
2.5. THE ⌃1 PROJECTUM 83

Claim 2 M is amenable.

Let x 2 SA

�(⌫)
. Then �(B\SA

⌫ ) = B\SA

�(⌫)
and x\B = (B\SA

⌫ )\x 2
U , since SA

⌫ is transitive. QED (Lemma 2.4.18)

Lemma 2.4.19. Let M,M be J–models. Then � : M !⌃0 M cofinally iff
� : M !⌃0 M and � takes On

M
to OnM cofinally.

Proof: (!) is obvious. We prove ( ). The proof of �(SA
⌫ ) = SA

�(⌫)
goes

through as before. Thus if x 2M , we have x 2 SA

⇠
for some ⇠. Let ⇠  �(⌫).

Then x 2 SA

�(⌫)
= �(SA

⌫ ). QED (Lemma 2.4.19)

2.5 The ⌃1 projectum

2.5.1 Acceptability

We begin by defining a class of J–models which we call acceptable. Every
J↵ is acceptable, and we shall see later that there are many other naturally
occurring acceptable structures. Accepability says essentially that if some-
thing dramatic happens to � at some later stage ⌫ of the construction, then
⌫ is, in fact, collapsed to � at that stage:

Definition 2.5.1. J
~A
↵ is acceptable iff for all �  ⌫ < ↵ in Lm we have:

(a) If a ⇢ � and a 2 J
~A
⌫+! \ J ~A

⌫ , then ⌫  � in J
~A
⌫+!.

(b) If x 2 J
~A

�
and  is a ⌃1 condition such that J

~A
⌫+! |=  [�, x] but

J
~A
⌫ 6|=  [�, x], then ⌫  � in J

~A
⌫+!.

A J–model hJ ~A
↵ , ~Bi is acceptable iff J

~A
↵ is acceptable.

Note. ’Acceptability’ referred originally only to property (a). Property (b)
was discovered later and was called ’⌃1 acceptability’.

In the following we shall always suppose M to be acceptable unless otherwise
stated. We recall that by Corollary 2.4.8 every x 2M has a cardinal x = x

M .
We call � a cardinal in M iff � = � (i.e. no smaller ordinal is mappable onto
� in M).

Lemma 2.5.1. Let M = hJA
↵ , Bi be acceptable. Let � > ! be a cardinal in

M . Then:
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(a) � 2 Lm
⇤

(b) JA
� �⌃1 JA

↵

(c) x 2 JA
� !M \ P(x) ⇢ JA

� .

Proof: We first prove (a). Suppose not. Then � = �+!, where � 2 Lm,� �
!. Then f 2M maps � onto � where: f(2i) = i, f(2i+ 1) = � + i, f(⇠) = ⇠
for ⇠ � !.
Contradiction! QED (a)

If (b) were false, there would be ⌫ such that �  ⌫ < ↵, and for some x 2 JA
�

and some ⌃1 formula  we have:

JA

⌫+! |=  [x], JA

⌫ |= ¬ [x].

But then x 2 JA

�
for some � < � in Lm. Hence �  ⌫  �.

Contradiction! QED (b)

To prove (c) suppose not. Then x is not finite. Let � = x in JA
� . Then

� � !,� 2 Lm by (a). Let f 2 JA
� map � onto x. Let u ⇢ x such that

u /2 JA
� . Then v = f�100u /2 JA

� . Let ⌫ � � such that v 2 JA
⌫+! \ JA

⌫ . Then
�  ⌫  �.
Contradiction! QED (Lemma 2.5.1)

Remark We have stated and proven this lemma for M of type h1, 1i, since
the extension to M of arbitrary type is self evident.

The most general form of GCH says that if P(x) exists and x � !, then
P(x) = x

+ (where ↵+ is the least cardinal > ↵).

As a corollary of Lemma 2.5.1 we have:

Corollary 2.5.2. Let M, � be as above. Let a 2M,a ⇢ JA
� . Then:

(a) hJA
� , ai models the axiom of subsets and GCH.

(b) If � is a successor cardinal in M , then hJA
� , ai models ZFC

�.

(c) If � is a limit cardinal in M , then hJA
� , ai models Zermelo set theory.

Proof: (a) follows easily from Lemma 2.5.1 (c). (c) follows from (a) and rud

closure of JA
� . We prove (b). We know that JA

� is rud closed and that the
axiom of choice holds in the strong form:

V
x
W
⌫
W
f f maps ⌫ onto x. We

must prove the axiom of collection. Let R(x, y) be ⌃!(J
A
� ) and let u 2 JA

�

such that
V
x 2 u

W
yR(x, y).
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Claim
W
⌫ < �

V
x 2 u

W
y 2 JA

⌫ R(x, y). Suppose not.

Let � = �+ in M . For each ⌫ < � there is a partial map f 2M of � onto ⌫.
But then f 2 JA

� since f ⇢ ⌫ ⇥ � 2 JA
� . Set f⌫ — the <JA

�
— least such f .

For x 2 u set:

h(x) = the least µ such that
_

y 2 JA

µ R(y, x).

Then suph00u = � by our assumption. Define a partial map k on u ⇥ � by:
k(x, ⇠) ' fh(x)(⇠). Then k is onto �. But k 2M , since k is ⌃1(J

A
� ). Clearly

u⇥ � = � in M , so �  � < � in M .
Contradiction! QED (Corollary 2.5.2)

Corollary 2.5.3. Let M, � be as above. Then

JA

� = HM

� =:

[
{u 2M |u is transitive ^ u < � in M}.

Proof: Let u 2 M be transitive and u < � in M . It suffices to show that
u 2 JA

� . Let ⌫ = u < � in M . Let f 2M map ⌫ onto u. Set:

r = {h⇠, �i 2 ⌫2|f(⇠) 2 f(�)}.

Then r 2 JA
� by Lemma 2.5.1 (c), since ⌫2 2 JA

� . Let � = ⌫
+

= the
least cardinal > ⌫ in M . then JA

�
models ZFC

� and r, ⌫ 2 JA

�
. But then

f 2 JA

�
⇢ JA

� , since f is defined by recursion on r : f(x) = f 00r00{x} for
x 2 ⌫. Hence u = rng(f) 2 JA

� . QED (Corollary 2.5.3)

Lemma 2.5.4. If ⇡ : M !⌃1 M and M is acceptable, then so is M .

Proof: M is a J–model by §4. Let e.g. M = JA
↵ ,M = JA

↵
. Then M has a

counterexample — i.e. there are ⌫ < ↵,� < ⌫, a such that card(⌫) > � in
J⌫+! and either a ⇢ � and a 2 JA

⌫+!
\JA

⌫
or else a 2 JA

�
, JA

⌫+!
|=  [a,�] and

JA

⌫
|= ¬ [a,�], where  is ⌃1. But then letting ⇡(�, ⌫, a) = �, ⌫, a it follows

easily that �, ⌫, a is a counterexample in M .
Contradiction! QED (Lemma 2.5.4)

Lemma 2.5.5. If ⇡ : M !⌃0 M cofinally and M is acceptable, then so is
M .

Proof: M is a J–model by §4. Let M = JA
↵ ,M = JA

↵
.

Case 1 ↵ = !.
Then M = M = JA

! ,⇡ = id.



86 CHAPTER 2. BASIC FINE STRUCTURE THEORY

Case 2 ↵ 2 Lm
⇤.

Then “M is acceptable” is a ⇧1(M) condition. But then ↵ 2 Lm
⇤ and

M must satisfy the same ⇧1 condition.

Case 3 a = � + !,� 2 Lm.
Then ↵ = � + !,� 2 Lm and � = ⇡(�). Then JA

�
= ⇡(JA

�
) is

acceptable, so there can be no counterexample h�, ⌫, ai 2 JA

�
.

We show that there can be no counterexample of the form h�,�, ai. Let
� = card(�) in M . The statement card(�)  � is ⌃1(M). Hence card(�) 
� = ⇡(�) in M . Hence there is no counterexample h�,�, ai with � � �.
But since M is acceptable and �  � is a cardinal in M , the following ⇧1

statements hold in M by Lemma 2.5.1
V
� < �

V
a ⇢ �a 2 JA

�

V
� < �

V
x 2 JA

�
(
W
yR(x, �)!

W
y 2 JA

�
)

where R is ⌃0(M).

But then the corresponding statements hold in M . Hence h�,�, ai cannot be
a counterexample for � < �. QED (Lemma 2.5.5)

2.5.2 The projectum

We now come to a central concept of fine structure theory.

Definition 2.5.2. Let M be acceptable. The ⌃1–projectum of M (in sym-
bols ⇢M ) is the least ⇢  OnM , such that there is a ⌃1(M) set a ⇢ ⇢ with
a /2M .

Lemma 2.5.6. Let M = hJA
↵ , Bi, ⇢ = ⇢M . Then

(a) If ⇢ 2M , then ⇢ is cardinal in M .

(b) If D is ⌃1(M) and D ⇢ JA
⇢ , then hJA

⇢ , Di is amenable.

(c) If u 2 JA
⇢ , there is no ⌃1(M) partial map of u onto JA

⇢ .

(d) ⇢ 2 Lim
⇤

Proof:

(a) Suppose not. Then there are f 2 M , � < ⇢ such that f maps � onto ⇢.
Let a ⇢ ⇢ be ⌃1(M) such that a /2 M . Set ã = f�100a. Then ã is ⌃1(M)
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and ã ⇢ �. Hence ã 2M . But then a = f 00ã 2M by rud closure.
Contradiction! QED (a)

(b) Suppose not. Let u 2 JA
⇢ such that D \ u /2 JA

⇢ . We first note:

Claim D \ u /2M .
If ⇢ = ↵ this is trivial, so let ⇢ < ↵. Then ⇢ is a cardinal by (a) and
by Lemma 2.5.1 we know that P(u) \M ⇢ JA

⇢ . QED (Claim)

By Corollary 2.5.2 there is f 2 JA
⇢ mapping a ⌫ < ⇢ onto u. Then d =

f�1u
(D\u) is ⌃1(M) and d ⇢ ⌫ < ⇢. Hence d 2M . Hence D\u = f 00d 2M

by rud closure. QED (b)

(c) Suppose not. Let f ba a counterexample. Set a = {x 2 u|x 2 dom(f) ^
x /2 f(x)}. Then a is ⌃1(M), a ⇢ u 2 M . Hence a 2 JA

⇢ by (b). Let
a = f(x). Then x 2 f(x)$ x /2 f(x).
Contradiction! QED (c)

(d) If not, then ⇢ = �+! where � 2 Lim. But then there is a ⌃1(M) partial
map of � onto ⇢, violating (c). QED (Lemma 2.5.6)

Remark We have again stated and proven the theorem for the special case
M = hJA

↵ , Bi, since the general case is then obvious. We shall continue
this practice for the rest of the book. A good parameter is a p 2 M which
witnesses that ⇢ = ⇢M is the projectum — i.e. there is B ⇢ M which is
⌃1(M) in p with B\HM

⇢ /2M . But by §3 any p 2M has the form p = f(a)
where f is a ⌃1(M) function and a is a finite set of ordinals. Hence a is good
if p is. For technical reasons we shall restrict ourselves to good parameters
which are finite sets of ordinals:

Definition 2.5.3. P = PM =: The set of p 2 [OnM ]
<! which are good

parameters.

Lemma 2.5.7. If p 2 P , then p \ ⇢M 2 P .

Proof: It suffices to show that if ⌫ = min(p) and ⌫ < ⇢, then p0 = p\(⌫+1) 2
P . Let B be ⌃1(M) in p such that B \ HM

⇢ /2 M . Let B(x) $ B0
(x, p)

where B0 is ⌃1(M).

Set:
B⇤

(x)$:

_
z
_
⌫(x = hz, ⌫i ^B0

(z, p0 [ {⌫})).

Then B⇤ \H⇢ /2M , since otherwise

B \H⇢ = {x|hx, ⌫i 2 B⇤ \H⇢} 2M.
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Contradiction! QED (Lemma 2.5.7)

For any p 2 [OnM ]
<! we define the standard code T p determined by p as:

Definition 2.5.4.

T p
= T p

M
=: {hi, xi| |=M 'i[x, p]} \HM

⇢M
}

where h'i|i < !i is a fixed recursive enumeration of the ⌃1–fomulae.

Lemma 2.5.8. p 2 P $ T p /2M .

Proof:

( ) T p
= T \HM

p for a T which is ⌃1(M) in p.

(!) Let B be ⌃1(M) in p such that B \HM
p /2M . Then for some i:

B(x)$ hi, xi 2 T p

for x 2 HM
p . Hence T p /2M . QED (Lemma 2.5.8)

A parameter p is very good if every element of M is ⌃1 definable from
parameters in ⇢M [ {p}. R is the set of very good parameters lying in
[OnM ]

<!.

Definition 2.5.5. R = RM =: the set of r 2 [OnM ]
<! such that M =

hM (⇢M [ {r}).

Note. This is the same as saying M = hM (⇢M [ r), since

h(⇢ [ r) = h”(! ⇥ [⇢ [ r]<!
).

But ⇢ [ r = ⇢ [ (r \ ⇢). Hence:

Lemma 2.5.9. If r 2 R, then r \ ⇢ 2 R. We also note:

Lemma 2.5.10. R ⇢ P .

Proof: Let r 2 R. We must find B ⇢ M such that B is ⌃1(M) in r and
B \HM

⇢ /2M . Set:

B = {hi, xi|
_

y y = h(i, hx, ri) ^ hi, xi /2 y}.

If b = B \ HM
⇢ 2 M , then b = h(i, hx, ri) for some i. Then hi, xi 2 b $

hi, xi /2 b.
Contradiction! QED (Lemma 2.5.10)

However, R can be empty.
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Lemma 2.5.11. There is a function hr uniformly ⌃1(M) in r such that
whenever r 2 RM , then M = hr 00⇢M .

Proof: Let x 2 M . Since x 2 h(⇢ [ {r}) there is an f which is ⌃1(M)

in r such that x = f(⇠1, . . . , ⇠n). But ⇢ is closed under Gödel pairs, so
x = f 0

(� ⇠1, . . . , ⇠n �), where

x = f 0
(⇠)$

_
⇠1, . . . , ⇠n(⇠ =� ~⇠ � ^x = f(~⇠)).

f 0 is ⌃1(M) in r. Hence x = h(i, hh~⇠i, ri) for some i < !. Set

x = hr(�)$
_
⇠
_

i < !(� = hi, ⇠i ^ x = h(i, h⇠, ri)).

Then x = hr(hi, h~⇠ii). QED (Lemma 2.5.11)

Lemma 2.5.11 explains why we called T p a code: If r 2 R, then T r gives com-
plete information about M . Thus the relation 20= {hx, ⌧i|hr(⌫) 2 hr(⌧)}
is rud in T r, since ⌫ 20 ⌧ $ hi, h⌫, ⌧ii 2 T r for some i < !. Similarly, if
M = hJ ~A

↵ , ~Bi, then A0
i
= {⌫|hr(⌫) 2 Ai} and B0

j
= {⌫|hr(⌫) 2 Bi} are rud

in T r (as is, indeed, R0 whenever R is a relation which is ⌃1(M) in p). Note,
too, that if B ⇢ HM

⇢ is ⌃1(M), then B is rud in T r. However, if p 2 P 1 \R1,
then T p does not completely code M .

Definition 2.5.6. Let p 2 [OnM ]
<!. Let M = hJ ~A

↵ , ~Bi.

The reduct of M by p is defined to be

Mp
=: hJ ~A

⇢M
, T p

M
i.

Thus Mp is an acceptable model which — if p 2 RM — incorporates complete
information about M .

The downward extension of embeddings lemma says:

Lemma 2.5.12. Let ⇡ : N !⌃0 Mp where N is a J–model and p 2
[OnM ]

<!.

(a) There are unique M,p such that M is acceptable, p 2 R
M
, N = M

p.

(b) There is a unique ⇡̃ � ⇡ such that ⇡̃ : M !⌃0 M and ⇡(p) = p.

(c) ⇡̃ : M !⌃1 M .
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Proof: We first prove the existence claim. We then prove the uniqueness
claimed in (a) and (b).

Let e.g. M = hJA
↵ , Bi,Mp

= hJA
⇢ , T i, N = hJA

⇢
, T i. Set: ⇢̃ = sup⇡00⇢, M̃ =

Mp|⇢̃ = hJA

⇢̃
, T̃ i where T̃ = T \ JA

⇢̃
. Set X = rng(⇡), Y = hM (X [ {p}).

Then ⇡̃ : N !⌃0 M̃ cofinally by §4.

(1) Y \ M̃ = X
Proof: Let y 2 Y \M̃ . Since X is closed under ordered pairs, we have
y = f(x, p) where x 2 X and f is ⌃1(M). Then

y = f(x, p) $|=M 'i[hy, xi, p]

$ hi, hy, xii 2 T̃ .

Since X �⌃1 M̃ , there is y 2 X such that hi, hy, xii 2 T̃ . Hence
y = f(x, ⇢) 2 X. QED (1)
Now let ⇡̃ : M$̃Y , where M is transitive. Clearly p 2 Y , so let
⇡̃(p) = p. Then:

(2) ⇡̃ : M !⌃1 M, ⇡̃ �N = ⇡, ⇡̃(p) = p.
But then:

(3) M = h
M
(N [ {p}).

Proof: Let y 2 M . Then ⇡̃(y) 2 Y = hM 00
(!x(Xx{p})), since X

is closed under ordered pairs. Hence ⇡̃(y) = hM (i, h⇡(x), pi) for an
x 2M . Hence y = h

M
(i, hx, p). QED (3)

(4) ⇢ � ⇢
M

.
Proof: It suffices to find a ⌃1(M) set b such that b ⇢ N and b /2 M .
Set

b = {hi, xi 2 ! ⇥N |
W
y (y = h

M
(i, hx, pi)

^hi, xi /2 y)}

If b 2M , then b = h
M
(i, hx, pi) for some x 2 N . Hence

hi, xi 2 b$ hi, xi /2 b.

Contradiction! QED (4)

(5) T = {hi, xi 2 ! ⇥N | |=
M
'i[i, hx, pi]}.

Proof: T ⇢ !⇥N , since T̃ ⇢ !⇥ M̃ . But for hi, xi 2 !⇥N we have:

hi, xi 2 T $ hi,⇡(x)i 2 T̃

$M |= 'i[h(x), pi]
$M |= 'i[hx, pi] by (2)

QED (5)
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(6) ⇢ = ⇢
M

.
Proof: By (4) we need only prove ⇢  ⇢

M
. It suffices to show that if

b ⇢ N is ⌃1(M), then hJA

⇢
, bi is amenable. By (3) b is ⌃1(M) in x, p

where x 2 N .
Hence

b = {z|M |= 'i[hz, xi, p]} =

= {z|hi, z, xi 2 T}

Hence b is rud in T where N = hJA

⇢
, T i is amenable. QED (6)

But then M = h
M
(⇢ [ {p}) by (3) and the fact that h

J
A
⇢
(⇢) = JA

⇢
.

Hence

(7) p 2 R
M

.
By (6) we then conclude:

(8) N = M
p.

This proves the existence assertions. We now prove the uniqueness
assertion of (a). Let M̂ p̂

= N where p̂ 2 R
M̂

.
We claim: M̂ = M, p̂ = p.
Since the Skolem function is uniformly ⌃1 there is a j < ! such that

h
M̂
(i, hx, p̂i) 2 h

M̂
(i, hy, p̂)$

$ M̂ |= 'j [hx, yi, p]$ hj, hx, yii 2 T

$ h
M
(i, hx, pi) 2 h

M
(i, hy, pi)

Similarly:
h
M̂
(i, hx, p̂i) 2 Â$ h

M
(i, hx, pi) 2 A

h
M̂
(i, hx, p̂i) 2 B̂ $ h

M
(i, hx, pi) 2 B

where M̂ = hJ Â

↵̂
, B̂i, M = hJA

↵
, Bi. Then there is an isomorphism � :

M̂
⇠$ M defined by �(h

M̂
(i, hx, p̂i) ' h

M
(i, hx, pi) for x 2 N . Clearly

�(p̂) = p. Hence � = id, M̂ ,M, p̂ = p, since M, M̂ are transitive.
We now prove (b). Let ⇡̂ � ⇡ such that ⇡̂ : M !⌃0 M and ⇡̂(p) = p.
If x 2 N and h

M
(i, hx, pi) is defined, it follows that:

⇡̂(h
M
(i, hx, p)) = hM (i, h⇡(x), pi) = ⇡̃(hM (i, hx, pi)).

Hence ⇡̂ = ⇡. QED (Lemma 2.5.12)

If we make the further assumption that p 2 RM we get a stronger result:

Lemma 2.5.13. Let M,N,M,⇡,⇡, p, p be as above where p 2 RM and ⇡ :

N !⌃l M
p for an l < !. Then ⇡̃ : M !⌃l+1 M .
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Proof: For l = 0 it is proven, so let l � 1 and let it hold at l. Let R be
⌃l+1(M) if l is even and ⇧l+1(M) if l is odd. Let R have the same definition
over M . It suffices to show:

R(~x)$ R(⇡̃(~x)) for x1, . . . , xn 2M.

But:
R(~x)$ Q1y1 2M . . .Qlyl 2MR0

(~y, ~x)

and
R(~x)$ Q1y1 2M . . .Qlyl 2MR

0
(~y, ~x)

where Q1 . . . Ql is a string of alternating quantifiers, R0 is ⌃1(M), and R
0 is

⌃1(M) by the same definition. Set

D =: {hi, xi 2 ! ⇥ JA
⇢ |hM (i, hx, pi) is defined}

D =: {hi, xi 2 ! ⇥ JA

⇢
|h

M
(i, hx, pi) is defined}.

Then D is ⌃1(M) in p and D is ⌃1(M) in p by the same definition. Then
D is rud in T p

M
and D is rud in T p

M
by the same definition, since for some

j < ! we have:

hi, xi 2 D $ hj, xi 2 T p

M
, x 2 D $ hj, xi 2 T p

M
.

Define k on D

k(hi, xi) = hM (i, hx, pi); k(hi, xi) = h
M
(i, hx, pi).

Set:
P (~w, ~z)$ (~w, ~z 2 D ^R0

(k(~w), k(~z))

P (~w, ~z)$ (~w, ~z 2 D ^R
0
(k(~w), k(~z))

Then: as before, P is rud in T p

M
and D is rud in T p

M
by the same definition.

Now let xi = k(zi) for i = 1, . . . , n. Then ⇡̃(xi) = k(⇡(zi)). But since ⇡ is
⌃l–preserving, we have:

R(~x) $ Q1w1 2 D . . .Qlwl 2 D P (~w, ~z)

$ Q1w1 2 D . . .Qlwl 2 DP (~w,⇡(~z))

$ R(⇡̃(~x))

QED (Lemma 2.5.13)



2.5. THE ⌃1 PROJECTUM 93

2.5.3 Soundness and iterated projecta

The reduct of an acceptable structure is itself acceptable, so we can take
its reduct etc., yielding a sequence of reducts and nonincreasing projecta
h⇢n

M
|n < !i. this is the classical method of doing fine structure theory,

which was used to analyse the constructible hierarchy, yielding such results
as the ⇤ principles and the covering lemma. In this section we expound
the basic elements of this classical theory. As we shall see, however, it only
works well when our acceptable structures have a property called soundness.
In this book we shall often have to deal with unsound structures, and will,
therefore, take recourse to a further elaboration of fine structure theory,
which is developed in §2.6.

It is easily seen that:

Lemma 2.5.14. Let p 2 RM . Let B be ⌃1(M). Then B \ JA
⇢ is rud in

parameters over Mp.

Proof: Let B be ⌃1 in r, where r = hM (i, hv, pi) and ⌫ < ⇢. Then B is ⌃1

in ⌫, p. Let:
B(x)$M |= 'i[hx, ⌫i, p]

where h'i|i < !i is our canonical enumeration of ⌃1 formulae. Then:

x 2 B $ hi, hx, ⌫ii 2 T p

QED(Lemma 2.5.14)

It follows easily that:

Corollary 2.5.15. Let p, q 2 RM . Let D ⇢ JA
⇢ . Then D is ⌃1(M

p
) iff it is

⌃1(M
q
).

Assuming that RM 6= ;, there is then a uniquely defined second projectum
defined by:

Definition 2.5.7. ⇢2
M
': ⇢Mp for p 2 RM .

We can then define:

R2

M
=: The set of a 2 [OnM ]

<w such that

a 2 RM and a \ ⇢ 2 R
M(a\⇢) .

If R2

M
6= ; we can define the second reduct:

M2,a
=: (Ma

)
a\⇢ for a 2 R2

M .
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But then we can define the third projectum:

⇢3 = ⇢M2,a for a 2 R2

M .

Carrying this on, we get Rn

M
, Mn,a for a 2 Rn

M
and ⇢n+1, as long as Rn

M
6= ;.

We shall call M weakly n–sound if Rn

M
6= ;.

The formal definitions are as follows:

Definition 2.5.8. Let M = hJA
↵ , Bi be acceptable.

By induction on n we define:

• The set Rn

M
of very good n–parameters.

• If Rn

M
6= ;, we define the n+ 1st projectum ⇢n+1

M
.

• For all a 2 Rn

M
the n–th reduct Mn,a.

We inductively verify:

* If D ⇢ JA
⇢n and a, b 2 Rn, then D is ⌃1(M

n,a
) iff it is ⌃1(M

n,b
).

Case 1 n = 0. Then R0
=: [OnM ]

<!, ⇢0 = OnM ,M0,a
= M .

Case 2 n = m + 1. If Rm
= ;, then Rn

= ; and ⇢n is undefined. Now let
Rm 6= ;. Since (*) holds at m, we can define

• ⇢n =: ⇢Mm,a whenever a 2 Rm.

• Rn
=: the set of a 2 [↵]<! such that a 2 Rm and a \ ⇢m 2 RMm,a .

• Mn,a
=: (Mm,a

)
a\⇢m for a 2 Rn.

Note. It follows inductively that a \ ⇢n 2 Rn whenever a 2 Rn.

We now verify (*). It suffices to prove the direction (!). We first note that
Mn,a has the form hJA

⇢n, T i, where T is the restriction of a ⌃1(M
m,a

) set T 0

to JA
⇢n. But then T 0 is ⌃1(M

m,b
) by the induction hypothesis. Hence T is

rudimentary in parameters over Mn,b
= (Mm,b

)
b\⇢n by Lemma 2.5.14.

Hence, if D ⇢ JA
⇢n is ⌃1(M

n,a
), it is also ⌃1(M

n,b
). QED

This concludes the definition and the verification of (*). Note that R1

M
=

RM , ⇢1 = ⇢1
M

, and M1,a
= Ma for a 2 RM .
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We say that M is weakly n–sound iff Rn

M
6= ;. It is weakly sound iff it is

weakly n–sound for n < !. A stronger notion is that of full soundness :

Definition 2.5.9. M is n–sound (or fully n– sound) iff it is weakly n–sound
and for all i < n we have: If a 2 Ri, then PM i,a = RM i,a .

Thus RM = PM , RM1,a = PM1,a for a 2 PM etc. If M is n–sound we write
P i

M
for Ri

M
(i  n), since then: a 2 P i+1 $ (ar⇢i 2 P i ^ a \ ⇢i 2 R

M i,a\⇢i

for i < n).

There is an alternative, but equivalent, definition of soundness in terms of
standard parameters. in order to formulate this we first define:

Definition 2.5.10. Let a, b 2 [On]
<!.

a <⇤ b$=

_
µ(a \ µ = b \ µ ^ µ 2 b \ a).

Lemma 2.5.16. <⇤ is a well ordering of [On]
<!.

Proof: It suffices to show that every non empty A ⇢ [On]
<! has a unique

<⇤–minimal element. Suppose not. We derive a contradiction by defining
an infinite descending chain of ordinals hµi|i < !i with the properties:

• {µ0, . . . , µn} ⇤ b for all b 2 A.

• There is b 2 A such that b \ µn = {µ0, . . . , µn}.

; /2 A, since otherwise ; would be the unique minimal element, so set:
µ0 = min{max(b)|b 2 A}. Given µn we know that {µ0, . . . , µn} /2 A, since
it would otherwise be the <⇤–minimal element. Set:

µn+1 = min{max(b \ µn)|b 2 A \ b \ µn = {µ0, . . . , µn}}.

QED (Lemma 2.5.16)

Definition 2.5.11. The first standard parameter pM is defined by:

pM =: The <⇤–least element of PM .

Lemma 2.5.17. PM = RM iff pM 2 RM .

Proof: (!) is trivial. We prove ( ). Suppose not. Then there is r 2 P \R.
Hence p <⇤ r, where p = pM . Hence in M the statement:
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(1)
W
q <⇤ r r = h(i, h⌫, qi)

holds for some i < !, ⌫ < pM . Form M r and let M, r,⇡ be such that
M

r
= M r, r 2 R

M
, ⇡ : M !⌃1 M , and ⇡(r) = r. The statement (1)

then holds of r in M .

Let q 2 M , r = h
M
(i, q) where q <⇤ r. Set q = ⇡(q). Then r = h(i, q) in

M , where q <⇤ r. Hence q 2 PM . But then q 2 RM by the minimality of r.
This impossible however, since

q 2 ⇡00M = hM (⇢M [ r) 6= M.

Contradiction! QED (Lemma 2.5.17)

Definition 2.5.12. The n–th standard parameter pn
M

is defined by induction
on n as follows:

Case 1 n = 0. p0 = ;.

Case 2 n = m+ 1. If pm 2 Rm

pn = pm [ p
Mm,pm

Note. that we always have: pn \ ⇢n+1
= ; by <⇤–minimality and Lemma

2.5.7.

If pm /2 Rm, then pn is undefined. By Lemma 2.5.17 it follows easily that:

Corollary 2.5.18. M is n–sound iff pn
M

is defined and pn
M
2 Rn

M
.

This is the definition of soundness usually found in the literature.

Note. That the sequences of projecta ⇢n will stabilize at some n, since it
is monotony non increasing. If it stabilizes at n, we have Rn+h

= Rn and
Pn+h

= Pn for h < !.

By iterated application of Lemma 2.5.13 we get:

Lemma 2.5.19. Let a 2 Rn

M
and let ⇡ : N !⌃l M

na. Then there are M,a

and ⇡ � ⇡ such that Mna
= Mna, a 2 Rn

M
, ⇡ : M !⌃n+l+1 M and ⇡(a) = a.

We also have:

Lemma 2.5.20. Let a 2 Rn

M
. There is an M–definable partial map of ⇢n

onto M which is M–definable in the parameter a.
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Proof: By induction on n. The case n = 0 is trivial. Now let n = m + 1.
Let f be a partial map of ⇢m onto M which is definable in a \ ⇢m. Let
N = Mm,a\⇢n , b = a \ ⇢m. Then N = hN (⇢n [ {b}) = hN 00

(w ⇥ (⇢n ⇥ {b})).
Set:

g(� i, ⌫ �) ': hN (i, h⌫, bi) for ⌫ < ⇢n.

Then N = g00⇢n. Hence M = fg00⇢n, where fg is M–definable in a. QED

We have now developend the "classical" fine structure theory which was used
to analyze L. Its applicability to L is given by:

Lemma 2.5.21. Every J↵ is acceptable and sound.

Unfortunately, in this book we shall sometimes have to deal with acceptable
structures which are not sound and can even fail to be weakly 1–sound. This
means that the structure is not coded by any of its reducts. How can we
deal with it? It can be claimed that the totality of reducts contains full
information about the structure, but this totality is a very unwieldy object.
In §2.6 we shall develop methods to "tame the wilderness".

We now turn to the proof of Lemma 2.5.21:

We first show:

(A) If J↵ is acceptable, then it is sound.

Proof: By induction on n we show that J↵ is n–sound. The case n = 0

is trivial. Now let n = m + 1. Let p = pm
M

. Let q = pMm,p = The
<⇤–least q 2 PMm,p .

Claim q 2 RMm,p .

Suppose not. Let X = hMm,p(⇢n [ q). Let ⇡ : N
⇠ ! X, where N is

transitive. Then ⇡ : N !⌃1 Mnp and there are M,p,⇡ � ⇡ such that
M

mp
= Mmp, p 2 Rm

M
, ⇡ : M !⌃n M , and ⇡(p) = p. Then M = J↵

for some ↵  ↵ by the condensation lemma for L.

Let A be ⌃1(Mmp
) in q such that A\ ⇢n

M
/2Mm,p Then A\ ⇢n

M
/2M .

Let A be ⌃1(N) in q = ⇡�1
(q) by the same definition. Then A\ ⇢n =

A \ ⇢n is J↵ definable in q. Hence ↵ = ↵, M = M , since otherwise
A\⇢n 2M . But then ⇡ = id and N = M

mp
= Mm. But by definition:

N = hMm,p(⇢n [ q). Hence q 2 RMnp . QED

By induction on ↵ we then prove:

(B) J↵ is acceptable.
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Proof: The case ↵ = ! is trivial. The case ↵ 2 Lim
⇤ is also trivial.

There remains the case ↵ = � + !, where � is a limit ordinal. By the
induction hypothesis J� is acceptable, hence sound.
We first verify (a) in the definition of acceptability. Since J� is accept-
able, it suffices to show that if �  � and a 2 J↵ \ J� with a ⇢ �,
then:

Claim �  � in J↵.

Suppose not. Since P(J�) \ J↵ = Def(J�), we show that a is J�–
definable in a parameter r. We may assume w.l.o.g. that r 2 [�]<!.
We may also assume that a is ⌃n(J�) in r for sufficiently large n.
There is then, no partial map f 2 Def(J�) mapping � onto �. Hence,
by Lemma 2.5.20 we have � < ⇢n = ⇢n

J�
for all n < !.

Pick n big enough that a is ⌃n(J�) in r. Set: p = pn [ r (where
pn = pn

J�
). Then p 2 Rn. Let M = J� , N = Mnp. Let X =

hN (� [ q) where q = p \ ⇢n. Let ⇡ : N
⇠ ! X, where N is transitive.

Then ⇡ : N !⌃1 N and hence there are M , p, ⇡ � ⇡ such that
M

n,p
= N , p 2 Rn

M
, ⇡ : M !⌃n+1 M , ⇡(p) = pn. Hence M = J

�

for �  �. Moreover, a is ⌃n(M) in p. Hence � = �, since otherwise
a 2 Def(J

�
) ⇢ J� . But then ⇡ = id, N = N = hN (� [ q). Hence

� � ⇢N = ⇢n+1

M
.

Contradiction! QED (Claim)

This proves (a). We now prove (b) in the definition of "acceptable". Most
of the proof will be a straightforward imitation of the proof of (a). Assume
J↵ |=  [x, �], but J� 6|=  [x, �], where x 2 J� , �  � and  is ⌃1. As before
we claim:

Claim �  � in J↵.
Suppose not. Then � < �. Let  =

W
y' where ' is ⌃0. Let J↵ |=

'(y, x, �). Then y = f(z, x, �, J�) where f is rud and z 2 J� . But

J↵ |= '[f(z, x, �, J�), x,�]

reduces to:
J↵ |= '0

[z, x, �, J� ]

where '0 is ⌃0. But then

J� [ {J�} |= '0
[z, x, �, J�).

As we have seen in §2.3, this reduces to:

J� |= �[z, x, �]
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where � is a first order formula. Note that this reduction is uniform.
Hence if � < ⌫  �, z 2 J⌫ and J⌫ |= �[z, x, �], it follows that
J⌫+! |=  [x, �]. This means that J⌫ |= ¬�0

[x, �] for � < ⌫ < �, where
� = �(v0, v1, vn) and �0

=
W
v0�. We know that � < ⇢n

J�
for all n.

Choose n such that �0 is ⌃n. Let M = J� , N : Mn,p when p = pN .
Let X = hN (� + 1 [ {x}) and let ⇡ : N

⇠ ! X, where N is transitive.
As before, there are M,p,⇡ � ⇡ such that M

n
p = N , ⇡ : M !⌃1 M ,

and ⇡(p) = p. Let M = J
�
. Then J

�
|= �0

(x, �). Hence � = � and
⇡ = id. Hence N = hN (� + 1 [ {x}). Hence � � ⇢n+1

= ⇢N .
Contradiction! QED (Lemma 2.5.21)

M = JA
↵ is a constructible extension of N = JA

�
iff �  ↵ and A ⇢ N .

Or methods have some application to constructible extensions. By a slight
modification of the proof of (A) we get:

Lemma 2.5.22. If M = JA
↵ is an acceptable constructible extension of N =

JA

�
, then:

(a) If ⇢n
M
� �, then M is n-sound.

(b) If ⇢n+1

M
< �  ⇢n

M
, and M =: Mn,p

n
M , then M = h

M
(� [ q) whenever

q 2 P
M

.

The proof of (B) then gives us:

Lemma 2.5.23. If N = JA

�
is sound and acceptable, and A ⇢ N , then

M = JA

�+!
is acceptable.

The verifications are left to the reader.

2.6 ⌃⇤–theory

There is an alternative to the Levy hierarchy of relations on an acceptable
structure M = hJA

↵ , Bi which — at first sight — seems more natural. ⌃0, we
recall, consists of the relation on M which are ⌃0 definable in the predicates
of M . ⌃1 then consists of relations of the form

W
yR(y, ~x) where R is ⌃0.

Call these levels ⌃
(0)

0
and ⌃

(0)

1
. Our next level in the new hierarchy, call it

⌃
(1)

0
, consists of relations which are "⌃0 in ⌃

(0)

1
" — i.e. ⌃0(hM, ~Ai) where

A1, . . . , An are ⌃
(0)

1
. ⌃

(1)

1
then consists of relations of the form

W
yR(y, ~x)


