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hV, ~Ai. (Here, Karp refined the construction so as to show that F ~A
s �M = FM

s

whenever M = h|M |,2, A1 \ |M |, . . . , An \ |M |i is transitive and closed
under function primitive recursive in A1, . . . , An. It can also be shown that
M = h|M |,2, A1, . . . , Ani is closed under functions primitive recursive in
A1, . . . , An iff |M | is primitive recursive closed and M is amenable, (i.e.
x \Ai 2 M for all x 2 M , v = 1, . . . , n).

A full account of these results can be found in [PR] or [AS].

We can now state the uniformity involved in Lemma 2.2.19: Let Ai ⇢
V be primitive recursive in B1, . . . , Bm with primitive recursive def si in
ḃ1, . . . , ḃm (i = 1, . . . ,m). Let f be primitive recursive in A1, . . . , An with
primitive recursive definition s in ȧ1, . . . , ȧn. Then f is primitive recursive
in B1, . . . , Bn by a primitive recursive definition s0 in ḃ1, . . . , ḃm. s0 is uniform
in the sense that it depends only on s1, . . . , sn and s, not on B1, . . . , Bm. In
fact, the induction on the schemata in s implicitly describes an algorithm
for a function

s1, . . . , sm, s 7! s0

with the following property: Let B1, . . . , Bm be any classes. Let si define gi
from ~B(i = 1, . . . , n). Set: Ai = {x|gi(x) 6= 0} in i = 1, . . . , n. Let f be the
function defined by s from ~A. Then s0 defines f from ~B.

Note hH!,2i is an admissible structure; hence Fs �H! = fH!
s . This shows

that the constant function ! is not primitive recursive, since ! /2 H!. It
can be shown that f : ! ! ! is primitive recursive in the sense of ordinary
recursion theory iff

f⇤
(x) =

⇢
f(x) if x 2 !
0 if not

is primitive recursive over H!. Conversely, there is a primitive recursive map
� : H! $ ! such that f : H! ! H! is primitive recursive over H! iff �f��1

is primitive recursive in sense of ordinary recursion theory.

1.3 Ill founded ZF� models

We now prove a lemma about arbitrary (possibly ill founded) models of
ZF� (where the language of ZF� may contain predicates other than 2).
Let A = hA,2A, B1, . . . , Bni be such a model. For X ⇢ A we of course
write A|X = hX,2A \X2, . . .i. By the well founded core of A we mean
the set of all v 2 A such that 2A \C(x)2 is well founded, where C(x) is
the closure of {x} under 2A. Let wfc(A) be the restriction A|C of A to
its well founded core C. Then wfc(A) is a well founded structure satisfying
the axiom of extensionality, and is, therefore, isomorphic to a transitive
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structure. Hence A is isomorphic to a structure A0 such that wfc(A0
) is

transitive (i.e. wfc(A0
) = hA0,2,mi where A0 is transitive). We call such A0

grounded , defining:

Definition 1.3.1. A = hA,2A, . . .i is grounded iff wfc(A) is transitive.

Note. Elsewhere we have called these models "solid" instead of "grounded".
We avoid that usage here, however, since solidity — in quite another sense
— is an important concept in inner model theory.

By the argument just given, every consistent set of sentences in ZF� has a
grounded model. Clearly

(1) ! ⇢ wfc(A) if A is grounded.

For any ZF� model A we have:

(2) If x 2 A and {z|z 2A x} ⇢ wfc(A), then x 2 wfc(A).

Proof: C(x) = {x} [
S
{C(z)|z 2A x}. QED

By ⌃0–absoluteness we have:

(3) Let A be grounded. Let ' be ⌃0 and let x1, . . . , xn 2 wfc(A). Then

wfc(A) |= '[~x] $ A |= '[~x].

By 2–induction on x 2 wfc(A) it follows that the rank function is
absolute:

(4) rn(x) = rn
A
(x) for x 2 wfc(A) if A is grounded.

The converse also holds:

(5) Let rn
A
(x) 2 wfc(A). Then x 2 wfc(A).

Proof: Let r = rn
A
(x). Then r is an ordinal by (3). Assume that r is the

least counterexample. Then rn
A
(z) < r for z 2A x. Hence {z|z 2A x} ⇢

wfc(A) and x 2 wfc(A) by (2).

Contradiction! QED

We now prove:
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Lemma 1.3.1. Let A be grounded. Then wfc(A) is admissible.

Proof: Axiom (1) and axiom (2) (⌃0–subsets) follow trivially from (3). We
verify the axiom of ⌃0 collection. Let R(x, y) be ⌃0(wfc(A)). Let u 2 wfc(A)
such that

V
x 2 u

W
yR(x, y). It suffices to show:

Claim:
W
v
V
x 2 u

W
y 2 vR(x, y).

Let R0 be ⌃0(A) by the same definition in the same parameters as R. Then
R = R0\wfc(A)2 by (3). If A = wfc(A), there is nothing to prove, so suppose
not. Then there is r 2 On

A such that r /2 wfc(A). Hence

A |= rn(y) < r for all y 2 wfc(A)

by (4). Hence there is an r 2 On
A such that

(6)
V
x 2 u

W
y(R0

(x, y) ^ A |= rn(y) < r)

Since A models ZF�, there must be a least such r. But then:

(7) r 2 wfc(A).

Since by (2) there would otherwise be an r0 such that A |= r0 < r and
r0 /2 wfc(A). Hence (6) holds for r0, contradicting the minimality of r.

QED (7)

But there is w such that

(8)
V
x 2 u

W
y 2 w(R0

(x, y) ^ rn(y) < r).

Let A |= v = {y 2 w|rn(y) < r}. Then rnA
(v)  r. Hence rnA

(v) 2 wfc(A)
and v 2 wfc(A) by (5). But:

^
x 2 u

_
y 2 vRxy.

QED (Lemma 1.3.1)

As immediate corollaries we have:
Corollary 1.3.2. Let � = On\wfc(A). Then L�(u) is admissible whenever
u 2 wfc(A).
Corollary 1.3.3. LA

�
= hL�[A], A \ L�[A]i is admissible whenever A 2

⌃!(A) (since hA, Ai is a ZF
� model.

Note. It is clear from the proof of lemma 1.3.1 that we can replace ZF
�

by KP (Kripke–Platek set theory). In this form Lemma 1.3.1 is known as
Ville’s Lemma.


