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Proof: X satisfies the extensionality axiom. Hence by Mostowski’s isomor-
phism theorem there is 7 : U +— X, where U is transitive. Now let f be
rud and x1,...,7, € U. Then there is ¥’ € X such that ¢/ = f(7(Z)), since
X <5, U. Let 7(y) = ¢/. Then y = f(Z), since the condition 'y = f(Z)’ is
Yo and 7 is X1 —preserving. QED (Lemma 2.2.19)

The condensation lemma for rud closed M = (|M|, €, Ay,..., A,) is much
weaker, however. We state it for the case n = 1.

Lemma 2.2.20. Let M = (|M|, €, A) be transitive and rud closed. Let
X <x, M. There is an isomorphism 7 : M <— X, where M = (|[M|, €, A)
is transitive and rud closed. Moreover:

(a) 7(ANz)=ANn(z)

(b) Let f berud in A. Let f be characterized by: f(Z) = fo(Z, AN fi(Z)),
where fo, fi are rud. Set: f(Z) =: fo(T, AN f1(Z)). Then:

©(f(@) = (7 ().

The proof is left to the reader.

2.3 The J, hierarchy

We are now ready to introduce the alternative to Goédel’s constructible hier-
archy which we had promised in §1. We index it by ordinals from the class
Lm of limit ordinals.

Definition 2.3.1.

J, = Rud(0)
Js+w = Rud(Jp) for B € Lm
Jy= U J, for A a limit point of Lm

Y<A
It can be shown that L = |JJ, and, indeed, that L, = J, for a great many
(0%
« (for instance closed «). Note that J,, = L, = H,.

By §2 Corollary 2.2.14 we have:
P(Jo) N Jatw = Def(Jy),

which pinpoints the resemblance of the two hierarchies. However, we shall
not dwell further on the relationship of the two hierarchies, since we intend
to consequently employ the J-hierarchy in the rest of this book. As usual,
we shall often abuse notation by not distinguishing between J,, and (J,, €).
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Lemma 2.3.1. rn(J,) = OnnJ, = a.

Proof: By induction on a € Lm. For o = w it is trivial. Now let o = f+w,
where # € Lm. Then § = OnnJg € Def(Jg) C J,. Hence g +n € J, for
n < w by rud closure. But rn(J,) < 8+ w = « since J, is the rud closure
of Jo, U{Jy}. Hence OnNJ, = a =rn(Jy).

If o is a limit point of Lm the conclusion is trivial. QED (Lemma 2.3.1)
To make our notation simpler, define

Definition 2.3.2. Lm* = the limit points of Lm.

It is sometimes useful to break the passage from J, to J,4, into w many
steps. Any way of doing this will be rather arbitrary, but we can at least do

it in a uniform way. As a preliminary, we use the basis theorem (§2 Theorem
2.2.15) to prove:

Lemma 2.3.2. There is a rud function s : V — V such that for all U:

(a) U C s(U)
(b) rud(U) = U s"(U)

nw

(c) If U is transitive, so is s(U).

Proof: Define rud functions G;(i = 0,1,2,3) by:

G0($7y7 ) ( )
Gl(aj7y7 ) (33 Y,z )
Gg(l’,y, )_ {'T (y7 )}
Gg(l’,y, ) =a* Yy

Set:
9 3
s(U)=Uu|JFU*ulGYU?.
=0 =0

(a) is then immediate, (b) is immediate by the basis theorem. We prove (c).

Let a € s(U). We claim: a C s(U). There are 14 cases: a € U, a = F;(x,y)
for an ¢ = 0,...,8, where z,y € U, and a = G;(z,y,2) where z,y,z € U
and ¢ = 0,...,3. Each of the cases is quite straightforward. We give some
example cases:
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a=F(r,y) =z®y. If 2 € a, then z = (2/,y’) where 2/ € z, ¢/ € y.
But then 2/,y € U by transitivity and z = Go(2/,y/,2’) € s(U).

a=Fs(z,y) = {(w, z,v)|z € x A (u,v) € y}. If ' = (w, z,v) € a, then
w, z,v € U by transitivity and o’ = G1(w, z,v) € s(U).

a = Fy(z,y). If ' € a, then @’ = 2*z where z € y. Hence z € U by
transitivity and o/ = G3(z, 2, 2) € s(U).

a = Go(z,y,2) = {{z},{z,y}}. Then a C FJU% C s(U).

a = Gl(m,y,z) = (x7y7 Z) = {{1’},{.%‘, (y7 Z)}} Then {l’} = Fo(flf,x) €
s(U) and {z, (y,2)} = Ga(x,y, 2) € s(U). QED (Lemma 2.3.2)

If we then set:
Definition 2.3.3. S(U) = s(UU{U}) we get:

Corollary 2.3.3. S is a rud function such that

(a) UU{UY} C S(U)
(b) U S"(U) =Rud(U)

n<w

(c) If U is transitive, so is S(U).

We can then define:

Definition 2.3.4.

So=10

Sy+1=5(5))

Sy = U S, for limit A.
v<A

Obviously then: J, = S, for v € Lm. (It would be tempting to simply
define J, = S, for all v € On. We avoid this, however, since it could lead to
confusion: At successors v the models .S, do not have very nice properties.
Hence we retain the convention that whenever we write J, we mean « to be
a limit ordinal.)

Each J, has ¥; knowledge of its own genesis:

Lemma 2.3.4. (S,|v < a) is uniformly X1(Jy).

Proof: y =5, <\ f(p(f) Ny = f(v)), where ¢(f) is the ¥¢ formula:
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f is a function Adom(f) € OnAf(0) =0

ANE € dom(f)(§+1 € dom(f) = f(§+1) = S(f(£)))
AN € dom(f|(Ais alimit — f(A) = f"N).

Thus it suffices to show that the existence quantifier can be restricted to J,
— i.e.

Claim (S,|v < 1) € J, for 7 < a.

Case 1 o = w is trivial.

Case 2 a=f+4+w, 8 € Lm.

Then (S,|v < ) € Def(Jg) C J,. Hence Sg = |J S, € Jo. By rud
v<pB
closure it follows that Sgi, € J, for n C w. Hence S [v € J, for

v <. QED (Case 2)

Case 3 a € Lm".
This case is trivial since if v < 8 € aNLm. Then S|v € Jg C J,.
QED (Lemma 2.3.4)

We now use our methods to show that each J, has a uniformly ¥;(J,) well
ordering. We first prove:
Lemma 2.3.5. There is a rud function w : V. — V such that whenever r
is a well ordering of u, then w(u,r) is a well ordering of s(u) which end
extends r.
Proof: Let 73 be the rlexicographic ordering of u?:
(x,y)ro(z,w) <> (zrzV (x = z A yrw)).

Let r3 be the r—lexicographic ordering of u3. Set:

Uy = U, Ul4; = FZ-HUQ fori=20,...,8, w14 = G;/u?’ fori=0,...,3.
Define a well ordering w; of u; as follows: wg =1, For i =0,...,9 set

rwiry < Va,b € u?(z = Fy(a) Ny = F;(b)A
Aarsb A N\ a' € u?(a’'raa — x # Fy(a'))A
ANY € u2(breb — y # F(V)))

For ¢ = 0,...,3 let wigy; have the same definitions with G; in place of F;
and u3, r3 in place of u?, rs.
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We then set:

w=w(w) = {(a) € s V (o Aoy ¢ Y
Vi € Uprn A ¢ Una))}

n<i

(where | u, = 0). QED (Lemma 2.3.5)
h<0

If r is a well ordering of u, then
ro = {{z, y)[(x,y) €rV(z cury=u)}
is a well ordering of w U {u} which end extends r. Hence if we set:

Definition 2.3.5. W(u,r) =: w(uU {u},1y,).

We have:

Corollary 2.3.6. W is a rud function such that whenever r is a well order-
ing of u, then W (u,r) is a well ordering of S(u) which end extends r.

If we then set:

Definition 2.3.6.
<8p= 0
<Sp41= W(SV7 <Su)

<s,= U <g, for limit A,
[ 20

it follows that <g, is a well ordering of S, which end extends <g, for all
v <a.

Definition 2.3.7. <,=<;,=:<g, for a € Lm.

Then <, is a well ordering of J, for a € Lm.
By a close imitation of the proof of Lemma 2.3.4 we get:

Lemma 2.3.7. (<g, |v < «) is uniformly 31(Jy)-

Proof:
y=<s,4 \ I\ 9e(f) N (f,9) Ay = g(v))

where ¢ is as in the proof of Lemma 2.3.4 and 1 is the Xy formula:



2.3. THE J, HIERARCHY 69

g is a function A dom(g) = dom(f)
Ag(0O=0DAAE € dom(g)|§ + 1 € dom(g) —

=g+ 1) =W(f(£),9(8)))
AN € dom(g) (Ais alimit — g(A) = Jg"N).

Just as before, we show that the existence quantifiers can be restricted to
Ja. QED (Lemma 2.3.7)

But then:

Corollary 2.3.8. <,= |J <g, is a well ordering of Jo which is uniformly
v<ao

Y1(Ja). Moreover <, end extends <, for v € Lm, v < a.

Corollary 2.3.9. u, is uniformly ¥1(Ja), where uq(z) ~ {z|z <o x}.

Proof:
Y = uq(x) < \/y(m eSyNy={z¢€ S|z <g, z})
QED (Corollary 2.3.9)

Note. We shall often write <z, for <,. We also write <, or <j or <y, for

U <a- Then <y, well orders L and is an end extension of <,,.
aeOn

We obtain a particularly strong form of Gddel’s condensation lemma;

Lemma 2.3.10. Let X <x, Jo. Then there are @, such that w : Jy < X,

Proof: By §2 Lemma 2.2.19 there is rud closed U such that U is transitive
and 7 :<— X. Note that the condition

S(f.v) < f=(Selv < §)
is X, since:

S(f,v)< (f is a function A
Adom(f)=v A f(0)=0if 0 < vA
A& € dom(f)(§+1 € dom(f) —
S TE+1) = S(FE)).

Let @ = OnNU and let 7 < @. Let m(¥) = v. Then f = (5[ <v) € X
since X <x, Jo. Let m(f) = f. Then f = (S¢|§ < 7), since S(f,7). But
then Jg = |J S¢ C U. But since 7 is ¥ preserving we know that

{<a

reU—\fiveUS(f,v)hNzeUf'v)
*)J?GJE.

QED (Lemma 2.3.10)
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Corollary 2.3.11. Let : Jg: Jg —x, Jo. Then:

(a) v <1< 7(v)<m(r) forv,T < @.

(b) x <py<+ 7w(x) <pn(y) for x,y € Jg.
Hence:

(c) v<m(v) forv <a.

(d) v <p m(x) for x € J5.

Proof: (a), (b) follow by the fact that < NJ2 and < NJ? =<, are uni-
formly 2 (J,). Butif 7(v) < v, then v, w(v), 7*(v), . .. would form an infinite
decreasing sequence by (a). Hence (c) holds. Similarly for (d). QED
(Corollary 2.3.11)

2.3.1 The J/-hierarchy

Given classes Aq,..., A, one can generalize the previous construction by
forming the constructible hierarchy (Jfl """ An |a € Lim) relativized to Ay, ..., Ay,
We have this far dealt only with the case n = 0. We now develop the case

n = 1, since the generalization to n > 1 is then entirely straightforward.
(Moreover the case n =1 is sufficient for most applications.)

Definition 2.3.8. Let A C V. (J4|a € Lm) is defined by:

Jit = (JalAl, €, AN Ja[A])
Ju|A] = RudA(0) = H,,
Jg_;,_w[A] = RudA(Jg) for g € Lm

I[A] = U J[A] for A € Lm*
v<A

Note. AN Jy[A4] is treated as an unary predicate.
Thus every J2 is rud closed. We set
Definition 2.3.9.
L[A] = J[A] = Lé JalAl;
acOn

LA = JA = (L[A],€, AN LIA]).

Note. that J,[0] = J, for all @ € Lm.

Repeating the proof of Lemma 1.1.1 we get:
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Lemma 2.3.12. rn(J2) = OnNJZ = a.

We wish to break J4

aw into w smaller steps, as we did with Jy.,. To this
end we define:

Definition 2.3.10. S4(u) = S(u) U {ANu}.

Corresponding to Corollary 2.3.3 we get:

Lemma 2.3.13. S4 is a function rud in A such that whenever u is transi-
tive, then:

(a) wU{u} U{ANu} C S(u)
(b) U (8%)"(u) = Ruda(u)

n<w

(c) S(u) is transitive.

Proof: (a) is immediate. (c) holds, since S(u) is transitive, a C S(u) and
ANwu C u. (b) holds since S(u) D u is transitive and A Nu C u. But if we
set: U = J,-,(S)™(u), then U is rud closed and (U, AN U) is amenable.
QED (Lemma 2.3.13)

We then set:

Definition 2.3.11.
SA =

Saa = 84(83)
S = |J S for limit .

<A

We again have: J,[A] = S4 for a € Lm. A close imitation of the proof of
Lemma 2.3.4 gives:

Lemma 2.3.14. (S2|v < a) is uniformly $1(J2).
Proof: This is exactly as before except that in the formula ¢(f) we replace
S(f(v)) by SA(f(v)). But this is Xo(J2), since:
z e Shu) < (xeSu)Ve=ANu),
hence:

y=S4u) < Nz€yzecS4u)
ANzeSu)zeyAnVzeyz=ANu.
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QED (Lemma 2.3.14)

We now show that J2 has a uniformly ;(J2) well ordering, which we call
<§ or <J&4.

Set:
Definition 2.3.12.

WA(u, 1) ={(z, y)|(z,y) € W(u,r)V
(xeSu)hNy=ANu¢ S(u)}

If u is transitive and  well orders u, then W#(u,r) is a well ordering of
S4(u) which end extends 7.

We set:
Definition 2.3.13.
<=0
<pa=WASH, <)
<{= U <{ for limit <.

<A

Then <2 is a well ordering of S7' which end extends <‘£4 for ¢ < v. In
particular <2 well orders J2 for a € T. We also write: <J&4::<£. We set:
<pa=<ga=<i=1 U <4

v<oo

Just as before we get:

Lemma 2.3.15. (<2 |v < «) is uniformly %1(J2).

The proof is left to the reader. Just as before we get:

Lemma 2.3.16. <2 and f(u) = {z]z <2 u} are uniformly $1(J2).

Up until now almost everything we proved for the J, hierarchy could be
shown to hold for the Jof‘ hierarchy. The condensation lemma, however, is
available only in a much weaker form:

Lemma 2.3.17. Let X <y, J{;‘. Then there are @, m, A such that
T JA s X
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Proof: By Lemma 2.2.19 there is (U, A) such that 7 : (U, 4) +— X and
(U, A) is rud closed. As before, the condition

SAfv) o f=(SElv <)
si Xo in A. Now let 7 <@, w(v) = v. As before f = (S¢[{ <v) € X. Let
7n(f = f. Then f = (Sf[f < 7), since SA(f,7). Then J2 C gyaS? cU.
UcC JaZ then follows as before. QED (Lemma 2.3.17)
A sometimes useful feature of the JZ2 hierarchy is:

Lemma 2.3.18. z € J& — TC(x) € JZ.

(Hence (TC(x)|z € J2) is Iy (JZ) since u = TC(z) is defined by:
w 1s transitive Az C u A \v((v is transitive Ao Cv) = u C v)
Proof: By induction on a.

Case 1 o = w (trivial)

Case 2 a=f+w, B € Lim.
Then every x € JZ' has the form f(Z) where z1,...,2, € Jg[A] U
{J3[A]} and f is rud in A. By Lemma 2.2.2 we have

UPJ: C U TC(z) C Jg[A] for some p < w
i=1

Hence TC(x) = Cp(z) UTC(U;, TC(z:), where (T'C(z)|z € Jg[A]) is
J BAfdeﬁnable, hence an element of JZ'.

Case 3 a € Lm* (trivial). QED (Lemma 2.3.18)
Corollary 2.3.19. If o € Lm*, then (TC(x)|x € J2) is uniformly Ay (J2).
Proof: We have seen that it is I (JZ2). But TC [ J2 € J2 for all 8 € Lm Na.
Hence u = TC(x) is definable in J2 by:

V f(f is a function A dom(f) is transitive Au = f(z)
ANz € dom(f)f(x) =xzU fnz)

QED (Corollary 2.3.19)



