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ABSTRACT. This paper is concerned with exact control of the false discovery rate (FDR) for
step-up-down (SUD) tests related to the asymptotically optimal rejection curve (AORC). Since
the system of equations and/or constraints for critical values and FDRs is numerically extremely
sensitive, existence and computation of valid solutions is a challenging problem. We derive explicit
formulas for upper bounds of the FDR and show that under a well-known monotonicity condition,
control of the FDR by a step-up procedure results in control of the FDR by a corresponding SUD
procedure. Various methods for adjusting the AORC to achieve finite FDR control are investigated.
Moreover, we introduce alternative FDR bounding curves and study their connection to rejection
curves as well as the existence of critical values for exact FDR control with respect to the underlying
FDR bounding curve. Finally, we propose an iterative method for the computation of critical values.
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1. Introduction

In massive-multiple testing problems, strong control of the familywise error rate (FWER)
is regarded as a much too conservative criterion leading to procedures with extremely low
power. The false discovery rate (FDR) criterion, which bounds the (expected) type I error
proportion among all rejections, allows for more type I errors but offers the possibility of
more significances and higher power compared with FWER-controlling procedures. Under
specific independence assumptions, the original linear step-up (LSU) procedure proposed in
Benjamini & Hochberg (1995) controls the FDR at a prespecified level �, but only exhausts
� in cases when all n hypotheses are true. If exactly n0 < n hypotheses are true, the actual
FDR level of the LSU test degrades to n0�/n. This fact resulted in various attempts to im-
prove the LSU test with respect to �-exhaustion and, consequently, power. Especially, adap-
tation techniques have recently attracted special attention. These methods try to incorporate
information about the unknown quantity n0 into the test procedure to exhaust the prespeci-
fied level � and to increase power. Explicit adaptation techniques utilize an estimate n̂0 of n0

and then apply the LSU (or a related) procedure at the relaxed level n�/n̂0, cf. e.g. Storey et al.
(2004), Langaas et al. (2005), Benjamini et al. (2006), Sarkar (2008), Blanchard & Roquain
(2009) and Celisse & Robin (2010). An alternative avoiding estimation of n0 was presented
in Finner et al. (2009). Based on asymptotic considerations, they derived a new nonlinear
rejection curve that was termed asymptotically optimal rejection curve (AORC). The AORC
leads asymptotically to exact FDR control for least favourable parameter configurations if
lim inf n→∞ n0/n≥� and certain independence assumptions hold. Although AORC-based mul-
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tiple tests control the FDR asymptotically, they can behave liberally for finite systems of
hypotheses. The main purpose in this paper is to address the issue of modifying AORC-
related stepwise tests such that the FDR is controlled in a prespecified sense for finite n.

1.1. Notation

Let Hi , i ∈ Nn ={1, . . ., n}, denote n null hypotheses with ∅ �=Hi ⊂�, where � denotes the
underlying parameter space. The index set of true null hypotheses given ϑ ∈ � is denoted
by I0 = I0(ϑ)={i ∈ Nn : ϑ ∈ Hi}. Furthermore, n0 denotes the number of true null hypothe-
ses. Let �= (�i : i ∈ Nn) denote a multiple test procedure for Hi , i ∈ Nn. For a fixed ϑ ∈ �
and a given test �, we define the number of false rejections by Vn = |{i ∈ Nn : �i =1 and ϑ∈
Hi}| and the number of all rejections by Rn = |{i ∈ Nn : �i =1}|. Then, the FDR of a mul-
tiple test � given ϑ∈� is defined by FDRϑ(�)=Eϑ [Vn/(Rn ∨1)], and the multiple test � is
said to control the FDR at level � ∈ (0, 1) if supϑ∈� FDRϑ(�) ≤ �. It will be assumed that
p-values pi for testing Hi are at hand, and we denote the ordered p-values by p1:n ≤ · · · ≤
pn:n. Moreover, we assume that pi , i ∈ I0 = I0(ϑ), are independent and identically uniformly
distributed on [0, 1] and that (pi : i ∈ I0) and (pi : i ∈Nn \ I0) are independent random vectors.
We refer to these assumptions as (GA).

1.2. Rejection curves and stepwise tests

Helpful tools for theoretical investigations and visualization of procedures are rejection
curves, critical value curves and the empirical cumulative distribution function (cdf) F̂ n of
all p-values. A rejection curve r : [0, 1]→ [0, 1] is a non-decreasing (continuous) function, and
its (generalised) inverse �= r−1 is called the corresponding critical value curve. Critical values
are defined by �i:n =�(i/n), i ∈Nn. In general, r and � do not depend on n in asymptotic con-
siderations while they may for finite n. Sen (1999) mentioned the nice relationship between
the empirical cdf F̂ n of n distinct p-values p1, . . ., pn, the ordered p-values, the critical values
and the rejection curve r:

F̂ n(pi:n)≥ r(pi:n) if and only if pi:n ≤�i:n.

The original LSU procedure rejects Hi if and only if pi ≤m�/n, where m=max{i ∈Nn : pi:n ≤�i:n}
with �i:n = i�/n for i ∈ Nn. Hence, the LSU test can be defined in terms of the rejection curve
r(t)= t/� called Simes-line.

For a fixed �∈ (0, 1), the AORC with respect to asymptotic control of the FDR is defined
by

f�(t)= t
t(1−�)+�

, t ∈ [0, 1].

This curve was motivated by the idea to exhaust the FDR-level � for extreme parameter con-
figurations at least asymptotically. Various multiple tests related to the AORC with the latter
property are investigated in Finner et al. (2009). However, the construction of AORC-related
multiple tests controlling the FDR for finite n and exhausting the prespecified FDR level as
sharp as possible remains a challenging problem and leads to interesting questions as will be
seen in this paper. The critical values induced by f� are given by

�i:n = f −1
� (i/n)= i�

n− i(1−�)
, i ∈Nn. (1)

Unfortunately, a step-up (SU) procedure based on these AORC critical values does not
work because of �n:n = f −1

� (1)=1. An interesting alternative class of procedures are step-
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up-down (SUD) procedures. For �∈ Nn, an SUD(�) procedure �� = (�1, . . ., �n) (say) of order
� based on some critical values �1:n ≤ · · · ≤ �n:n is defined as follows. If p�:n ≤ ��:n, set m=
max{j ∈ {�, . . ., n} : pi:n ≤ �i:n for all i ∈ {�, . . ., j}}, whereas for p�:n >��:n, put m= sup
{j ∈ {1, . . ., � − 1} : pj:n ≤ �j:n} (sup∅=−∞). Define �i =1 if pi ≤ �m:n and �i =0 otherwise
(�−∞:n =−∞). Note that �=1 yields a step-down (SD) procedure and �=n yields an SU pro-
cedure. In the class of SUD procedures based on the same set of critical values, the SD
procedure never leads to more rejections than all the other SUD procedures whereby the SU
procedure is most powerful with respect to the number of rejections. However, even SUD
procedures of order �< n with critical values (1) fail to control the FDR for finite n, cf. Finner
et al. (2009).

1.3. Outline of the paper

In section 2, we first introduce an important condition on critical values called feasibility
and provide effective formulas for the computation of upper FDR bounds for SUD tests
with feasible critical values. Then, we prove that SUD procedures with feasible critical values
that provide FDR control for an SU test control the FDR as well. Moreover, we show
that FDR control for an SD test may lead to FDR control for SUD tests based on the
same set of critical values as the SD procedure. Section 3 deals with general computational
issues concerning critical values and FDR. Among others, we provide a recursive scheme for
the computation of critical values with respect to so-called FDR bounding curves. Then, in
section 4, we discuss alternative FDR bounding curves and investigate the solvability of the
recursive scheme introduced in section 3. In section 5, we investigate some simple adjustments
of the AORC to obtain sets of critical values ensuring finite FDR control. Finally, an iter-
ative method for adjusting AORC-related critical values is presented in section 6, and some
concluding remarks are given in section 7.

2. SUD tests and upper FDR bounds

We consider SUD(�) tests based on p-values and defined in terms of critical values
0 <�1:n ≤· · ·≤�n:n ≤1 with �i:n =�(i/n) for some critical value curve �. With respect to bounds
for the FDR and least favourable parameter configurations, the condition

q(x)=�(x)/x is non-decreasing in x (2)

is extremely helpful. This condition implies that �i:n/i is non-decreasing in i. Such critical
values will be called feasible. It is well known that feasible critical values imply that the FDR
of SU procedures becomes larger if p-values under alternatives decrease stochastically, cf.
Benjamini & Yekutieli (2001). As shown below, feasibility offers the possibility to compute
upper bounds for the FDR not only for SU tests, but for all SUD procedures too. In fact,
upper bounds for the FDR of SUD procedures with feasible critical values are obtained in
one of the so-called Dirac-uniform (DU) configurations (cf. Finner et al., 2009), that is all
p-values pi , i ∈ I0, are independent and uniformly distributed on [0, 1], and all pi , i ∈Nn \ I0,
follow a Dirac distribution with point mass 1 at 0. We refer to this setting as DU(n, n0) and
replace Pϑ, FDRϑ and Eϑ by Pn,n0 , FDRn,n0 and En,n0 . In case of SU, the upper bound is
sharp if the corresponding DU configuration belongs to the model. For SUD procedures
with parameter �< n, DU configurations may not be least favourable for the FDR, cf. an
example in Blanchard, G., Dickhaus, T., Roquain, E. & Villers, F. (2011), On least favourable
configurations for step-up-down tests, unpublished manuscript. However, Roquain & Villers
(2011) give specific conditions under which DU configurations are least favourable for an
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SD test. Moreover, DU configurations yield an upper bound for the FDR in this case. The
following result under (GA) for SUD(�) tests �� corresponds to the slightly more general
theorem 4.3 in Finner et al. (2009). Below, Pϑi refers to the situation where (pj : j ∈Nn \{i})
has the same distribution under ϑi as under ϑ but pi ≡0 under ϑi .

Theorem 1. Let ϑ∈� and i ∈ I0. Then, for an SUD(�) test with �∈ Nn, it holds under (GA)
and (2)

FDRϑ(��)≤ n0

n

n∑
j =1

q(j/n)Pϑi (Rn/n= j/n)= n0

n
Eϑi q(Rn/n) (3)

≤ n0

n
En,n0−1q(Rn/n), (4)

with equality in (3) for an SU test, i.e. for �=n.

This result yields an explicit formula for a ϑ-free upper bound for the FDR of the SUD(�)
test for all n0 ∈Nn given by

b(n, n0 |�)= n0

n
En,n0−1q(Rn/n)=n0

n0∑
j =1

�n1 + j:n

n1 + j
Pn,n0−1(Vn = j −1). (5)

Hence, the FDR of �� is bounded by max1≤n0≤n b(n, n0 |�). For SU, that is �=n, the bound
equals FDRn,n0 (�n) which results in the alternative formula

b(n, n0 |n)=
n0∑

j =1

j
n1 + j

Pn,n0 (Vn = j). (6)

Moreover, for the SU procedure, we get the nice recursive formula

Pn,n0 (Vn = j)= n0

j
�n1 + j:nPn,n0−1(Vn = j −1) for j ∈Nn0 , (7)

which can easily be verified by considering lemma 3.2 in Finner & Roters (2002).
Formulas for the probability mass function (pmf) of Vn under DU configurations are essen-

tial for evaluating b(n, n0 |�). They can be obtained in terms of the joint cdf of order statis-
tics, cf. lemma 3.2 in Gontscharuk (2010). However, computation of the pmf of Vn becomes
numerically cumbersome for larger values of n. Computations of b(n, n0 |n), i.e. the upper
bound for the SU test, are much easier and faster due to the efficient recursive formula (7).
Anyhow, as long as we are able to compute the pmf of Vn for the SUD(�) procedure with
fixed critical values, we can easily compute the bounds given by (5) for the FDR.

Remark 1. Consider a sequence of SUD(�n) tests based on some rejection curve r with �= r−1

satisfying (2) and �n/n → � ∈ [0, 1]. Moreover, consider a sequence of DU(n, n0) models with
n0/n → � ∈ [0, 1] and suppose that Rn/n converges almost surely to some fixed value. Then, the
bound given in (5) converges to the limiting FDR, that is limn→∞ b(n, n0)= limn→∞ FDRn,n0 for
all �∈ [0, 1] if �∈ (0, 1] and for all �∈ [0, 1) if �=0 (which includes SD procedures). For �=0 and
�=1, bound and FDR may not be equal in the limit. For example, for n0 =n the FDR of the SD
test based on f� equals 1− (1−�1:n)n which converges to 1− exp(−�) <�= limn→∞ b(n, n |1).

A question of general interest is whether FDR control of the SU procedure implies FDR
control of a corresponding SUD procedure with the same set of critical values. An interesting
result in this direction can be found in Blanchard & Roquain (2008), where a specific depen-
dency condition is used. The dependency condition in Blanchard & Roquain (2008) results
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in very restrictive conditions on the critical values. Theorem 2 states the desired result for
SUD tests with (2) under (GA).

Theorem 2. Consider an SU test �n and an SUD(�) test ��, �< n, with the same critical value
curve � satisfying (2). Then, under (GA) it holds

FDRϑ(��)≤FDRϑ(�n) for all ϑ∈�. (8)

Hence, if the FDR is controlled by the SU test �n, then the SUD(�) test �� also controls the
FDR. Moreover, the bounds b(n, n0 |�) given in (5) are non-decreasing in �∈Nn.

Proof. Set R�
n =Rn for the SUD(�) test. The SUD(�2) test rejects at least as many hypo-

theses as the SUD(�1) test for any 1≤�1 ≤�2 ≤n, which implies that R�1
n is stochastically not

greater than R�2
n . Under (2), we obtain that �(R�

n/n)/(R�
n/n) is stochastically non-decreasing

in �; hence, the bounds b(n, n0 |�) defined in (5) and Eϑi q(R�
n/n) are non-decreasing in �.

Theorem 1 finally yields

FDRϑ(��)≤ n0

n
Eϑi q(R�

n/n)≤ n0

n
Eϑi q(Rn

n/n)=FDRϑ(�n).

Lemma 1 is a partial reverse of theorem 2 and shows that FDR control of the SD test �1

sometimes implies FDR control of the corresponding SUD test �� for certain values of �, if
the corresponding SU test �n controls the FDR in DU configurations for large values of n0.

Lemma 1. Under (GA), let ��, � ∈ Nn, denote SUD(�) tests with a critical value curve �
satisfying (2) such that b(n, n0 |1)≤� for all n0 =1, . . ., n. Define

n*
0 =min{k ∈Nn : FDRn,n0 (�n)≤� for all n0 =k +1, . . ., n} (9)

with the convention min ∅=n. Then, FDRn,n0 (��)≤� for all n0 ∈Nn and all �≤n−n*
0 +1, that

is the SUD(�) test controls the FDR at level � if �≤n−n*
0 +1.

Proof. Suppose that n*
0 ≤n. Theorem 2 yields that FDRn,n0 (��)≤� for n0 =n*

0 +1, . . ., n and
�∈ Nn. A look at lemma 3.2 in Gontscharuk (2010) and formula (5) immediately yields for
� ∈ Nn that b(n, n0 |�)=b(n, n0 |1) for all n0 ≤ n − �+1. Hence, for � ≤ n − n*

0 +1 we obtain
FDRn,n0 (��)≤b(n, n0 |�)=b(n, n0 |1)≤� for all n0 ≤n*

0, which completes the proof.

3. General computational issues

The formulas derived in section 2 offer various ways to deal with FDR control of SUD tests
of order �∈Nn. Thereby, it suffices to check FDR control for all DU configurations. Noting
that any SUD procedure rejects all false hypotheses with probability 1 under DU(n, n0), we
have to check that the FDR is less than or equal to g*(n0/n) in this case, where the function
g* is defined by g*(�)=min{�, �} for �∈ [0, 1] and plays an important role in what follows. If

b(n, n0 |�)≤g*(n0/n) for all n0 ∈Nn, (10)

then the FDR is controlled at level �.
Clearly, it would be attractive to find critical values close to (1) for SUD procedures as

described in the previous sections such that the FDR is strictly controlled at level � and as
close as possible to g*(n0/n) for 1≤n0 ≤n. We call any g : [0, 1]→ [0, �] satisfying the natural
restrictions g(0)=0 and 0 <g(�)≤g*(�) for all �∈ (0, 1] and some �∈ (0, 1) an FDR bounding
curve. Suppose for a moment that for each n0 ∈ Nn, the FDR under a DU(n, n0) configura-
tion shall be bounded by g(n0/n) for some fixed FDR bounding curve g. Then, it is tempting
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with respect to (5) to require

n0

n0∑
j =1

�n1 + j:n

n1 + j
Pn,n0−1(Vn = j −1)=g(n0/n) for all n0 ∈Nn. (11)

Setting hn0 (�n−n0 +2:n, . . ., �n:n)

= n−n0 +1
n0Pn,n0−1(Vn =0)

⎡
⎣g(n0/n)−n0

n0∑
j =2

�n1 + j:n

n1 + j
Pn,n0−1(Vn = j −1)

⎤
⎦,

we formally obtain

�n:n =ng(1/n) and �n−n0 +1:n =hn0 (�n−n0 +2:n, . . ., �n:n) for 2≤n0 ≤n, (12)

i.e. we get a recursive scheme for the determination of critical values. However, the �i:ns deter-
mined by (12) may fail to yield a valid set of critical values, that is they may be not monotone
or may have values outside of [0, 1]. Hence, we have to check whether the resulting solution,
i.e. �i:ns in (12), is feasible. Unfortunately, for g ≡g*, the recursive scheme (12) only leads to
feasible critical values for very small values of n. For example, for �=0.05 and SU tests, we
only get feasible solutions for n ≤ 6, cf. Kwong & Wong (2002).

A question of general interest is to find functions g such that condition (11) leads to feas-
ible critical values for SUD(�) tests for all n ∈ N. There exists at least one such function,
namely, g(�)= ��, � ∈ [0, 1], which leads to the LSU procedure introduced in Benjamini &
Hochberg (1995). Further candidates will be presented in section 4.

To find feasible critical values close to the ones induced by the AORC, one may relax (11)
(and consequently (12)) as follows. In a first step, one may choose m∈Nn−1 and initial values
�n−i +1:n ≤· · ·≤�n:n, i =1, . . ., m, satisfying all constraints required for a feasible solution and

b(n, i |�)≤g*(i/n) for i =1, . . ., m, (13)

where some of the inequalities may be strict. In a second step, one can try to examine whether
recursive computation of the remaining critical values via (12) leads to a feasible solution with

b(n, i |�)=g*(i/n) for i =m+1, . . ., n. (14)

Although this proposal sounds attractive, it turns out to be a balancing act and extremely
sensitive with respect to the initial critical values. Our experience is that one needs to be in
luck to find a feasible solution with this method for larger values of n. The main reason for
the sensitivity of this method seems to be that the new critical value to be calculated via (12)
is the smallest value in the support of the distribution of Vn and typically has very small
impact on the actual FDR.

4. Alternative FDR bounding curves and exact solving for SU tests

We investigate the question whether there exist further FDR bounding curves g and SU pro-
cedures �n with a critical value curve �n satisfying (2) such that for all n∈N

FDRn,n0 (�n)=g(n0/n) for all n0 ∈Nn. (15)

If (15) holds for some g and �n with (2), the critical values of �n are given by (12). Given
a fixed g, we say that (15) is solvable if there exists the SU test �n with critical value curve
�n satisfying (2) such that (15) is fulfilled. Hence, (15) is solvable if (12) leads to feasible
critical values. For SUD(�) tests, (15) may be replaced by b(n, n0 |�)=g(n0/n) for all n0 ∈ Nn.

Moreover, we investigate conditions such that limn→∞ FDRn,n0 (��)= limn→∞ b(n, n0 |�)=g(�)
for all � if n0/n→ �.

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
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4.1. Asymptotic relation between FDR bounding curves and rejection curves

As in Finner et al. (2009), one can try to find the asymptotic rejection curve r and the asymp-
totic critical value curve � associated with the FDR bounding curve g. Since � should satisfy
(2), this imposes further conditions on g as will be seen below. Assume for a moment that
limn→∞ n0/n= � ∈ (0, 1). Then, for a fixed threshold t, the asymptotic FDR with respect to
DU configurations is given by

FDR�(t)= t�
(1− �)+ t�

.

Solving FDR�(t)=g(�) for t leads to

t� = g(�)(1− �)
�(1−g(�))

.

Assuming on the other hand that the threshold for the p-values is determined by the asymp-
totic crossing point between the rejection curve r and the asymptotic empirical cdf F∞(t | �)=
�t + (1−�) of p-values with respect to DU configurations, this results in an implicit definition
of the asymptotic rejection curve r given by r(t�)=F∞(t� | �), or equivalently,

r
(

g(�)(1− �)
�(1−g(�))

)
= 1− �

1−g(�)
, �∈ (0, 1). (16)

Analogously, the asymptotic critical value function �≡�(· | �)= r−1 is implicitly defined by

�

(
1− �

1−g(�)

)
= g(�)(1− �)

�(1−g(�))
, �∈ (0, 1). (17)

Lemma 2 shows that r and � are well defined for suitable FDR bounding curves g.

Lemma 2. Let g be a continuous FDR bounding curve such that g(�)/� is non-increasing in �∈
(0, 1] and let b= lim�→0 g(�)/�∈ (0, 1]. Then r : [0, b]→ [0, 1] and � : [0, 1]→ [0, b] are well defined
via (16) and (17), respectively, and by setting �(0)= r(0)=0 and r(b)=1, �(1)=b. Moreover,
� fulfils condition (2).

Proof. Let �= sup{�∈ [0, 1] : g(�)= �}. Then, g(�)= � for �∈ [0, �] and g(�) < � for �∈ (�, 1].
Moreover, if there exists a �∈ (0, �), then b=1 and (16) yields r(1)=1 and (17) yields �(1)=1.
Setting g1(�)= (1−�)/(1−g(�)), �∈ [0, 1], g2(�)=g(�)/�, �∈ (�, 1] and g2(�)=b for �∈ [0, �], (17)
can be written as

�(g1(�))
g1(�)

=g2(�).

Since g2 is non-increasing and g1 is strictly decreasing on [�, 1], we obtain that r : [0, b]→ [0, 1]
and � : [0, 1]→ [0, b] are well defined and � fulfils condition (2). From g1(0)=1, g1(1)=0 and
g2(0)=b, we obtain the remainder.

We note that if �i denotes the solution of (1−�)/(1−g(�))= i/n with respect to �, the asymp-
totic critical values can be computed by

�i:n =�(i/n)= g(�i)(1− �i)
�i(1−g(�i))

, i ∈Nn−1 and�n:n =b.

Theorem 3. Let g be an FDR bounding curve with the same properties as in lemma 2. Consider
SUD(�n) tests ��n based on r defined in (16) with �n/n →�. Then, we obtain for the limiting
FDR in DU(n, n0) models with n0/n→ � that
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lim
n→∞

FDRn,n0 (��n )=g(�)

for (i) �∈ (0, 1] and �∈ [0, 1] if b < 1, (ii) �∈ (0, 1) and �∈ [0, 1] if b=1, and (iii) �=0 and
�∈ [0, 1).

Proof. Let g1 and g2 be defined as in the proof of lemma 2. Setting t� =g1(�)g2(�), we obtain
that t� as a function of � is continuous for �∈ [0, 1] and strictly decreasing for �∈ [�, 1] with
t� =b for � ≤ � and t� =0 for �=1. For each � ∈ [0, 1], it will be shown that r(t)=F∞(t | �)
has at least one solution and at most two solutions in [0, b]. Note that from (16), we obtain
r(t�)=F∞(t� | �), which implies that there exists at least one solution, namely t�. Now suppose
there exists a further solution t′ �= t�. The strict monotonicity of t� in �∈ [�, 1] yields that there
exists a �′ ∈ [�, 1] such that t′ = t�′ . Altogether we get r(t�′ )=F∞(t�′ | �′)=F∞(t′ | �), hence �= �′

or t′ =1 which implies the existence of at most two solutions, namely t� < 1 and 1 or only t�.
Finally, we get Rn/n → F∞(t� | �)= r(t�) = g1(�) and �(Rn/n) → �(r(t�))= t� =g1(�)g2(�), hence
b(n, n0 |�n)→g(�) for �∈ [0, 1] with formula (5). Remark 1 completes the proof.

To complete the picture concerning the relationship between asymptotic rejection curves,
asymptotic critical value curves and asymptotic FDR bounding curves, the following remark
covers the case that we start with an asymptotic rejection curve r.

Remark 2. Let r : [0, b]→ [0, 1] be continuous with b∈ (0, 1] and r(b)=1, and suppose there
exists a �0 ∈ [0, 1) such that for each �∈ (�0, 1] there exists a unique crossing point t(�) between
F∞(· | �) and r on [0, b] if b < 1 or on [0, 1) if b=1, while the unique crossing point t(�) on
[0, 1] is b for �∈ [0, �0]. Moreover, suppose that r(t)/t is non-increasing in t ∈ (0, b]. Consider
a sequence of DU(n, n0) models and a sequence of SUD(�n) tests based on r such that
Rn/n→ r(t(�)) for n0/n→ �. Then, the asymptotic FDR bounding curve on [0, 1) is given by

g(�)= �t(�)
1− �+ �t(�)

and g(�)/� is non-increasing in � ∈ (0, 1) with lim�→0 g(�)/�=b. Moreover, with �= r−1 and
�(1− �+ �t(�))= t(�), we get

lim
�→1

g(�)= lim
�→1

�t(�)
1− �+ �t(�)

= lim
�→1

�
�(1− �+ �t(�))

1− �+ �t(�)
= lim

t→0

�(t)
t

=q(0),

which is in line with the asymptotic results in Finner et al. (2009) for SUD procedures, where
it is shown that under suitable assumptions, the asymptotic FDR for n →∞ and �→ 1 (or
�=1) is q(0).

4.2. A class of FDR bounding curves

We now introduce a promising class of FDR bounding curves g which allow to approximate
g* in a smooth way. Let E = [�, ∞) or E = (�, ∞) for some � ∈ R and let G� : [0, 1] → [0, �],
� ∈ E, be continuous and non-decreasing functions such that G�(x)/x is non-increasing in
x ∈ [0, 1] with limx↓0 G�(x)/x =b� ∈ (0, ∞), G�(0)=0 for all � ∈ E and lim�→∞ G�(x)=�
for all x ∈ (0, 1]. Moreover, G� is assumed to satisfy one of the following two conditions:
(G1) ∃ 	∈ (0, 1 − �) such that G�(	)=� for all �∈ E and G�(x) is strictly increasing in �∈ E
for all x ∈ (0, 	), (G2) G�(x) is strictly increasing in �∈ E for all x ∈ (0, 1]. In case of (G2),
we formally set 	=1. We denote the set of all these (G�)�∈E by G.
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Now define h� by h�(x)=x +G�(x) and g(· | �) : [0, 1]→ [0, �] by

g(� |�)=G�(h−1
� (�)), �∈ [0, 1]. (18)

A little analysis yields that

g(� |�)≤g*(�) ∀ �∈E and ∀ �∈ [0, 1],

g(� |�) <g*(�) ∀ �∈E and ∀ �∈ (0, min{	+�, 1}),

lim
�→∞

g(� |�)=g*(�) ∀ �∈ [0, 1],

lim
�→0

g(� |�)/�=b�/(1+b�) ∀ �∈E.

If (G1) applies, we have g(� |�)=� for �∈ [�+ 	, 1].

Lemma 3. Let (G�)�∈E ∈ G and let g(· | �) be defined by (18). Then, the asymptotic rejection
curve r ≡ r(· | �) defined via (16) is strictly increasing on [0, b�/(1+b�)] with lim�→∞ r(t |�)= f�(t),
t ∈ [0, 1]. If (G1) applies, i.e. 	+�< 1, then r(t |�)= f�(t), t ∈ [0, t	], where t	 ={�(1 − �− 	)}/
{(1 −�)(	+�)}. The asymptotic critical value function �≡�(· |�) defined via (17) satisfies the
monotonicity condition (2).

Proof. For min{	+�, 1}< �≤1, the asymptotic rejection curve r implicitly defined by (16)
coincides with the AORC which has all desired properties. Therefore, it suffices to show the
assertions of the lemma for 0≤ �≤min{	+�, 1}. In view of lemma 2, we have to show that
g(� |�)/� is continuous (which is trivial) and non-increasing in �. Substituting �=h�(y) in
g(� |�)/�=G�(h−1

� (�))/�, we see that g(� |�)/� is non-increasing if

G�(y)/y
G�(y)/y +1

is non-increasing, which is implied by the assumptions.

Clearly, there are uncountable choices of G� to approach g* in a smooth way. For example,
we can choose G� =�H�I[0,1] for a suitable family of cdf’s H� on [0, ∞) such that G� has the
desired properties, see the following example.

Example 1. (Families of probability distributions for generating FDR bounding curves) Let
�∈ (0, 1).

(a) (Beta distributions) Let E = [1, ∞) and consider the family of beta distributions with
cdfs H�(u)= (1 − (1 − u)�)I[0,1](u)+ I(1,∞)(u) for �∈ E. Setting G� =�H� and x =u	 for some
	∈ (0, 1−�], this leads to

G�(x)=�(1− (1−x/	)�)I[0,	)(x)+�I[	,1](x), �∈E.

Then, (G�)�∈E ∈G, hence lemma 3 applies. For convenience, we denote the resulting FDR
bounding curves by g(· |�, 	). Note that g(· |�, 	) is non-increasing in 	∈ (0, 1−�] for �∈ [0, 1].
Moreover, g(� |1, 1−�)=��, which is the FDR bounding curve of the LSU procedure.

(b) (Exponential distributions) Let E = (0, ∞) and consider the family of exponential dis-
tributions with parameter �∈E and cdf H� (say) and define again G� =�H�. Then, we have

G�(x)=�(1− exp(−�x))I[0,1](x), �∈E,

and (G�)�∈E ∈G with 	=1, hence lemma 3 applies here, too.
It seems that one can choose FDR bounding curves of the type introduced in example

1 being close to g* and leading to feasible critical values in (12) for large values of n. For
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suitable choices of � and 	 in (a) and (b) in example 1, we obtain approximately identical
FDR bounding curves and critical value functions (rejection curves). Moreover, in example
1(a) with 	=0.5 and example 1(b), we can find suitable �s for �=0.01, 0.05, 0.1 and n≤1000
(and probably for much larger values of n) such that (15) is solvable. For instance, if �=0.05,
then for �=16, 	=0.5 in example 1(a) and �=35 in example 1(b) there exist feasible critical
values with (15) for at least n ≤ 1000. All in all this approach (as long as it works) yields
an attractive possibility to obtain a feasible set of critical values which should not differ
too much from the AORC-based critical values (1). Anyhow, it remains completely unclear
whether for each n there exists an � such that (15) is solvable.

Of course, for SUD procedures, it is also possible to apply the recursive scheme (12) such
that the upper bound is equal to one of the FDR bounding curves considered in example 1.
But computations for SUD tests take typically a longer time.

5. AORC adjustments

5.1. AORC with 
-adjustment

A simple ad hoc possibility to obtain a valid set of critical values for an AORC-related SUD(�)
procedure guaranteeing strict FDR control consists in adjusting the critical values given in
(1) in a suitable way. For example, as already mentioned in Finner et al. (2009), we can try
to find a 
n > 0 such that the set of critical values

�i:n = i�
n+
n − i(1−�)

, i ∈Nn, (19)

which are always feasible, yields an SUD(�) test controlling the FDR at level �. Another
adjustment of the critical values induced by the AORC can be found in Blanchard & Roquain
(2009). The critical values (19) correspond to the rejection curve f�,
n (t)=(

1+
n/n
)

f�(t),
t ∈ [0, �/(�+
n/n)]. Formally, 
n is chosen as small as possible such that b(n, n0 |�) ≤ � for
all n0 ∈ Nn with equality for at least one n0. We call such a 
n b-optimal. A nice result in
Gavrilov et al. (2009) shows that the SD test with 
n ≡1 always controls the FDR at level �
for �∈ (0, 1) and n∈N.

It follows from the arguments in the proof of theorem 2 together with formula (5) and the
monotonicity of 
n-adjusted critical values in 
n that b-optimal 
n-values are non-decreasing
in �n for SUD(�n) tests. In other words, choosing a larger value for � results in smaller criti-
cal values. On the other hand, for fixed critical values, the SUD(�̃) test rejects at least as
many hypotheses as the SUD(�) test if �̃ is larger than �. Hence, there is a trade-off between
the conservativeness of critical values, quantified by 
n, and the conservativeness of the test
structure, quantified by the parameter � of the SUD test.

Now, we apply the result in lemma 1 for 
n-adjusted critical values (19). Although the SU
test with critical values (19) and 
n b-optimal for the corresponding SD test does not control
the FDR for certain values of n0, we observed in all our calculations that the prechosen FDR
level � is exceeded only for a certain set of small values of n0, that is for each n ∈ N there
seems to exist an n*

0 < n defined by (9) such that lemma 1 applies. Moreover, the b-optimal 
n

of the SD test is always smaller than 2 (cf. Gontscharuk, 2010, p. 63) so that one can take

n ≡2 instead of the b-optimal 
n for a suitable SUD test.

For convenience, we restrict attention to the case �=0.05. For n=100, 500, 1000, 2000,
the b-optimal 
n-values of the corresponding SD tests are given by 
n =1.34, 1.47, 1.53, 1.58.
Exact calculations showed that due to lemma 1, this results in n*

0 =29, 134, 271, 565. Hence, the
corresponding SUD(�n) tests with �n ≤ 72, 367, 730, 1436 (i.e. �n/n ≤ 0.72, 0.734, 0.73, 0.7185)
control the FDR, cf. Fig. 1.
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Fig. 1. Maximal values of �n such that the SUD(�n) test with �n/n≤�n and 
n optimized with respect
to the SD test controls the FDR at level �=0.01, 0.05, 0.1 (from top to bottom).

Figure 1 shows the exactly calculated maximal possible values of �n/n denoted by �n for
�=0.01, 0.05, 0.1 and n≤2000. Thereby, we observed that �n increases if � decreases. It also
seems that �n slightly decreases for �=0.01 and increases for �=0.05, 0.1 as n increases for
n ≥ 200. Figure 1 implies that the SUD(�n) test with �n ≈ 0.9n, 0.7n, 0.4n and 
n b-optimal
for the SD test controls the FDR at level �=0.01, 0.05, 0.1 for larger values of n. Moreover,
our simulation study for larger values of n and �=0.05 shows that b(n, n0 |�n) with �n =0.7n
and 
n ≡1 exceeds the �-level only slightly (for n=5000, 10,000, 50,000 the maximum upper
bound is about 0.05022, 0.05020, 0.05008), while b(n, n0 |�n) with �n =0.7n and 
n ≡ 2 seems
to be always smaller than �.

5.2. Another type of AORC adjustment

Typically, realised FDR-values for SU tests based on (19) under DU configurations with
varying number n0 of true nulls have a maximum peak which is attained for smaller values
of n0, cf. Fig. 2. We briefly mention a possibility to flatten this peak. Since large critical val-
ues have most impact on FDR-values for small values of n0 (cf. the discussion around (11)
and (12)), we can shrink the largest critical values and in turn enlarge the smaller ones to
reduce the peaking behaviour of the realised FDR-values. For some fixed k ∈ Nn, we there-
fore replace the largest critical values �i:n, i ≥ k, in (19) such that �i:n/i become constant
for i ≥ k. This corresponds to the adjusted SU procedures proposed in example 3.2 in
Finner et al. (2009). Then, we search for a suitable constant 
*

n > 0 such that the critical
values

�i:n =
{ i�

n+
*
n − i(1−�)

, 1≤ i ≤k −1,

i�i−1:n/(i −1), k ≤ i ≤n
(20)

yield FDR control at level �.
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Fig. 2. FDR bounding curve g*(n0/n) (the upper curve in both graphs) and FDR-values for SU tests
with �=0.05 and n=100 under DU configurations based on simultaneously 
n-adjusted critical values
and critical values (20) with 
*

n =1.41, k =95 and 
*
n =1.3, k =90 (left graph: three lower curves, from

top to bottom in n0 =10). The right graph is zoomed.

To make the procedure not unnecessarily conservative, k should be chosen somewhat larger
than a guess for n−n0. If there is no a priori information about n0, the choice of k is a ques-
tion of taste. For example, k equal to n(1−�) or n(1−2�) may be a good choice. The critical
values (20) are always feasible and the b-optimal 
*

n is smaller than the corresponding
b-optimal 
n of the simultaneous adjustment method with critical values (19). This results in
a flatter FDR curve, such that n0 is not too small and the values FDRn,n0 are closer to � than
the corresponding FDR-values of the simultaneous 
n-adjustment. For n=100 and �=0.05,
Fig. 2 shows the FDR bounding curve g*(n0/n) and realised FDR-values for the simultaneous

n-adjusted method with 
100 =1.76 and for 
*

n-adjustment methods with k =95, 
*
n =1.41,

and, k =90, 
*
n =1.3.

The left graph in Fig. 3 shows b-optimal 
n-values for SU and SD based on (19) and

*

n-values for SU based on (20) for k = �n(1−2�)�, �=0.05 and n=2, . . ., 2000. The right
graph of Fig. 3 shows the corresponding values 
n/n and 
*

n/n. Thereby, the curves for 
n/n
for SD and 
*

n/n for SU are nearly identical (lower curves).

5.3. Asymptotics of AORC adjustments

A complete characterization of the asymptotic behaviour of the b-optimal 
n- and 
*
n-

values remains an interesting open question for the considered 
-adjusted procedures. It is
not entirely clear for SUD tests whether 
n- and 
*

n-values are bounded or diverge for n→∞.
In any case, we have 
*

n ≤
n. For the SD test with critical values (19), Gontscharuk (2010,
p. 63) showed that 
n =2 yields control of the bound (5) and the result in Gavrilov et al.
(2009) even shows that 
n =1 works for FDR control. As mentioned before, for the SUD(�n)
test the b-optimal 
n-values are non-decreasing in �n. The same is true for the 
*

n-values.
For b-optimal 
n-values of SU tests, we have that limn→∞ 
n =∞, limn→∞ 
n/n=0 and
limn→∞ f�,
n

= f�, cf. Gontscharuk (2010, pp. 68–69). Moreover, for SUD(�n) tests based on
(20) with �n ∈ Nn and k/n → b > 0, there are some indications that 
*

n may be bounded. For
SUD(�n) tests based on (19) with �n/n→�∈ [0, 1) it seems also possible that 
n is bounded.
Anyhow, these are speculations and need further investigation.
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Fig. 3. Left graph: b-optimal 
n-values for SU and SD based on (19) and 
*
n-values for SU based on

(20) for k = �n(1−2�)�, �=0.05 and n=2, . . ., 2000. The curves can be distinguished by noticing that
for any displayed n, 
n for SU is larger than 
n for SD and 
n for SD is in turn larger than 
*

n for
SU. Right graph: Corresponding values 
n/n and 
*

n/n. Thereby, the curves displaying 
n/n for SD and

*

n/n for SU are nearly identical (lower curves).

6. Iterative method

A further refinement of critical values for the SU test is possible by means of iterative modi-
fication. Suppose FDRn,n0 (�n) ≈ � for all n0 ≥ k for some integer k ≡ k(n, �) ≥ n�, where �n

is defined in terms of feasible critical values �1:n, . . ., �n:n. For example, in case of �=0.05
and n=100, the right graph in Fig. 2 suggests that 
n-adjusted AORC-based critical
values fulfil this requirement for k =15 and can therefore be taken as initial values. Now, we
can try to iteratively modify certain critical values to reduce the corresponding distances
|�−FDRn,n0 (�n)| even further.

To this end, we first have to identify which critical values have the most impact on
FDRn,n0 (�n) for a given value of n0. We recall that, at least for �< 1, the ratio Vn/Rn

converges to the limiting FDR in DU models with n0/n → �. Since p-values under alterna-
tives are equal to 0 with probability 1 in DU models, we conclude that Vn/(Vn +n1) should
approximately equal � leading to Vn ≈n1�/(1−�). Consequently, approximately Rn =Vn +n1 ≈
n1/(1 − �) hypotheses get rejected by an �-exhausting SU test in DU models. Therefore, the
critical values �i:n with i close to n1/(1−�) are crucial for FDRn,n0 (�n), and accordingly for a
given i ∈Nn, the critical value �i:n has the most impact on FDRn,n0 (�n) with n0 ≈n− i(1−�).
To modify FDRn,n0 (�n)-values for all n0 =k, . . ., n, we have to modify critical values with
indices ranging from 1 to i* ≡ i*(n, k, �), which is an integer close to (n − k)/(1 −�). For the
derivation of an appropriate iteration scheme, we rewrite the initial critical values in the form

�i:n = ici

n− i(1− ci)
= f −1

ci
(i/n), i ∈Nn, (21)

which formally equals (1) with a vector of ‘local FDR levels’ c = (c1, . . ., cn). Moreover,
we make use of the notation FDRn,n0 (c) for FDRn,n0 (�n), where �n is defined via the criti-
cal values given in (21). Now, let n0(i) be an integer closest to n − i(1 −�) and consider the
mapping c �→u(c)= (u1(c), . . ., ui* (c), ci* +1, . . ., cn), where

ui(c)=�
ci

FDRn,n0(i)(c)
, i =1, . . ., i*.

We note that FDRn,n0 (u(c))=FDRn,n0 (c) for n0 =1, . . ., n− i*. Assume for the moment that
for fixed, given constants ci , i = i* + 1, . . ., n, there exist c*

i , i =1, . . ., i*, such that c* =
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(c*
1, . . ., c*

i*
, ci* + 1, . . ., cn) fulfils the fixed point property c* =u(c*). Then, we have c*

i =
ui(c*)=�c*

i /FDRn,n0 (c*), i =1, . . ., i*, which is equivalent to FDRn,n0 (c*)=�, n0 =k, . . ., n.
Therefore, an iteration scheme for the vector of local FDR levels c, i.e. setting c(j) =u(c(j−1)),
seems to be a promising approach. Clearly, there is no fixed-point theorem at hand guaran-
teeing convergence. Moreover, as mentioned in section 3, for a given FDR-bounding curve
(or prespecified FDR-values) there are not necessarily corresponding feasible critical values,
i.e. the formal solution of the target equation (15) is not necessarily feasible. Finally, resulting
FDR-values can slightly exceed the given �-level, because the mapping u(c) does not guar-
antee that c* is approached from below. However, the method seems to work well and the
distances |� − FDRn,n0 (�n)|, n0 =k, . . ., n, on average get reduced by the outlined iteration
method for a suitable number of iterations J ∈N (say).

To describe the method more formally, we put without restriction i* ≡ i*(n, k, �) =
�(n−k)/(1−�)�, and let �(0)

1:n, . . ., �(0)
n:n be feasible starting critical values and �(j)

i:n ≡�(0)
i:n for i = i* +

1, . . ., n, j =1, . . ., J . For modification of critical values with indices ranging from 1 to i*, we
proceed as given in the following algorithm.

For j from 1 to J do

1 For i from i* to 1 by −1 do:
(a) Determine c(j−1)

i from �(j−1)
i:n = ic(j−1)

i /(n− i(1− c(j−1)
i )).

(b) Put c(j)
i =�c(j−1)

i /FDRn,n0(i)(c(j−1)).
(c) Calculate �(j)

i:n = ic(j)
i /(n− i(1− c(j)

i )).
(d) If �i:n/i >�i +1:n/(i +1), then put �(j)

i:n = i�(j)
i +1:n/(i +1).

2 Calculate FDRn,n0 (c(j)), n0 =n− i* + 1, . . ., n.

Notice that in the latter algorithm, the number n0(i) in the expression FDRn,n0(i)(c(j−1)) is
only loosely defined by setting n0(i) as the integer ‘closest to n − i(1 − �)’. To be more pre-
cise, one can replace FDRn,n0(i)(c(j−1)) by a linear interpolation of the two adjacent values
FDRn,�n−i(1−�)�(c(j−1)) and FDRn,�n−i(1−�)�(c(j−1)).

We tested the iterative method for a variety of values for n and �. As initial critical
values, we took simultaneous 
n-adjusted and 
*

n-adjusted critical values, cf. sections 5.1 and
5.2. For example, for n=100, 300, 1000, J =20, 10, 10 iterations based on initial simultaneous

n-adjustment and J =10, 2, 1 iterations based on initial 
*

n-adjustment gave satisfying results.
Although the resulting realised FDR-values under DU configurations typically exceed the
given FDR level � for some n0 ≥ k, the actual differences |�− FDRn,n0 (�n)| for n0 ≥ k seem
to be of negligible magnitude, i.e. for a suitable number of iterations the observed differences
were never larger than 5×10−5. Clearly, in a final step we can decrease the resulting critical
values by a suitable small amount such that all FDRs are smaller than �.

7. Concluding remarks

We investigated and implemented different approaches to construct critical values for SUD
procedures close to AORC-based critical values to exhaust the given FDR level as much as
possible. There seems to be no silver bullet for the computation of a set of critical values
coming close to AORC critical values. Typically, different methods lead to different sets of
critical values, and no set uniformly dominates the others. Finally, preference of any method
is a matter of taste and also depends on computational resources and complexity.

For computation of critical values, we provide Maple worksheets under the URL
http://www.helmut-finner.de, which can be executed in reasonable time on a standard desktop
computer for n ≤ 2000. Moreover, for SU and SD tests with critical values (19) (cf. section

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.



396 H. Finner et al. Scand J Statist 39

5.1) and SU tests based on (20) (cf. section 5.2), we tabulated the constants 
n (
*
n, respec-

tively) for n ≤ 2000, �=0.01, 0.05, 0.1. At least for n ≥ 100, these SD 
n values can be used
in SUD tests with �n ≤0.9n, 0.7n, 0.4n.

Finally, we would like to give a recommendation for practical application. For n ≤ 2000 the
easiest way is to apply the SU test based on the tabulated b-optimal constants 
n or to apply the
SUD(�n) test based on the tabulated b-optimal for SD constants 
n with a favourite and suitable
value for �n or to run the provided Maple programs for other values of � than 0.01, 0.05, 0.1 to
obtain valid critical values. If SU tests based on (20) are preferred, one can use the tabulated
values for 
*

n or the corresponding Maple program. For those who like the iterative approach
(cf. section 6), we recommend this method with simultaneous 
n-adjusted critical values as
starting values for smaller values of n (e.g. n ≤ 300). For 300 ≤ n ≤ 2000, we recommend to
use the iterative method in connection with 
*

n-adjusted initial critical values, because only a
few iterations are needed in this case. Furthermore, the method described in section 4.2 with
suitable FDR bounding curves introduced in example 1 yields a reasonable alternative for at
least n ≤ 2000 as long as it results in a feasible solution. In addition, it offers the possibility to
choose an alternative FDR bounding curve from a large class of different curves.

For larger n-values (n > 2000), computing time for all considered methods can be enormous,
such that we recommend to use a 
-adjustment with some fixed parameter 
 (or 
*). For
example, for �=0.05 one may choose 
n ∈ [
2000, 2]= [1.58, 2] and �n ≈0.7n for the SUD(�n)
test and 
*

n ∈ [
2000, 2]= [1.45, 2] for the SU test with critical values (20) for k ≈ n(1 − 2�).
Although the upper FDR bound can exceed � for these tests for some DU configurations,
the possible exceedance should be negligible. As mentioned before, the FDR is asymptotically
controlled such that the possible exceedance of the �-level converges to 0 as n increases.
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