
Chapter 3

Mice

3.1 Introduction

In this chapter we develop some of the tools needed to construct fine struc-
tural inner models which go beyond L. The concept of "mouse" is central
to this endeavor. We begin with a historical introduction which traces the
genesis of that notion. This history, and the concepts which it involves, are
familiar to many students of set theory, but the thread may grow fainter
as the history proceeds. If you, the present reader, find the introduction
confusing, we advise you to skim over it lightly and proceed to the formal
development in §3.2. The introduction should then make more sense later
on.

Fine structure theory was originally developed as a tool for understanding
the constructible hierarchy. It was used for instance in showing that V = L
implies ⇤� for all infinite cardinals �, and that every non weakly compact
regular cardinal carries a Souslin tree. It was then used to prove the covering
lemma for L, a result which pointed in a different direction. It says that,
if there is no non trivial elementary embedding of L into itself, then every
uncountable set of ordinals is contained in a constructible set having the
same cardinality. This implies that if any ↵ � !2 is regular in L, then its
cofinality is the same as its cardinality. In particular, successors of singular
cardinals are absolute in L. Any cardinal ↵ � !2 which is regular in L
remains regular in V . In general, the covering lemma says that despite
possible local irregularities and cofinalities in L is retained in V .

If, however, L can be imbedded non trivially into itself, then the structure
of cardinalities and cofinalities in L is virtually wiped out in V . There is
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then a countable object known as 0
# which encodes complete information

about the class L and a non trivial embedding of L. 0
# has many concrete

representations, one of the most common being a structure LU
⌫ = hL⌫ [U ],2

, Ui, where ⌫ is the successor of an inaccessible cardinal  in L and U is
a normal ultrafilter on P() \ L. (Later, however, we shall find it more
convenient to work with extenders than with ultrafilters.) This structure,
call it M0, is iterable , giving rise to iterates Mi(i < 1) and embedding
⇡ij : Mi !⌃0 Mj (i  j < 1). The iteration points i (i < 1) are called
the indiscernables for L and form a closed proper class of ordinals. Each c
is inaccessible in L. Thus there are unboundedly many inaccessibles of L
which become !–cofinal cardinals in V . It can also be shown that all infinite
successor cardinals in L are collapsed and become !–cofinal in V . If we chose
0 minimally, then M0 = 0

# is unique. We briefly sketch the argument for
this, since it involves a principle which will be of great importance later on.
By the minimal choice of 0 it can be shown that hM0(;) = M0 (i.e. ⇢1

M0
= !

and ; 2 P 1

M0
). Now let M 0

0
= L

U
0
0

⌫
0
0

be another such structure. Iterate M0, M 0
0

out to !1, getting iteration hMi|i  !1i, hM 0
i
|i  !1i with iteration points

i,0i. Then !1 = 0!1
= !1. Moreover the sets:

C = {i|i < !1}, C 0
= {0i|i < !1}

are club in !1. Hence C \ C 0 is club in !1. But the ultrafilters U!1 , U
0
!1

are
uniquely determined by C \ C 0. Hence M!1 = M 0

!1
. But then:

M0 ' hM!1
(;) = hM 0

!1
(;) ' M 0

0.

Hence M0 = M 0
0
. This comparision iteration of two iterable structures will

play a huge role in later chapters of this book.

The first application of fine structure theory to an inner model which sig-
nificantly differed from L was made by Solovay in the early 1970’s. Solo-
vay developed this fine structure of LU (where U is a normal measure on
P() \ LU ). He showed that each level M = JU

↵ had a viable fine structure,
with ⇢n

M
, Pn

M
, Rn

M
(n < !) defined in the usual way, although M might be

neither acceptable nor sound. If e.g. ↵ >  and ⇢1
M

<  (a case which cer-
tainly occurs), the we clearly have R1

M
= ;. However, M has a standard

parameter p = pM 2 P 1

M
and if we transitivize hM (P ), we get a structure

M = JU

↵
which iterates up to M in  many steps. M is then called the core

of M . (M itself might still not be acceptable, since a proper initial segment
of M might not be sound.) (If n < 1 and ⇢n

M
< , we can do essentially

the same analysis, but when iterating M to M we must use ⌃
(n)

0
–preserving

ultrapowers, as defined in the next section.)

Dodd and Jensen then turned Solovay’s analysis on its head by defining a
mouse (or Solovay mouse) to be (roughly) any J↵ or iterable structure of the
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form M = JU
↵ where U is a normal measure at some  on M and ⇢!

M
 .

They then defined the core model K to be the union of all Solvay mice. They
showed that, if there is no non trivial elementary embedding of K into K,
then the covering lemma for K holds. If, on the other hand, there is such
an embedding ⇡ with critical point , then U is a normal measure on  in
LU

= hL[u],2, ui, where:

U = {x 2 P() \K| 2 ⇡(X)},

(This showed, in contrast to the prevailing ideology, that an inner model with
a measurable cardinal can indeed be "reached from below".) The simplest
Solovay mouse is 0

# as described above. What K is depends on what there
is. If 0# does not exist, then K = L. If 0# exists but 0

## does not, then
K = L(0#) etc. In order to define the general notion of Solovay mouse, one
must employ the full paraphanalia of fine stucture theory.

Thus we have reached the situation that fine structure theory is needed not
only to analyze a previously defined inner model, but to define the model
itself.

If we have reached LU with U a normal ultrafilter on  and ⌧ = + in LU ,
then we can regard LU

⌧ as the "next mouse" and continue the process. If
(L

⌧ )
# does not exist, however, this will mean that LU is the core model. The

full covering lemma will then not necessarily hold, since V could contain a
Prikry sequence for .

However, we still get the weak covering lemma:

cf(�) = card(�) if � � !2 is a cardinal in K.

We also have generic absoluteness :

The definition of K is absolute
in every set generic extension of V.

In the ensuring period a host of "core model constructions" were discov-
ered. For instance the "core model below two measurables" defined a unique
model with the above properties under the assumption that there is no inner
model with two measurable cardinals. Similarly with the "core model up
to a measurable limit of measurables" etc. Initially this work was pursued
by Dodd and Jensen, on the one hand, and by Bill Mitchell on the other.
Mitchell got further, introducing several important innovations. He divided
the construction of K into two stages: In the first he constructed an inner
model KC , which may lack the two properties stated above. He then "ex-
tracted" K from KC , in the process defining an elementary embedding of K
into KC . This approach has been basic to everything done since. Mitchell
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also introduced the concept of extenders, having realized that the normal
ultrafilters alone could not code the embeddings involved in constructing K.

There are many possible concrete representations of mice, but in general a
mouse is regarded as a structure M = JE

⌫ where E describes an indexed
sequence of ultrafilters or extenders. A major requirement is that M be
iterable , which entails that any of the indexed extenders or ultrafilters can
be employed in the iteration. But this would seem to imply that eny F lying
on the indeved sequence must be total — i.e. an ultrafilter or extender on
the whole of P() \M ( being the critical point). Unfortunately the most
natural representations of mice involve "allowing extenders (or ultrafilters)
to die". Letting M = JU

⌫ be the representation of 0# described above, it is
known that ⇢1

M
= !. Hence JU

⌫+1
contains new subsets of  which are not

"measured" by the ultrafilter U . The natural representation of 0## would
be M 0

= JU,U
0

⌫0 where:
U 0

= {X|0 2 ⇡(x)},
and ⇡ is an embedding of LU into itself with critical point 0 > . But
U is not total. How can one iterate such a structure? Because of this
conundrum, researchers for many years followed Solovay’s lead in allowing
only total ultrafilters and extenders to be indexed in a mouse. Thus Solovay’s
representation of 0## was JU

0
⌫0 This structre is not acceptable, however, since

there is a � < ⌫ 0 set. 0 < � and ⇢1
JU
�

= ! < 0. Such representation of
mice were unnatural and unwieldy. The conundrum was finally resolved by
Mitchell and Stewart Baldwin, who observed that the structures in which
extenders are "allowed to die" are in fact, iterable in a very good sense. We
shall deal with this in §3.4. All of the innovations mentioned here were then
incorporated into [MS] and [CMI]. They where also employed in [MS] and
[NFS].

It was originally hoped that one could define the core model below virtually
any large cardinal — i.e. on the assumption that no inner model with the
cardinal exists one could define a unique inner model K satisfying weak
covering and generic absoluteness. It was then noticed, however, that if we
assume the existence of a Woodin cardinal, then the existence of a definable
K with the above properties is provably false. (This is because Woodin’s
“stationary tower” forcing would enable us to change the successor of !! while
retaining !! as a singular cardinal. Hence, by the covering lemma, K would
have to change.) This precludes e.g. the existence of a core model below "an
inaccessible above a Woodin", but it does not preclude constructing a core
model below one Woodin cardinal. That is, in fact, the main theorem of
this book: Assuming that no inner model with a Woodin cardinal exists, we
define K with the above two properties.

In 1990 John Steel made an enormous stride toward achieving this goal by
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proving the following theorem: Let  be a measurable cardinal. Assume that
V has no inner model with a Woodin cardinal. Then there is V –definable
inner model K of V which, relativized to V, has he above two properties.
This result, which was exposited in [CMI] was an enormous breakthrough,
which laid the foundation for all that has been done in inner model theory
since then. There remained, however, the pesky problem of doing without
the measurable — i.e. constructing K and proving its properties assuming
only "ZFC+ there is no inner model with a Woodin". The first step was to
construct the model KC from this assumption. This was almost achieved
by Mitchell and Schindler in 2001, except that they needed the additional
hypothesis: GCH. Steel then showed that this hypothesis was superfluous.
These results were obtained by directly weakening the "background condi-
tion" originally used by Steel in constructing KC . The result of Mitchell
and Schindler were published in [UEM]. Independently, Jensen found a con-
struction of KC using a different background condition called "robustness".
This is exposited in [RE]. There reamained the problem of extracting a core
model K from KC . Jensen and Steel finally achieved this result in 2007. It
was exposited in [JS].

In the next section we deal with the notion of extenders, which is essential
to the rest of the book. (We shall, however, deal only with so called "short
extenders", whose length is less than or equal to the image of the critical
point.)

3.2 Extenders

The extender is a generalization of the normal ultrafilter. A normal ultrafilter
at  can be described by a two valued function on P(). An extender, on
the other hand, is characterized by a map of P() to P(�), where � > . � is
then called the length of the extender. Like a normal ultrafilter an extender
F induces a canonical elementary embedding of the universe V into an inner
model W . We express this in symbols by: ⇡ : V !F W . W is then called
the ultrapower of V by F and ⇡ is called the canonical embedding induced
by F . The pair hW,⇡i is called the extension of V by F . We will always
have: �  ⇡(). However, just as with ultrafilters, we shall also want to
apply extenders to transitive models M which may be smaller than V . F
might then not be an element of M . Moreover P() might not be a subset
of M , in which case F is defined on the smaller set U = P()\M . Thus we
must generalize the notion of extenders, countenancing "suitable" subsets of
P() as extender domains. (However, the ultrapower of M by F may not
exist.)


