Xî ∈ (Eð)a for all î < í, then a ∈⋂
î<í ð(Xî) = ð(

⋂
î<í Xî), so V |= ð(

⋂
î<í Xî) 6= ∅, so N |=

⋂
î<í Xî 6= ∅.

But pick 〈ìî | î < í〉 cofinal in ã, and for î < í, let

Xî = {u | f(u) > ìî}.

Clearly, each Xî is in (Eð)a , but the intersection is empty. ⊣Claim 5.12

Definition 5.13. For î ≤ α, let Ψî be the phalanx

(〈(Râ , kâ ) | â ≤ î〉⌢〈W,ù〉, 〈(Λâ ,Λâ) | â < î〉).

We need to modify the definitions to do with special phalanxes, definitions 2.4.5,
2.4.6, and 2.4.7 of [14]. The reason is that in the phalanx-unstable case, the class
parameter and class projectum defined on p. 226 of [14] do not behave properly.
What we have is

Claim 5.14. For any î ≤ α,Ψî satisfies all clauses in the definition of very special
phalanx of protomice except those to do with the class parameter and projectum (i.e.,
(iv) of 2.4.5 and the first item in 2.4.6) from [14]. Moreover, Ψî is stable.

Proof. Stability is proved just as it was for Φî . The rest is easy. ⊣Claim 5.14
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The soundness properties of Ψî replacing those to do with the class parameter
and projectum are just:

Claim 5.15. Let â < α; then either

(1) kâ < ù, ñkâ+1(Râ ) ≤ ð(κâ) < ñkâ (Râ ), and Râ is ð(κâ)-sound, or

(2) kâ = ù, Râ is a weasel such that S(Râ ) is Râ -thick, Râ has the hull property
at all ì ≥ ð(κâ), and for all ì ≥ ð(κâ), either Râ has the definability property
at ì, orW0 was phalanx unstable, and cof(ì) = cof(ãW ).

This is easy to prove.
Along with (4)î , we show by induction

(5)î Ψî is iterable, with respect to special iteration trees.

See [14, 2.4.6] for the definition of “special”. It demands one consequence of
normality, and it demands that when an extender is applied to Râ , its critical point
should be ð(κâ).

Lemma 5.16. For any î ≤ α, (5)î ⇒ (4)î .

See [14, 3.17] for a proof.
The fact that theRâ may not be premice complicates our argument. We persevere
by introducing premice Sâ which in some sense replace them, along with premiceQâ
downstairs replacing Pâ in parallel fashion. These are defined on page 234 of [14].
The construction insures that Sâ agrees with Râ , and hence withW, below Λâ . Let
kâ = n(Pâ , ð(κâ )).

Definition 5.17. For î ≤ α, let

Ψ∗
î = (〈(Sâ , kâ) | â ≤ î〉⌢〈W,ù〉, 〈(Λâ ,Λâ) | â < î〉).

Again, we have

Claim 5.18. For any î ≤ α,Ψ∗
î satisfies all clauses in the definition of very special

phalanx of premice except those to do with the class parameter and projectum (i.e.,
(iv) of 2.4.5 and the first item in 2.4.6) from [14]. Moreover, Ψ∗

î is stable.

The soundness properties of the models in Ψ∗
î are given by

Claim 5.19. Let â < α; then either

(1) kâ < ù, ñkâ+1(Sâ ) ≤ ð(κâ) < ñkâ (Râ ), and Sâ is ð(κâ )-sound, or

(2) kâ = ù, Sâ is a weasel such that S(Sâ ) is Sâ -thick, and there is a finite set t of
ordinals such that
(a) Sâ has the t hull property at all ì ≥ ð(κâ), and
(b) for all ì ≥ ð(κâ), either Sâ has the t definability property at ì, orW0 was
phalanx unstable, and cof(ì) = cof(ãW ).

See [14, 3.5, 3.6] for a proof.17 In that paper, the parameter t in part (2) is
identified using the definability property over Sâ . In the phalanx-unstable case,
we are not able to characterize t this way. However, this does not matter for our
argument, as we will never actually compare Ψ∗

î , or any other phalanx having Sâ as
a backup model, with another phalanx.
It will be enough to prove

(6)î The phalanx Ψ
∗
î is iterable.

17The parameter t witnessing (2) of 5.19 is the accumulation of the Dodd parameters of extenders
used in getting from Pâ to Qâ , lifted up by ðâ .
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Claim 5.20. For any î ≤ α, ifΨ∗
î is iterable, thenΨî is iterable.

This is lemma 3.18 in [14]. No changes in that proof are needed here.
To prove (6)î , we use

(2)â (〈(W,ù), (Sâ , kâ )〉, (ð(κâ ), ð(κâ ))) is iterable.

Claim 5.21. Let î ≤ α, and suppose that (2)â holds, for all â < î; then (6)î holds.

This is lemma 3.19 of [14], and its proof does not change. It represents the
fundamental step in the inductive definition of K from [22].18

To prove (2)â for â < î we use

(3)â The phalanx (〈(W̄ ,ù), (Qâ , kâ )〉, (κâ , κâ )) is iterable.

Claim 5.22. For any â < α, (3)â implies (2)â .

This is lemma 3.13 of [14], and again, the proof does not change. The proof
uses the countable completeness of Eð to realize countable elementary submodels
of (〈(W,ù), (Sâ , kâ)〉, (ð(κâ ), ð(κâ))) back in (〈(W̄ ,ù), (Qâ , kâ)〉, (κâ , κâ )).
Finally, we close the circle with

Claim 5.23. Assume (4)ã holds for all ã < â ; then (3)â holds.

This is lemma 3.16 of [14]. No changes are needed. It is the fundamental step in
the inductive definition of K once more, but this time downstairs.
This completes our proof of the Main Lemma 5.2. ⊣

We now complete the proof of 3.1. Fix α = κ̄ + 1, and for â < α, let
Pâ , Râ , Qâ , Sâ , etc., be defined as above in our proof that Φα is iterable. We have by
(2)κ̄ that (simplifying our phalanx notation for readability) (W,Sκ̄ , κ) is iterable.
We also have that Sκ̄ agrees with W below Λκ̄ . Let us compare (W,Sκ̄ , κ) with
W. As in the proof of 5.21, we get an iteration tree U onW, and and embedding
j : Sκ̄ → H , whereH is an initial segment of the last model of U , and crit(j) ≥ κ.
Note that Sκ̄ agrees withW below Λκ̄ < (κ+)W. Thus

P(κ)Sκ̄ = P(κ)W = P(κ)H .

Case 1. Sκ̄ is not a weasel.
Thenby 5.19,Sκ̄ isκ-sound andprojects toκ. This implies by standard arguments
that Sκ̄ ∈W, contrary to P(κ)

W ⊆ Sκ̄.

Case 2. Sκ̄ is a weasel.
Then Qκ̄ is a weasel, and from its construction, we have an iteration map

i : W → Qκ̄.

Moreover, if crit(i) < crit(ð) and W0 was phalanx-unstable, then cof(crit(i)) 6=
cof(çW ). But also

Sκ̄ = Ult(Qκ̄, Eð ↾ κ),

and letting k : Qκ̄ → Sκ̄ be the canonical embedding, crit(k) = crit(ð). Letting

ì = crit(k ◦ i),

it follows that ì ≤ crit(ð), and in the phalanx-unstable case, cof(ì) 6= cof(çW ).

18Comparing (〈(W,ù), (Sâ , kâ )〉, (ð(κâ), ð(κâ ))) with W, we get jâ : Sâ → Nâ with crit(jâ ) ≥

ð(κâ ) and Nâ and initial segment of the last model of an iteration tree onW. One can then use the jâ
to lift a tree on Ψ∗

î to a tree on aW-generated phalanx.



732 RONALD JENSEN AND JOHN STEEL

Since Sκ̄ is a weasel, and S(Sκ̄) is Sκ̄-thick, we see thatH is the last model of U ,
and there was no dropping in U fromW to H . Further, ran(j ◦ k ◦ i) is H -thick,
soH does not have the definability property at ì. LettingH =MUã , and using that
W has the definability property at ì, we get

crit(iU0,ã) < κ.

By 5.19, there is a finite set t of ordinals such that Sκ̄ has the t hull property at κ.
Since crit(j) ≥ κ, this implies that H has the j(t) hull property at κ. We can now
pull this back to the first model afterW on the branch [0, ã]U : letting ç+1 be least
in [0, ã]U , we have a finite set s of ordinals such that MUç has the s hull property

at κ. (See [14, p. 239], claim 1.)
Let E = EUç , so that crit(E) < κ. Let a ⊆ í(E) be such that s = [a,f]E for
some f ∈W. Now let

ó : Ult(W,E ↾ (κ + 1) ∪ {a})→ Ult(W,E)

be the factor map, so that crit(ó) > κ and s ∈ ran(ó). We haveP(κ)W ⊆ P(κ)H ⊆

P(κ)M
U

ç , and since ran(ó) isMUç -thick, we get that

P(κ) ∩W = P(κ) ∩Ult(W,E ↾ (κ + 1) ∪ {a}).

But now notice that E ↾ (κ + 1) ∪ {a} is coded by some C ⊆ κ in MUç . By

the agreement properties of iteration trees, C ∈ W. This implies P(κ) ∩W has
cardinality κ inW, a contradiction.
This finishes the proof of the weak covering theorem. ⊣

§6. Proof of the main theorem. We can now prove Theorem 1.1. Suppose for
the rest of this section that there is no proper class model with a Woodin cardinal.
We obtain the class K witnessing the truth of this theorem by piecing together the
approriate K̃(ô,Ω). To do that, we use

Lemma 6.1. Let ì be a singular strong limit cardinal, ô = cof(ì), and Ω = ì+;
then K̃(ô,Ω) | ô satisfies the local inductive definition of K given in [22, §6].

Proof. By Theorem 3.1 and the proof of Proposition 4.4, there is a stable col-
lapsing weaselW such that ì is the largest cardinal ofW. By lemma 4.31, we can
chooseW so that also ô ⊆ DefW, and henceW | ô = K̃(ô,Ω) | ô. So we must see
thatW | ô satisfies the local inductive definition. It is easy to see that the proof in

[22, §6] that DefK
c

satisfies this inductive definition works in our situation, provided
we can show:

Claim. Let α be a cardinal ofW such that α ≤ ô, and suppose that the phalanx
(W,M,α) is iterable, where |M | < Ω and ñk(M ) ≥ α. Then there is an iteration
tree T onW with last modelP , and such that all extenders used inT have length
at least α, and a fully elementary

ð : M → P ,

such that ð ↾ α = identity.

Proof. To reconcile our notation with that of definition 4.5: the phalanx we refer
to here is 〈(W,ù), (M,k)〉 paired with 〈(α,α)〉.



K WITHOUT THE MEASURABLE 733

We prove the claim as usual, by comparing Φ = (W,M,α) with W. The key
point is that both are stable! In the case of W, this is simply by construction. In
the case of Φ, we need to check clause (2) of definition 4.7. But çW ≥ ô, as ì is
the largest cardinal ofW, and its V -cofinality ô is ≤ its cofinality insideW. Thus
clause (2) is vacuously true.
Since ô ⊆ DefW, standard arguments show the comparison ends aboveM on the
Φ-side, and that this gives us the desired ð. ⊣Claim

This proves 6.1. ⊣

Corollary 6.2. Let ì and í be singular strong limit cardinals, with V -cofinalities
ô and ó, where ô ≤ ó; then K̃(ô, ì+) | ô = K̃(ó, í+) | ô.

Proof. This follows from 6.1, noting that the inductive definition in question is
independent of ô and ì. ⊣

This leads to

Definition 6.3. K is the unique proper class premouseW such that for any singular
strong limit cardinal ì,W | cof(ì) = K̃(cof(ì), ì+) | cof(ì).

What is left in the proof of Theorem 1.1 is already present in the literature.
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