
Chapter 1

Transfinite Recursion Theory

1.1 Admissibility

Some fifty years ago Kripke and Platek brought out about a wide ranging
generalization of recursion theory — which dealt with “effective” functions
and relations on ! — to transfinite domains. This, in turn, gave the impetus
for the development of fine structure theory, which became a basic tool of
inner model theory. We therefore begin with a discussion of Kripke and
Platek’s work, in which ! is replaced by an arbitrary “admissible” structure.

1.1.1 Introduction

Ordinary recursion theory on ! can be developed in three different ways. We
can take the notion of algorithm as basic, defining a recursive function on !
to be one given by an algorithm. Since, however, we have no definition for the
general notion of algorithm, this approach involves defining a special class
of algorithms and then convincing ourselves that “Church’s thesis” holds —
i.e. that every function generated by an algorithm is, in fact, generated by
one which lies in our class. Alternatively we can take the notion of calculus
as basic, defining an n–ary relation R on ! to be recursively enumerable
(r.e.) if for some calculus involving statements of the form “R(i1, . . . , in)”
(i1, . . . , in < !), R is the set of tuples hi1, . . . , ini such that “R(i1, . . . , in)”
is provable. R is then recursive if both it and its complement are r.e. A
function defined on ! is recursive if it is recursive as a relation. But again,
since we have no general definition of calculus, this involves specifying a
special class of calculi and appealing to the appropriate form of Church’s
thesis.

9

10 CHAPTER 1. TRANSFINITE RECURSION THEORY

A third alternative is to base the theory on definability , taking the r.e. re-
lation as those which are definable in elementary number theory by one of
a certain class of formulae. This approach has often been applied, but char-
acterizing the class of defining formula tends to be a bit unnatural. The
situation changes radically, however, if we replace ! by the set H = H! of
heredetarily finite sets. We consider definability over the structure hH,2i,
employing the familiar Levy hierarchy of set theoretic formulae:

⇧0 = ⌃0 =: formulae in which all quantifiers are bounded

⌃n+1 =: formulae
W
x' where ' is ⇧n

⇧n+1 =: formulae
V
x' where ' is ⌃n.

We then call a relation on H r.e. (or H–r.e.) iff it is definable by a ⌃1

formula. Recalling that ! ⇢ H it then turns out that a relation on ! is
H–r.e. iff it is r.e. in the classical sense. Moreover, there is an H–recursive
map ⇡ : H $! such that A ⇢ H is H–r.e. iff ⇡00A is r.e. in the classical
sense.

This suggests a very natural way of relativizing recursion theory to transfinite
domains. Let N = h|N |,2, A1, . . . , Ani be any transitive structure. We first
define:

Definition 1.1.1. A relation on N is ⌃n(N) (in the parameters p1, . . . , pn 2
N) iff it is N–definable (in ~p) by a ⌃n formula. It is �n(N) (in ~p) if both it
and its completement are ⌃n(N) (in ~p). It is ⌃n(N) iff it is ⌃n(N) in some
parameters. Similarly for �n(N).

Following our above example of N = hH,2i, it is natural to define a relation
on N as being N–r.e. iff it is ⌃1(N), and N–recursive iff it is �1(N). A
partial function F on N is N–r.e. iff it is N–r.e. as a relation. F is N–
recursive as a function iff it is N–r.e. and dom(F) is �1(N).

(Note that ⌃1(hH,2i) = ⌃1(hH,2i), which will not hold for arbitrary N .)

However, this will only work for an N satisfying rather strict conditions since,
when we move to transfinite structures N , we must relativize not only the
concepts “recursive” and “r.e.”, but also the concept “finite”. In the theory of
H the finite sets were simply the elements of H.

Correspondingly we define:

u is N–finite iff u 2 N.

But there are certain basic properties which we expect any recursion theory
to have. In particular:

1.1. ADMISSIBILITY 11

• If A is recursive and u is finite, then A \ u is finite.

• If u is finite and F : u ! N is recursive, then F 00u is finite.

Those transitive structures N = h|N |,2 A1, . . . , Ani which yield a satis-
factory recursion theory are called admissible. An ordinal ↵ is then called
admissible iff L↵ is admissible. The admissible structures were character-
ized by Kripke and Platek as those transfinite structures which satisfy the
following axioms:

(1) ;, {x, y},
S

x are sets

(2) The ⌃0 axiom of subsets:

x \ {z|'(z)} is a set

(where ' is any ⌃0–formula)

(3) The ⌃0 axiom of collection:
^

x 2 u
_

y '(x, y) !
_

v
^

x 2 u
_

y 2 v '(x, y),

(where ' is any ⌃0–formula).

Note. Kripke–Platek set theory (KP) consists of the above axioms together
with the axiom of extensionality and the full axiom of foundation (i.e. for all
formulae, not just the ⌃0 ones). This axiom can be stated as:

^
y(
^

x 2 y'(x) �! '(y)) �!
^

y'(y)

and is also known as the axiom of induction.
Note. Although the definability approach is the one most often employed in
transfinite recursion theory, the approaches via algorithms and calculi have
also been used to define the class of admissible ordinals.

1.1.2 Properties of admissible structures

We now show that admissible structures satisfy the two criteria stated above.
In the following let M = h|M |,2 Aa, . . . , Ani be admissible.

Lemma 1.1.1. Let u 2 M . Let A be �1(M). Then A \ u 2 M .

Proof: Let Ax $
W
yA0yx;¬Ax $

W
yA1yx, where A0, A1 are ⌃0(M).

Then
V
x 2 u

W
y(A0yx _A1yx). Hence there is v 2 M such thatV

x 2 u
W
y 2 v(A0yx _A1yx). QED

Before verifying the second criterion we prove:

12 CHAPTER 1. TRANSFINITE RECURSION THEORY

Lemma 1.1.2. M satisfies:
^

x 2 u
_

y1 . . . yn'(x, ~y) !
_

u
^

x 2 u
_

y1 . . . yn 2 v'(x, ~y)

for ⌃0–formulae '.

Proof. Assume
V
x 2 u

W
y1 . . . yn'(x, ~y). Then

^
x 2 u

_
w
_

y1 . . . yn 2 w'(x, ~y)
| {z }

⌃0

.

Hence there is v0 2 M such that
V
x 2 u

W
w 2 v0

W
y1 . . . yn 2 w'(x, ~y).

Take v =
S
v0. QED (Lemma 1.1.2)

We now verify the second criterion:

Lemma 1.1.3. Let u 2 M,u ⇢ dom(F), where F is a ⌃1(M) function.
Then F 00u 2 M .

Proof. Let y = F (x) $
W

zF 0zyx, where F 0 is a ⌃0(M) relation. ThenV
x 2 u

W
z, yF 0zyx. Hence there is v 2 M such thatV

x 2 u
W
z, y 2 vF 0zyx. Hence F 00u = v \ {y|

W
x 2 u

W
z 2 vF 0zxy}.

QED (Lemma 1.1.3)

Assuming the admissibility of M , we immediately get from Lemma 1.1.2:

Lemma 1.1.4. Let '(y, ~x) be a ⌃1–formula. Then
W
y'(y, ~x) is uniformly

⌃1 in M .

Note. “Uniformly” is a word which recursion theorists like to use. Here it
means that M |=

W
y'(y, ~x) $ (~x) for a ⌃1 formula which depends only

on ' and not on the choice of M .

Lemma 1.1.5. Let '(y, ~x) be ⌃1. Then
V

y 2 u'(y, ~x) is uniformly ⌃1 in
M .

Proof. Let '(y, ~x) =
W
z'0

(z, y, x), where '0 is ⌃0. Then
^

y 2 u'(y, ~x) $
_

v
^

y 2 u
_

z 2 v'0
(z, y, x)

| {z }
⌃0

in M . QED (Lemma 1.1.5)

Lemma 1.1.6. Let '0(~x),'1(~x) be ⌃1. Then ('0(~x)^'1(~x)), ('0(~x)_'1(~x))
are uniformly ⌃1 in M .

1.1. ADMISSIBILITY 13

Proof. Let 'i(~x) =
W
yi'0

i
(yi, ~x) where without loss of generality y0 6= y1.

Then
('0(~x) ^ '1(~x)) $

_
y0

_
y1('

0
0(y0, x) ^ '0

1(y1, x)).

Similarly for _. QED (Lemma 1.1.6)

Putting this together:

Lemma 1.1.7. Let '1, . . . ,'n be ⌃1–formulae. Let be formed from '1, . . . ,'n

using only conjunction, disjunction, existence quantification and bounded
universal quantification. Then (x1, . . . , xm) is uniformly ⌃1(M)

An immediate consequence of Lemma 1.1.7 is:

Lemma 1.1.8. R ⇢ Mn is ⌃1(M) in the parameter ; iff it is ⌃1(M) in no
parameter.

Proof. Let R(~x) $ R0
(;, ~x). Then

R(~x) $
_

z(R0
(z, ~x) ^

^
y 2 zy 6= y).

QED (Lemma 1.1.8)
Note. R is in fact uniformly ⌃1(M) in the sense that its ⌃1 definition
depends only on the original ⌃1 definition of R from ;, and not on M .

Lemma 1.1.9. Let R(y1, . . . , yn) be a relation which is ⌃1(M) in the the
parameter p. For i = 1, . . . , n let fi(x1, . . . , xm) be a partial function on M
which (as a relation) is ⌃1(M) in p. Then the following relation is uniformly
⌃1(M) in p:

R(f1(~x), . . . , fn(~x)) $:

_
y1 . . . yn(

n^

i=1

yi = fi(~x) ^R(~y)).

This follows by Lemma 1.1.7. (“Uniformly” again means that the ⌃1 defini-
tion depends only on the ⌃1 definition of R, f1, . . . , fn.)

Similarly:

Lemma 1.1.10. Let f(y1, . . . , yn), gi(x1, . . . , xm)(i = 1, . . . , n) be partial
functions which are ⌃1(M) in p, then the function h(~x) ' f(g(~x)) is uni-
formly ⌃1(M) in p.

Proof.

z = h(~x) $
_

y1 . . . yn(
n^

i=1

yi = gi(~x) ^ z = f(~y)).

QED (Lemma 1.1.10)

14 CHAPTER 1. TRANSFINITE RECURSION THEORY

Lemma 1.1.11. Let fi(~x) be a function which is ⌃1(M) in p(i = 1, . . . , n).
Let Ri(~x)(i = 1, . . . , n) be mutually exclusive relations which are ⌃1(M) in
p. Then the function

f(~x) ' fi(~x) if Ri(~x)

is uniformly ⌃1(M) in p.

Proof.

y = f(~x) $
n_

i=1

(y = fi(~x) ^Ri(~x)).

QED (Lemma 1.1.11)

Using these facts, we see that the restrictions of many standard set theoretic
functions to M are ⌃1(M).

Lemma 1.1.12. The following functions are uniformly ⌃1(M):

(a) f(x) = x, f(x) = [x, f(x, y) = x [y, f(x, y) = x \ y, f(x, y) = x \ y
(set difference)

(b) f(x) = Cn(x), where C0(x) = x,Cn+1(x) = Cn(x) [
S
Cn(x)

(c) f(x1, . . . , xn) = {x1, . . . , xn}

(d) f(x) = i (where i < !)

(e) f(x1, . . . , xn) = hx1, . . . , xni

(f) f(x) = dom(x), f(x) = rng(x), f(x, y) = x00y, f(x, y) = x�y,
f(x) = x�1

(g) f(x1, . . . , xn) = x1 ⇥ x2 ⇥ . . .⇥ xn

(h) f(x) = (x)n
i

where (hz0, . . . , zn�1i)ni = zi and (u)n
i
= ; in all other

cases

(i) f(x, z) = x[z] =

8
<

:

x(z) if x is a function
and z 2 dom(x)
; otherwise.

Proof. We display sample proofs. (a) is straightforward. (b) follows by
induction on n. To see (c), y = {x1, . . . , xn} can be expressed by the ⌃0–
statement

x1, . . . , xn 2 y ^
^

z 2 y(z = x1 _ . . . _ z = xn).

1.1. ADMISSIBILITY 15

(d) follows by induction on i, since

0 = ;, i+ 1 = i [{i}.

The proof of (e) depends on the precise definition of hx1, . . . xni. If we want
each tuple to have a unique length, then the following definition recommends
itself: First define a notion of ordered pair by: (x, y) =: {{x}, {x, y}} Then
(x, y) is a ⌃1 function. Then if hx1, . . . , xni =: {(x1, 0), . . . , (xn, n� 1)}, the
conclusion is immediate.

For (f) we display the proof that dom(x) is a ⌃1 function. Note that
x, y 2 Cn(hx, yi) for a sufficient n. But since every element of dom(x) is
a component of a pair lying in x, it follows that dom(x) ⇢ Cn(x) for a
sufficient n. Hence y = dom(x) can be expressed as:

^
z 2 y

_
whw, zi 2 x ^

^
z, w 2 Cn(x)(hw, zi 2 x ! z 2 y).

To see (g), note that y = x1 ⇥ . . .⇥ xn can be expressed by:
V
z1 2 x1 . . .

V
zn 2 xnhz1, . . . , zni 2 y

^
V
w 2 y

W
z1 2 x1 . . .

W
zn 2 xnw = hz1, . . . , zni.

To see (h) note that, for sufficiently large m, y = (x)n
i

can be expressed by:
W
z0 . . . zn�1(x = hz0, . . . , zn�1i ^ y = zi)

_(y = ; ^
V
z0 . . . zn�1 2 Cm(x)x 6= hz0, . . . , zn�1i)

(i) is similarly straightforward. QED (Lemma 1.1.12)

The recursion theorem of classical recursion theory says that if g(n,m) is
recursive on ! and f : ! ! ! is defined by:

f(0) = k, f(n+ 1) = g(n, f(n)),

then f is recursive. The point is that the value of f at any n is determined by
its values at smaller numbers. Working with H instead of ! we can express
this in the elegant form:

Let g : ! ⇥H ! ! be ⌃1.
Then f : ! ! ! is ⌃1, where f(n) = g(n, f �n).

If we take g : H2 ! H, then f will be ⌃1 where f(x) = g(x, f �x) for x 2 H.
We can even take g as being a partial function on H2. Then f is ⌃1 where:

f(x) ' g(x, hf(z)|z 2 xi).

16 CHAPTER 1. TRANSFINITE RECURSION THEORY

(This means that f(x) is defined if and only if f(z) is defined for z 2 x and
g is defined at hx, f �xi, in which case the above equality holds.)

We now prove the same thing for an arbitrary admissible M . If f is a partial
⌃1 function and x ⇢ dom(f), we know by Lemma 1.1.3 that f 00x 2 M . But
then f �x 2 M , since f⇤

(z) ' hf(z), zi is a ⌃1 function with x ⇢ dom(f⇤
),

and f⇤00x = f � x. The recursion theorem for admissibles M = h|M |,2
, A1, . . . , Ani then reads:

Lemma 1.1.13. Let G(y, ~x, u) be a ⌃1(M) function in the parameter p.
Then there is exactly one function F (y, ~x) such that

F (y, ~x) ' G(y, ~x, hF (z, ~x)|z 2 yi).

Moreover, F is uniformly ⌃1(M) in p (i.e. the ⌃1 definition depends only
on the ⌃1 definition of G.)

Proof. We first show existence. Set:

�~x =: {f 2 M |f is a function ^ dom(f) is
transitive ^

V
y 2 dom(f)f(y) = G(y, ~x, f �y)}

Set F~x =
S
�~x;F = {hy, ~xi|y 2 F~x}. Then F is ⌃1(M) in p uniformly.

(1) F is a function.
Proof. Suppose not. Then for some ~x there are f, f 0 2 �~x, y 2
dom(f) \ dom(f 0

) such that f(y) 6= f 0
(y). Let y be 2–minimal with

this property. Then f � y = f 0 � y. But then f(y) = G(y, ~x, f � y) =

G(y, ~x, f 0 �y) = f 0
(y). Contradiction! QED (1)

Hence F (y, ~x) = f(y) if y 2 dom(f) and f 2 �~x.

(2) Let hy, ~xi 2 dom(F). Then y ⇢ dom(F~x), hy, ~x, hF (z, ~x)|z 2 yii 2
dom(G) and

F (y, ~x) = G(y, ~x, hF (z, ~x)|z 2 yi).

Proof. Let y 2 dom(f), f 2 �~x. Then

F (y, ~x) = f(y) = G(y, ~x, f �x)
= G(y, ~x, hF (z, ~x)|z 2 yi).

QED (2)

(3) Let y ⇢ dom(F~x), hy, ~x, F~x �yi 2 dom(G). Then y 2 dom(F~x).
Proof. By our assumption:

V
z 2 y

W
f(f 2 �~x ^ z 2 dom(f)). Hence

there is u 2 M such that
^

z 2 y
_

f 2 u(f 2 �~x ^ z 2 dom(f)).

1.1. ADMISSIBILITY 17

Set: f 0
=

S
(u \ �~x). Then f 0 2 �~x and y ⇢ dom(f 0

). Moreover
f 0 � y = F~x � y. Set f 00

= f 0 [{hG(y, ~x, f 0 � y), yi}. Then f 00 2 �~x and
y 2 dom(f 00

), where f 00 ⇢ F~x. QED (3)

This proves existence. To show uniqueness, we virtually repeat the proof
of (1): Let F ⇤ satisfy the same condition. Set F ⇤

~x
(y) ' F ⇤

(y, ~x). Suppose
F ⇤ 6= F . Then F ⇤

~x
(y) 6' F~x(y) for some ~x, y. Let y be 2–minimal such that

F ⇤
~x
(y) 6' F~x(y). Then F ⇤

~x
�y = F~x �y. Hence

F ⇤
~x
(y) ' G(y, ~x, hF ⇤

~x
(z)|z 2 yi)

' G(y, ~x, hF~x(z)|z 2 yi)
' F~x(y).

Contradiction! QED (Lemma 1.1.13)

We recall that the transitive closure TC(x) of a set x is recursively definable
by: TC(x) = x[

S
z2x TC(z). Similarly, the rank rn(x) of a set is definable

by rn(x) = lub{rn(z)|z 2 x}. Hence:

Corollary 1.1.14. TC, rn are uniformly ⌃1(M).

The successor function s↵ = ↵+ 1 on the ordinals is defined by:

sx =

⇢
x [{x} if x 2 On
undefined if not

which is ⌃1. The function ↵+ � is defined by:

↵+ 0 = ↵
↵+ s⌫ = s(↵+ ⌫)
↵+ � =

S
⌫<�

↵+ ⌫ for limit �.

This has the form:

x+ y ' G(y, x, hx+ z|z 2 yi).

Similarly for the function x · y, xy, . . . etc. Hence:

Corollary 1.1.15. The ordinal functions ↵ + 1,↵ + �,↵� , . . . etc. are uni-
formly ⌃1(M).

We note that there is an even more useful form of Lemma 1.1.13:

Lemma 1.1.16. Let G be as in Lemma 1.1.13. Let h : M ! M be ⌃1(M)

in p such that {hx, yi|x 2 h(y)} is well founded. There is a unique F such
that

F (y, ~x) ' G(y, ~x, hF (z, ~x)|x 2 h(y)i).

18 CHAPTER 1. TRANSFINITE RECURSION THEORY

Moreover, F is uniformly1
⌃1(M) in p.

The proof is exactly like that of Lemma 1.1.13, using minimality in the
relation {hx, yi|x 2 h(y)} in place of 2–minimality. We now consider the
structure of “really finite” sets in an admissible M .

Lemma 1.1.17. Let u 2 H!. The class u and the constant function
f(x) = u are uniformly ⌃1(M).

Proof. By 2–induction on u: Let u = {z1, . . . , zn}.

x 2 u $
nW

i=1

x = zi

x = u $
V
y 2 x y 2 u ^

nV
i=1

zi 2 x.

QED

x 2 ! is clearly a ⌃0 condition. But then:

Lemma 1.1.18. Let ! 2 M . Then the constant function f(x) = ! is
uniformly ⌃1(M).

Proof.

x = ! $ (

^
z 2 xz 2 ! ^ ; 2 x ^

^
z 2 xz [{z} 2 x)

(where ’z 2 !’ is ⌃0) QED

Lemma 1.1.19. The class Fin and the function f(x) = P!(x) are uniformly
⌃1(M), where Fin = {x 2 M |x < !},P!(x) = P(x) \ Fin.

Proof.

x 2 Fin $
W
n 2 !

W
ff : n $ x

y = P!(x) $
V
u 2 y(u ⇢ x ^ u 2 Fin) ^ ; 2 y^

^
V
z 2 x{z} 2 y ^

V
u, v 2 yu [v 2 y.

We must show that P!(x) 2 M . If ! /2 M , then rn(x) < ! for all x 2 M ,
Hence M = H! is closed under P!. If ! 2 M , there is ⌃1(M) f defined by

f(0) = {{z}|z 2 x}, f(n+ 1) = {u [v|hu, vi 2 f(n)2}.

Then P!(x) =
S
f 00! 2 M . QED (Lemma 1.1.19)

But then:
1
(“uniformly” meaning, of course, that the ⌃1 definition of F depends only on the ⌃1

definition of G, h.)

1.1. ADMISSIBILITY 19

Lemma 1.1.20. If ! 2 M , then H! 2 M and the constant function f(x) =
H! is uniformly ⌃1(M).

Proof. H! 2 M , since there is a ⌃1(M) function g defined by g(0) =

;, g(n + 1) = P!(g(n)). Then H! =
S
g00! 2 M and f(x) = H! is ⌃1(M)

since g and the constant function ! are ⌃1(M). QED (Lemma 1.1.20)

1.1.3 The constructible hierarchy

We recall Gödel’s definition of the constructible hierarchy hLr|r 2 Oni:

L0 = ;
L⌫+1 = Def(L⌫)

L� =
S
⌫<�

L⌫ for limit �,

where Def(u) is the set of all z ⇢ u which are hu,2i–definable in parameters
from u (taking Def(;) = {;}). (Note that if u is transitive, then u ⇢ Def(u)
and Def(u) is transitive.) Gödel’s constructible universe is then L =:

S
⌫2On

L⌫ .

By fairly standard methods one can show:

Lemma 1.1.21. Let ! 2 M . Then the function f(u) = Def(u) is uniformly
⌃1(M).

We omit the proof, which is quite lengthy. It involves “arithmetizing” the
language of first order set theory by identifying formulae with elements of !
or H!, and then showing that the relevant syntactic and semantic concepts
are M–recursive.

By the recursion theorem we can of course conclude:

Corollary 1.1.22. Let ! 2 M . The function f(↵) = L↵ is uniformly
⌃1(M).

The constructible hierarchy over a set u is defined by:

L0(u) = TC({u})
L⌫+1(u) = Def(L⌫(u))
L�(u) =

S
⌫<�

L⌫(u) for limit �.

Obviously:

20 CHAPTER 1. TRANSFINITE RECURSION THEORY

Corollary 1.1.23. Let ! 2 M . The function f(u,↵) = L↵(u) is uniformly
⌃1(M).

The constructible hierarchy relative to classes A1, . . . , An is defined by:

L0[
~A] = ;

L⌫+1[
~A] = Def(L⌫ [

~A], ~A)

L�[
~A] =

S
⌫<�

L⌫ [
~A] for limit �,

where Def(U,A1, . . . , An) is the set of all z ⇢ u which are
hu,2, A1 \ u, . . . , An \ ui–definable in parameters from u.

Much as before we have:

Lemma 1.1.24. Let ! 2 M . Let A1, . . . , An be �1(M) in the parameter p.
Then the function f(u) = Def(u,A1, . . . , An) is uniformly ⌃1(M) in p.

Corollary 1.1.25. Let ! 2 M . Let A1, . . . , An be as above. Then the
function f(↵) = L↵[

~A] is uniformly ⌃1(M) in p.

(In particular, if M = h|M |,2, A1, . . . , Ani. Then f(↵) = L↵[
~A] is uniformly

⌃1(M).)

(One could, of course, also define L↵(u)[~A] and prove the corresponding
results.)

Any well ordering r of a set u induces a well ordering of Def(u), since each
element of Def(u) is defined over hu,2i by a tuple h', x1, . . . , xni, where '
is a formula and x1, . . . , xn are elements of u which interpret free variables
of '. If u is transitive (hence u ⇢ Def(u)), we can also arrange that the well
ordering, which we shall call < (u, r), is an end extension of r. The function
< (u, r) is uniformly ⌃1. If we then set:

<0= ;, <⌫+1=< (L⌫ , <⌫)

<�=
S
⌫<�

<⌫ for limit �,

it follows that <⌫ is a well ordering of L⌫ for all ⌫. Moreover <↵ is an end
extension of <⌫ for ⌫ < ↵.

Similarly, if A is ⌃1(M) in p, there is a hierarchy <A
⌫ (⌫ 2 On\M) such that

<A
⌫ well orders L⌫ [A] and the function f(⌫) =<A

⌫ is ⌃1(M) in p (uniformly
relative to the ⌃1 definition of A).

By Corollary 1.1.25 we easily get:

1.1. ADMISSIBILITY 21

Lemma 1.1.26. Let M = h|M |,2, A1, . . . , Ani be admissible. Let ↵ =

On\M . Then hL↵[
~A],2, ~Ai is admissible.

Proof: Set: L
~A
⌫ = hL↵[

~A],2, ~Ai. Axiom (1) holds trivially in L
~A
⌫ .

To verify the ⌃0–axiom of subsets, let B be ⌃0(L
~A
↵). Let u 2 L

~A
↵ .

Claim u \B 2 L
~A
↵ .

Proof: Pick ⌫ < ↵ such that u 2 L
~A
⌫ and B is ⌃0 in parameters from L

~A
⌫ .

By ⌃0–absoluteness we have:

u \B 2 Def(L
~A

⌫) = L
~A

⌫+1 ⇢ L
~A

↵ .

QED (Claim)

We now prove ⌃0–collection. Let Rxy be a ⌃0–relation. Let u 2 L
~A
↵ such

that
V
x 2 u

W
yRxy.

Claim
W
v 2 L

~A
↵

V
x 2 u

W
y 2 vRxy.

For each x 2 u let g(x) be the least ⌫ < ↵ such that x 2 L
~A
⌫ . Then g is in

⌃1(M) and u ⇢ dom(g). Hence � = sup g00u < ↵ and

^
x 2 u

_
y 2 L

~A

�
Rxy.

QED (Lemma 1.1.26)

Definition 1.1.2. Let ↵ be an ordinal.

• ↵ is admissible iff L↵ is admissible

• ↵ is admissible in A1, . . . , An ⇢ iff L
~A
↵ =: hL↵[

~A],2 ~Ai is admissible

• f : ↵n ! ↵ is ↵–recursive (in ~A) iff f is ⌃1(L↵)(⌃1(L
~A
↵))

• R ⇢ ↵n is r.e. (in ~A) iff R is ⌃1(L↵)(⌃1(L
~A
↵)).

Note. The theory of ↵–recursive functions and relations on an admissible
↵ has been built up without references to L↵, using a formalized notion of
↵–bounded calculus (Kripke) or ↵–bounded algorithm (Platek).

Similarly for ↵–recursiveness in A1, . . . , An, taking the Ai as "oracles".

22 CHAPTER 1. TRANSFINITE RECURSION THEORY

A transitive structure M = h|M |,2 ~Ai is called strongly admissible iff, in
addition to the Kripke–Platek axioms, it satisfies the ⌃1 axiom of subsets:

x \ {z|'(z)} is a set (for ⌃1 formulae ').

Kripke defines the projectum �↵ of an admissible ordinal ↵ to be the least
� such that A \ � /2 L↵ for some ⌃1(L↵) set A. He shows that �↵ = ↵ iff
↵ is strongly admissible. He calls ↵ projectible iff �↵ < ↵. There are many
projectible admissibles — e.g. �↵ = ! if ↵ is the least admissible greater
than !. He shows that for every admissible ↵ there is a ⌃1(L↵) injection f↵
of L↵ into �↵.

The definition of projectum of course makes sense for any ↵ � !. By
refinements of Kripke’s methods it can be shown that f↵ exists for every
↵ � ! and that �↵ < ↵ whenever ↵ � ! is not strongly admissible. We shall
— essentially — prove these facts in chapter 2 (except that, for technical
reasons, we shall employ a modified version of the constructible hierarchy).

1.2 Primitive Recursive Set Functions

1.2.1 PR Functions

The primitive recursive set functions comprise a collection of functions

f : V n ! V

which form a natural analogue of the primitive recursive number functions in
ordinary recursion theory. As with admissibility theory, their discovery arose
from the attempt to generalize ordinary recursion theory. These functions
are ubiquitous in set theory and have very attractive absoluteness properties.
In this section we give an account of these functions and their connection
with admissibility theory, though — just as in §1 — we shall suppress some
proofs.

Definition 1.2.1. f : V n ! V is a primitive recursive (pr) function iff it is
generated by successive application of the following schemata:

(i) f(~x) = xi (here ~x is x1, . . . , xn)

(ii) f(~x) = {xi, xj}

(iii) f(~x) = xi \ xj

(iv) f(~x) = g(h1(~x), . . . , hm(~x))

