
Chapter 4

Properties of Mice

4.1 Solidity

In §2.5.3 we introduced the notion of soundness. Given a sound M , we
were then able to define the n-th projectum ⇢n

M
(n < !). We then defined

the n-th reduct Mn,a with respect to a parameter a (consisting of a finite
set of ordinals). We then defined the n-th set Pn

M
of good parameters and

the set Rn

M
of very good parameters. (Soundness was, in fact, equivalent to

the statement: Pn
= Rn for n < !). We then defined the n-th standard

parameter pn
M
2 Rn

M
for n < !. This gave us the classical fine structure

theory, which was used to analyze the constructible hierarchy and prove such
theorems as ⇤ in L. Mice, however, are not always sound. We therefore took
a different approach in §2.6, which enabled us to define ⇢n

M
,Mn,a, Pn

M
, Rn

M

for all acceptable M . (In the absence of soundness we could, of course, have:
Rn

M
6= Pn

M
). In fact Rn

M
could be empty, although Pn

M
never is. Pn

M
was

defined in §2.6.

Pn

M
is a subset of [OnM ]

<! for acceptable M = hJA
↵ , Bi. Moreover, the

reduct Mn,a is defined for any n < ! and a 2 [OnM ]
<!. The definition of

Pn

M
,Mn are recapitulated in §3.2.5, together with some of their consequences.

Rn

M
is defined exactly as before, taking = Rn

M
= ? if n is not weakly sound.

At the end of §2.6 we then proved a very strong downward extension lemma,
which we restate here:

Lemma 4.1.1. Let n = m + 1. Let a 2 [OnM ]
<!. Let N = Mn,a. Let

⇡ : N �!⌃j N where N is a J-model and j < !. Then:

(a) There are unique M,a such that a 2 Rn

M
and M

n,a
= N .

389
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(b) There is a unique ⇡ � ⇡ such that:

⇡ : M �!
⌃

(m)
0

M strictly and ⇡((a)) = a.

(c) ⇡ : M �!
⌃

(n)
j

M.

In §2.6. we also proved:

Lemma 4.1.2. Let n = m+ 1. Let a 2 Rn

M
. Then every element of M has

the form F (⇠, a) where ⇠ < ⇢n
M

and F is a good ⌃
(m)

1
function.

Corollary 4.1.3. Let n, a,⇡,⇡ be as in Lemma 4.1.1, wehere j > 0. Then

rng(⇡) = The set of F (⇠, a) such that F is a good ⌃
(m)

1
function and ⇠ 2 rng(⇡)\⇢nM

Proof.. Let Z be the set of such F (⇠, a).

Claim 1. rng(⇡) ⇢ Z.

Proof. Let y = ⇡(y). Then y = F (⇠, a) where F is a good ⌃
(n)

1
(M)

function and ⇠ < ⇢n
M

by Lemma 4.1.2. Hence y = F (⇡(⇠), a), where F has
the same good ⌃

(n)

1
definition in M .

QED(Claim 1.)

Claim 2. Z ⇢ rng(⇡).

Proof. Let y = F (⇡(⇠), a), where F is a good ⌃
(m)

1
(M) function. Then the

⌃
(n)

1
statement: _

y y = F (⇡(⇠), a)

holds in M . Hence, there is y 2 M such that y = F (⇠, a) where F has the
same good ⌃

(m)

1
definition in M . Hence

⇡(y) = F (⇡(⇠), a) = y.

QED(Corollary 4.1.3)

Note. rng(⇡) ⇢ Z holds even if j = 0.

Lemma 4.1.1 shows that a great deal of the theory developed in §2.5.3 for
sound structures actually generalizes to arbitrary acceptable structures. This
is not true, however, for the concept of standard parameter.
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In our earlier definition of standard parameter, we assumed the soundness
of M (meaning that Pn

= Rn for n < !). We defined a well ordering <⇤ of
[On]

<! by:
a <⇤ b !

_
⇠(ar⇠ = br⇠ ^ ⇠ 2 bra).

We then defined the n-th standard parameter pn
M

to be the <⇤-least a 2
M with a 2 Pn. This definition stil makes sense even in the absence of
soundness. We know that pnr⇢i 2 P i for i  n. Hence by <⇤-minimality we
get: pnr⇢n = ?. For i  n we clearly have pi ⇤ pnr⇢i by <⇤-minimality.
However, it is hard to see how we could get more than this if our only
assumption on M is acceptability.

Under the assumption of soundness we were able to prove:

pnr⇢i = pi for i  n.

It turns out that this does still holds under the assumption that M is fully
!1+1 iterable. Moreover if ⇡ : M �! N is an iteration map, then ⇡(pn

M
) =

Pn

N
. The property which makes the standard parameter so well behaved is

called solidity. As a preliminary to defining this notion we first define:

Definition 4.1.1. Let a 2M be a finite set of ordinals such that ⇢!\a = ?
in M . Let ⌫ 2 a. The ⌫-th witness to a in M (in symbols M⌫

a ) is defined as
follows:

Let ⇢i+1  ⌫ < ⇢i. Let b = ar(⌫ + 1). Let M = M i,b be the i-th reduct of
M by b. Set: X = h(⌫ [ (b\M)), i.e. X = the closure of ⌫ [ (u\M) under
⌃1(M) functions. Let:

� : W !M |X

be the transitivation of M |X. By the extension of embedding lemma there
are unique W,n,� � � such that:

W = W i,b,� : W �!
⌃

(i)
1

M,�(b) = b.

Set: M⌫
a = W . � is called the canonical embedding for a in M and is

sometimes denoted by �⌫
a .

Note. Using Lemma 4.1.3 it follows that rng(⇡) is the set of all F (~⇠, b) such
that ⇠1, . . . , ⇠n ⇢ ⌫, b = ar(⌫ + 1) and F is good ⌃

(i)

1
(M) function. This is

a more conceptual definition of M⌫
a ,�.

Definition 4.1.2. M is n-solid iff M⌫
a 2 M for ⌫ 2 a = pn

M
it is solid iff it

is n-solid for all n.
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Pn was defined as the <⇤- least element of Pn. Offhand, this seems like
a rather arbitrary way of choosing an element of Pn. Solidity, however,
provides us with a structural reason for the choice. In order to make this
clearer, let us define:

Definition 4.1.3. Let a 2M be a finite set of ordinals. a is solid for M iff
for all ⌫ 2 a we have

⇢!M  ⌫ and M⌫

a 2M

.

Lemma 4.1.4. Let a 2 Pn such that a \ ⇢n = ?. If a is solid for M , then
a = pn.

Proof. Suppose not. Then there is q 2 Pn such that q <⇤ a. Hence
there is ⌫ such that qr(⌫ + 1) = ar(⌫ + 1) and ⌫ 2 arq. But then q ⇢
⌫ [ (ar(⌫ + 1)) ⇢ rng(�) where �a = �⌫

a is the canonical embedding. Let A

be ⌃
(n)

(M) in q such that A\ ⇢n+1 /2M . Let A be ⌃
(n)

1
(M⌫

a ) in q = ��1
(q)

by the same definition. Since � �⌫ = id and ⇢n  ⌫, we have:

A \ ⇢n = A \ ⇢n 2M,

since A 2 ⌃
n

1 (M
⌫
a ) ⇢M . Contradiction!

QED(Lemma 4.1.4)

The same proof also shows:

Lemma 4.1.5. Let a be solid for M such that a\⇢n = ? and a[b 2 Pn for
a b ⇢ ⌫ for all ⌫ 2 a. Then a is an upper segment of Pn (i.e. ar⌫ = Pnr⌫
for all ⌫ 2 a.)

Hence:

Corollary 4.1.6. If M is n-solid and i < n, then M is i-solid and P i
=

Pnr⇢i.

Proof. Set a = pn⇢i. Then a 2 P i is M -solid. Hence a = pi.

QED(Corollary 4.1.6)

We set p⇤
M

=:
S

n<!
pn
M

. Then p⇤ = pn where ⇢n = ⇢!.

p⇤ is called the standard parameter of M . It is clear that M is solid iff P ⇤ is
solid for M .
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Definition 4.1.4. Let a 2 [OnM ]
<!, ⌫ 2 a with ⇢i+1  ⌫ < ⇢i in M . Let

b = ar(⌫+1). By a generalized witness to ⌫ 2 a we mean a pair hN, ci such
that N is acceptable, ⌫ 2 N and for all ⇠a, . . . , ⇠r < ⌫ and all ⌃(i)

1
formulae

' we have:
M |= '(~⇠, b) �! N |= (~⇠, c).

Lemma 4.1.7. Let N 2 M be a generalized witness to ⌫ 2 a. Assume that
⌫ /2 rng(�), where � = �⌫

a is the canonical embedding. Then M⌫
a 2M .

Proof. Let W = M⌫
a ,W ,� be as in the definition of M⌫

a . Then W = W i,b,
where ⇢i+1  ⌫ < ⇢i in M , b = ar(⌫ + 1) and �(b) = b. Since � �⌫ = id, we
have:

W |= '(~⇠, b) �! N |= '(~⇠, c),

for ⇠1, . . . , ⇠r < ⌫ and ⌃
(i)

1
formulae '. We can then define a map �̃ :

W �!
⌃

(i)
1

N by:

Let x = F (~⇠, b) where ⇠1, . . . , ⇠r < ⌫ and F is a good ⌃
(i)

1
(W ) function.

Then, letting Ḟ be a good definition of F we have:

W |=
_

x(x = Ḟ (~⇠, b)); hence N |=
_

x(x = Ḟ (~⇠, c)).

We set �̃(x) = y, where N |= y = Ḟ (~⇠, c).

If we set: N = N i,c, we have:

�̃ �W : W �!⌃0 N.

Let � = sup �̃”On
N
, Ñ = N |�. Then:

�̃ �W : W �!⌃1 Ñ cofinally.

Note that, since �(⌫) > ⌫ and � � ⌫ = id, we have: ⌫ is regular in M⌫
a .

Hence �(⌫) is regular in M and HM

�(⌫)
is a ZFC

� model. We now code W

as follows. Each x 2 W has the form: h(j,� ⇠, b �) where h = h
W

is the
Skolem function of W and � < ⌫.

Set:
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2̇ = {�� j, ⇠ �,� k, ⇣ ��: h(j,� ⇠, b �) 2 h(k, h⇣, bi)}
Ȧ = {� j, ⇠ �: h(j, h⇠, bi) 2 A}
Ḃ = {� j, ⇠ �: h(j, h⇠, bi) 2 B}

where W = hJA
� , Bi. Let D ⇢ ⌫ code h2̇, Ȧ, Ḃi. Then:

D 2 ⌃!((̃N)) ⇢M,

since e.g.

2̇ = {h � j, ⇠ �,� k, ⇣ � i : h
Ñ
(j, h⇠, ci) 2 h

Ñ
(k, h⇣, ci)}

But then D 2 HM

�(⌫)
by acceptability. But HM

�(⌫)
is a ZFC

� model. Hence
W 2 HM

�(⌫)
is recoverable from D in HM

�(⌫)
. Hence W 2 HM

�(⌫)
⇢ N is recov-

erable from W in HM

�(⌫)
.

QED(Lemma 4.1.7)

We note that:

Lemma 4.1.8. Let a 2 Pn, ⌫ 2 a,M⌫
a 2M . Then ⌫ /2 rng(�⌫

a).

Proof. Suppose not. Then a 2 rng(�). Let A be ⌃1(M) such that A\ ⇢n /2
M . Let A be ⌃1(M⌫

a ) in a = ��1
(a) by the same definition. Then:

A \ ⇢n = A \ ⇢n 2 ⌃
⇤
(M⌫

a ) ⇢M.

Contradiction!

QED (Lemma 4.1.8)

But then:

Lemma 4.1.9. Let q 2 Pn

M
. Let a be an upper segment of q which is solid

for M . Let ⇡ : M �!⌃⇤ N such that ⇡(q) 2 Pn

N
. Then ⇡(a) is solid for N .

Proof. Let ⌫ 2 a,W = M⌫
a ,� = �⌫

a . Set:

a0 = ⇡(a), ⌫ 0 = ⇡(⌫),W 0
= N⌫

0
a0 ,�

0
= �⌫

0
a0 .

We must show that W 0 2 N . We first show:
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(1) ⌫ 0 /2 rng(�0
).

Proof. Suppose not. Let ⇢i+1  ⌫ < ⇢i in M . Then ⇢i+1  ⌫ 0 < ⇢i in N .
Then in N we have: ⌫ 0 = F 0

(⇠, b0) where ⇠ < ⌫ 0, b0 = a0r(⌫ 0 + 1), and F 0 is
a good ⌃

(i)

1
(N) function.

Let Ḟ be a good definition for F 0. Then in N the ⌃
(i)

1
statement holds:

_
⇠0 < ⌫ 0(⌫ 0 = Ḟ (⇠0, b0)).

But then in M we have:
_

⇠0 < ⌫(⌫ = Ḟ (⇠0, b))

where b = ar(⌫ + 1). Hence ⌫ 2 rng(�). Contradiction!

QED(1)

Now set: W 00
= ⇡(W ). In M we have:

^
⇠ < ⌫(M |= '(⇠, b) �!W |= '(⇠, b))

for ⌃
(i)

1
formulas '. But this is a ⇧

(i)

1
statement in M about ⌫, b,W . Hence

the corresponding statement holds in N :
^

⇠ < ⌫ 0(N |= '(⇠, b0) �!W 0 |= '(⇠, b0))

Hence W 00 is a generalized witness for ⌫ 0 2 a0. Hence W = N⌫
0

a 2 N .

QED(Lemma 4.1.9)

As a corollary we then have:

Lemma 4.1.10. Let M be n-solid. Let ⇡ : M �!⌃⇤ N such that ⇡(pn
M
) 2

Pn

N
. Then N is n-solid and ⇡(Pn

M
) = Pn

N
.

Proof. Let a = pn
M

. Then a0 = ⇡(a) 2 Pn

N
is solid for N by the previous

lemma. Moreover, a0 \ ⇢n
N

= ?. Hence a0 = pn
N

.

QED(Lemma 4.1.10)

This holds in particular if ⇢n = ⇢! in M . But if ⇡ : M �! N is strongly
⌃
⇤-preserving in the sense of §3.2.5, then ⇢n = ⇢! in N and ⇡”(Pn

M
) ⇢ Pn

M
.

Hence:
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Lemma 4.1.11. Let M be solid. Let ⇡ : M �! N be strongly ⌃
⇤-preserving.

Then N is solid and ⇡(pi
M
) = pi

N
for i < !.

QED(Lemma 4.1.11)

Corollary 4.1.12. Let I = hhMii, h⌫ii, h⇡iji, T i be a normal iteration. Let
h = T (i+ 1) where i+ 1 T j. Assume that (i+ 1, j]T has no drop. If M⇤

j

is solid, then Mj is solid and ⇡h,j(pnM⇤
i
) = pn

Mj
for n < !1.

Proof. ⇡h,j is strongly ⌃
⇤-preserving.

We now define:

Definition 4.1.5. Let M be acceptable. M is a core iff it is sound and
solid. M is the core of N with core map iff M is a core and ⇡ : M �!⌃⇤ N
with ⇡(p⇤

M
) = p⇤

N
and ⇡ �⇢!

M
= id.

Clearly M can have at most one core and one core map.

Definition 4.1.6. Let M = hJE
↵ , E↵i be a premouse. M is presolid iff M ||⇠

is solid for all limit ⌘ < ↵.

Lemma 4.1.13. Let M be acceptable. The property “M is presolid” is uni-
formly ⇧1(M). Hence, if ⇡ : M �!⌃1 N , then N is presolid.

Proof. The function:

h�M ||⇠: ⇠ is a limit ordinali

is uniformly ⌃1(M). But for each i < ! there is a first order statement 'i

which says that M is “solid above ⇢i”, i.e.

M⌫

P
i
M
2M for all ⌫ 2 piM .

The map i 7! 'i is recursive. But M is presolid if and only if:
^

⇠ 2M
^

i(⇠ is a limit �!�M ||⇠ 'i)

QED(Lemma 4.1.13)

We shall prove that every fully iterable premouse is solid. But if M is fully
iterable, then so is every M ||⌘. Hence M is presolid.

The comparison Lemma (Lemma 3.5.1) tells us that, if we coiterate two pre-
mice M0,M1 of cardinality less than a regular cardinal ✓, then the coiteration
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will terminate below ✓. If both mice are ✓+1-iterable, and we use successful
strategies, then termination will not occur until we reach i < ✓ such that
M0

i
/M1

i
or M1

i
/M0

i
(M /M 0 is defined as meaning

W
⇠  OnM 0 ,M = M 0||⇠.)

If M0

i
/ M1

i
, we take this as making a statement about the original pair

M0,M1 to the effect that M1 contains at least as much information as M0.
However, we may have truncated on the man branch to M1

i
, in which case

we have “thrown away” some of the information contained in M1. If we also
truncated on the main branch to M0, it would be hard to see why the final
result tell us anything about the original pair. We now show that, if M0

and M1 are both presolid, then this eventually cannot occur: If there is a
truncation on the main branch of the M1-side, there is no such truncation
on the other side. (Hence no information was lost in passing from M0 to
M0

i
.) Moreover, we then have M0

i
/M1

1
.

Lemma 4.1.14. Let ✓ > ! be regular. Let M0,M1 2 H✓ be presolid premice
which are normally ✓ + 1-iterable. Let:

Ih = hhMh

i i, h⌫hi i, h⇡h

iji, T hi (h = 0, 1)

be the coiteration of length i + 1 < ✓ by successful ✓ + 1 strategies S0, S1

(Hence M0

i
/ M1

i
or M1

i
/ M0

i
.) Suppose that there is a truncation on the

main branch of I1. Then:

(a) M0

i
/M1

i
.

(b) There is no truncation on the main branch of I0.

Proof. We first prove (a). Let l1 + 1  i be the least point of truncation in
T 1

”{i}. Let h1 = T (l1 + 1). Let Q1
= M1⇤

l1
. Then Q1 is sound and solid.

Let ⇡1
= ⇡1

h1,i
. By Lemma 4.1.12, M 0

i
is solid and ⇡1

(pQ1) = p
M

1
i
. Hence

Q1
=core(M1

i
) and ⇡1 is the core map. But ⇡1 6= id. Hence M1

i
is not sound.

If M0

i
6 M1

i
, we would have: M1

i
= M0

i
||⌘ for an ⌘ 2 M0

i
. But M0

i
||⌘ is

sound. Contradiction! This proves (a).

We now prove (b). Suppose not. Let l0 + 1 be the last truncation point
in T 00{i}. Let h0 = T 0

(l0 + 1). Let Q0,⇡0 be defined as before. Then
Q0

=core(M0

i
) and ⇡0 6= id is the core map. Hence M0

i
is not sound. Hence,

as before, we have: M1

i
/ M0

i
. Hence M0

i
= M1

i
and Q = Q0

= Q1 is the
core of Mi = M0

i
= M1

i
with core map ⇡ = ⇡0

= ⇡1. Set:

F h
=: E

M
h
lh

⌫lh
(h = 0, 1).

It follows easily that there is  defined by:

 = h
lh
= crit(F h

) = crit(⇡) (h = 0, 1)
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Thus P(↵) \Mh

lh
= P() \Q. But:

↵ 2 F h
[X] ! ↵ 2 ⇡(X)

for X 2 P() \ Q,↵ < �h = F h
(). Hence l0 6= l1, since otherwise �0 = �1

and F 0
= F 1. Contradiction!, since ⌫lh is the first point fo difference. Now

let e.g. l0 < l1. Then ⌫l0 is regular in M0

j
for l0 < j  i. But then it is

regular in M1

l1
||⌫l1 , since M1

l1
||⌫l1 = M0

l1
||⌫l1 and ⌫l1 > ⌫l0 .

But F 0
= F 1|�l0 is a full extender. Hence F 0 2 Ml1 ||�l1 by the initial

segment condition. But then ⇡̃ 2Ml1 ||�l, where ⇡̃ is the canonical extension
of F 0. But ⇡̃ maps � = +Q cofinally to ⌫l0 . Hence ⌫l0 is not regular in
M1

l1
||⌫l1 . Contradiction!

Lemma 4.1.14

We remark in passing that:

Lemma 4.1.15. Each J↵ is solid.

Proof. Suppose not. Let M = J↵, ⌫ 2 a = pi
M

, where ⇢i+1  ⌫ < ⇢i in
M . Let M⌫

a = J↵ and let ⇡ : J↵ �! J↵ be the canonical embedding. Then
↵ = ↵, since J↵ /2 J↵. Let b = ar(⌫ + 1), b = ⇡�1

(b). Set a = (a \ ⌫) [ b.
Then a 2 P i in Mi. But ⇡”(a) = (a \ ⌫) [ b <⇤ a where ⇡ is monotone.
Hence a <⇤ a. Hence a /2 P i by the <⇤-minimality of a. Contradiction!

QED(Lemma 4.1.15)

By virtually the same proof:

Lemma 4.1.16. Let M = JA
↵ be a constructible extension of JA

�
(i.e. A ⇢

JA

�
, where �  ↵). Let ⇢!

M
� �. Then M is solid.

The solidity Theorem

We intend to prove:

Theorem 4.1.17. Let M be a premouse which is fully !1+1-iterable. Then
M is solid.

A consequence of this is:

Corollary 4.1.18. Let M be a 1-small premouse which is normally !1 + 1-
iterable. Then M is solid.
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Proof. If M is restrained, then it has the minimal uniqueness property and
is therefore fully !1 + 1-iterable by Theorem 3.6.1 amd Theorem 3.6.2. But
if M is not restrained it is solid by Lemma 4.1.16.

QED(Corollary 4.1.18)

It will take a long time for us to prove Theorem 4.1.17. A first step is to
notice that, if M 2 H, where  > !1 is regular and ⇡ : H � H, with
⇡(M) = M , where H is transitive and countable, then M is solid iff M
is solid, by absoluteness. Moreover, M is fully !1 + 1-iterable by Lemma
3.5.7. Hence it suffices to prove our Theorem under the assumption: M is
countable. This assumption will turn out to be very useful, since we will
employ the Neeman-Steel Lemma. It clearly suffices to prove:

(*) If M is presolid, then it is solid.

To see this, let M be unsolid and let ⌘ be least such that M ||⌘ is not solid.
Then M ||⌘ is also fully !1 + 1-iterable and ⌫ is also presolid. Hence M ||⌘ is
solid. Contradiction!

Now let N be presolid but not solid. Then there is a least � 2 p⇤
N

such that
N�

a /2 N , where a = p⇤
N

. Set: M = N�
a and let � : M �!

⌃
(n)
1

N, � �� = id

where ⇢n+1

N
 � < ⇢n

N
and ar(� + 1) 2 rng(�). We would like to show:

M 2 N , thus getting a contradiction. How can we do this? A natural
approach is to coiterate M with N . Let hI0, I1i be the coiteration, I0 being
the iteration of M . If we are lucky, it might turn out that Mµ 2 Nµ,
where µ is the terminal point of the coiteration. If we are ever luckier,
it may turn out that no point below � was moved in pairing from M to
Mµ -i.e. crit(⇡0

0,µ
) � �. In this case it is easy to recover M from Mµ,

so we have: M 2 Nµ, and there is some hope that M 2 N . There are
many “ifs” in this scenario, the most problematical being the assumption
that crit(⇡0

0,µ
) � �. In an attempt to remedy this, we could instead do a

“phalanx” iteration, iterating the pair hN,Mi against M . If, at some i < µ,
we have F = E

M
0
i

⌫i 6= ?, we ask whether 0
i
< �. If so we apply F to N .

Otherwise we apply it in the usual way to Mh, where h is least such that
0
i
< �h. For the sake of simplicity we take: N = M0

0
,M = M0

1
. ⌫i is only

defined for i � 1. The tree of I0 is then “double rooted”, the two roots being
0 and 1. (In the normal iteration of a premouse, 0 is the single root, lying
below every i � 0). Here, i < µ will be above 0 or 1, but not both.

If we are lucky it will turns out the final point µ lies above 1 in T 0. This
will then ensure that crit(⇡0

0,µ
) � �. It turns out that this -still improbable

seeming- approach works. It is due to John Steel.
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In the following section we develop the theory of Phalanxes.

4.2 Phalanx Iteration

In this section we develop the technical tools which we shall use in proving
that fully iterable mice are solid. Our main concern in this book is with one
small mice, which are known to be of type 1, if active. We shall therefore
restrict ourselves here to structures which are of type 1 or 2. When we use
the term “mouse” or “premouse”, we mean a premouse M such that neither
it nor any of its segments M ||⌘ are of type 3.

We have hitherto used the word “iteration” to refer to the iteration of a single
premouse M . Occasionally, however, we shall iterate not a single premouse,
but rather an array of premice called a phalanx. We define:

By a phalanx of length ⌘ + 1 we mean:

M = hhMi : i  ⌘i, h�i : i < ⌘ii

such that:

(a) Mi is a premouse (i  ⌘)

(b) �i 2Mi and JE
Mi

�i
= JE

Mj

�i
, (i < j  ⌘)

(c) �i < �j (i < j < ⌘)

(d) �i > ! is a cardinal in Mj (i < j  ⌘).

A normal iteration of the phalanx M has the form

I = hhMi : i < µi, h⌫i : i+ 1 2 (⌘, µ)i, h⇡i,j : i T ji, T i

where µ > ⌘ is the length of I. M = I|⌘ + 1 is the first segment of the
iteration. Each i  ⌘ is a minimal point in the tree T . As usual, ⌘i is
chosen such that ⌘i > ⌘h for h < i. If h is minimal such that i < �h then
h = T (i+1) and EMi

⌫i
is applied to an apropiately defined M⇤

i
= Mh||�. But

here a problem arises. The natural definition of M⇤
i

is:

M⇤
i
= Mh||�, where �  OnMh is maximal such that ⌧i < � is a

cardinal in Mh||�.


