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e If I is of limit length u, then it extends uniquely to an S*-conforming
iteration of length p + 1.

QED(Theorem 3.6.1)

3.7 Smooth Iterability

In this section we prove Theorem 3.7.29. This will require a deep excur-
sion into the combinatorics of normal iteration, using methods which were
manly developed by John Steel and Farmer Schluzenberg. We first answer
a somewhat easier question: Let M be uniquely normally iterable and let
M’ be a normal iterate of M. Is M’ normally iterable? Our basis tool in
dealing with this is the reiteration: Given a normal iteration I’ from M’
to M", we “reiterate” I, gradually turning it into a normal iteration I* to
an M*. The process of reiteration mimics the iteration I’. This results in
an embedding o from M” to M*, thus showing that M" is well-founded.
However, o is not necessarily %*-preserving but rather X*-preserving modulo
pseudoprojecta. This means that, in order to finish the argument, we must
draw on the theory of pesudoprojecta developed in §3.6. The above result is
proven in §3.7.3. The path from this result to Lemma 3.7.29 is still arduous,
however. It is mainly due to Schluzenberg and employs his original and sur-
prising notion of “inflation”. In order to complete the argument (in §3.7.6) we
again need recourse to pseudo projecta. The remaining subsections (§3.7.1,
§3.7.2, §3.7.4, §3.7.5) can be read with no knowledge of pseudoprojecta, and
are of some interest in their own right.

We begin by describing a class of operations on normal iteration called in-
sertions. An insertion embeds or “Inserts” a normal iteration into another
one.

3.7.1 Insertions

Let I be a normal iteration of M of length 7. Let I’ be a normal iteration

of the same M having length n’. An insertion of I into I’ is a monotone
M.

function e : n — 1’ such that £ plays the same role in M; as E, @ in
' 20

Mé(i). (This is far from exact, of course, but we will shortly give a proper

definition).

In one form or other, insertions have long played a role in set theory. They are
implicit in the observation that iterating a single normal measure produces
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a sequence of indiscernibles. This situation typically arises when we have a
transitive ZFC™ model M and a k € M which is measurable in M with a
normal ultrafilter U € M. Assume that we can iterate M by U, getting:

Mi,lii,Ui,ﬂ'i,j : Ml =< Mj (Z < j < OO)7

where the maps 7; ; are commutative and continuous at limits, k; = mp;(k), U; =
m0:(U) and:

i1+ My —y, Mt
Now let e : n — 0o be any monotone function on an ordinal 7. e is then
an insertion, inducing a sequence (o; : ¢ < 1) of insertion maps such that
oi : M; < M. To define there maps we first introduce an auxiliary function
é defined by:

é(i) =: inf{e(h) : h < i}

Thus é is a normal function and é(0) = 0.

By induction on i < 1 we then define maps &;,0; as follows: We verify
inductively that:

Gi+ M; < Mgy and 6:Th; = Te(n),é(:)0h

Since é(0) = 0, we set: 69 = id | M. If o; is given, we know that é(i) < e(i)
and hence define: &; = my(;) ¢(;0i- Now let i+1 < 7. Then é(i+1) = e(i)+1.
We know that each element of M;,q has the form 7;;11(f)(x;). Hence we
can define ;41 by:

Gir1(Tiir1(F)(K:i) = Te(ay,e(i1) (@i () (0i(ki))-

Finally, if A < 7 is a limit, then é(A) = lub{e(i) : i < A}, and we can define
o by:
O\ = Wé(h),é()\)é-h for h < A

This completes the construction. The fact that (up : h < i) is a sequence of
indiscernibles for M; is proven by using insertions defined on finite 7.

This was a simple example, but insertions continue to play a role in the far
more complex theory of mouse iterations. We define the appropriate notion
of insertion as follows:

Let:
I= <<M1>7 <Vi>7 <7rij>a T>

be a normal iteration of M of length 7. Let

I'= <<le>7 <Vz{>7 <7T§j>7T/>
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be a normal iteration of the same M of length 1. Suppose that
e:n—n
is monotone. Define an auxiliary function é by:
é(i) =: lub{e(h) : h < i} fori <n
Then é is a normal function and é(0) = 0. We call e an insertion of I into
I’ iff there is a sequence (6; : i < 1) of insertion maps with the following
properties:
(a) Gi: M; —s+ Mgy, 60 = id.
(b) @ <p j<— é(i) <pv é(j). Moreover:
Gjmi; = Wé(i)’é(j) o g;, for i <pj.
(c) é(i) <gre(i) for i < 7.
Before continuing the definition, we introduce some notation. Set:
= 7'[':%(1-)76@), o, =mio; fori <n
We further require
(d) oi(vs) = v, (1) More precisely, one of the following holds:
e v; € M; A :6i(v;) € dom(7;) A yé(i) = o;(v;)
= ONN M
/\l/é(l-) =ONNn M/

o v; € M; Ndom(7;) = Mé(i)H&i(l/i) A l/é(

o vi = ON N M; A dom(#;) = M,

(4)
(4)
(e) gl N =0\ forl <i<n.

This completes the definition.

Note. The insertion maps 6;, 0; are uniquely determined by e, but we have
yet to prove this fact.

Note. The map &; is total on M;, but o; could be partial.

Note. e, ¢ are order preserving, and é takes <7 to <7v. On the other hand,
© <7 j does not imply e; <7 e;, although we have:

i<Tj—>éZ-<T/ejandei<T/ej—>z'<Tj.

Definition 3.7.1. The identical insertion is id [ n, with 6; = o; = id | M;
for i < n.
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We shall sometimes write e;, é; for e(7), é(i).

Note. We use here the familiar abbreviation:

M;
+I

K = crit(ElJ,‘fi),)\i = EMi(/{i)vTi = K;

Vi 1
for ¢ <. Similarly s}, A}, 7/ for i < n..

Note. By (e) we have:

JEMz‘ JEMn

h<i+o;l A =op| M

To see this, let:
JE _ JE]\/[n _ JEMZ ( . h .
No=J0 =, (since h < ).
Similarly let:
, Eyr EMg_ . R
Jy =J,, " =J,, 7 (since e < &).
Let x € J/{E. Then there is a limit ordinal a < A and a 8 < « such that:
x = the f-th element of J¥ in <

where <§ is the canonical well ordering of JZ. Let 6;(a) = ox(a) = o/,

5:(8) = #(8) = . Then:
6i(x) = op(x) = the F-th element of JZ is <% .

Lemma 3.7.1. The following hold:

(1) Uif)\h ZUhf)\h for hSZS?]
(Hence o; [ JE™ = o3, 1JE™).

Proof.
Cl"it(’m;) > )\leh = Uh(/\h) C op“An

Hence Uhr)\h:Wi&i[)\h:ﬂ'io'hr)\hzo'hr)\h QED(l)
(2) Let{=T(i+1). Then ry, < X,.
Proof. g, = 0i(ki) = 0¢(ki) < o¢(Ae) = AL, QED(2)
(3) Let § =T(i+1),§ =T'(e;+1). Then é¢ < & < e.
Proof. & < e¢ by (2). But é¢ <77 é;11 = e; + 1. Hence é¢ <7 &'
QED(3)
The full determination of T7(e; + 1) is as follows:
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(4) Let £ =T(i+1). Let j be the least such that

k. =id.

ée <7 j <1ve¢ and 77;',65 I e

Then j =T'(e; +1).
Proof.

: / /
Claim. r, <Aj.

Suppose not. Then j < e, since ry, < A. Set: k= crit(wé-’eg). Then

Ke, < K, since otherwise:

’7'['3-766 (méz) > 7'[';-766 (k) >k > /ﬁéi > )\3-

But k < )\;. Contradiction!
Claim. xj, > Ap, for h < j.

If j = é¢, then j = T'(e; + 1) by (3) and Claim 1. The conclusion is
then obvious. Now let j > é;. Then j = lub A, where:

A:{héé <T’h+IST’j}
Hence it suffices to show:
Claim. x[, > X} for h € A.

Suppose not, Let h € A be the least counterexample. Let 7 = T"(h+1).
Then é¢ <7/ 7. Hence

rng(ﬂ—ég,h—i-l) C rng(ﬂlr,hﬂ)
But:
Kéi € rng(o;) C rng(w;H_l’ei)
where xp, < \j < erit(m,,, ). Hence rg, < erit(m,,, ). Thus
Ke, € g(7g, pi1) C (M7 jp1)-

But then . ¢ [x],, \},), since:

g (mr 1) N [5h, A) = 2

Since iy, < A}, we conclude that kg, < rj,. Hence 77 [ (ke, +1) = id.
This is a contradiction, since 7 < j < eg < e.

QED(4)
Definition 3.7.2. Let £ =T(i + 1). We set:

x _ ol . * ! ko koA
ei =T (ei + 1), m =T ox, 07 =T, 0¢
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(1)

The following are then obvious:

1% / . . /- . . ’
Mg = M ||, where p1 is maximal such that 77, is a cardinal in M [| .

* * * 1%
oF I M} My —ss M.

Note. If M} = Mg, then 7; is a cardinal in Mg. Hence 6¢(7;) is a
cardinal in M and 7/, = 76¢(7) is a cardinal in M. = Mg If

g

M € M, then 6¢(M;) € M7 and 7} [ 6¢(M) : 6¢(M) —rse M.

3
(However, we cannot conclude that M;* € M/ ). Hence:

Let £ =T(i+1). m¢ 41 is a total function on My iff W’é&eiﬂ is total on
!/

Més'

Hence, there is a drop point in («, 5] iff there is a drop point in

(éom eﬁ}T"

Git1Te ip1 = Wé;76i+102‘, where £ =T(i + 1).

~ * A *
O = Mer ¢, T3 06 = Teri 410 i QED(8)

0i(X) = of(X) for X € P(k;) N M.
Proof.o;(X) = 0¢(X) where £ = T(i + 1), since X € JﬁMn and
oilAe = 0¢ [ Ae by (1). But 0¢(X) =7}, 6¢(X) =nl. . 0 (X), since

€¢,ee ei,ee L
’ .
Tereg [ ke, +1 =id.

A . . f— /
Proof. 611741 = Teeéim

QED(9)
Using notation from §3.2, then we have:

!

(05 I M 05 T A) = (M7, F) —> (M, F') where F = EM: F' = E,..
Proof. o € F(X) «— oi(a) € 0;(F(X)) = F'(¢}(X)) by (6) and (9).
QED(10)

But we are now, at last, in a position to prove:

The sequence (G; : i < n) of insertion maps is uniquely determined by
e. (Hence so is (0 11 <), since 0; =, . 0G;).

/

Proof. Suppose not. Let (6] : i < n) be a second such sequence. By
induction on ¢ we prove that ¢; = 0. For ¢ = 0 this is immediate. Now
let 6, = 0. We must show that &;41 is unique. Let n < w be maximal
such that r; < pfj, . By Lemma 3.2.19 of §3.2, we know that there is
at most one o such that

o:M; — Méi,o'ﬂf7i+1:7r/** o, olhi=oi[ N

28") €, €it1 79

Hence 6;11 = 0j,; = o by (8).
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/
m

¢, 0i for i <pr .

Now let i < n be a limit ordinal. Then 6, = o}, is the unique o :

M, — Méu defined by: om;, =7,
QED(11)

We also note:

Let { =T(i+1). Then m. . [(r/+1)=1id.

(Hence o} [(1;+ 1) =o¢[(i +1) =03 [ (15 + 1).

Proof. If ef = e¢, this is immediate. Now let e < e¢. Set 7’ = 7.

Then kg, < i = crit(n") where £ is inaccessible in M . Hence 7/ ; <

i, since 7., = (k)" in M. QED(12)

€

Giv1(vi) = v,

Proof. Let £ =T(i +1). Then:

Gir1(Vi) = Gi1me,it1(Ti) = Ter 04107 (7i)
= ﬂéf,ei—l—l(Téi) = Véi

since 7). = 0(13) = o} (7). QED(13)
Hence:
j>i+1l—oi(v) > v

Proof. By (13) it holds for j = i+ 1. Now let j > i + 1. Then
K < )\i+1 and
6j(vy) = oin1(vi) > oi(vi) = v,

i

QED(14)
We also note:
e; <17 € —> 1<t J.
Proof. Since e¢; < é; and é; <r e;, we conclude:
e <pre; < éj; hence i <7 7-
QED(15)

Extending insertion

Given an insertion e of I into I’, when can we turn it into an ¢ which
inserts an extension I of I into an extension I’ of I'? Some things are
obvious:

If e inserts I into I' and I" extends I', then e inserts I into I".
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(17) If e inserts I of length v + 1 into I' and e(v) <y j in I', there is a
unique € inserting I into I' such that €' v =e|v and €'(v) = j.

(18) Let I be of limit length v and let e insert I into I' of length v/ = lube“v.
Suppose that b’ is a cofinal well founded branch in I' and b = e~ 1“¥/
is cofinal in I. Extend I' into I of length n+ 1 by setting T“{n} = b.
Extend I' to I' of length n/+1 by: T'“{n} = V. Then e extends uniquely
to an insertion é of I into I' with &(n) = 1.

The proof is left to the reader.

These facts are obvious. The following lemma seems equally obvious, but its
proof is rather arduous:

Lemma 3.7.2. Let e insert I into I' where I is of length n and I' is of
length ' + 1, where ' = e(n). Extend I to a potential iteration of length
1+ 2 by appointing v, such that v, > v; for i < n. Suppose oy(vy) > 1/;- for
all j < n'. Then we can extend I' to a potential iteration of length n' + 2 by
appointing: v,, = oy(vy). This determines { =T (n+1), e =T'(n'+1) and
M, M. If M. is *-extendible by F = Eﬂ:[i, then e extends uniquely to an
¢ inserting I into I', where I' is an actual extension of I by vy and I’ is an
actual extension of I' by y7’7,.

Using Lemma 3.2.23 of §3.2 we can derive Lemma 3.7.2 from:
Lemma 3.7.3. Lete,I,I' vy, ve,, My, MZ*, F, F' be as above. Then
(o0, o0 Ag) « (M, F) —" (Mg, F')

We first show that Lemma 3.7.3 implies Lemma 3.7.2. Since Méj‘7 is *-
extendible by F’ we can extend I’ by setting:

A~/ . /% * !
7Te;;,en-I—l : Maen "F’ en+1

It follows that F'is close to M;"; hence we can set:
Tene1 s My —" My
But by Lemma 3.2.23 there us a unique
o My —rs Mg, 11

such that ome 11 = Wé’fpénﬂa;; and o [ A\, = oy [ A. Extend e to € by:
é(n+1) = e, + 1. The € satisfies the insertion axioms with 0,11 = 0.

QED(Lemma 3.7.2)

We derive Lemma 3.7.3 from an even stronger lemma:



290 CHAPTER 3. MICE

Lemma 3.7.4. Let I,1' be as above. Let A C I, be ¥1(My||vy) in a param-
eter p and let A" C 7/ be B1(Me,||ve,) in p' = oy(p) by the same definition.
Then A is X1(My) in a parameter q and A’ is X1(M;") in ¢' = o}(q) by the
same definition.

We first show that this implies Lemma 3.7.3. Repeating the proof of Lemma
3.7.1(7), we have:

<0-7>; fM;ﬂ}n r)‘77> : <M;7F> — <Mé:7F/>

Ml
where F = E%",F’ =FE,".

en
We can code F, by an F C Ty such that Fy is rudimentary in F and F
is Xij(Myl|lvy) in o, 7). Coding F!, the same way by F’, we find that F’ is
B1(Me,|ve,) ind, 7, by:che same definition, wherNe op(a) = o oy(1y) = 7, .
Hence by Lemma 3.7.4, F' is ¥1(M;") in a ¢ and F' is $1(M[}) in ¢’ = 07(q)
by the same definition. Hence Fy is ¥1(M;") in ¢ and F}, is X1(M7) in
q' = o, (q) by the same definition.

QED(Lemma 3.7.3)

Note. We are in virtually the same situation as in §3.2, where we needed
to prove the extendability of the triples we called duplications. Lemma 3.7.2
corresponds to the earlier Lemma 3.4.17 and Lemma 3.7.4 corresponds to
Lemma 3.4.20.

We now turn to the proof of Lemma 3.7.4. Its proof will be patterned on
that of Lemma 3.4.20, which, in turns, we patterned on the proof of Lemma
3.4.4.

Our proof will be rather fuller than that of Lemma 3.4.20, however, since we
will face some new challengers.

Suppose Lemma 3.7.4 to be false. Let I, I’ be a counterexample with n =
Ih(7) chosen minimally. We derive a contradiction. Let £ = T'(n + 1).

1
(1) pMnHl’n = n
Proof. Suppose not. Set p = p]l\/‘,IHV’,p’ = phy v - Then A €
e enllen
EMn 4y EMen
Jy A€ Jp, .
Moreover, “x = A" is Z(()l)(M,,’7||1/) inp, 7, and “o = A" is E(()l)(MnHyn)

E M
J)\

)

in p', 7/, by the same definition. Hence o,)(A) = A’. Since A €
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On F)\g = 0¢ f)\g and Mg”)\g = MgH)\g, we have: 0‘5(14) = O‘n(A) =
A'. But 0,(A) = 71':5;’650';;(14) where . . [ 7, + 1 =id by (10).
Hence o;(A) = A’. Hence A is X1(M,;") in the parameter A, and
A'is X1(M{7) in the parameter A" = o7(A) by the same definition.
Contradiction! since n was a counterexample.

£<.
Proof. Suppose not. Then A is X1 (Mjy|[vy) in p and A’ is 51 (M, ||vg, )
in p’ = o,(p) by the same definition. But o, = Wé;@v@na;;’ since £ =7
and:

77/ [Tén +1=id

*
S

Hence A" is X1 (Me;||v*) in o7 (p) by the same definition, where v* =

* — * Q3 1 1 ! :
oy (vy). But M|y, = M, since Pot ||y < To- But P < 7, since

%
n

oy [ My takes My in a ¥* way to Mé;; v* ANzt(z! # 7,) hold in My.
But then M;" = Mé:] v*. Hence A is ¥1(M)) in p and A’ is 3y (M)
in oy (p) by the same definition. Contradiction! QED(2)

Since { < n and 7, = o¢(7y), we have:

Tén = oy(m) = 6 () = Tyoe(my) = Wn(Tén)

Hence crit(m,) > 7, if &, # e,. Hence A’ is ¥1(M,;||vy,) in p and A’
is El(MénHI/én) in 6,(p) by the same definition. But then we can set
I" = I'le, + 1 and define €’ inserting I into I” by:

ep, ifh<n
ep =
&y ith=n

(€/,n,1,I") is obviously still a counterexample to Lemma 3.7.2. Thus
we may henceforth assume:
en = éy
vy = ONypy, .
Proof. 7, < A¢, where \¢ is inaccessible in M,;,. Hence, if v, € M,,, we
would have: p}‘/anVn > \¢ > 1, contradicting (1). QED(4)
7 is not a limit ordinal.
Proof. Suppose not. Let A, A’ p,p’ be as above. By (2), & < 7
where £ = T'(n+ 1). By (4) M,, = M,||v, is an active premouse. But
oy My —s- M and oy(vy) = v, . Pick I <r 7 such that:

o crit(m,;) > A,

e 7, is a total map on M,
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o pcrng(m,y,).

Set p = 7le771(p) Then A is ¥1(M;) in p and A is 3(M,) in p by
the same definition. Define a potential iteration I of length [ + 2
extending |l + 1 by appointing: 7, =: 7rlj771(1/,7). Then M; = M||7;.
Since ) (ky) = Ky it follows that & = k, and M} = M. Define
e:l+1—n'by:ell+l=cell+1,641 =e,+1 (hence ¢ = ¢,).
Then € inserts I into I’, giving the insertion maps:

o; =o; fori <l,0, = oym,

Then 7 = ky. It follows easily that M} = My and 6] = o;. But
[ <, so by the minimality of n there is a ¢ such that A is ¥1(M) in
q and A’ is ¥1(M[7) in op(q) by the same definition. Contradiction!
QED(5)

Now let n =j+1,h =T(n). Then e, = &, = e; + 1. We know
Thy | M} 2 My —5- My = (J)} B,,)

Hence M has the form:

My = (J7, E,) where E, # &.

Ty < Kj.
Proof. 7. < kj since § < n = j+ 1. Hence 7, < A; < A;. But

T, € rng(my ), where:

Iy, Ay) N mg () = @

QED(7)
P}M; < Ty
Proof. Suppose not. Then 7, = m,(1;) < 7% ,phs C phy . contra-
J n
dicting (1). QED(8)
Thus:

Thy M} —r g, My is a Xo ultrapower.
0’; (7'77) = Tén-
Proof. 7, < kj < A, by (7). Hence:

/ *

Ten = &77(7-7]) = Uh(Tﬂ) - Tré;,ehaj (T’V]) = U;(Tn)7
since o7 () < 07 (k;) = e, and ﬂ(’e}eh [ ke, = id.

QED(10)
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(11)

p}\/[;j = Té,,'
Proof. A\ z!'(z! # 7,) holds in M3 by (8). But:
o7 [ M7 My —s- Méj

Hence A\ z!(x! # 0} (ty)) holds in M*, where o7(ry) = 7/ . QED(11)
But then:

/ . 1% : -
ﬂe;@] : Mej —>EV5j M., is a Yg—ultrapower.

We can now prove:

Ais 3(M7) in an 7 and A" is E1(MY) in v’ = o7(r) by the same
definition.

Proof. Let p = mpy,(f)(), where f € M}, a < A;. Then p' =
. (f)(d), where: f' = o%(f),d = 5j(a). Let F =: E,],\J/.[j,F’ =

e; ,€n J
/

M} -
Ey, " Fy can of course be coded by an F' C 7; which is ¥ < (M;|vy)
in o, 7; and FY, is coded by an F' C 7, whichis 31 (M, ) in o/, 7/ by the
same definition. By the minimality of n we can conclude: Fy, is 31 (M)
in a parameter a and Fy, is X1(M7) in the parameter o’ = o7 (a) by
the same definition. Now suppose:

A(u) «— \/ yB(p,y,p) and
A'(n) «— \/yB'(1,y,7)

where B is Xo(My) and B’ is Xo(M) by the same definition. Let B*
be £o(M;) and B™ be ¥o(M[?) by the same definition. Since the map
T = T,y takes M7 cofinally to M, we have:

A(p) «— \Ju e My \/y € 7(u)B(p,y, 7(f)(a))
e \ueM{y<nr;:\/yecuB (uy, f(7)} € Fa

Hence A is ¥1(M}) in r = (a, f). By the same argument, however, A’
is 3 (MZ) in v’ = (d’, f') by the same definition. QED(13)

Now extend I|h+1 to a potential iteration I™ of length i+ 2 by appointing:
v = w}:i](un). (Hence My = My||v;7). Set: h' = e3. Extend I'|h/ 41 to I'*

/+

of length h’ + 2 by appointing: v,; = 71';1,,677 (v}). (Hence Mé;‘ = M}, ||vih).

n

Obviously, o*(v;}) = v;}. Now extend e[h to e™ : h+1 — I/ + 1 by:

ot e; ifi<h
e}f ifi=nh
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Then et is easily seen to insert I' into I'T, giving the insertion maps:

+_{Uz‘ fori<h

% __ I ~ s
0F =g, p1 00 fori=nh

Then o} (v;7) = vjf. We note that 7,7 = 7,7/ = 7., 1t follows easily
that (M;")* = My, (M) = M and (o)) = oy. By the minimality of 7
we conclude that A is ¥y (M) and (o)) = oy. By the minimality of  we
conclude that A is ¥1(My) in a ¢ and A" is 1(M,") in oy (q) by the same
definition. Contradiction! QED(Lemma 3.7.4)

Composing insertions

Lemma 3.7.5. Let e insert I into I', with insertion maps 6¢,05. Let f

insert I' into I" with insertion maps 6{, O'lf. Then

(i) fe inserts I into I"”

(ii) foe=foe.

(iii) of® =0l oef

(iv) 6{¢ =5 oot.

Proof. We show that f o e satisfies the insertion axioms (a)-(e) with &Zf ‘=

6l o 6f. In the process we shall also verify (ii), (iii). We first note:

Fe(i) = lub(fe)”i = lub " (lube”i) = fé(i)

Axioms (a), (b), (c) then follow trivially. By definition we then have:

Uz‘fe — W}é(i),f@(i)&ff
- 7T%@(i),fe(i) ° Tr}é(i),fe(i) ° &g(i) ° Gy
= (Tefi et © 5l © (M) ety © 67)
= O-éc(i) ooy

Axioms (d), (e) then follow easily. QED(Lemma 3.7.5)
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We now consider “towers” of insertions. Let I¢ be an iterate of M for &€ < T,
where €S inserts I¢ into I* for &€ < p < T'. (We take ¢ as the identical
insertion).

Definition 3.7.3. We call:
((IF 16 <) (e 6 < <))

a commutative insertion system iff €St 0 e8¢ = e&H for E<(C<u<T.

Now suppose that I' is a limit ordinal. Is there a reasonable sense in which
we could form the limit of the above system? We define:

Definition 3.7.4. I, (e : £ < T) is a good limit of the above system iff:

e [ is an iterate of M and ef inserts I¢ into I.
o cloebt =ef for € < pu<T.
e If i <1h(I), then i = €&(h) for some & < T', h < 1h(I¢).

Note. Let n; = ht(I?) for i < T'. It is a necessary but not sufficient condition
for the existence of a good limit that:

(i i <T),{e¥:i<j<T)
have a well founded limit.

If n, (¢ : i < T) is the transitivised direct limit of the above system, then
any good limit must have the form (I, (e’ : i < T)).

Fact. Let 1, (e’ : i < T) be as above. Let ¢ < i and let é(§;) = £ for an
1 <I'. Fori<j<UI set:

& =:e"(&) = (&)

Then /(&) = é7(&;) = £ for sufficiently large j < T

Proof. Suppose not. Then there is a monotone sequence (j, : n < w) in
[i,T") such that e/™Jn+1(&; ) > &,

Hence e/n+1(¢;, ,,) < e (¢;,) for n < w. Contradiction! QED

We then get:

Lemma 3.7.6. Let (I%), (e, 1) be a commutative system of insertions of
limit length . Then there is at most one good limit I, (ef). Moreover, if
i <1h(I), then |M;| = U{rng(&i) cef(h) = i}.
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Proof. Let (I{ef)), (I'(e/¢)) be two distinct good limits. We derive a con-
tradiction. Set ne¢ = 1h(I%) for & < I'. Then (ne), (€%, 1) has a transitive
direct limit 7, (f¢). Moreover ) = 1h(I) and e¢ = €/¢ = f¢ for € < T'. Hence
68 = &€ =Iub{f" : h < &} for £ < T. By induction on i < & we prove:

(a) M; = M;
(b) 02 = O';f for ef(h) = i.

(¢) |Mi] = U{mgo? : ef(h) = i}.

For ¢ = 0 this is trivial. Now let ¢ = 7 + 1. Then:

vi =V = o5 (v5) whenever ¢(h) = j

This fixes p =: T'(j + 1) = 7"(j + 1). But then we have: M7 = M}*. Thus
M; = M; and m,1; = 7, are determined by:

. M/
Tuti - M —p M;, where F' = E%ﬂ =K,
J
We must still show:
Claim. If x € M;, then = o} ( $(z) for a £ < 0 such that e£(l) = i.

Proof. Let n < w be maximal such that r; < pj,. Then z = m;(f)(a)
for an f € I'"™(k;, M]). Let either f =p € M} or else f(§) = G(&, p) where

p € M} and G is a good Egm) (M) function for a m < n. Pick £ < 6 such
that there are pig, je,i¢ with:

eg(:uf) =K, eg(iﬁ) =1, eg(jé) =7
Assume furthermore that o(p) = p and a]i (@) = a. Since oy, (Vi) =vj, it
follows easily that pe = T%(i¢) and:

o My MyT —se M

Let f be defined from p over Mfg as f was defined from p over M;. Let

z=n 5. ())(@). Then o; (#) = & by Lemma 3.7.1(5). QED(Claim)

Now let A < @ be a limit ordinal. We first prove:
Claim. i <7 X iff whenever e(i¢) =i and e5(\¢) = A, then ig < Ag.
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Proof. (—) is immediate by Lemma 3.7.1(10). We prove (+—). Suppose
not. Let A be the set of & < 0 such that there are ig, \¢ with €% (i¢) = i,
e*(A¢) = A. Then i £7 A but ig <pe A¢ for £ € A. Then:

ég(ié) <T ég(/\g) <r 65()\5) =\

Set: j = sup{é‘(i¢) : £ € A}. Then j <r A by the fact that T“{\} is club
in A. Hence j < i. Let £ € A such that ef(jg) = j. Then j¢ < ig, since e is
order preserving. Hence:

j=e(je) < &(ig) <.
Contradiction! QED(Claim)

But then T“{A} = T"*{A}. Hence M) = M), m;\ = m,  are given as the
transitivized limit of:

<Mz' 1y <p )\>, <7Ti,j <7 j < /\>

Finally, we show that each x € M) has the form aig (z) for an £ € A. We
know that = = m;(2') for an i <p A. Pick & < @ such that e(i¢) =
i, e¢(A\¢) = A and 2/ = Ji(i’l). Set: T = ﬂf@)\&(f’). Then ai(a’:) =z by
Lemma 3.7.1(10).

QED(Lemma 3.7.6)

In the following we take a more local approach for forming a good limit and
ask if and when the proven can be break down. It is of course a necessary
condition that the limit be indexed in a well founded way, so we assume that.

In the following let C = ((I¢), (e“*)) be a commutative insertion system of
limit length 6. Let ne = length(I¢) for £ < . Suppose that

(e : €< 0), (e : { < p<0)

has the transitivized direct limit:

m, (e € <0)
(Thus if C had a good limit, it would have the form (I, {e¢ : £ < 0))).

Definition 3.7.5. Let C, 7, etc. be as above. Let ¢ < 7. Let I be a normal
iteration of M of length ¢ + 1. [ is a good limit of C at ¢ iff whenever v < 6
and e7(h) =i, then e” [h + 1 inserts I7|h + 1 into I.

Note. By Lemma 3.7.6 it follows that there is at most one good limit of C
at 7. To see this, let v < e such that e7(h) = i and apply Lemma 3.7.6 to
the structure:

C' = (I*:y<€<0),...) where I* = I|eV*(h) + 1.
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Moreover, if I is a good limit of C at i and h < 4, thus I|h + 1 is the good
limit of C at h. Thus we can unambiguously denote the good limit of C at
i, if it exists, by: I|i + 1. By uniqueness we then have:

(Ili+1)|h+1=1Ih+1 for h<i

It is clear that I is the unique good limit of C iff I|i + 1 exists for all i <,
and I = {J,,, I]i + 1. We also note that I|1 = ((M),@,(id), @) is trivially
the good limit at 0.

Recall that we call a premouse M uniquely iterable iff it is normally iterable
and has the unique branch property -i.e. whenever I is a normal iteration
of M of limit length, then it has at most one cofinal well founded branch.
(Similarly for uniquely a-iterable). In the later subsection of §3.7 we shall
always assume unique iterability of M and make use of the following two
lemmas:

Lemma 3.7.7. Let C,n be as above and let M be uniquely n-iterable. Let
i+1<mn. IfIli+1 exists, then so does I|i + 2.

Proof. Let I = I|i+1. Pick u < 6 such that e#(i,) = i and e*(i,+1) = i+1.
Set: v; = al‘-i(l/lf:). For p < 6 < 6, we have v5 = 0?6(1/%) and 1/;56 > IJJ‘.S for
7 <is.

It follows easily that v; > v; in I whenever j < ¢. Thus v; determines a
potential extension of I|i + 1, giving: £ = T"(i + 1), M}. Let F = E}Mi in I.

Set:

W:;,iﬂ t M —F z’l+1
This gives us an iteration I’ of length 7 + 2 extending I, it follows by Lemma
3.7.2 that et|i, 4+ 2 inserts I*|i, 4+ 2 into I’. But this holds for sufficiently
large p < 0. Now let @ < 6 with e” =i+ 1. Let u > 1 be as above. Then
efh(h) =i, + 1, and e [ h + 1 inserts I¥|h + 1 into I*]i, + 2. Hence
el = et o efH inserts T#|h + 1 into I'.

QED(Lemma 3.7.7)

Now let § < 1 be a limit ordinal and let I|¢ + 1 be defined for all 7 < §. If
I16 + 1 defined? Not necessarily. Set: I = |J,_s5I|i + 1. Then I is a normal
iteration of length §. Hence it has a unique cofinal well founded branch b.
We can then extend I to I’ of length 6 + 1, taking 7"“{¢} = b. However I
will only be a good limit of C at § if a certain condition on b is fulfilled:

Lemma 3.7.8. Let C,I1,b,1I', etc. be as above. Assume that there are arbi-
trarily large v < 6 such that:
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(*) €7(0) = 6 for some d. Moreover, either ') €boré’(d) =0
and €Y(i) € b whenever i <~ 0.

Then I is a good limit of C at 6.

Proof. Let 7, 6 as in (*). We show that ¥ [ § + 1 inserts I7]0 + 1 into
I'l6 + 1. We consider two cases:

Case 1: ¢7(6) € b.

Let £ = €7(0). Then ¢ < 6. It is easily verified that €7 [ § + 1 inserts

|5 + 1 into I’ with 6 = 63, 0 = o defined as follows:

By the above Fact there is 4/ > « such that e (§') = £, where &' = 77 (9).
Thus €' [ ¢’ 4 1 inserts Iy|d + 1 into I|€ + 1. Set:

/
a::o*g,o g’fy,azzwgéoa

)

QED(Case 1)
Case 2: ¢7(0) = 4.

Then e” takes § cofinally to 6. Thus e [ & + 1 inserts I7|§ + 1 into I|6 + 1,
where o = ag = &g is defined by:

on!
Z?

_ ~7Y
5= Tel(i)s © 9

The verification is again straightforward.
QED(Case 2)

Now let y1 < 0 be arbitrary such that e#(6') = d. Let v > p satisfy (*) with
€7(0) = 6. Then e inserts I*|6’ + 1 into I7|d + 1 and €7 inserts I7]6 + 1
into I'|§ + 1. Hence e = e - e/ inserts I#|6’ 4+ 1 into I'|§ + 1.

QED(Lemma 3.7.8)
Remark. It follows that every v < 6 such that § € rng(e”) satisfies (*).

Building on what we have just proven, we show that we can disperse with the
iterability assumption if the length of the commutative system has cofinality
greater than w.

Lemma 3.7.9. Let C be a commutative insertion system of length 0. If
cf(f) > w, then C has a good limit.
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Proof.
Claim. (n; :i < 0), (5" : £ < u < 0) has a transitivized direct limit:

n, (et 1 € < 0)
Proof. Suppose not. Let (u,<* ), (ef : & < 6) be a direct limit, where <*
is a linear ordering of u. Then there are z, (n < w) such that x,+1 <* x,
for n < w. Since cf(f) > w, there must be v < # such that x, € rng(e?)

for n < w. Let €”(ap) = x5, (n < w). Then ap41 < ap in s for n < w.
Contradiction!

QED(Claim)
We now prove by induction on i < n that C has a good limit I|i at i.

Case 1. i = 0. The 1-step iteration of M: ((M), @, (id), @) is the good
limit at 0 (with eJ = &) = id [ {0}).

Case 2. 1 =h + 1.

Let v, =T'(i+ 1), M}, F = E%’ be as in the proof of Lemma 3.7.7. The
proof of Lemma 3.7.7 goes through exactly as before if we can show:

Claim. M is extendible by F'.

Proof. Suppose not. Then there are f, € I'™*(k;, M), o, € Ai (n < w) such
that

7)) fopr(p) € fu(r)} € F(an+1,an> forn < w

Let p,, € M} such that either p,, = f,, or f, is defined by: f,(5) = G(pn, B),
where G is good over M. Since cf(f) > w, we can pick v < 0 such that

eV(iy) = i,e7(&y) = ¢
o 0/ (Pn) =pPn (n <w)

v

° 0 (@n) = an (n < w)

[€7(&), €7(&)]r has no drop point in I. (Hence ag:,M% —5e M,

: Y o 5
since o/ = 7T§WJ€W).

We note that &, = T7(i, + 1). (Suppose not. Let t = T7(iy + 1). Then
¢ € [éV(t),e7(t)] by Lemma 3.7.1 (3). But thus t < { and £ < t are both
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impossible. Contradiction!) It follows that:
ag [M%* —s M
If f,, is defined from p,, as f,, was defined from p,,, we then have:

{<N7 T> : Tn—&—l(:u) € ?n(T)} € F(anﬂ,am

_ MY
where F = E,, ;7. But:

(:

Yo £
mg s M= M)

Hence Mlz 11 would be ill founded. Contradiction!
QED(Case 2)
Case 3: ¢ = p is a limit ordinal.

Let o' be the set of j < p such that for some v < 6 and @ < 7, we have
V(@) = p and j = €7(i) for an ¢ <pv . Let b be the closure of b’ under
limit points below p. Then b is a cofinal branch in I. Moreover, b satisfies

().

T;, 1s not a cardinal in Lemma 3.7.8. Hence we can simply repeat the proof
of Lemma 3.7.8 if we can show:

Claim. b is a well founded branch in I.

Proof. We must first show:
Subclaim. b has at most finitely many drop points.

Proof. Suppose not. Let (i, : n < w) be monotone such that i, + 1 is a
drop point in b. Since i, + 1 is not a limit point in b, we have i,, + 1 € V'.
Hence for each n there is a 7y < 6 and a @ such that e7(@) = p, €Y (hp, +1) =
in+1,hy+1 <pv 1. If v has this property, so will every larger v/ < 6. Since
cf(0) > w, we know that sufficiently large v < 6 will have the property for
all n. We can also suppose without lose of generality that ¢ (t,) = t,, where
tn, = T(in,+ 1) in I. Just as in Case 2 we then have I, = T7(h, + 1). As
in Case 2 we can assume < chosen big enough that [¢7(Z,), €7 (¢,))r has no

drop point in I. (Hence the map crg is X*-preserving). Then 7; is not a

cardinal in My, and 7;, = o}, (7h,) = o] (n,). Hence 73, is not a cardinal
n

in M, . Hence h, + 1 is a drop point in I7. Hence T7“{fi} has infinitely
many drop points. Contradiction!

QED(Subclaim)
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We now prove the claim. Suppose not, Let b =: '\ 3, where 8 < [i is big
enough that no 7 € b” is a drop point. Then there is a monotone sequence
(in : n < w) such that i, € b”, x, € M;, and

Tpt1 € iy iy (Tn) for n <w

Pick v < 6 big enough that e?(i) = p and é7(hy,) = i,, where h, <pv fi.
We can also pick it big enough that x,, = 6;, (%) for n < w. Hence

Tpa1 € WZW (Zp) for n < w

hn+1

Hence M. g is ill founded. Contradiction!

QED(Lemma 3.7.9)

3.7.2 Reiterations

From now on assume that M is a uniquely normally iterable mouse (i.e.
every normal iteration of limit length has exactly one cofinal well founded
branch). (Our results will go through mutatis mutandis if we assume unique
normal a-iterability for a regular cardinal a > w).

Interpolating extenders

Let I = ((M;), (vi), (mij),T) be a normal iteration of M of length 7 + 1.
A “reiteration" of I occurs when we “interpolate" new extender which were
not on the sequence (v; : i < 7). This rounds very vague, or course, but
we can make it more explicit by considering the case of a single extender
F = E,J,V[ " which we had neglected to place on the sequence. Set: 7 =
rHMallv g = crit(F),\ = A(F) =: F(u). For the moment let us assumer
that 7 is a cardinal in M,. The interpolation gives rise to a new iteration
I'. I’ coincides with I up to the point at which F should have been applied.
At that point we apply F' and thereafter simply copy what we did in I. The
point s at which F' should have been applied is defined as follows:

s = the least point such that s =n or s <n and v < v,

We want I|s+1 = I'|s+ 1, but at stage s we apply F instead of E,],\;IS. Thus
we set: vs = v. This determines t = T'(s + 1) and M[*. We then form:

s+t P M —F My
There is then an obvious insertion f of I|t 4+ 1 into I'|s + 2 defined by:
flt=id, f(t)=s+1



3.7. SMOOTH ITERABILITY 303

f induces the new insertion embeddings:

o =id [ My, m = Wé,sH? op = 0y
If t =7 (hence s = 7), then I’ = I'|s + 2 is fully defined. Now let t < 7.
Then M.* = M||p, where p < ONyy, is maximal with: 7 is a cardinal in
M|l But then 7 € JIEM" c JE™ o 1 is a cardinal in J,EM". Hence

p > vy and oy(vy) is defined. Set: v), ; = oy(14). This defines a potential
extension of I'|s 4 2, since

ve=m(r) <m(n) =vip
where 7, = 7; 4.
Now define e on 7 by:
elt=id,e(t+1i)=s+1+ifort+i<n

Then e[t + 1 = f. It is easily seen that é(t) =t and e(t) = s+ 1. But for
i # t we have é(i) = e(i). We prove:

Claim. e inserts I into a unique I’ of length e(n) + 1.
To show this we prove the following subclaim by induction on i:

Subclaim. If t +1+¢ <n, thene[(t+1+4+¢+1) inserts I|(t +1+i+1)
into a unique I” = I'|[(s + 2+ i+ 1) of length s +2 4+ i + 1.

Proof. Case 1: i = 0.
We have seen that o4(14) exists and that o¢(14) > v,. Hence we can appoint
Vi = O'(Vt) which determines £ = T"(s+2) and M[% ;. M is x-extendible

by F=F, Moy by the fact that M is uniquely iterable. By Lemma 3.7.2 we
+
conclude that e[t + 2 inserts I|t + 2 into a unique I'|s 4+ 3 extending I’|s + 2.

QED(Case 1)
Case 2: 1 =j + 1.

Then I'|s 4+ 2+ is given. Set: h =t+ 1+ j. Then e(h) = é(h) =s+2+ .
We are given: op(vp) = on(vn). Set Vé(h) =: op(vp). This determines a
potential extension of I’|e(h) + 1, since:

Vé(h) > op(y) > yé(l) fort<Il<h

M/
But M;* is *-extendible by Euef}f)h ) by unique iterability. Hence by Lemma

3.7.2, e|h + 2 inserts I|h + 2 into a unique I’|e(h) + 2 extends I'|e(h) + 1 by
Lemma 3.7.2.
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QED(Case 2)
Case 3: 7 = )\ is a limit ordinal.

We first observe that the componentwise union I' = | J,_y I'|e(i) is the unique
iteration of length e(\) into which e|\ inserts I|A. Now let &’ be the unique
cofinal well founded branch in I’|e(\). Then b = {i : e(i) € b'}is the unique
cofinal well founded branch in I|\. Hence b = T“{\}. By Lemma 3.7.1 (18),
e|A + 1 inserts I|\ + 1 into a unique I'|e(\) + 1 extending I'|e(N).

QED(Case 3)

QED(Claim)

We must still consider the case that 7 is not a cardinal in M,,. Ift <7, then 7
is not a cardinal in J f;Mt since J/ M— /€M" and ); is a cardinal in M,,. M*
thus has the form: M||n = M,||p. (Hence we truncate to the same place
that we would if we applied F' directly to M,). Clearly p < Ay < vy if t <.
Hence the “copying" process we performed in the previous case is impossible.
(Note, too, that ¢t = s, since if t < s, then A\; would be inaccessible in JVE%

and 7 < A\¢ would be a cardinal in JEMS = Jf_’;Mt. Contradiction!). We set:
I"=1It+1

We can extend I* to I’ by setting v, = v. Set e[t =id,e(t) =s+1=1t+1.
Then e inserts I* into I’.

The I’ which we have described above is called a simple reiteration of I.
If I’ is obtained by a chain of simple reiterations, we also call it a simple
reiteration. However, we must still show that an infinite chain of simple
reiterations has a well founded limit. This will require considerable effort.
Before doing that we develop the notion of normal reiteration, which is easier
to deal with.

Now let (I’ : i < w) be a chain of simple reiterations with

I° = <<M,§>, <V§L>, (71'2>,Ti> of length 7.

Let I't! be obtained from I’ by interpolating F; = E,],\:Ifi into I’, giving
rise to the insertion e’ of I** into I**!. In an effort to tame the complexity
of these structures, we could impose the normality condition: v; < v; for
1 < j < w. It turns out that we can impose a far more powerful normality
condition by requiring that F; be interpolated in the earliest possible I" with
h < i, rather than necessarily into I; itself. This gives the concept of normal
reiteration, which is clearly analogous to that of normal iteration. First,
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however, we must redo our definitions in order to make this notion precise.
To say that I" is a possible candidate for interpolation of F; means simply
that A < i and I"|t + 1 = I'|t + 1, where ¢ is defined from as before from
v;, I'. In a normal reiteration it will then turn out that either t = n;, or
vi < uvp (v} will exits if h < 4). In a normal reiteration we will then have:
Dlt+1=Tj+1for h <j<i.

We now give a precise definition of the operation we perform when we apply
F;tol h.

Definition 3.7.6. Let I = ((M}), (v}), (n%),T) be a normal iteration of M
of length 7. Let A ‘ ‘
I'= (M), (vi), (m3), T')

be a normal iteration of M of length n/. Let F = E,i\/[’/’ # . Set:
k= crit(F), A = A(F) =: F(r), 7 = MV,
Let s be least such that
s=n"V (s<n AV <uy)
Let ¢ be least such that:
t=n"V (t=n"AK <)
(Hence t < s).
Assume that I|t +1 = I'[t + 1 and v; < 1;. We define an operation:
W(I,I',v) = (I*,1"¢)
by cases as follows:
Case 1: t = n and 7 is a cardinal in M,,.

Extend I to I” by appointing v = v. Then 7 .4 : M —% My41. e is
then the insertion of I into I” defined by e [n = id,e(n) = n + 1. (Hence
Ty = Ty py1 and oy =id [ M), 6 = 7y0y). We set: [* = I.

Case 2: t < n and 7 is a cardinal in M,. We set I"|s +1 = I'|s + 1.
We then appoint v = v. Thus t = T"(s + 1) and M!* = M;||p, where
p < ONjy, is maximal such that 7 is a cardinal in M;||u. But 7 is a cardinal
in JlfMt = JIEM". Hence 1 > 1. Let f be the insertion of I|t+1 into I”|s+2
defined by

Flt=id, f(t) = s + 1.

Then:
or = id [ My, m = Tt,s+1,0¢t = Tt O O¢
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(Hence o4(1;) > v} as before).
Now define e on 4+ 1 by
elt=id,e(t+1i) =s+1+1.

Set " =: e(n). I" is then the unique iteration of length n” + 1 extending
I'|s + 2 such that e inserts [ into I”. We set: I* =: I.

The existence and uniqueness proofs are exactly as before.

Case 3: 7 is not a cardinal in M,,. If £ <, then 7 is not a cardinal in JfMt.
Hence M[* = My||u, where pp < vy. Set: I* =: I|t + 1. Set: v =: v. This
gives:

" . 1% * "
7Tt,3+1 . Ms 43 s+1

which defines I” = I"|s + 2. e is thus the insertion of I* into I” defined by:
elt=1id,e(t) =s+1.

Note that e[t = id (hence é[t+ 1 = id in all three cases.)

This completes the definition. We are now in a position to define the notion
of normal reiteration. First, however, we prove a particularly useful lemma:

Lemma 3.7.10. If j € (t,s] and s < p, then j L1 .

Proof. We proceed by induction on pu.

Case 1: y = s+ 1. Then t = T"(u) and j &£p» t, since t < j. Hence
J £ .

Case 2: i > s+ 1 is a successor. Let y = v+ 1. Then v > s+ 1 and
v = e(7) where 7 > t. Let £ = T"(y + 1). Let j € (¢, s] such that j <p» g,
then j <p» £. We derive a contradiction. Let £ = T'(7 + 1). Then:

e(§) <qm & < e(§).

If £ =t then t <pv & <7v s+ 1. Hence ¢ ¢ (t,s] by Case 1. Hence
either § =1 < jor { = s+ 1>y j, contradicting the induction hypothesis.
If £ < tthen § = é(§) = e(§) = £ < j. Contradiction! If £ > ¢, then

E=¢6() =e(&) > s+ 1. Hence j <pr & < p, contradicting the induction
hypothesis.

QED(Case 2)

Case 3: p is a limit ordinal.
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Pick ¢ <p» p such that ¢ > s. Then j £7» ¢ by the induction hypothesis.
Hence j Lpn .

QED(Lemma 3.7.10)

As we have seen, if e is an insertion of I to I’ and h = T'(i 4+ 1), then the
determination of e*(i) = T’(e(i) + 1) is important. In the case of the e
defined above, this determination is as follows:

Lemma 3.7.11. Let h=T (i +1). If k; < K, then é(h) = h =T"(e(i) + 1).
If ki > K, then e(h) = T"(e(i) + 1), where e(h) > s + 1.

Proof. Let A’ =T"(e(i) + 1). We know:
é(h) ST’ h, ST’ €(h)

The cases: h <t and h > t are straightforward. Now let h =t¢. As in Case

2 of the above proof we conclude: b’ =t or k' = s+ 1. But lig(i) = 7(ky),

where m = 7/ ;. Hence, if k; < k = crit(7) we have: 7(k;) = ki < .
Hence b/ =t. If k < Ky, then: m(k;) > w(k) = A > \;. Hence b/ = s+ 1.

QED(Lemma 3.7.11)
We now turn to the definition of a normal reiteration.

R={I":i<n),{vi:i+1<n) (e i<y j),T)is a normal reiteration
on M iff the following hold:

(a) n > 1 and each I' = ((M}),(v}), (i), 7") is a normal iteration of M
of length n; + 1.

(b) T is a tree on n such that iTj — i < j.

M} .
(c) F; =: E,," # @&. Moreover, v; < v; for i < j.

E

Set: w; =: crit(Fy), \i = A(Fi) =: Fi(ki), i = 7(F}) = kT where
E = EMnu.

(d) €™ inserts a segment I‘|y into I7. Moreover, e = ¢% o €M for h <t
1 <7 j. €” is the identical insertion on I*.

(e) Set: s = s; =: the least s such that s = n; or s < n; and v; < vl. Then:
I'ls+1=IF|s+1land vl =y fori<j<mn.

(f) Let i+1 < n. Let h be least such that h =i or h < ¢ and k; < Ap. Then
h is the immediate predecessor of i+1in 7". (In symbols: h = T'(i+1)).
Before continuing with the definition, we note some consequences:
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Set:
t =t; =: the least t such that t = ort<m/\/<;<)\i
(Hence t; < s;). In the following assume: h =T'(i + 1),t = t;. Then:

(1) I'|t + 1 = I"t + 1. Moreover v} > v} if t < n,.
Proof. If h = ¢ this is trivial. Now let h < 4. Then

K< A=A, by (e).
Hence t < sp,. Clearly by (e) we have:
IMsp+1=1T's,+1 and V;'h =y (*)
Hence 1"t + 1 = I’|t + 1. If t = s3,, we then have: v} > v, = 1}
if t < mp. If t < sp, then: v = v by (%).
QED(1)
(2) h is least such that I*|t = I"|t.

Proof. Let [ <t. Then )\il = A < k < AL Hence s; < t. But
v =y < Vél if s; < m. Hence I'|t # I"|t.

51

QED (2)

By (1), the conditions for forming W (I",I?,1;) are given. Our next
axiom reads:

(g) Let h =T(i+ 1). Then e™*! inserts I’ into I'*! where:
(L, I M) = W(I T 1)

We define:

Definition 3.7.7. i + 1 is a drop point (or truncation point) in R iff
7; is not a cardinal in M#h where h = T'(i + 1). (This is the only case
in which I? # I" is possible).

Our final axioms read:
(h) If A < nis a limit ordinal, then T“{A} is club in A\. Moreover, T “{\}

contain at most finitely many drop points.

A

(i) If \ is as above and (h, A)7 has no drop points, then e** inserts I" into

I and: '
M (e h <pi<p )

is the good limit of:

(I''h <pi<p A, (e :h<pi<pj<A)
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Note. As usual, we will then refer to I, (e?* : i <7 \) as the direct limit
of: A N
(I' : i <p \), (€ 1 i <p j <)),
since the missing points are supplied by: eb* = ™ o eb? for I < h.
Definition 3.7.8. If R = ((I'), (1;), (¢%7), T) is a reiteration of length 7 and
o< u<mn, welet R|u denote:
(I i <) (mii+1<p) (e i <rj<p),TNp’)

Lemma 3.7.12. If R is a reiteration and 0 < i < lh(R). Then R|i is a
retteration.

Lemma 3.7.13. Let R = ((I'), (), (e¥), > be reiteration of length v + 1,

where I' have length n; +1 fori <. Let E, My % &, where v > v; fori <.
Then there is a unique extension of B to a reiteration R’ of length v+2 such
that R'ly +1=R and v, = v.

Proof. Let i = T'(y + 1). Then W (I%,I7,v) is defined.

A much deeper result is:

Lemma 3.7.14. Let R be a reiteration of limit length n. There is a unique
extension R’ such that R'|n = R and Ih(R') =n + 1.

The proof of this theorem will be the main task of this subsection. It will
require a long train of lemmas.

For now on let:

R = <<IE>7 <V€>a <e§7M>7T>
be a reiteration of limit length 7. Let:

I¢ = (M), (), (), T)
be of length n¢ + 1 for £ < n.

Lemma 3.7.15. Let £ < p <n. Then:

(a) Se < 8y,
(b) ve = vi
Proof. (b) holds by (e) in Definition ??. We prove (a). Suppose not.

Nu > Se¢ since vk, exists. Hence s, < 7,. Hence v, < vk, < vk = v
Contradiction!

QED(Lemma 3.7.15)
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Lemma 3.7.16. Let &€ +1 <7 u. Then eftHH [se +1=id.

We proved by induction on p. For p = €41 it is trivial. Now let £+1 <7 p+1
and let it hold at v = T'(u + 1). Then £ < v and hence: x, > A\¢ = Ni,.
Hence t, > s¢ + 1 and:

eHtre, =id

by (g). Hence:

e§+1,u+1(a) _ 67»M+1e€+1v’7(a) =oafor a < sy

Now let i be a limit ordinal and let the induction hypothesis hold at « for
all v with: € +1 <p v <7 p. For i <7 j <7 p we then have: e (a) =
elhell(a) = el (a).

Let a < s¢ be least such that o < e$*1#(a). Let £ +1 <7 § <p p such
that e**(@) = a. Then @ < a = *1%(a). Hence e**(a) = a < a.
Contradiction!

QED(Lemma 3.7.16)
Definition 3.7.9. 5, =: lub{s¢ : { < ~}.

Lemma 3.7.17. Let vy =T({+1). Then 5, <t¢ <s,.
Proof.

(1) 8y <y, since if i < vy, then A\; = A, < k.

(2) tg S 87.

This is trivial for v = {. Now let v < §. Then k;, < Ay = Aﬁw. Hence t¢ < s,.
QED(Lemma 3.7.17)

Definition 3.7.10. X is in limbo at p iff X C 5, and there is no pair (i, j),
such that 7 € X, 7 > 5, and ¢ <7u j.

Lemma 3.7.18. If £ + 1 <p p, then (t¢, s¢] is in limbo at p.

Proof. By induction on pu.
Case 1: = ¢+ 1 by Lemma 3.7.10.

Case 2: p=0+1>7p&+ 1.
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Let v = T(641). Then it holds at . Moreover, §, < t, < s,. Let i € (t¢, s¢]
and i <ru j, where j > 5, = s5 + 1. We derive a contradiction.

Jj > 38, =55+ 1. Hence j = ss+ 1+ 1. Hence e"*(k) = j, where k = t; + 1.
Since e7*(i) = i, we conclude: i <p» k, where §, < t; < k. Contradiction!

QED(Case 2)
Case 3: p is a limit ordinal.

Suppose i € (t¢, s¢] with i <pu h, h > §,. Then h = e7T1#(h) for a v such
that
E+1<puy+1<rup

But e7"bH s, 4+ 1 = id by Lemma 3.7.16. Hence h > s,. Hence h > &, =
sy + 1. Hence i £pv+1 h by the induction hypothesis. Hence ¢ £pu h.

QED(Lemma 3.7.18)

By Lemma 3.7.16, I¢|s¢ + 1 = I7|s¢ + 1 for £ <+ < n. The componentwise

union: B
I=] s
£<n
is then a normal iteration of length
7 =Tub{s¢ : { < n}
For £ < 7 set:
Definition 3.7.11. ~(i) =: the least vy such that ¢ < s,.

(Hence 8, <1 < s,). The following lemma establishes an important connec-
tion between the normal iteration I and the reiteration R.

Lemma 3.7.19. Let i <z j. Then (i) < ~(i).

Proof. Suppose not. Let i,j be a counterexample. Then (i) L1 ~v(j).
Hence i < j and (i) < ~v(j). Set: v = ~(j). There is u + 1 <p v such
that T(u+ 1) < v(i) < p+1. Set 7 = T(u+ 1). Then s, < i, since
7 < (i). Hence t, < s, < i by Lemma 3.7.17. But i < s,(; < sy, since
v(i) < p. Hence i £+ j by Lemma 3.7.18, since j > 5,. Hence i £ j, since
sy 4+ 1 = I|s, + 1. Contradiction!

QED(Lemma 3.7.19)
Lemma 3.7.20. Let T =T({+ 1) <p p. Then:

crit(e™") = t¢ and e™H(tg) < 8,
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Proof. By induction on u.
Case 1. pu =&+ 1. e™5F(te) = s¢ + 1 = 8¢11 > ¢y, but

et St(i) = em (i) =i for i < t¢

Case 2. ;1 =6+ 1 is a successor.

Let v =T(6 + 1). Then:

eTM(te) = €M 0 €T (3,)

<eVH(ts) =ss+1 =35,

By the induction hypothesis we have:
(1) = € 0 ™ (eg) = (1) > 1
For i < t¢ we have:
et (i) = eTHe™ (i) = eVH(i) =1
(since i < t,).
QED(Case 2)

Case 3. p is a limit cardinal. Then e [t = id, since ™7 [t¢ = id for t <p
v <t p (cf. the proof of Lemma 3.7.16). Moreover e7#(t¢) > €™ (t¢) > t.

Claim. e (t¢) < §,,.

Proof. Let h < €™"(t¢). Then h = 77 (h) where £ <7 v <p p. Assume
w.lo.g. that v =T(0 + 1), where 6 + 1 <p u. Then:

h < €T’v(t§) < §,y <ts.
But e7# [t5 = id by the induction hypothesis.

Hence: _ _
h=e"H(h)=h< 5y < 8,

QED(Lemma 3.7.20)
In order to prove Theorem 3.7.14 we must find a cofinal branch b in T such

that ‘ N
(I' :i€b),(e" :i<jinb)
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has a good limit. An obvious necessary condition is that
(n; i €b), (e i< jinb)
have a transitivized direct limit:
n, (e" i € b).

Note. This does not say that e’ inserts I* into a good limit I. It simply
gives us a system of indices which, with luck, might be used to construct a
good limit.

We obtain a rather surprising result:

Lemma 3.7.21. Let b be any cofinal branch in T. Then the commutative
system: N
(mizieb), (e i <jinb)

has a well founded limit.

Note. This is surprising since, as we shall see, there is only one branch which
yields a good limit, whereas these could be many cofinal branches.

We now turn to the proof of Lemma 3.7.21. Let ig € b such that there is
no drop point in b~\ig. Hence e*I(n;) = n; for i < j, 4,5 € b. Let i) + 1,
(€' : i € bxip) be the direct limit of

(i + 14 € big), (e 14 < j in bxig)
We claim that 7 is well founded.
Set: kr =:t¢ for 7, + 1 € bNig,7 = T({ + 1). Using Lemma 3.7.20 it is
straightforward to see that:

éTH Ik, = id for 7 < p in bNiy.

(a)

(b) &r < e (Fr) < Reyr.
) e (Rr + j) = €T (RL) + 5.
)

If 7 is a limit ordinal, then:
Ny = U{rng €T g < i < T in b}

Given this, the conclusion follows from a sublemma, which -in an effort to
simplify notation- we formulate abstractly:
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Sublemma. Let n be a limit ordinal. Let (6; : i < n) be a sequence of
ordinals and e;; : 6 — 0; (i < j < m) be a commutative system of order
preserving maps. Let
A, <6Z‘ 1< 77>
be the direct limit of
(0i i <m), (eij i <j<n)

Let <a be the induced order on A. Assume that k; < §; for i < n such that
the following hold:

Then <A is well founded.

Proof. Set A = wic((A, <a )). Assume w.lo.g. that A is transitive and
<A NA% = NA2. Thus, our assertion amounts to: A = A.

(1) kj > k; for j > i.
Proof. Otherwise e; j1(ki) > kj where k; < k;, contradicting (a).
(2) kj > K for j > i.
Proof. r; > kj_1 > k; by (b).
(3) Let e;(h) € A. Let p < §; and:
eij(h+1)=e;j(h)+1lfori>jand h+1< p.
Then e;(h+1) =e;(h) +1 for h+1 < p.

Proof. Suppose not. Let [ be the least counterexample. Then [ > 0.
Let ej(o) = e;(h) + 1 for a j > i. Then e;j(h) < a < e;;(h) + [, since

ejeij(h) < ej(k) < ej(es(h) +1)
Hence o = e;;(h) + k for a k < [. Hence:
ej(a) = ej(e;j(h) + k) =ei(h) +k<ej(h)+1=eja).
Contradiction!

QED(3)
Taking h = 0, we have e;;(l) = ¢ for | < x;. Hence:
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(4) K C A and e; [ k; = id.

(5) Let e;;(h) > kj. Then e;;(h+1) = e;;(h) + 1 for all h+1 < 6;.

Proof. By induction on j > i. The case ¢ = j is trivial. Now let
Jj = k+ 1, where it holds at k. Then e; ;(h) > K, since otherwise:

6ij(h) = ek,k—f—l@z‘k(h) = ez‘,k(h) < Kp < Ky.
Hence:

eik(h+1) = exjea(h +1) = exj(eix(h) +1)
= ekj(h) +

since if e;x(h) = ki + a, then:

ek,;ﬁ_l(h + l) = ek,k—i—l(/’fk: +a+ l) = ek,k+1(/-€k) +a+1
= enkt1(ke +a) +1=eppr1(h) +1

Now let j be a limit ordinal. Then:
5j, <€¢j 1< j>
is the limit of
(6i 0 < j)s (enit h <i<j)
and we apply (3).
QED(5)

We now prove A C A by cases as follows:
Case 1: For all i < n,h < 6; there is j > i such that e;;(h) < k;.

Then e;(h) = eje; j(h) C kj, since e; [ k; = id. Thus A = J,;rng(e;) C

Ui ki C A.
Case 2: Case 1 fails.

Then there is i such that for some h < J;,, we have: e;;(h) > k; for all j > 1.
Since ejieir(h) > eix(h) > ki, for ig < j < k, there is for each j > iy a least
h; such that ej;(h;) > k; for all [ > j.

Claim. eij(hj) = h]' for i() § l S ]

Proof. Suppose not. Let j be the least counterexample. Using (3) it follows
that j = [ + 1 is a successor. Then h; < ¢;;(h;). But hj > k; > e;(ki).
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Hence hj = e;j(ki) + a = e;(k; + a), where k; + a < hy. But for j/ > j we
have:

hm‘(/ﬂ + a) = hj7j/(el7j(m) + CL) > Kjr.
Hence h; < k; + a < h;. Contradiction!

QED(Claim)

But then e;(h;) = ej(h;) for ip < i < j < 1. Now let h = e;(h;) for
10 <% < n. Then:

Claim. h = J{h; : ig < i < n}.

Proof. h = U; € “hi. But if a < h;, then e;j(a) < &; for some j > i by the
minimality of h;. Hence e;(a) = ej(e; j(a)) = €;j(a) < hj, since e; [ k; = id.

QED(Claim)
Hence h € A and:
ej(hj +1) =h+1for hj+1< 4,

by (3), (5). Hence rng(e;) C A and A = A. This proves the sublemma and
with it Lemma 3.7.21.

QED(Lemma 3.7.21)

Note that ng > &; for i € bxig where €’(n;) = 7. Hence as a corollare of the
proof we have:

Corollary 3.7.22. Set 7j; = the least h such that " (h) > &; for all j > i.

Then 7; is defined for sufficiently large i and €'(7);) = 7. Moreover ij =

lub{#n; : i < n}.

However, in order to prove Theorem 3.7.14 we must find the “right " cofinal
branch in T'. Lemma 3.7.19 suggests an obvious strategy: Let b be the unique
well founded cofinal branch in I. Set:

B:{’y(i)iiEB},b:{T:\/’YEE,TST’Y}

Then b is a cofinal branch in T. We show that this branch works, thus
establishing the existence assertion of Theorem 3.7.14.

By Lemma 3.7.21, the commutative system

(i +1:i€b), (e :i<jinb)
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has a transitivized direct limit:

f+1,(e :ieb)
This gives us a system of indices with which to work.

We must show that the commutative insertion system:

(I": h € b), (" : h < jinb)
has a good limit /. By induction on i < 7j we, in fact, show:

Lemma 3.7.23. Let i < 1. Then the above commutative system has a good
limit 1]i + 1 with respect to i in the sense of Definition 3.7.5 at the end of
§3.7.1. In other words, I|i+1 has length i +1 and €S [h+1 inserts IS|h +1;
into I|i + 1 whenever e*(h) = i.

Remark on notation. In §3.7.1 we showed that there can be at most
one good limit below i. We denote this, if it exists, by I|i + 1. But then
(It +1)|h +1 = I|h+ 1 by uniqueness.

We recall that we defined: &, = t¢ where 7 = T(§{ + 1), + 1 € b, and that
R, = crit(e™) = crit(e7) for 7 < j in b.

But then I = J, o, I7|&r, since if 7 = T(€ + 1), + 1 € b, then:
IM|fr = (I8 41) |for = I|for.
But (J, ¢ fr = Ui<n s; + 1, since if 7 = § + 1, then:

§7285—|—1§t§:f£7.

We prove Lemma 3.7.23 by induction on ¢ < 7.
Case 1. i <7 =Ih(I).

Let ef(h) = i. Let £ <p 7 € b, where i +1 < &,. Then ef|h + 1 =
(e7|i +1)(e7|h + 1) where €7|i + 1 = id. Hence:

ef|h+1=e"T|h 4 1 inserts I|h + 1 into I"|h +1=1I|h +1

QED(Case 1)

Case 2. i = 1.
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Let b be the unique cofinal well founded branch in I. Let Mg, (7 : i € b)
be the transitivized direct limit of: (M; : i € b), (#;; : i <7 j € b). This gives
us I|7j + 1. We must prove that whenever e(7) = 7,& € b, then €f inserts
IS+ 1 into 1|7+ 1. By Lemma 3.7.8 it suffices to show that for arbitrarily
large € € b:

(%) ef () = 17, where either é(M) € b or else &(7) = 7 and
é5(i) € b for all 4 <p¢ 7.

We know: &, = crit(e™ 1) =t for r =T(£ + 1), £+ 1 € b. Set:

A = e (R) = s+ 1for T =t(E+1), E+1 €D

Then:

(1) 5N U, cp(fir, Ar) = 2.

Proof. Suppose not. Let i € bN (Fr, 5\7) where 7 € b. Let > 7 such
that:

peb={y(i):ieb}.

Let = (j),j € b. Then 4, < j < s,. Then i < j in b, since:
i1 <s¢<8,<j, wherer=T({+1),E+1€b.

But T'|s = T"|s, + 1. Hence i <7u j in I*. But:

(Rr, Ar) = (e, sel.

Hence (Rr,A;) is in limbo at p, since £ + 1 <p p. Hence i £Lu j.
Contradiction!

QED(1)
Set:

A={r€b:5 <R}
The set A strongly determines what happens at 7. We first consider
the case:
Case 2.1. A is cofinal in b.

There is then a 7y € b such that 5§, = &, for all 7 € b~7y. (Recalthhat,
fT=T(E+1)and £+ 1 € b, then Ay =t and §; <t < s < A\; by
Lemma 3.7.17.) By (1) we have:

B\TOCB::{§i:Togiinb}:{,%i:rggiinb}.
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(2)

E\To = B.

Proof. Suppose not. Let i € B by be the least counterexample. Then
i > 7. Moreover, i is not a limit ordinal, since otherwise ¢ = lub{3; :
j € BNi}, where BNi C b and b is closed in 7. Hence:

i =8¢r1 = s¢ + 1, where £ +1 € b\ (79 + 1).
Let 7=T(£+1). Then 7 > 79 in b and
§T:R72tf, 85—1—1:5\5.

Hence 3, = T(s¢+1), where 4, € B. Clearly &, € b, by the minimality

of . Now let j+1 € bsuch that 5, = T(j+1). Then j4+1 > A, = se+1,

since j +1 > Ry and (Rr,A\r) Nb = @. Let v = v(j + 1). Then
Jj+1=3, =Ky is a successor ordinal. Hence 5, = s5 + 1, where
vy=06+1 Let p =T(+1). Then §, = k, = T(ss +1). Hence
5,=5. Hencep=7,0 =§andi=5+1=j+1¢ b. Contradiction!

QED(2)
But then every 7 € b7y satisfies (*), since:
Let 79 < 7 € b. Then €7 (k;) = 7 and €” | & = id. (Hence & (k) =
Rr €D).
Proof. We know that if 7 =T(£ +1),£ + 1 € b, then:

e et [k, =id, eT’EH(fiT) = 5\7 =s5c+1=Fepq

Using this we prove by induction on £ € b~y that if o <7 <&, 7 € b,
then:
e Ry = id, €78 (Ry) = Rg.

At limit & we use the fact that:
ety = | J e en (i),
T<7'€d
But then the same proof shows:
¢ R = id, ¢ (R) = i,
since:

= sup K= sup S;= sup s¢+ L.
TEDNTY TEbNTY E4+1ebN1g

QED(Case 2.1)
Case 2.2. A is cofinal in b.

We shall make use of the following general lemma on normal reiteration:
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Lemma 3.7.24. Let £ <7 p,i < ne such that 5, < j < eS*(i). Then
J € rng(e”H).

Proof. Suppose not. Let i be the least counterexample. Then p > &.
Case 1. p is a limit ordinal.

Let ¢ such that £ < ¢ < p and j = e“#(j'). Then j' > F&, since
otherwise:
=7 <ke <A <8

Contradiction! Thus §: < j' < e“#(i). By the minimality of p we
conclude:
j' € rng(e**);
hence j = e“*(j') € rng(e“*). Contradiction!
Case 2. ;4 =+ 1 is a successor.

Let 7=T(C+1). Then j > 5, =s;+1= Ar. Moreover:
e (fr + h) = Ay + h for h < ;.

Let j = A+ h, €SP (i) = Ar + k. Hence h < k. Set i = kr + h.
Then e™*(j') = j, where 3, < &, < j/ < e5*(i). By the minimality
of ;1 we conclude: j' € rng(e$7). Hence j = e™#(j') € rng(esH).
Contradiction!

QED(Lemma 3.7.24)

Let 79 € b such that 7 € rng(é™). Then 7 € rng(e”) for all 7 € b\7p.
Set:
- = (e7)71(7) for T € by,

Then:

€7 (kr) < n for 7 € bxTp.

Proof. Let 7 < v € A. Then e™(&;) < 5y < Ky by Lemma 3.7.20.
Hence:

eT(I’%T) —e7. eT,’Y(;{T) — 67’7(/%7-) < R'y < 77

QED(4)

Now set:

B=|J [5 &)

TELNTY

Note. [$;,k;) =@ if 7 ¢ A.
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(5)

Let 79 <7 € b. Then B C rng(e”).
Proof. Let 7 <~y € A. Let j € [3,,ky). Then

8§y <J <y =€ (i)
But then by Lemma 3.7.24 we have:
(54, Ry) C rng(e™7).
But €7 [[3,,ky) = id. Hence:
[5y,R) C tng(e”) = rng(e’e").

QED(5)

Since B is cofinal in 7, we conclude:
e’ “ny is cofinal in 7 for 7 € b~ 71y. Using this we then get:

Let 7 € b~19. Then:

bN (rng(e”) Urng(éT))

is cofinal in 7.

Proof. Suppose not. Then there is a ig < 7, such that

bN (rng(e”) Urng(é™)) C ip.

Note that if v € A, then [3,, k) C rng(e”). Hence (85, k] C rng(é7).
We shall derive a contradiction by showing that A is not cofinal in b.
In particular, we show:

Claim. Let ig < j € b. Let yo = (7). Assume that v < 6 € b. Then
85 = kg € b.
Proof. We proceed by induction on . There are three cases:
Case 2.2.1. 6 = .
It suffices to show: 79 ¢ A, since then 3,, < j < S\W,j ¢ (/%70,5\70),
where 3., = Ay,. Hence j = 3, = iy € b. Suppose not. j € [3,,&,]
since (R, Ay)Nb = @. But [5,, k] C rng(e”)Urng(é”). Contradiction!,
since j < ig.

QED(Case 2.2.1)
Case 2.2.2. § =&+ 1 > g is a successor.

Let p = T(§ +1). Hence, v < p € b. Then s, = &, € b. Let
J + 1 be the immediate successor of s, in b. Then £, < j + 1. Hence
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j+1> X, =s¢+1,since (Fy, \y) Nb= 3. Let v = v(j +1). Then
j+1€8,,ky]. Hence, as in Case 2.2.1, Ky = §,, since otherwise:

(54, Ry] C rng(e™) Urng(e).

Then j+1 = 5, = Ky and 8, = s¢+1, where vy = (+1. Let { = T'((+1).
Then &, = T(j + 1), where j = s¢. Hence &, = 4, = T(j + 1). Hence
n = W, since otherwise n > p and 5, < 5, = k,. Hence { = (, since
£+ 1=+ 1= the immediate successor of y in b. Hence §5 = ks € b.

QED(Case 2.2.2)
Case 2.2.3. § > 79 is a limit ordinal.
Then §5 = sup; 5 5; € B, since b is closed in 7. But then §5 = kg, since
otherwise:

[85,Rs) C rng(e”), where §5 > ig.

QED(Case 2.2.3)
This proves (7).
We now show that (*) holds for all 7 € b\7y.

Let 7 € bx1p. If ¢ <pr 77, then €7 (i) € b.
Proof. Set: b= (7)"'"b.
Claim 1. b is cofinal in 7.
Proof. Let i < 7j,. Set i’ = €7 (i). By (7) there is j/ € b such that
j' > and j' € rng(e”) Urng(e).
If e7(j) = 4/, then j > i and €7(j) <; j' € b. Hence é7(j) € b and
j€b. Ifé™(j) =4, then é7(i) < j' € b. Hence j > i and j € b.
QED(Claim 1)
Claim 2. b is a branch in 77.
Proof. Let i <7- j € b. Then é€7(i) <z é7(j) € b. Hence é7(i) € b
and 7 € b.
QED(Claim 2)
Claim 3. b is well founded.

This follows by standard methods, given that b is well founded. But
then b = T7”{7;} by uniqueness.

QED(Case 2)
Case 3. ¢ > 1.
Then €7 (7}; + i) = 77+ by Lemma 3.7.24. Using this, it follows easily
by Lemma 3.7.8 and Lemma 3.7.7 that I|i + 1 exists. We leave the
details to the reader.
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QED(Lemma 3.7.23)

This proves the existence part of Theorem 3.7.24. We must still prove unique-
ness.

Definition 3.7.12. Let b be a cofinal branch in:

R = ({I'), (i), ("), T),
where R is a reiteration of limit length 7. b is good for R iff R extends to R’
of length n + 1 with b = T“{n}.

We have proven the existence of a good branch b. Now we must show that it
is the only one. Suppose not. Let b* be a second good branch, inducing R*
of length n + 1 with: b* = T*“{n}. Since b, b* are distinct cofinal branches
in T', there is 79 < n such that:

(b~10) N (0" \1p) = @.

I' = (I")® has length % and I* = (I")®" has length n*. However:

i=si+1 I=JIsi+1
i<n i<n

remain unchanged. Moreover I = I'|f) = I*|7). Since b is the unique cofinal
well founded branch in I, we must have:

b=T""{ij} = T*“{7}.
Now let v > 7; such that:
y=7() €b={y(i):i € b}
Then vy € bx7o. Let v = (i) where i € b. Then &, <i < s,.

Let § be least such that § € * and § > 4. Then § = £ +1 and 7 =:
T*(&+1) <~. Then tg < s5,. But

sr < 8y <11 <5y, where s, +1=35,11 < 5 =8¢+ 1.
Hence i € (t¢, s¢]. But then:
i < sg+ 1=\ <k} = crit(e®)
Hence e*(i) = i € b*. But i <p= 7, since i € b. Hence, letting e*o(7j3) = 7,

we have:
i <7 n;, where 75 > 59 = s¢ + 1.
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But this is impossible, since (¢, s¢] is in limbo at 6. Contradiction!
QED(Theorem 3.7.14)

We have shown that, if M is uniquely normally iterable, then it is uniquely
normally iterable in the sense that every normal reiteration of limit length
has exactly one good branch. As we stated at the outset, the result can
be relativized to a regular 6§ > w. In this case we restrict ourselves to 6-
reiterations.

Definition 3.7.13. Let ¢ > w be regular. A normal reiteration R =
(1%, (vi), (€7),T) is called a @-reiteration iff Th(R) < 6 and lh(I*) < 6
for all . M is uniquely normally 0-reiterable iff every O-reiteration of limit
length < 0 has one good branch.

We have shown that, if M is uniquely normally #-iterable, then it is uniquely
normally 6-reiterable. But what if M is, in fact, 8 + 1 iterable? Can we
strengthen the the conclusion correspondingly? We define:

Definition 3.7.14. Let 0, R be as above. R is a -+ 1-reiteration iff Ih(R) < 6
and 1h(I%) < @ for all i. M is uniquelly normally 6 + 1 reiterable iff every
f-reiteration of length < # has a unique good branch.

Now suppose M be normally 0 + 1-iterable. Let R be a 6 + 1 reiteration of
length 6. Define I, b, b b exactly as before. Then b is a cofinal branch in T
(Tt is also the unique such branch, since if b’ were another such, then b N/
s club in 6. Hence b = ¥'). b has at most finitely many drop points, since
otherwise some proper segment of b would have infinitely many drop points.
Suppose that v € b and b~~ has no drop points. Then:

(I" i € bxy), (€% i < § € b))

has a unique good limit: ‘
(I,(e":ieb\y))
by Lemma 3.7.9. Hence b is a good branch. Thus we have:

Lemma 3.7.25. If M is uniquely normally iterable, then it is uniquelly
normally reiterable. Moreover if 0 > w is reqular, then:

(a) If M is uniquely normally 0-iterable, then it is uniquely normally 0-
reiterable.

(b) If M is uniquely normally 6 + 1-iterable, then it is uniquely normally
0 + 1-reiterable.
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Remark. The assumption that M is uniquely normally iterable can be weak-
ened somewhat. We define:

Definition 3.7.15. Let S be a normal iteration strategy for M. S is inser-

tion stable iff whenever I is an S-conforming iteration of M and e inserts I
into I, then I is an S-conforming iteration.

Now suppose that M is iterable by an insertion stable strategy S. We can
define the notion of a normal reiteration on (M, S) exactly as before, ex-
cept that we require each of the component normal iterations I* to be S-
conforming. (We could also call this an S-conforming normal reiteration
on M). All of the assertions we have proven in this subsection go through
for reiterations on (M, S), with nominal changes in formulation and proofs.
For instance, if we alter the definition of good branch mutatis mutandis, our
proofs give:

(M, S) is uniquely reiterable in the sense that every reiteration
of limit length has exactly one good branch.

We close this section with two technical lemmas which will be of use later.
Both assume the unique iterability (or f-iterability) of M.

Lemma 3.7.26. Let I,I' be normal iterations of M. There is at most one
pair (R, &) such that ‘ N
R=(I'), (i), ("), T),

is a reiteration of M,1h(R) = &+ 1,1 =19 1" = I¢.

Proof. Assume such R, ¢ to exist. Ww show that R,{ are defined by a
recursion:

Rli+ 1= F(RJi)
where & is least such that F'(R|{ + 1) is undefined. F' will be defined solely
by reference to I, I'. We have:
RI1 = (1), 2, (id [ Th(D)), ).

At limit A\, R[ A+ 1 = F(R|\) is given by the unique good branch in R|\.
Now let R|i+ 1 be given. If I* = I’, then F(R]i+ 1) is undefined. If not, let
s=8;. Then I'|s+1=I'|s+1, since v; = viT! = v/ If s+ 1 < 1h(I?), then
v; = v, < v!. Hence I'|s + 2 # I'|s + 2. We have shown:

s = the maximal s such that s +1 < lh(Ii)
and I'|s +1=I'|s + 1.
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But then R|i + 2 is uniquely defined from R|i + 1 and v; = V..

S

QED(Lemma 3.7.26)

For later reference we state a further lemma about reiterations:

Lemma 3.7.27. Let R = ((I'), (v;), (e"7),T) be a reiteration of length p-+1.
Let I be of length n; for i < p. Set:

Aj = A? =:{i:i <7 j and (i,j]r has no drop point in R}

for 5 < . Set: N
0i5 =0y fori€ Aj ori=j

. Then:

(a) ebF(n;) = N forie A,
(b) oiy: My, —s+ My, forie A,

(¢c) If p is a limit ordinal, then

M, = U ng(0i,y,)-
i€ A,

Proof. We prove it by induction on pu.
Case 1. = 0. Then A, = @ and there is nothing to prove.

Case 2. = j+11is asuccessor. If v is a drop point, then A, = @ and there
is nothing to prove. Assume that it is not a drop point. Then h = T'(u) is
the maximal element of A,. (c) holds vacuously. We now prove (a), (b) for
i = h. By our construction, e (n;,) = 1, could only fail if y is a drop point,
so (a) holds. We now prove (b) for i = h. If t; < n,, then é"# = e* and:

Ohy = Gt = ght,
Hence (b) holds. Now let ¢; = 7. Then 7, = s; + 1 and:
UZL;L“ : M:]lh —r M},
where F' = Ei\fj Hence (b) holds.
Rlh+1

Now let 7 < h. Then i € A" . This gives us oy, = O'%’ih. Then (a)-(c)
holds for R|h + 1 by the induction hypothesis.

By Lemma 3.7.5 we then easily get:

O—h7/>l'0-7’7h = O'Zvu :



3.7. SMOOTH ITERABILITY 327

It follows easily that (a), (b) hold at i.
QED(Case 2)

Case 3. p is a limit ordinal. Then A, = [ig, )7 for a ig <7 p. We know
that: A
Ny, (€7 11 € Ay)
is the transitivized direct limit of:
(viti€ Ay, (€™ 1i < jin Ay)
Hence (a) holds at u. But:
IF (e"F i€ Ay)
is the good limit of:
(I':i€ Ay), (€™ 14 < jin Ay)

(where e#e¥ = ). But then (c) holds by Lemma 3.7.7. Hence (b) holds,
since (b) holds for R|i 4+ 1 whenever i € A, (hence A; = A, N1).

QED(Lemma 3.7.27)

3.7.3 A first conclusion

In this section we prove:

Theorem 3.7.28. Let M’ be a normal iterate of M. Then M’ is normally
iterable.

We prove it in the slightly stronger form:

Lemma 3.7.29. Let [ = <<J\~1Z>l (3), (7i ), T) be a normal iteration of M of
length n+ 1. Let 6 : N —x« Mzminp. Then N is normally iterable.

First, however, we prove a technical lemma. Recalling the Definition 3.7.6
of the function W(I,I',v), we prove:

Lemma 3.7.30. Let W(I,I',v) = (I*,1",e), where F,v,k,T,\,s,t are as
in 3.7.6. Let I,T*,I' 1" be of length n+ 1,n* + 1,1 + 1,1 + 1 respectively.
Let o = &, be induced by e. Set:

M, = M,||p whose i is mazimal such that T is a cardinal My||pu.

M/,
(Hence P(k) N M, =P(k) N JE ™). Then:
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(a) 0 My —rx+ M]),

(b) o(X) = F(X) for X € P(k) N M* (hence k = crit(o)).

Proof. Case 1. t =7 and 7 is a cardinal in M,,.

Then n* =n, M, = M,n" =n+ 1 and:

_ o . * "
oy =Ty =Ty i1 - My —p My

QED(Case 1)

Case 2. t <nand 7 is a cardinal in M,,. Then n* = n, M, = M,. Moreover,
Gy = op; hence (a) holds. Set:

M = M,||u where p is maximal such that 7 is a cardinal in My||u.

Then M = M!* and:

_ R/ . 1" * "
Op =M = Ty g1 0 My —F M.

Note that p > A¢, since A\; in inaccessible in M;, and 7 < \; is a cardinal in
M,,. Then oy [ Ay = 0y [ A and JE™ = JE™ Hence o, | JE™™ = oy [ JE™.
Hence:

op(X) = 0¢(X) = F(X) for X € P(k) N M.
QED(Case 2)
Case 3. 7 is not a cardinal in M,. Then n* =¢,7"” = s+ 1, and:
or =m: My —5 MY,
QED(Lemma 3.7.30)
Corollary 3.7.31. Let:
R = ((I'), (vi), ("), T),
be a reiteration where:
I'= <<Mé), (y,i>, <7r};’l>,Ti> is of length n; + 1.

Let £ =T(i+1). Let It have length n* + 1. Set: M! = Mg* ||, where w is

maximal such that 1; is a cardinal in Mg* Then:

Ei+l | i i+1 )
ope My —s M7 and:

oS (X) = B (X) for X € P(r;) N M.
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Mt

Note. P(k;) N M: =P(k;) N J," .

. . M
Note. This does not say that Mf];:ll is a *-ultrapower of M} by E,,".

We now make use of the notion of mirror defined in §3.6.
This suggests the following definition:

Definition 3.7.16. Let I* = ((N;), (v4), (m; ), T) be a normal iteration of
length 7.

By a reiteration mirror (RM) of I* we mean a pair (R, I’) such that

(a) R= ({I'), (v;),(e"7), T) is a reiteration of M of length 7, where

I = <<M,§), (uﬁ), <7r}llj>,Ti) is of length n;.

(b) I' = ((M]),(x},), (%), (o)) is a mirror of I*. (Hence o;(v}) = 1;).

i
(c) M= M.
(d) If h = T(i + 1), then
M = M#h ||pt, where p is maximal such that 7; is a cardinal
in M}" and Thitl = 02’;“, where 1} + 1 = 1h(I%).
Definition 3.7.17. (I*, R, I') is called an RM-triple if (R,I') is an RM of
I*.

We obviously have:

Lemma 3.7.32. i + 1 is a drop point in I'* iff it is a drop point in R.

Moreover:
Lemma 3.7.33. If (i, j|r has no drop point, then ng = afg,

Proof. By induction on j, using Lemma 3.7.27. We leave this to the reader.

Lemma 3.7.34. Let (I, R,I') be an RM-triple of length n+1. Let B # O,
where v > v; for i <mn. Then (I,R,I') extends to a triple of length n + 2,
with v = vy (hence v, = ay(v)).
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Proof. By Lemma 3.7.25, R is uniquely reiterable. Hence R extends to R
of length n + 2 with v, = oy (v). Set: My, =: the final model of I6H ¢ =

T(n+ 1), = ag’ﬂﬂ, where n* = In(Il). The choice of v, determines
My = M,gHu Then:

7L M —se M1, (X)) = B, (X) for X € P(k) N M.
The conclusion then follows by Lemma 3.6.38.

QED(Lemma 3.7.34)

By Lemma 3.7.25 and Lemma 3.6.37 we then have:

Lemma 3.7.35. Let (I, R,I') be an RM-triple of limit length n. Letb be the
unique good branch in R. Then there is a unique extension to an RM-triple
of length n+ 1. Moreover, b =T “{n} in the extension.

Proof. R extends uniquely to R of length 7+ 1. We now extend I' to I' by
taking M’ as the final model of I'7. Pick i < n such that b~i has no drop
point in R. For j € b~ set:

iy = 0y (where nj + 1 = 1h(I’) in R).

By Lemma 3.7.33, we know:

A Y .. .
TinThj = Thy for b < j in bxi.

By Lemma 3.7.27 it follows that:
M, (7}, + j € bxi)
is the direct limit of:

(Mj, = h € bxi), (my, ;- h < jin bxi).
(For h € bNi, we then set: 7}, = m , m}, ..)

The conclusion is immediate by Lemma 3.6.37.
(Lemma 3.7.35)

Now let N, T be as in the premise of Lemma 3.7.2. In particular, I is a
normal iteration of M of length 77 4+ 1 and:

0 : N —x« Mzmin p.
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Using the last two lemmas, we define a successful strategy for N. We first
fix a function G such that whenever I' = (I, R, I') is an RM triple of length
@+ 1 and B # @ with p > v; for j < p, then G(I',v) is an extension of
I' to an RM triple of length ;1 4 1 with v, = v. In all other cases G(I',v) is
undefined. Now let I be any normal iteration of N. There can obviously be
only one RM triple I' = (I, T, I') with the properties:

(a) IO:jva():a-apO:ﬁ'
(b) If i +1 < 1h(I), then:
Fli+2=G[i+1,v),

since I'|A+1 is uniquely determined at limit stages A\ by Lemma 3.7.35.

Denote this I' by I'(]) if it exists. We define the strategy S as follows:

Let I of limit length. If I'(/) is undefined, then so is S(I). Now let I'(1) =
(I, R, I') be defined. Set:

S(I) = the unique cofinal, well founded branch in R.

(This exists by Lemma 3.7.35). We then get:

Lemma 3.7.36. Let I be a normal iteration of N. If I is S-conforming,
then T'(I) is defined.

Proof. By induction on 1h([), using Lemma 3.7.34 and Lemma 3.7.35.
QED(Lemma 3.7.36)

In particular, if I is of limit length, it follows by Lemma 3.7.35 that S(I)
is defined and is a cofinal, well founded branch in I. This proves Theorem
3.7.28.

Theorem 3.7.28 is stated under the assumption that M is uniquely normally
iterable in V. As usual, we can relativize this to a regular cardinal § > w.
We call M’ a 6-iterate of M is it is obtained by a normal iteration of length
< 0. Modifying our proof slightly we get:

Lemma 3.7.37. Let 0 > w be reqular.

(a) If M is uniquely normally -iterable and M’ is a O-iterate of M then
M’ is normally 0-iterable.
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(b) If M is uniquely normally 6 + 1-iterable and M’ is a -iterate of M,
then M’ is normally 6 + 1-iterable.

Note. In proving (b) we must restate Lemma 3.7.29 as:

Let I = ((M;), (i), (mi;),T) be a normal iteration of length 4+ 1 < 0. Let
o0 : N —x+ Myminp. Then M is normally 6 + 1-iterable.

Note. In proving Lemma 3.7.37, we restrict ourselves to f-reiterations R =
((I*),...) meaning that 1h(I?) < @ for i < . Thus we restrict to f-reiteration
mirror (R,I'), meaning that R is a f-reiteration. Lemma 3.7.34 is then
stated for RM-triples of length n + 1 < 6. Lemma 3.7.35 is stated for RM-
triples of length 1 < . All steps fo through as before.

Note. An easy modification of the proof shows that, if M is normally
iterable by a insertion stable strategy, then every S-conforming iterate of M
is normally iterable.

This is a relatively weak result, and could, in fact, have been obtained with-
out use of the pseudo projecta. (However, we would not know how to do it
without the use of reiteration). What we really want to prove is that M is
smoothly iterable. The above proof indicates a possible strategy for doing
so, however: If M is “smoothly reiterable”, and:

0: N —s« Mminp

we could use the same procedure to define a successful smooth iteration
strategy for N. In §3.7.4 we shall define “smooth reiterability” and show
that if holds for M.

3.7.4 Reiteration and Inflation

By a smooth reiteration of M we mean the result of doing (finitely or in-
finitely many) successive normal reiterations. We define:

Definition 3.7.18. A smooth reiteration of M is a sequence S = ((I; : i <
1), {eij i <j<p))such that > 1 and the following hold:

(a) I; is a normal iteration of M of successor length n; + 1.

(b) e;; inserts an I;|« into I;, where a < n; + 1.

() en,j = €ij 0 en.
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(d) If i + 1 < p, there is a normal reiteration:

Ri = ({I}), (v}), (), T0)

% 7
of length n; + 1 such that I; = I?, I;11 = I['" and €; ;41 = e?’m.
Note. R; is unique by Lemma 3.7.21. Hence so is (e;; : i < j < ),
which we call the induced sequence.

Call ¢ a drop point in S iff R; has a truncation on the main branch.

(e) If A < p is a limit ordinal, then there are at most finitely many drop
points i < A. Moreover, if h < X and (h, \) is free of drop points, then:

I)\,<6¢7)\ th<i< /\>
is the good limit of:

<IZ‘:h§i<)\>,<€i7j:h§i§j<)\>

This completes the definition. We call u the length of S.

Note. Since ¢;, = ep ey for I < h < A, we follow our usual convention,
calling:
ey i<\
the good limit of:
(Iz:i<)\>,<ei7j:i§j<)\)

We call M smoothly reiterable if every smooth reiteration of M can be prop-
erly extended in any legitimate way. We note:

Fact 1. If I is a normal iteration of M, then ((I), @, (id [I), @) is a smooth
reiteration of M of length 1.

Fact 2. If S = ((I;), (e;;)) is a smooth reiteration of M of length i + 1,
and R = (I'), (v')) is a normal reiteration of length n + 1 with I° = I;,
then S extends to S’ of length i + 2 with [;,; = I" and €], ,; = % (hence
R=RY).

Fact 3. Let S = ((I;), (e;;)) be a smooth reiteration of M of limit length
A. Assume:

(a) S has finitely many drop points.

(b) S has a good limit: I, (e; : i < \).
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Then S extends uniquely to S of length A + 1 with I} = I,¢; \ = ¢;.

Clearly, then, saying that M is smoothly reiterable is the same as saying that,
whenever S is as in Fact 3, then (a), (b) are true. In the next subsection
(§3.7.5) we shall prove the smooth iterability of M. The proof is, in all
essentials, due to Farmer Schlutzenberg, and is based on his remarkable
theory of inflations. This subsection is devoted an exposition of that theory.

Before proceeding to the precise definition of inflation, however, we give an
introduction to Schlutzenberg’s methods. Let R = ((I), (1), ("), T) be
a reiteration of M. Schultzenberg calls I’ an “inflation" of I, since it was
obtained by introducing new extenders into the original sequence. He makes
the key observation that the pair (I°, I') determines a unique record of the
changes made in passing from I° to I*. We shall call that record the history
of I' and denote it by hist(1°, I?).

Definition 3.7.19. Let n; + 1 = Ih(I?) for i < Ih(R). For a < 1, set:

I(a) = I*(a) =: the least i such that I'|a + 1 = I'|a + 1.

Let s;,t;, 5; = lubp<; s, be defined as in §3.7.2. Then:

Lemma 3.7.38. (a) I(«) = that | < i such that §; < « and eitherl =i or
[ <1iand a<s.

() Fla+1=Ta+1 forl <j<i.
Proof.

(a) 8 < a, since otherwise s;+1 > a for a j < . Hence I'|s;+1 = I'|s;+1
where oo +1 < s; + 1. Hence j > [. Contradiction!

Suppose [ # i. Then a < s, since otherwise s; +1 < a and I*|a+ 1 #
I+ 1, since vl < VL.

QED(a)

(b) Suppose not. Then i # I, < sy and I'|s; +1 = F|s;+ 1 for I < j <
Ih(R). Contradiction! QED(Lemma 3.7.38)

Hence 8; < a — l'(a) = i.

Lemma 3.7.39. If h <i and I"|a+ 1 = I'|a + 1 then v, < v if o < .

Proof. By induction on 1.



3.7. SMOOTH ITERABILITY 335

Case 1. i = 0 (trivial).
Case 2. i =h+ 1.

Then I'|sp + 1 = I"[s, + 1 and vZ, <! . Thus it holds for v < s, by the
induction hypotheses. But I(«) =i for a > sp,.

Case 3. 7 is a limit.

Then I'|s; + 1 = I7|s; + 1 for j < i. Hence it holds for a < 3; = lubj; s;
by the induction hypothesis. But () =i for o > §;.

QED(Lemma 3.7.39)

The next lemma is crucial to developing the theory of inflations:

Lemma 3.7.40. Let o < n;,l =l(«x). Set:

a={y<m:e¥ () <al.

There is a unique e inserting I°|a + 1 into I'|a + 1 such that e[a = e” | a

and e(a) = a.

Proof. By induction on i.

Case 1. i =0. Set a = a,e =id[a + 1.
Case 2. i =h+ 1.

If o < sp,, then I'ja+1 = I"|a+ 1. Hence | = I"(a) and the result holds by
the induction hypothesis.

If o > sp, then I(a) = 1, since I'|sp + 1 # I"|sp + 1. Then a = s5 + 1+ 5.
Let pp=T(h+1). Then e**(@) = «, where @ = t5, +j. But §, < t, <s, by
Lemma 3.7.17. Hence I#(t},) = I*(@) = p. Clearly:

a={y<mn:e(y) <a}

Since p < h, the induction hypothesis gives a unique f inserting I%a + 1
into I*|@ + 1 such that fa = % [a and f(a) = @. Thus e = e*!f has the
desired properties.

QED(Case 2)
Case 3. 7 is a limit ordinal.

Then I'|s; + 1 = I|s; + 1 for j < i. Hence the assertion holds for o <
5; = lubj<; s; by the induction hypothesis. But I(a) =4 for §; < . Then
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there is j <7 i such that a = e/*(@). Let j = T(¢ + 1) where £ +1 <7 i.
Then @ > crit(e?’) = t¢. But §; < t¢ < s;. Hence l/(a) = I(t¢) = j. Since

eVt = el 0 % we conclude as in Case 2 that:

a={y<n:e(y) <a}

By the induction hypothesis there is f inserting I°)a + 1 into I/|@ + 1 such
that f | a = €% | a and f(a) = @ Hence e = e/ o f has the desired
properties.

QED(Lemma 3.7.40)
Definition 3.7.20. For i < lh(R), a < g set:

al, =: Tub{¢ < ng : %(¢) < a} where | = I'(a)

el, =: the unique e inserting I°|a/, + 1 into I'|oc 4 1 such

1
«

ol ,
that e[a} = e [a; and e(ap,) = a

It follows easily that:

Lemma 3.7.41. (a) Ifl = I'(a), then o < my and | = 1Y), al, = al, and

T _ )
e, = €Cu.

(Hence €', = el and o, = a” whenever I'|a +1 = I"|a +1).

(b) Iferi(a) = a, 8, <@, 8 < a, then:

(@) = p,l'(a) = i,at = a’,, and et'el = el,.

(c) eih_ [aih_ = e lal efh (al,) =mni (1" =, since n; > 3;).

(d) If there is no truncation on the main branch of R|i+1, then e* = ¢’

and ay, = o (since €% (ny) = ;).

The proof is left to the reader.
We now fix an ¢ < 1h(R) and set:

I = (M), (Va),(Tap),T) =: 70
I' = (M2, W, (), T) = T

a= <a1é¢ : aéni>7€a :eia fOI'OéS’)’]Z‘,
{a,{eq : @ < n')) is then called the history of I’ from I. We shall show that

it is completely determined by the pair (I,I’). a4 is called the ancestor of
« in this history.

We prove:
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Theorem 3.7.42. Let I,1',a,{eq : a < ;) be as above. Then:
(1) a:1h(I") — 1h(I) and ey inserts Ilaq + 1 into I'la+1 for a < Ih(I").
Moreover, ey (ay) = a.
(2) Let an < 1. If Uq = 05 (va,) exists and o + 1 < 1h(I"), then v}, < Uq.
(3) Let a <mya+1<IW(I"),V, = y. Then:
o+l = 0o+ 1, eqr1faq +1=eq.

For a+ 1 < 1h(I?), define the index of a (in(a) = in'(a)) as:

in(a) =

0 ifaisasin(3)
1 if not

(4) Ifin(a) =1,y =T"(a+ 1), then agt1 = a.

(5) If B <7 v, then el | B = egl 3.

Note. Ignoring our formal definition of {a,e) and using only (1), (5),
we get:

e c,lag =-eglag.

® ag <71 aq SiNCE:
alag) = églag) <1 ep(B) = B <1 @ = eq(aq).

e If « is a limit ordinal, then:

Ao = U ag and eq [ aq = U eglag,

B<prax B<pra
since et o = U5<T,a egl [3.
Note. By (1), (4) and (5) we get:
o Ifin(a) =1, v=T (a+1), then eqy1|aat1 = €y [ ay.
Note. Since eq,eg are monotone and ape = e/gl“ﬁ, the statement:
e 18=e5' 1
is equivalent to:

eglag =eqag and eq(ag) > .
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If Rli + 1 has a truncation on the main branch, then there is o €
(én, (an,), nilrr which is a drop point in I'.

Note. By Lemma 3.7.41 (a) we have:

én; (an,) = lubey, “a;, = lub eo’ioano = éo’i(am)-

We prove Theorem 3.7.42 by induction on i:

Case 1. i = 0.

Trivial, since aq = a,eq =id [ + 1.

Case 2. i1 =h+1.

(1)
(2)

is given.

If a < sp,, then I'|a+1 = I"|a+ 1, hence l{(a) = I"(a), ¢!, = el 7, =
7. By the induction hypothesis v/ = 7. But v}, < v/!. Now let
o > s;. Then l(a) =i and o = s, 41+ for some j. Let g = T'(h+1).
Then e#!(@) = a where @ = t, + 1. Just as in the proof of Lemma
3.7.40 (Case 2), we have: p = [#(ty) = I*(@) and et oel = e,. Hence:

“(vg) = ok 0 (1)) = ok (%)

(Since if e = ej0eq, then 0f = ez;(ﬁ)oego). By the induction hypothesis:
vh < L. Hence:

QED(2)
If a < sp, then v}, = v " = 5, since I'|s, + 1 = I"|s;, + 1. Hence
vh =h,

Hence al’,; = al + 1,el ; a,; = el by the induction hypothesis.

But o+ 1) = "(er+1). Hence: ag,y = afiq,al = ah,ehyq =
t,. The conclusion is immediate. Now let o = s;. We

h _
Cast1:Ca = Ca | ,
still have e!! = ¢! ; hence 7" = 7!, But v/ < /! < #". Contradiction!

Now let a > s;,. We again have: a = s, + 1 + j,a = et*(@), where
p=T(h+1)and @=t;, + j. As before, we have l'(a) = i, I*(@) = p.
Hot Hot P — 7L, Hence:

Moreover 7%, = ot (7E) and v}, = o' (V4). Hence VA

ag—i—l = ag+ 1aeg+1 ra+ 1= e%.
Buti = l'(a) = l}(a+1), u = IM(@) = I*(a+1), and e* (@ + 1) = a+1.

Hence:

ot — 4t — gk
a=a, = agand ag+1 = Ao = a5, =a+ 1.



3.7. SMOOTH ITERABILITY 339

Moreover, we have:
ehplat+l=e""el la+1=ellel =e,.
QED(3)

If a < s, the result follows by the induction hypothesis, since I'|a+2 =
I"h + 2. Now let & = s5. Then in(a) = 1 as shown above. Let
p=T(h+1),y =t,. Then e’i(y) = a + 1. Hence a§ = a’,,. But
I'ly +1 = I*|y + 1. Hence I"(y) = I'(y) and a!, = af = al,,;. Now
let « > sp. Then ¢ = h 4+ 1 is not a drop point in R, since otherwise
ni = sp +1=a. Hence a+ 1 £ 1h(I*) = n; + 1. Contradiction! Then
o = sp+1+4j and a = et (@) where @ = t;,+j and u = T(h+1). Note
that ef(&) = M4 (€) = lub et “¢ for € > ty. Clearly a+1 = et (a+1).
As in the foregoing proofs we have:

Uu’i(l/g) = ufx; aﬂ’i(ﬁg) = ﬁfx.

Hence v < Uk and in(@) = 1. By the induction hypothesis we con-
clude: a%_l = a%, where ¥ = T#(@ + 1). But, as before, ak , = al,,

since et(@+1) = a+ 1, 1M (@+1) = p, I*(a+ 1) = i. Thus it suffices
to show:

Claim. o = a’, where v = T"(a + 1).

We consider two cases:

Case A. ry > ;. Then e“’i(i) = 7 by Lemma 3.7.10 (1). As before
I"(7) = p,l'(y) =i and ag = a,.
Case B. k4 < k;. Then v =7 by Lemma 3.7.10(1). Then 7 < t,

where I'|t;, + 1 = I*|t;, + 1. Hence a% = ag.

QED (4)

If a < s, then I"a +1 = I|a 4+ 1 and az = afy,eg = el for y < a.
Hence the conclusion follows by the induction hypothesis. Now let
a > sp. Then a = s, + 1+ j for some j. Let u = T'(h + 1). Then

e’ (@) = a where @ = tj, + 1. But @ > crit(e?) =t > §,. Hence:

Let 5 <7i: a. We consider two cases:

Case A. (3 > sy,.

Theriﬁ = s, + 1+ for an r < j. Hence, letting B = t;, + r, we have
et (B) = B and:

B) — A S S % A
"(p) = pyag = ag,eg = e/’ - eg-
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It follows easily that 3 <7« @. Hence by the induction hypothesis:

Hence:

QED(Case A)
Case B. 8 < s,
Then § < ¢, since (th, sp] is in limbo at 8; = s, +1. Hence e** | 8 = id,
since tj, = crit(e"). But then:
B =em(B) <ru a = et (a).

Hence 8 <7u @. Moreover I*|3 + 1 = I*|3+ 1, since é* | B+ 1 = id.
Hence ag = a% and eg = e%. But:

since 8 <7u @. Hence:
(eh) T 1B = (b)) B = ()T )T B =(ep) "I
QED(Case B)
This proves (5).
Ifi =h+1lisa drop point on R|i + 1, then M;Z #+ My, where
n' = sp + 1,t; = T'(sp, + 1). Hence n; is a drop point in I*. Now

suppose that h 4 1 does not drop in R|i + 1. Let g = T'(h + 1). Then

there must be a drop point on the main branch of R|u + 1. Hence I*

has a drop point in (g, 7] where e = &}y (af),). Since e*(n,) = n;,

it follows easily from Lemma 3.7.10(7) that there is a drop point on I*
in (é#(g),ti]pi. Since S < My, 8 < m;, we have:
po= =), =1 = ().

Hence ay, = aj,,. Clearly:

/L'
el(e) = luber'«e,

Since e}, [af), = e"# al,, we have: £ =lube®#“a}),. Hence:

snir Odei s g
e (e) = lube™ “a;, =&, (ay.).
Hence I' has a drop in (&, (af,,), ni]r:.
QED(6)

This completes Case 2.
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Case 3. 7 = )\ is a limit ordinal.

(1) is given.

(2) Set § = 5\ = lubjcys;. Then IMs; +1 = I'|s; + 1 for i < X\. Thus

(2) holds by the induction hypothesis for o < 5. Now let o > § then
I*(a) = A. Pick o < X such that o € rng(e”) and there is no drop in
(11, N)pa. Let i = h+1, where y = T'(h+1), h+1 <pa X. If e &) = @,
then & > t, since e®? | t, = id. Hence @ > s, + 1 = §;, where
e?M@) = . Hence I =: [/(@) = i. Hence a’. = a) and e} = ePel.
We are assuming that:

A
7y = 0.5 (V) exists.
But then: . |
Vg = UZ(VS%) exists and ag’\(ﬂg) =
Clearly: v} = aé?\(y%). But £ < 7L by the induction hypothesis.

Q>

Hence I/é‘ <vp

QED(2)

For o < §) it holds by the induction hypothesis, so let o > 5. Let
i, h,i,@beasin (2). Then I*(a) = A, I'(a) = i. We assume in* () = 0,
le.:

But then: ' ' '
@ < n; and v4 = U4 hence in'(@) =0
Hence a%,, = ab + 1 and e, [ ak +1 = €. But l‘(@+1) =
i,IN@+1) = X\. Hence
Mg —gi4
U1 = Ogy1 = Ug +
and

A A i i i
€ai1lan =€ egyq lag+1

QED(3)

For o < §) it holds by the induction hypothesis, so let o > 5. Let
. h,i,@ be as in (2) with the additional stipulation that v € rng(e#)
where v = T a +1). Let ¢ () = ~. Then either v > §, and
¥ > 38 =sp+ 1, 0ory < §y, and ¥ = «v. It follows easily that 7 =

Ti(a@ + 1). Moreover in‘(@) = 1, since in*(a) = 1. But then al = a%.
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But al = a). Moreover a% = aﬁ‘. (If 7 > 3y, this is because I*(¥) = i.
If v < 8y, it is because I'|y+ 1 =I"|7 + 1).

QED(4)
If a < 4, it follows by the induction hypothesis, since I*|a+1 = I'|a+1
for § < \,a < s;. Now let o > 5. Fix f <pa a. Let p,i,h,@ be as
before with p chosen big enough that Ejng(e“’A) and 8 < tp =
crit(e®?) if B < §. Let a = e"M@), 8 = ¢"*(B). Since:

e"NB) =B < a=eNa),

we conclude: 8 < @. Hence:

by the induction hypothesis. Since $; < @, we again have:

i oA X i
ag = Gy, €, = € eg.

If 3> 3, then 3; < /3 and we have :

Hence:

= (ep) ' 1B

Now suppose that 3 < 4. Then 8 = B < crit(e*). Hence I'|3 +1 =
I3+ 1 and:

a% = ag,e% = 62\3 where e |41 = id.
Hence we again have:

i A A A

CLIB aﬁ,eﬁze €=,

and we argue exactly as before.
QED(5)

Suppose R|A + 1 has a truncation on the main branch. Clearly 7y >
3y, 50 IMm\) = A Let w4, h,@ be as in (2) with a = ny. Then
[i, \]p» is free of drops. Hence e**(n;) = ny. But R|i + 1 then has a
drop on the main branch. Hence there is a drop in (éfn(a%i),m]pﬂ.
By Lemma 3.7.1 (7) it follows that there is a drop in (é%2(e), na]p,
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_ i B\ i s o i A
where ¢ = eno'(ano). But [*(n;) = i, since n; > §;. Hence Ay, = ap,

and € = éy,(al.) = lube®" “a; . Moreover e (g) = lube™*“c. Hence
i i

e (g) = lub 607’\“613A = é%‘A (a%‘k).

QED(6)

This completes the proof of Lemma 3.7.42.

Inflations

Following Farmer Schlutzenberg we now define:

Definition 3.7.21. Let I be a normal iteration of M of successor length
n—+1. Let I’ be a normal iteration of M. I’ is an inflation of I iff there exist
a pair (a, e) satisfying (1)-(5) in Theorem 3.7.42 (with e = (e, : a < 1h(I"))).
We call any such pair a history of I’ from 1.

By the remark accompanying the statement of Theorem 3.7.42 we have:

Lemma 3.7.43. Let I’ be an inflation of I with history (a,e). Then:

a <7 a, then ag <7 a, and e, [ag = eg|ag.
If B hen ag deqlag=eglag
(b) If « <1h(I') is a limit ordinal, then:

Ao = U ag and eq [ aq = U eglag.

B<prax Brra
(¢) Ifa+1<Ih(I'),in(a) =1,y =T"(a + 1), then:

Aat1 = Gy and eqq1 [ Gar1 = €y [ aga.

Lemma 3.7.44. Let 1,1’ be as above. Then there is at most one history of
I' from I.

Proof. Let (a,e) be a history. By the conditions (1)-(5), this history satisfies
a recursion of the form:

<aa7ea> = F(<<a7 e) :€ < a>)7

where F is defined by reference to the pair (I, I') alone. To see this we note:

(a) ap = @, eg(@) = @ by (1).
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(b) Let aq,eq be given. Then:
ag+1 ifin(a) =0
® Qat1 = , s
ag where f =T'(a+ 1) if in(a) =1
o eqrifan+1)=a+1

® cotllGat1 = {

€a if in(a) =0
eglagyr if B=T'(a+1)and in(a) =1
In order to determine in(«), however, we need only to know aq, eq, I, I'.

(c) If X is a limit ordinal, then:

a) = U Ao exlay = U €a | Qa; 6)\(CL>\) = A

CX<T/>\ a<T’A

QED(Lemma 3.7.44)

Definition 3.7.22. Let I’ be an inflation of I. We denote the unique history
of I from I by: hist(I,I).

Note. Schlutzenberg’s original definition replaced (5) in Definition 3.7.21
by the following statement, which we now prove as a lemma:

Lemma 3.7.45. Let i < aq such that é,(p) <70 f <77 ea(p). Thenag = p.
Moreover eg [ = eq [p. (Hence e, (i) = 5,ég(1) = éa(p) = supeq “p).

Proof. Suppose not. Let a be the least counterexample. Let p < aq, éq (1) <7
B <77 eq(p). We derive a contradiction by showing:

ag = [, eglag = eqlag.

Case 1. iy = aq.

Then ag <t a, and eg [ ag = e, [ ao. But ag = a, = p, since otherwise
ea(ag) < éa(an) < B. Hence ag € ext“B but ag = egl“ﬁ. Hence e;! #
egl [ 8. Contradiction!

Case 2. i < aq.

Then there is v < a such that:

< Gy, g [a'y = €y f%-

(Clearly a > 0. This holds by (3) or (4) if « is a successor and by Lemma
3.7.43 if av is a limit.) Hence:

ey (1) <1 B <1 ey(p).
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Hence:
ag = |,eglag = a,lag = aqlag
by the minimality of «.

QED(Lemma 3.7.45)

Remark. (5) can be equivalently replaced by Lemma 3.7.45 in the definition
of “inflation”. It can also be equivalently replaced by the conjunction of (a)
and (b) in Lemma 3.7.43.

Extending inflations

By Definition 3.7.21 it follows easily that:

Lemma 3.7.46. Let I' be an inflation of I with history {(a,e). Let 1 < p <
IhW(I"). Then I'|u is an inflation of I with history (a|p,e | u).

Proof. (1)-(5) continue to hold.

Taking u = 1 it becomes evident that an inflation might say very little about
the original iteration I. Hence it is useful to have lemmas which enable us to
extend a given inflation I’ to an I” of greater length, thus “capturing” more
of I. We prove two such lemmas:

Lemma 3.7.47. Let I be a normal iteration of M of length ' + 1. Let I
be an inflation of I of length o/ + 1 with history (a,e), where a,, < 1. Let
U= O'ZZ;(I/(/IWI) be defined with: v > v, for i < n. Extend I' to I" of length
n' +2 by appointing 1/7’7, = 0. Then I" is an inflation of I with history (da,€’)
where:

o d[n+1=ua,e =e, forn<r,
® Gy =ay tLeylay+1=ey,
o yqlay +1)=n+1.

Proof. We must show that (1)-(5) are satisfied. The only problematical
case is (5). We must show that if v <7~ 1’ + 1, then

—1 /—1
ety = ey 1.

It suffices to prove it for v = T"(n' +1). Let ¥ = T'(a,y + 1). Then

() <1 v <1 €y (7)
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by Lemma 3.7.1 (3). Hence

ay =7 and e, [ay = ey [ay

by Lemma 3.7.46. But then

ex 1y =e ' 1y = () 1
since e,y (7) = €71 (7) = 7.
QED(Lemma 3.7.47)

Lemma 3.7.48. Let I’ be an inflation of I of limit length 1. Let b be the
unique cofinal well founded branch in I'. Extend I' to I" of length ' +1 by
appointing: {£ : & <pn n'} = b. Then I" is an inflation of I with history
(a,€'), where:

/

/ / / /
s =supag, € [n =eln,
n Beb B

adln =a,a

eplay = U eglag, ey (ay) =1
Beb

Proof. (1)-(5) are satisfied.

Composing Inflations

We now show that if I’ in an inflation of I and I is an inflation of I’, then
I" is an inflation of I.

Theorem 3.7.49. Let I,I', 1" be normal iteration of M with: 1h(I) = n +
LIy =n"+ 1. Let I' be an inflation of I with:

hist(I,I') = {(a, e).
Let I" be an inflation of I' with:
hist(I', I") = (d', €’).
Then I" is an inflation of I with:
hist(1, I") = {(a”, "),

R/ A no__
where: ag = aqr, €5 = €,€q, -
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Proof. We verify (1)-(5).

(1) a” = a-d clearly maps Ih(I”) into Ih(]). Since €/, inserts I'|al, + 1 into
I"la+ 1 and ey inserts Ila), + 1 into I’|a), + 1, then €, - e, inserts
Ilal 4+ 1 into I"|a+ 1.

QED(1)
Now let:

I = ((My), (Va), <7Ta75>,T>
I'= <<Mé>’ <Véx>v <7r:x,ﬁ>a Tl)
I"= <<Mc/x,>’ <Vg>v <7Tg”3>, T”>

We recall by Lemma 3.7.5 that if e inserts I into I’ and €’ inserts I’
into I” then €’e inserts I into I”. Moreover:

Thus, in particular:
!
el €€yl e €al "
0. =0 “ =g . -0, for a,.
¢ =0 en(e) ¢ § <aq

/

(2) Ut = o o (Van) exists and a < Th(I”), then:

a al?

€ 1

~ e ~
P = ot o (v, ) = out (7).

But then 1/(’1{1 < 17;& and:

QED(2)
Now let:
in(a) = the index of « with respect to I, I,
in’(«) = the index of a with respect to I’, I”,

in”(«) = the index of a with respect to I,1"”.
(3) Tt is easily seen that if in”(«) = 0, then in(al,) = in’(a)) = 0. Hence:

/ ! 2 _ _ _n
Ugy1 = Qo + 1)aa+1 = Gl = Mal+1) = O + 1.
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Moreover:

1 " /
Cat1 ] + 1= eqpr€ay 11l aa, +1

= €at1 - €ay,
= eaq1l(ag+1) - eq
=€, - €q, = €.
QED(3)
(4) Assume in”(«) = 1. Then either in’(a) = 1 or in(al,) = 1.
Case 1. in'(a) = 1.
Let v =T"(a + 1). Thus @/, = a;, ;. Hence
" "
Ay = afy = Gag = Qa1
Case 2. in(a)) =1 but in(a) = 0.
Let v =T'(al, + 1). Then:
Ay = Ay 1) = dal,, = Aoy
Let 8 =T"(a+1). Then:
éa(7) <rv B <17 €a(7)-
Hence by Lemma 3.7.45:
V= ags Gagr = 4y = Gafy = as.
QED(4)
(5) Let B <p» a. Then aj; <7~ ay, and hence:
ag = Qq, <7 aq, = al.
But then (e,)~ '8 = (e,,)" 8 and
(ear) ™' laj = (ea,) " 1y
Hence:
[(ehe) ™ 18 = (eqy) " (ep) ' 18
O AR
= (ea) "M (ea) 7118
(ca) 18
QED(5)

This proves Theorem 3.7.49.
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3.7.5 Smooth Reiterability

In §3.7.2 we proved that if M is uniquely normally iterable, then it is nor-
mally reiterable. In this section we prove the fact announced in §3.7.4. that
if M is uniquely normally iterable, then it is smoothly reiterable. Just as be-
fore, it will also be of interest to know whether this theorem can be relativized
to a regular cardinal x > w. We called a normal reiteration R = ((I%),...)
a k-iteration iff each of its component normal iteration I’ has length less
than x. If we are given a smooth s-reiteration S = ((I;), (e;;)), we call it
a smooth k-reiteration iff each of its induced reiteration R; (i + 1 < 1h(S))
is a k-reiteration of length less than x. We proved previously that, if M is
uniquely normally s-iterable, then it is normally xs-reiterable. In the present
case the proofs are more subtle, and the best we can get is:

Theorem 3.7.50. Let kK > w be regular. Let M be uniquely normally x +
1-iterable. Then it is smoothly k + 1-reiterable. (Hence if M is uniquely
normally iterable, it is uniquely smoothly reiterable).

We don’t see any way to weaken the hypothesis of this theorem. Thus, for
instance, if we only know that M is uniquely normally w-iterable, we have
no proof that it is smoothly w;-iterable.

We prove Theorem 3.7.50. From now on we take “reiteration” as meaning
“k-reiteration” and “smooth reiteration” as meaning “smooth x-reiteration”.
We assume M to be uniquely normally x4 1-iterable. The desired conclusion
then is given by:

Lemma 3.7.51. Let S = ((I;), (e; ;)) be a smooth reiteration of M of limit
length u < k. Then:
(a) S has at most finitely many drop points.

(b) S has a good limit I,{e; : i < ).

Proof. Case 1. u = k.

(a) is immediate by cf(k) > w, since if S had infinitely many drop points,
then so would S|y 4 1 for some v < k.

To prove (b), let (i, k) be free of drop points, where i < k. We must show
that ((I; :i < j < k), (e :i <h <j<k)) has a good limit:

I{ed i <j<k).
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(We then set: e? = ¢f - el for h < 4). But this is immediate by Lemma
3.7.9.

QED(Case 1)
The hard case is:
Case 2. i < k.
By induction on p we prove (a), (b) and:

(c) If i < p, then T is an inflation of I; with history (a’, (e%, : o < m;)), where

(d) If ¢ < p and (4, ) has no drop point in S, then aZ =n; and eL =e;.
Assume that this holds at every limit ordinal A < p. Then:

Claim 1. Let ¢ < j < u. Then

(i) I; is an inflation of I; with history (a%, (e o < nj))-

(i) If the interval (7, j) has no drop point in S, then af# =mn;ande;; = eﬁ';f .

Proof. Suppose not. Let j be the least counterexample. Then ¢ < j since
(i), (ii) hold trivially for ¢ = j. But j is not a limit ordinal since otherwise
(i), (ii) hold by the induction hypothesis. Hence j = h + 1. We first show
that it holds for i = h.

(i) is immediate by Theorem 3.7.42. We now prove (ii) for i = h. Let R,¢
be the unique objects such that:

R=((I'), ("), ("), T)

is a normal reiteration of length £ +1 and I), = I°,I; = I¢. Then ehj = V<,
Since R has no truncation on its main branch, ey ; inserts Ij, into I; and

h,j h,j
enj(nn) = nj. But aa” = {a <y : epj(a) < n;}. Hence ay = 1. But:

h ;
enj lnn = eq) [nn and ey j(nn) = eZ;? (nn) = nj

h?j
Hence e; , = ey},

But then ¢ < h. We know that (i), (ii) hold at h and that

i h .. . ih
2 . 67').7 — ehu] . 617

i,J

alY = aqa . .
« h,jr “a @ h,js
(2 aq’
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hj _ i,h _ — bl — i .
where ap” = np, ay, =i, €n = €y, ,epj = ey, Thus:

j _— gbh .
ay! =ap'=n; and
R ih i
€ij = €hj " Cih = enjj “Cnn = efij

Contradiction!
QED(Claim 1)

We now attempt to prove (a)-(d), taking an indirect approach. Call I a
stmultaneous inflation if it is an inflation of I; for each ¢ < p. Our job is
to find a simultaneous inflation which also satisfies the conditions (a), (b)
and (d). There is no shortage of simultaneous inflations. For instance the
normal iteration of length 1:

(M), 2, (id| M), @)

is a simultaneous inflation. Starting with this, we attempt to form a tower
of simultaneous inflations 19, where I®) is an iteration of length & + 1
extending I for i < £. The attempt will have only limited success. If we
have constructed 1) for ¢ below a limit ordinal A\, we shall, indeed, be able
to construct ™. In attempting to go for I© to IE+D | however, we may
encounter a ‘“bad case”, which blocks us from going further. Using the s + 1-
normal iterability of M we can, however, show that, if the bad case does
not occur, we reach I(*). But this turns out to be a contradiction. Hence
the bad case must have occurred below k. A close examination of this “bad
case” then reveals it to be a very good case, since it gives I = I©) satisfying

(a)-(d).
In the following let:
I, = <<M;>, <V(§>, <7rf175>, Ti> be of length n; + 1.
We attempt to construct:
I = ((Ma), (Va), (ma,p),T) of length n+1
satisfying (a)-(d).
We successively construct:

10 = (MOY, WOy, (O 7O of length n + 1.

a aﬂ/B

The intention is that 1) = I|¢ + 1 will be defined up to an 1 < @ and that
I = I™ will have the desired properties (a)-(d). The proof that there is
such an 7 is highly indirect and non constructive. We shall require:
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I is an inflation of I; with history
(a© e for i < p.

i<€&— IO =T1O;41.

Note. By (B) we can write My, vy, 78, T,1 instead of Mo(f), etc.
without reference to ¢. Similarly we can write a, e’ instead of a(6), e(©),
Thus, for a < £ we have:

a’, < n; and ¢!, inserts I'|a’, + 1 into I|o + 1.

Let a <& Then a =, el “al,.

By (C) we have:

(1)

(2)

a =supf{eél (al) :i < p}, since € (a’,) = lubel “a,.
Set: ezg) = eflf Hence by (C) we have:

Ila+1, (e, : i < p) is the good limit of
(Fag, +1:0 < ), (e i < j < p)

i .. el .
Now set: Uéa) = 0227025) = aflg(a). Then: aéla)e?(’;) = e?a). We can
define 6éa), 6((2), similarly. Note, however, that aéa) might be a partial
function on Mél , whereas 6Ea) is a total function. Nonetheless we do
have: :

UE' : Méz —s» M, for sufficiently large i < k.

a)

Proof. aéa) = T

(@) &Ea)’ where:

6’200 MY

i
Ao

e Meéa)(ag)-

By (1) we can pick i big enough that there is no truncation in (e, (a%,), a]r.
Hence i oy (al) o is X*-preserving.

QED(3)
We construct 1(€) =T |€ + 1 by recursion on ¢ as follows:
Case 1. £ =0.
IO = (M), @, (id | M), @) is the 1-step iteration of M. (A)-(C)hold
trivially.
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Case 2. ¢ =0+ 1 and a}), < n; for arbitrarily large i < p. Let D be
the set of ¢ such that:

aé < n; and 029) : Méé —y My
Then D is unbounded in p by (3). Clearly:
02’0]) : Méé —y Méé fori € D,j € D\i.

Hence: o '
02’9])(1/;2) > I/;z fori e D,j € D\i.
But then for sufficiently large i € D we have:
(N T . .
0(6)(1/%) Vas for 7 € D~a.
(To see this, suppose not. Then there is a monotone sequence (i, :
n < w) such that i,, € D and
O_’L'nairH»l( in )

in+1
vV >V .
% in in41
O W) =V

Set v, = 023)(1/2%). Then: v, > Yn4+1. Hence My is ill founded.
Contradiction!)

Let D’ be‘the set of such ¢ € D. Then there is v € My such that
V= 029)(1/(213) forie D.

Claim. v > y;s for § < 6.

Proof. Pick an i € D large enough that § € e} “al). Let €}(5) = 4.
Then v* < 1/;, Hence

[
)=

Vs =V = 029)(1/%) < Jée)(yéé

QED(Claim)
We are now in a position to apply the extension lemma Lemma 3.7.47.

Extend I(®) to 101 by setting vy = v. For each i € D/, I’ = 101 ig
an inflation of I; with history (a’,e’), where:

a’ 104+1= ai,agﬂ —al +1,¢" la}) = ¢ a}) and e§+1(a5+1) =0+1

But D’ is cofinal in p. It follows easily that I’ is an inflation of each
I (i < p). Thus (A) holds for £ = 6+ 1. (B) follows trivially. (C)
holds trivially for a < #. But then (c) holds for a = £ = 6 + 1, since

oh(ah) =0 for i < pand § = Us<u el “aj).
QED(Case 2)
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Case 3. £ =60+ 1 and Case 2 fails.

Then aé. = ' for sufficiently large i. This is the “bad case” in which
I0+1) is undefined.

Case 4. £ = )\ is a limit ordinal.

Let I = I|A be the componentwise union: I = U, <x I T is then an
inflation of I; (i < ) with history:

alf X\ =: U aly, A= U e'ly.

F<A F<A

Let b be the unique well founded cofinal branch in I. Extend I to
I' = I™ of length A 4 1 by setting: T“{A\} = b. By Lemma 3.7.48, I’
is then an inflation of each I; with history (a'%,e”) such that:

d'fA=a' [N\ e TA=¢[X ay = | Jah, é\(d}) =\
peb

(A), (B) are then trivially satisfied. But then so is (C) since

Ue::“ag\ = U U e%“a% = U U e%“a/’é = Ub =\
€N i€p Beb Bebi<u
QED(Case 4)
We note that the construction in Case 4 goes through for A = &, since

M is k + 1-normally iterable. Hence I(*) would exist if the bad case
did not occur. This is impossible, however, since:

If X is a limit ordinal and ™) exists, then cf(\) < p or c¢f(\) < n; for
some ¢ < [

Proof. Suppose first that A > é(a}) for all i < p. Since A =
lub;<,, €4 (a}) by (1), we conclude that cf(A) < p. Otherwise A =

e (al) = lub el “a. Hence af is a limit ordinal. Hence cf A < af < ;.
QED(4)

Hence the “bad case” occurs at € = § + 1, where § < . I = I is
the final element of our tower. For sufficiently large ¢ < p we have:
a5 =n;. Thus if : < j < p we have:

a%’]? = GZ{Z = a5 =", e;) = el(’g).
We now show:

There are only finitely many drop points h +1 < p in S.

Proof. Suppose not. Since the assertion is true for all y/ < u, we
conclude that here are cofinally many truncation points h + 1 < p in
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S. By (1), we can then pick such an A + 1 > i, where ¢ is chosen such

that (€j5(aj), d)r has no truncation point in /. But we can also choose i

large enough that a’ = 7;. By Theorem 3.7.42(6) there is a drop point:
a € (e (ag,) mivi] i

By Lemma 3.7.1(7) we then conclude that there is a drop point in

(€, (ap,), 6)r. Contradiction!

QED(5)
Now suppose g is chosen large enough that there is no drop point in (4, 0)
in S, and that aj) = n; for iop < j < 6. By Claim (1)(ii), we have

iy i
i 6(

ZA7‘ e . .. —
J=mn;and e;j =e 0)

U
for 9o <i < j < 6. By (2) we have:
I, {eh:ip <i< p)
is the good limit of
(I'mi +1 240 < i < ), (e do < j < p)

We have thus proven (a), (b) in Lemma 3.7.51. (c) and (d) are immediate
by the construction.

This proves Lemma 3.7.51 and, with it, Theorem 3.7.50.

Note. By the same method we get:

Let S be an insertion stable strategy for M and assume that
(M, S) is k + l-normally-iterable. Then (M,S) is k-smoothly-
iterable.

The proofs require only cosmetic changes.

We note the following consequence of Lemma 3.7.51:

Lemma 3.7.52. Let S = ((I;), (ei;)) be a smooth reiteration of M of length
1, where each I; is of length n; + 1. For j < u set:

Aj ={i <j:(ij] has no drop points in S}, A7 = A; U{j}.

(Hencei € Aj — A; =iNAj). Fori€ A} set: m;; = on?. Then:
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(a) mij-Th; = mhj forh <i<jin Az

(b) Tij - ]\4m —r Mm.

(¢) If j = X is a limit ordinal, then:
Mm, <7Ti,)\ 11 E A>\>

1s the direct limit of:

(M, 1i€ Ay), (mij:i<jin Ay)

Proof.

(a) Since ep ;(ny) = n; and e; j(n;) = nj, we have: 0(6;:‘) = a?;h]) . a(e;:).
We prove (b), (¢) by induction on j as follows:

Case 1. j = 0. Then A; = @ and there is nothing to prove.

Case 2. j = i+ 1. We must prove (b). If i + 1 is a drop point, then
Aj = @ and there is nothing to prove. If not, it suffices to prove it for h = 1,
by (a) and the induction hypothesis. Then the main branch of R; has no
drop point in R;, where R; is the unique reiteration from I’ to I'*!. Then
Tiis1 = (op) % where v + 1 = Ih(R;). But:

0,7 .
op M), —>s M77h+1

in Rl
QED(Case 2)

Case 3. j = A is a limit ordinal.

It suffices to prove (c), since (b) then follows by the induction hypothesis.
In S we have:

Iy, (eix: 1€ Ay)

is the good limit of

<Iz RS A)\>, <7ri,j 21 < 71in A)\>
But then M, = J;cq4, rng(af}ﬁ). This implies (c).

QED(Lemma 3.7.52)
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3.7.6 The final conclusion

We now apply the method of §3.7.3 to show that M is smoothly iterable. In
§3.5.2 we defined a smooth iteration of N to be a sequence I = (I; : i < p)
of normal iterations, inducing sequences (N; : ¢ < p), (m;;: 4 < j < p) with
the following properties:

e NN; is the initial model of I;. Moreover Ny = N.

e Let i+ 1 < pu. Then I; is of successor length. N;;1 is the final model
of I; and m; ;41 is the partial embedding of N; into N;11 determined
by Iz

® T jThi = Thyi-

e Call i+ 1 < p a drop point in I iff I; has a truncation on its main
branch. If the interval (i, j] has no drop point, then:

Tij - N; —5+ Nj.

e If A\ < p is a limit ordinal, 9 < A and (i, \) has no drop point, then:
Ny, (mix tip < i< )
is the direct limit of

<Ni:i0§i<,u>, <7ri,j:z'§j<,u>.

((Ni), (mij)) is called the induced sequence.

Call a smooth iteration I critical if it has successor length 4+ 1 and I, is of
limit length. By a strategy for N we mean a partial function S defined on
critical smooth iterations such that S(I), if defined, is a well founded cofinal
branch in I,,, where 1h(I) =n + 1.

A smooth iteration I = (I; : i < p) is S-conforming iff whenever ¢ < p and
A < 1h(7;) is a limit ordinal, and I* = I [ U {(Z; [ A\,4)}, then:

T"{\} = S(I'*) if S(I*) is defined.
S is a successful strategy for N iff every S-conforming smooth iteration I of

N can be properly extended in any legitimate S-conforming way. In other
words:
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(A) Let I have length n+ 1 and let I,, have length ¢ + 1. Let Q@ = N, be
the final model of I,,. Let EY # &, where v is greater than all the
indices V;] (j < i) employed in I,. Then @ is *-extendible by ES.

(B) If I is critical, then S(I) is defined.

(C) Let I have limit length p. Then there are only finitely many drop
points in I. Moreover, if Iy < p and (ig, p) is free of drops, then:

(Nitio i< ), (mig 1< < )
has a well founded direct limit:

NIM <7r,~7u g <1 < u)

We say that N is smoothly iterable iff it has a successful smooth iteration
strategy.

These concepts can, of course, be relativized to an ordinal «e. To this end we
define the total length of I = (I; 1 i < u) to be:

t1(1) = In(I;).
<p
The notion of a-successful smooth iteration strategy is then defined as before,
except that we restrict ourselves to iteration of total length less than «.

Note that if k > w is regular, then there are only two ways that a smooth
iteration I = (I; : ¢ < p) can have total length k. Either p = k and 1h(I;) < K
for i <k, orelse p=n+1<k, Ih(l;) =« and Ih(1;) < & for i <.

In this section we shall prove:

Theorem 3.7.53. Let M be uniquely normally iterable. Then it is smoothly
iterable.

Note. There is of course, considerable interest in relativizing this theorem
to a < 0o. We shall later show that, if x > w is regular, then the theorem
can be relativized to k + 1. That will require fairly modest changes in the
proof we give now.

Until further notice, assume M to be uniquely normally iterable. We prove
our Theorem 3.7.53 in the slightly stronger form:

Lemma 3.7.54. Let I be a normal iteration of M of length n+ 1. Let:
o: N —x« M;minp

Then N s smoothly iterable.
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In §3.7.3 we used the premiss of Lemma 3.7.54 to derive the normal iterability
of N. We first briefly review that proof, since our new proof will build upon
it. Our main tool was the reiteration mirror (RM). Given a normal iteration
of N:

I = ((Ni), (vi), <7Ti,j>v T') of length 7,

we define a reiteration mirror of I to be a pair (R, I’) such that:

(a) R = {{I'),(V]),(e"9),T) is a reiteration of M of length n, where:

I' = ({My), (v}), (m}, ), T") is of length 7; + 1

(b) I' = ((M;), (7 1), (o), (p%)) is a mirror of I with o;(1;) = v/.
(c) M =M.
(d) If h=T(i+ 1), then:

M;* = M} || where p is maximal such that 7/ is a cardinal in M.

Moreover:
/ _ _hj+1 * )
Thyitl = Opi where n; = 1h(I}).

(I, R, I') is called an RM triple of length 7 if and only if (R, I’) is an RM of
1.

We observed that:

Lemma 3.7.34 Let I' = (I,R,I') be an RM triple of length n + 1. Let
Ey” # &, where v > v; for all i < n. Then I' extends to an RM triple
I'={(I,R,I') of length n+ 2 with v = v.

We fixed a function G such that whenever (T', v) is such a pair, then G(I', v) =
(I,R,I') is such an extension.

We also observed that:

Lemma 3.7.35. Let I' = (I, R, I') be an RM-triple of limit length n. Let
b be the unique good branch in R. Then thej"e is a unique extension to an
RM-triple T of length n + 1. Moreover, b =T“{n} in this extension.

We also noted that:

Lemma 3.7.32. i+ 1 is a drop point in I iff it is a drop point in R.

Lemma 3.7.33. If (i,j]r has no drop point in I, then 712’-7j = af}f.
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Clearly, if T' = (I, R, I') is an RM-triple of length n and 1 < i < 7, then
T'|i = (1|4, R|i, I'|i) is a RM triple of length i. Now let:

0: N —x« Mﬁ min p,

where I = ((M;), (1), (%), T) is a normal iteration of M of length 7 + 1.
We define:

Definition 3.7.23. Let I be a normal iteration of N of length p. By a good
triple for I we mean an RM triple I'(I) = (I, R, I') such that:

(a) R = ((I), (i), (€9),T), I' = (M), <7r£,j>’ (03), (p")) with I? = f: 0i =
00 = p.

(b) Ifi+1 < p, then T|i +2 = G(T'}i + 1, /)).

Qt

By the fact that M is uniquely normally iterable and I' is an RM-triple, it
follows that, if n < p is a limit ordinal then I'|n 4 1 is obtained from I'|n as
in Lemma 3.7.35. It follows easily that I can have at most one good triple,
which we denote by I'(I), if it exists, we then define a strategy S for N as
follows:

Let I be a normal iteration N of limit length. If I'(1) is undefined, then so
is S(I). If not, then we let:

b = the unique good branch in R,
where I'(I) = (I, R, I'). We set: S(I) = b, We then noted:
Lemma 3.7.36. If I is an S-conforming iteration, then T'(I) is defined.

But this means that I can be extended one step further, using Lemma 3.7.34
and 3.7.35. Hence S is a successful normal iteration strategy.

Building upon this, we now try to define a successful smooth iteration strat-
egy for N. Note that, given the function G, the operation I'(I) is uniquely
characterized by &, I, p. Thus we can write: Ly f’,ﬁ(I ). We now try to define
I'(I) for smooth iterations I of N.

Definition 3.7.24. Let I = (I; : i < p) be a smooth iteration of N inducing
(Nijvi<p),(mj;:1<j<p). Let

Ii = ((N}), (vi), (m}h ;). T*) be of length 7;.

By a I'-sequence for I, we mean any sequence I' = (I'; : ¢ < p) such that:
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(a) Iy =Ty (i) = (i, R, I}) is an RM triple where:
o; i Nj —s MZ min pi

and IZ is the first iteration in R; and Mz is the final model in Iz

We set: 4 .
R; = ({I!), (W, (el), T)

I = (M), (i), (ot (01))
(Hence I; = I?, M; = My'.)

(b) I =(I; :i < p) is a smooth reiteration of M such that R; = the unique
reiteration from I to IZ+1 fori+1< p.

I then induces partial insertions €;; with:
ji+1 = Ilm, éi,i+1 = 6?’7% fori+1<p
and
I, (éix 11 < A) is the good limit of

(I 15 < \), (€1 < j <) for limit A < p.

(c) There is a commutative system (7;; : i < j < p) such that 7; ; is a
partial map from M; to M and:

7'1'2',1'4_1 = Wél;m_ fori+1< .
Moreover:
My, (7rix 11 < A) is the limit of
(M =i < \), (7 0 < j <\ for limit A\ < p.
(d) di41 = Ufh,piJrl = pi for i+ 1 < p.
(e) IT=1Iy,6=do,p=r"
(f) Suppose that I has no drop point in [¢, j]. Then:
(1) 7'1'2"]‘ : Mz —rx Mj
(i) i~ 0i = G5

73T

(i) 75, “pL, C ph < 70 (pL) for n < w.

This completes the definition.
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Recall that A + 1 is a drop point in R; iff it is a drop point in I;. We call
i+ 1 a drop point in I iff r; has a drop point on its main branch. Similarly,
1+ 1 is a drop point in [ iff I; has a drop point on its main branch. Hence
i+1isadrop in I iff it is a drop point in 1.

Lemma 3.7.55. There is at most one I'-sequence for I.

Proof. By induction on ¢ < p we show that the sets:
Ty, Ii, (€ o h < d), My, (7t 0 b < i), 04, p'

are uniquely determined by I'|i = (T'y, : h < 7).

Case 1. 1 = 0.

Iy, 00, p° are explicitly given by (e). Hence so are:

My = the final model of Iy, Lo po(_[(])

Case 2. i = h+ 1. Then

I; = I;L]h,éj’i . éj,h for h < i.

N . . . / . .
M; is defined from I; ; and 7;; = 7T0h77h7rj7h for h < i.
ho i h
L4 O-i:anhvpl:p o

¢ Fi - Ffi,Ui,ﬂi (I’)

Case 3. i = ) is a limit ordinal.

In, (énx : b < \) are given by (b).

o My, (7tpx : h < \) are given by (c).

oy is defined by: oxmp = 7y a0, for [, A) drop free in I (by (f)).

By Lemma 3.6.42, p* is the unique p such that

g N)\ —r M)\minp and
T lcp< fri,A(pi) if (i, \) is drop free.

e = Ff,\ﬂ,\,/?)‘(b‘)'
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QED(Lemma 3.7.55)

We denote the unique I'-sequence for I by I'(]), if it exits. Writing df’j for
éi’j

o, and 7; for lh(ji) we have:

Lemma 3.7.56. Let I' = I'(I). If (i, j] has no drop point in I, then 7v; ; =

’ivj
0'7-72_ .

Proof. We recall that if ¢ + 1 is not a drop point, then

. " e it
Tiitl =Ty, = Oy =077

(Here 1; + 1 = h(R;),m + 1 = Ih(I?)). Using this and Lemma 3.7.52, we
prove the assertion by induction on j.

QED(Lemma 3.7.56)

Lemma 3.7.57. Let I = (I; : i < p) be of limit length p. Assume that

I' =T'(I) exits. Then there are unique: Ny, (i pu), L, (€i )y My, (i) 0y p*
such that:

(@) Ny, (miy i< p) is the direct limit of:

(Ni2i <), (mig i <j < p).

(b) I, (€ i < p) is the good limit of
(Ii i< ), (€sj i < j < pu)

(c) M, is the final model of I,.

(d) M, (i 20 < p) is the direct limit of:

(M i < p), (g i < j < py.

(e) o, : N, —s M, min pH,

(f) For sufficient i < p we have:

. . i . i
OuTip = Tiu0is i “p* C p* < 75 u(p")

Proof. (b) is immediate by Theorem 3.7.50. We let M, be defined as in (c).
Let i < p such that (4, ) has no drop points in I, Then (i, ) has no drop
points in [ = (I; : i < p). By Lemma 3.7.56 we know that 7, ; = O"Z;lj for
i <h<j<p Set: wp, = dg;l“ for h € [i, ). Then (d) follows by Lemma
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3.7.52. We know that o;m,; = 70y, for @ < h < j < p. Hence we can define
o, asin (f). o, is obviously unique. But then there is a unique p# satisfying
(e), (f) by Lemma 3.6.42. QED(Lemma 3.7.57)

We now define the strategy S. Let I be a critical smooth iteration. Then
I has length  + 1 and I, is of limit length. If I'(/) is undefined, the so is
S(I). If not, then:

oy Ny —r5e ]\.477 min p"

where I, M,, oy, p" are as in the definition of “I'-sequence”. Moreover, Iy =
an,an,pn (In) We then set:

S(I) =: S,(I,) = the unique cofinal, well founded branch in T,.
But then:
Lemma 3.7.58. Let I = (I; : i < p) be any S-conforming smooth iteration.
Then T'(I) exists.
Proof. Let I = (I; : i < p). Define a partical function on p by:
I'; =: the unique x such that I'(I|i + 1) = (I'y, : h < i) U{(z,17)}.
By induction on ¢ we show:
Claim. I'; exists.
Case 1. i = 0.

Clearly I'; = I'; ; ~(Ip). But this holds for any Iy which is a normal iteration
of N. Hence by induction on lh(/p), we have: I is Sf 5 ﬁ—conforming, where
Si 5 518 the normal iteration strategy for N defined from the function I'; , 5

QED(Case 1)
Case 2. 1 =h+ 1.
Set I; = " oy = Jf;h, pt = plh . Clearly, then:
Li =T} ;. (I;)
where Il is a normal iterate of M and:
o:N;, —s» Ml minpi7

Mi being the final model of IZ Since this holds for any normal iterate I; of
Nj, we conclude by induction on lh(I;) that I; is S; ;-conforming. Hence

. 2'7Ui’pz
I = FjiaUmPi exists.
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QED(2)
Case 3. 7 = )\ is a limit.

It is easily seen that (I'y : h < A\) = I'(1 [ A). Let I, My, ox, p* be as in
Lemma 3.7.57. Clearly we have: I'y = Ui vnos pA(I,\). Exactly as before,

we conclude that Iy is S i\ Myon px—conforming, hence that I'y exists.

QED(Claim)
But then it is easily seen that (I'; : i < p) = I'(1).
QED(Lemma 3.7.58)

But then S is successful, since, if I is S-conforming, then I can be extended
un any S-conforming way -i.e. (A)-(C)hold. (A) follows by Lemma 3.7.34.
(B) follows by Lemma 3.7.35. (C) follows by Lemma 3.6.47.

This proves Lemma 3.7.54 and with it Theorem 3.7.53. We now show how
to relativize this to a regular cardinal £ > w. We assume that M is uniquely
k + l-normally iterable. By a k-reiteration of M we mean a reiteration of
length < k in which each component normal iteration is of length < k. If
we understand “reiteration” as meaning a k-reiteration of length < x, and
“smooth iteration” as meaning a smooth iteration of total length < k, then
a literal repetition of the above proof shows:

Lemma 3.7.59. Let M be uniquely normally k + 1-iterable. Let I be a
normal iteration of M of length n + 1 < k. Let

0: N —y« Mnminp

Then N s smoothly k-iterable.

The following strength of k+ 1-iterability is needed for this, however, in order
to justify the use of Theorem 3.7.50. We now show that, under the premises
of Lemma 3.7.59, N is in fact, smoothly x + 1-iterable. Let I = (I; : i < p)
be a smooth iteration of N of total length k. As mentioned earlier, one of
two cases hold, which we consider separately:

Case 1. u=n+1 <k and I, is of length .

We assume I to be S-conforming. Then I|n is S-conforming. Then I|n is

S-conforming and I, is S I-mamp,,—conformlng. Hence:

(I,) = (I, R, I") exists,

jn,ay],p"
where R is a reiteration of M of length x. But then R has a well founded
cofinal branch b. Hence b is cofinal in I,). b has only finitely many drop points
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in I,), since otherwise, by the fact that x > w is regular, there would be A € b
such that h N A = T7“{A} has infinitely many drop points. Contradiction!
Let ¢ € b such that b~¢ has no drop points. Using the fact that k > w is
regular, it follows easily that

(Mp, : h € bNi), (mp 5« h < j in bNi)

has a well founded limit. (If 2,41 € zy, is the limit, these would be a £ € b~
such that z, = N& (%) for n < w. Hence Ty, 41 € Ty, in N¢. Contradiction!)

QED(Case 1)
Case 2. = k.

I has only finitely many drop points, since otherwise these would be £ < &
such that I|£ has infinitely many drop points. Contradiction! Let the interval
(i, k) be drop free. Since k > w is regular, it again follows that:

(My, :i <h< k), (mh; i <h<j<r)

has a well founded limit.
QED(Case 2)

This proves Theorem 3.6.2.

3.8 Unique Iterability

3.8.1 One small mice

Although we have thus far developed the theory of mice in considerable
generality, most of this book will deal with a subclass of mice called one
small. These mice were discovered and named by John Steel. It turns out
that a great part of many one small mice are uniquely normally iterable.
Using the notion of Woodin cardinal defined in the preliminaries we define:

Definition 3.8.1 (1-small). A premouse M is one small iff whenever EM £
@, then o
no p < & = crit(EM) is Woodin in JZ

Note. Since JF is a ZFC model, we can employ the definition of “Woodin
cardinal” given in the preliminaries. An examination of the definition shows
that the statement “u is Woodin” is, in fact, first order over H, where 7 = ™.
Thus the statement “u is Woodin in M” makes sense for any transitive ZFC™
model M. It means that g € M and “u is Woodin” hold in HM where

T= /ﬁM (taking 7 = card M if no £ > p is a cardinal in M). We then have:



