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Abstract

Consider a neighborhood graph, for example a
k-nearest neighbor graph, that is constructed on
sample points drawn according to some den-
sity p. Our goal is to re-weight the graph’s
edges such that all cuts and volumes behave as if
the graph was built on a different sample drawn
from an alternative density p. We introduce
the f -adjusted graph and prove that it provides
the correct cuts and volumes as the sample size
tends to infinity. From an algebraic perspective,
we show that its normalized Laplacian, denoted
as the f -adjusted Laplacian, represents a natural
family of diagonal perturbations of the original
normalized Laplacian. Our technique allows to
apply any cut and volume based algorithm to the
f -adjusted graph, for example spectral clustering,
in order to study the given graph as if it were built
on an unaccessible sample from a different den-
sity. We point out applications in sample bias
correction, data uniformization, and multi-scale
analysis of graphs.

1. Introduction
Assume that we are given a neighborhood graph G, say
a k-nearest neighbor graph, based on a sample x1, ..., xn
of points drawn according to some probability density p.
Many properties of p reflect in properties of G. However,
we are actually interested in another density p that differs
from p in some known aspects, but we cannot access a sam-
ple from p. For example, p may be biased in some way
known to us. How could we correct for such a bias if we
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just have access to the given graph G, but not to the under-
lying sampling mechanism? In order to tackle this problem,
our general strategy is to transform G into another graph G
that “reflects properties of p ”, although the vertices still re-
fer to the original sample points distributed according to p.
We focus on volume and cut properties, as these are used in
a large variety of machine learning algorithms. Our goal is
that volumes and cuts of G reveal the same information on
p as another graph would do that is directly built on a sam-
ple from p. We provide a solution that provably achieves
this goal in the limit of increasing sample size. We first
define a vector f of vertex weights that reflects the con-
tinuous volume properties of p. Then we “merge” these
vertex weights into G by re-weighting its edges in such a
way that the modified graph G attains f as its degree vec-
tor. Any such “merging operation” implicitly sets all vol-
umes in G corresponding to p. The crux is to construct a
merging operation that simultaneously ensures that the cut
weights in G correspond to the continuous cut properties
of p. We provide such an operation by defining G as the
“f -adjusted graph of G”.

The above delineates the geometric interpretation of
f -adjusting. It allows to think of transforming G into G
as of modifying the underlying density from p to p. This
provides all the intuition that we need in order to choose
f in a meaningful way and to interpret volumes and cut
weights in the f -adjusted graph. Although this motiva-
tion is purely geometric, it turns out that f -adjusting also
has appealing algebraic properties. We denote by the term
“f -adjusted Laplacian” the normalized Laplacian matrix of
the f -adjusted graph. The algebraic interpretation shows
that all f -adjusted Laplacians that can be obtained from G
represent a natural family of diagonal perturbations of the
normalized Laplacian of G. Thus we can think of trans-
formingG intoG as of a meaningful modification along the
main diagonal of the original normalized Laplacian. The
algebraic results do not require thatG is a geometric graph.
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These interpretations allow us to apply f -adjusting to a va-
riety of problems from machine learning:

(a) Correcting for sampling bias: we obtain a method to
correct for a sampling bias in graph-based algorithms.

(b) Spectral clustering: although G is built on a fixed sam-
ple drawn from p, we can apply spectral clustering as if the
graph were built on another sample drawn from density p.

(c) Multi-scale analysis: the original density p can be mod-
ified in various ways, for example by a convolution. Let kh
denote some convolution kernel of bandwidth h. Estimates
on p∗kh can be extracted from the graph by averaging over
neighborhoods. f -adjusting can then be applied in order to
merge these estimates into edge weights appropriately, so
that the new volumes and cut weights represent p ∗ kh.

(d) Manifold learning and clustering: there is a complicated
interplay between the geometric structure of the data and
the sampling density. It can be helpful to separate these two
aspects, for example if we are interested in a function f of
which we only know f(xi) with xi sampled according to
some unknown sampling density on a manifold. We would
like to remove the artifacts induced by the sampling density
and construct a situation that looks like as if the sample
points xi were distributed uniformly.

2. Applications
Before we dive into the theoretical analysis, we motivate
the reader by two example applications.

2.1. Removing density information

In some scenarios the sample distribution does not pro-
vide the structural information that we are interested in.
For example in sea temperature recording or general wire-
less sensor networks one has to deal with measurement
values ti at random spatial positions xi. The goal is
to study the measurement values without any bias intro-
duced by their random positions. If the measurements were
taken at uniform positions, then one could apply spectral
clustering. But any non-uniform spatial distribution dis-
torts all cut weights. There is no obvious mechanism to
compensate for this influence. We demonstrate this ef-
fect in an image segmentation task. The classical spec-
tral clustering for image data on a d-dimensional grid (Shi
& Malik, 2000) constructs an r-graph of radius r on the
pixel positions. Edge weights are defined by the prod-
ucts wij := sims(xi, xj) · simv(ti, tj) of spatial similar-
ities sims(xi, xj) := exp(−0.5‖xi − xj‖2/σ2

s) and value
similarities simv(ti, tj) := exp(−0.5‖ti − tj‖2/σ2

v). The
normalized cuts in the resulting graph provide useful clus-
tering information on the intensity values. But this only
holds because the spatial similarities of a grid have a uni-

Figure 1. Top left: original image of a cloud, unknown to us.
Top right: 5000 sample points drawn from two Gaussians, col-
ors indicating intensity values. We can access data only at these
positions. Bottom left: spectral image clustering applied to the
non-uniform sample positions. We show the heat plot of the NCut
score vector (eigenvector that solves the relaxed minimum nor-
malized cut problem). The scores are biased to a wrong seg-
mentation. Bottom right: heat plot of the NCut score vector of
our density-corrected graph. It separates the cloud from its back-
ground because the spatial bias is removed.

form impact on the product in wij . It does not generalize
to the case where the sample positions are distributed non-
uniformly. In this case the spatial similarities distort the
cut weights and hence the clustering result in an undesired
way. Consider the image in Figure 1 (top left), and assume
that its intensity values are not given at the positions of a
grid, but only at sample positions drawn from an aggrega-
tion of two Gaussians (top right). In order to remove the
spatial unbalancedness, we suggest to proceed as follows:
(1) Build the neighborhood graph G on the sample points
from only their spatial similarities wij := sims(xi, xj).
(2) With d the vector of vertex degrees, create the
d−1-adjusted graph G. It provides the edge weights wij .
We show below that these weights remove the density in-
formation from the original volumes and cut weights of G.
(3) Define the final edge weights by wij · simv(ti, tj).
(4) Apply spectral clustering to the resulting graph.
This approach removes the influence of the spatial distribu-
tion from the final edge weights. It solely considers inten-
sity values. Figure 1 (bottom right) shows that this leads to
the correct segmentation, whereas the biased segmentation
provided by the original graph is not correct (bottom left).

2.2. Correcting for a sampling bias

Consider a data set in which some areas are known to be
over- or underrepresented. For example, a poll among shop
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Figure 2. Top left: exemplary sample from true density p that we
cannot access. Top right: 3000 sample points from biased density
p = b · p that underrepresents around x ≈ 0. This is the sample
we can access. Middle right: cut weights of vertical cuts at x ∈
[−4, 4], for a single graph drawn from each the true and the biased
density, and for the db−2-adjusted graph. Bottom right: same,
averaged over 20 runs. Middle left: heat plot of the NCut score
vector of the biased graph, giving the wrong vertical cut. Bot-
tom left: heat plot of the NCut score vector of the db−2-adjusted
graph. It identifies the correct clusters, since the bias is removed.

customers in the morning will particularly have the ages 20
to 30 being underrepresented. How can we correct for this
in a graph-based learning scenario? Let p = b · p denote
the erroneous density that we can access under some bias
b : Rd → R>0 and p the true density that we cannot access.
Using our framework, one can use any estimate of b in or-
der to compensate for the bias. This can be achieved by the
f -adjusted graph for f = db−2 := (di/b(xi)

2)i. It pro-
vides volumes and cut weights just as if the sample points
were drawn from p instead of p. Since f -adjusting does not
require any coordinates of the sample points, the bias b can
also be given as external knowledge on the vertices.

Consider the example in Figure 2. It shows two Gaussians
(top left) that are underrepresented around x ≈ 0 due to
bias b(x, y) = min{1, (2 + 3|x|)/8} (top right). The min-
imum normalized cut of a graph built on the biased sam-
ple is misdirected by this bias to the wrong vertical clusters
(middle left). However, the f -adjustment appropriately “re-
pairs” the volumes and cut weights in the graph. Now the
correct horizontal cut is revealed (bottom left).

3. The f -Adjusted Graph Laplacian
In this section we formally define the f -adjusted graph and
its Laplacian. f -adjusting addresses two goals. The first
goal is to re-weight the edges of a given graph in such a
way that the new degree vector equals the vector f . This
implicitly sets the volumes of all vertex subsets according
to f . The second goal is to provide a geometric interpreta-
tion that simultaneously relates the new cut weights to f . As
shown in Section 5, f -adjusting indeed fits both volumes
and cut weights to f in a way that allows for a geometric
interpretation: both quantities represent one and the same
modified underlying density.

3.1. Graph notation

For any matrix A = [aij ]ij ∈ Rn×n let A ≥ 0 denote
that all entries are non-negative. For vector b ∈ Rn we
refer by diag(b) ∈ diag(Rn) to the corresponding di-
agonal matrix. For any q ∈ R we define bq := (bqi )i
element-wise, as well as the product bc := (bici)i of vec-
tors b, c ∈ Rn. We define the set of graph matrices as
W := {X ∈ Rn×n≥0 | X = XT , X1 > 0}. We also study
its generalization to the set of weak graph matrices
W� := {X ∈W+ diag(Rn) | X1 > 0}, whose elements
further allow for negative diagonal entries as long as all
row sums remain positive. Obviously W ⊂ W�. To each
W ∈W� there corresponds an undirected weighted graph
G(W ) := (V,E,W ) that has W as its weighted adjacency
matrix, and edge set E := {ij | wij 6= 0}. The degree of
vertex i ∈ V is di :=

∑
j∈V wij > 0, leading to the all-

positive degree vector d = W1. The volume of S ⊆ V is
defined as volG(S) :=

∑
i∈S di. Any partition V = S ·∪ S

is a cut of weight cutG(S, S) :=
∑
i∈S,j∈S wij . For the

two frequently used vectors f = (fi)i and d = (di)i we set
F := diag(f) and D := diag(d).

3.2. Definition of the f -adjusted graph

From now on fix someW ∈W and setG := G(W ). There
are two straightforward methods for modifying G’s edge
weights (= entries in W ) in order to fit all vertex degrees
(= row/column sums of W ) to some prescribed vector f .
f -adjusting combines these two methods because they mu-
tually compensate their respective drawbacks.

f -selflooping. The naive strategy to adjust the vertex de-
grees of the graph G(W ) to any prescribed vector f ∈ Rn>0

is by modifying selfloops: fix all off-diagonal entries inW ,
and set its main diagonal such that the row sums equal f :

W ◦f := W −D + F ∈ W�.

This yields the vertex degrees W ◦f 1 = f exactly. We refer
to G(W ◦f ) as the f -selflooped graph. Despite of its posi-
tive row sums, this approach can force some entries on the
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main diagonal of W ◦f to take negative values. We can fix
this by considering cf -selflooping for c > 0. This yields
vertex degrees W ◦c f1 = cf , and it is straightforward to see
that the main diagonal ofW◦c f is non-negative if and only if
c ≥ maxi∈V {(di−wii)/fi}. The drawback is that selfloop
weights only affect volumes but not the cut weights. In gen-
eral there is no relation between volumes and cut weights
in the f -selflooped graph.

f -scaling. Another natural strategy to adapt the row sums
of W to any prescribed vector f ∈ Rn>0 is by proportional
scaling, that is by considering FD−1W . This matrix yields
the row sums f exactly, but is not symmetric in general. For
that reason, we use a (multiplicative) symmetrization:

W̃f :=
√
FD−1W

√
FD−1 ∈ W.

We refer to G(W̃f ) as the f -scaled graph. The drawback of
this approach is that its degree vector d̃ = W̃f1 does not
equal f exactly, since d̃i =

∑
j∈V wij

√
(fifj)/(didj) dif-

fers from fi in general. In the following let D̃f := diag(d̃).

f -adjusting. For any f ∈ Rn>0 and c > 0, we combine
both approaches by first applying f -scaling, followed by
cf -selflooping. This defines the weak graph matrix

W f ,c := W̃f − D̃f + cF ∈ W�.

We refer to G(W f ,c) as the (f , c)-adjusted graph of G,
and for the case c = 1 simply as the f -adjusted graph. All
vertex degrees are positive because W f ,c1 = cf > 0. The
(f , c)-adjusted graph has no negative selfloop if and only if
c ≥ maxi∈V {(d̃i−w̃ii)/fi} =: c∗. In this case it holds that
W f ,c ∈W. Although this definition of f -adjusting appears
somewhat artificial at the first glance, it reveals appealing
properties in its algebraic and geometric interpretation.

f -adjusted Laplacian. For W ∈ W, the unnormalized
Laplacian matrix L(W ) := D −W and the normalized
Laplacian matrix L(W ) := I − W̃1 are powerful and well-
studied objects (see Chung, 1997). We define

Lf (W ) := L(W f ,1)

for any f ∈ Rn>0 as the f -adjusted Laplacian of G(W ).

4. Algebraic Interpretation
All diagonal modifications of the form W +X ∈W�

for X ∈ diag(Rn) obviously represent all possible self-
loop modifications of W , that is f -selflooping for ev-
ery f ∈ Rn>0. In this section, we derive a similar result
for the normalized Laplacian: all diagonal modifications
of the form L(W ) +X ∈ L(W�) characterize all possi-
ble f -adjustments of W . In this sense, f -adjusting deals
with diagonal modifications of the normalized Laplacian
just in the same way as f -selflooping deals with diagonal

modifications of the adjacency matrix. This shows that
f -adjusting is a natural graph modification. All proofs and
further details are provided in the supplement.

4.1. (f , c)-adjusting is as powerful as f -adjusting

The following lemma shows that it is sufficient to focus on
f -adjusting in order to study every (f , c)-adjusting.
Lemma 4.1 (Scaling Relation). For all W ∈W, f ∈ Rn>0

and c > 0 it holds that

L(W f ,1) = c · L(W f ,c).

Consequently, every L(W f ,c) has the same eigenvectors as
L(W f ,1), with all eigenvalues scaled by c−1. In particular
the order of the eigenvalues is preserved. This implies fur-
ther that L(W f ,c) inherits many spectral properties from
L(W f ,c∗) such as its positive semi-definiteness and that√
f is an eigenvector to eigenvalue 0 whose multiplicity

matches the number of connected components in G(W ).
For that reason, the spectral analysis of any (f , c)-adjusted
graph can be reduced to the f -adjusted graph. In particular
it does not matter whether or not it has negative selfloops.

4.2. f -adjustments are diagonally modified Laplacians

The next lemma shows that every f -adjustment represents a
meaningful modification along the main diagonal ofL(W ).
Lemma 4.2 (Diagonally Modified Laplacian). For all
W ∈W and f ∈ Rn>0 it holds that

Lf (W ) = D̃fF
−1 − W̃1.

The main insight provided by Lemma 4.2 is that we can
think of f -adjusting as of replacing the identity matrix in
L(W ) = I − W̃1 with the new matrix D̃fF

−1. Its diag-
onal entries reflect the relative deviation d̃/f between the
intended new degrees f and the degrees d̃ that are obtained
by f -scaling without subsequent f -selflooping. Note that
f -scaling alone does not reveal any clear relation to L(W ),
only its combination with the subsequent f -selflooping col-
lapses down to this “simple” algebraic form. We denote
any modification along the main diagonal of a matrix as
a diagonal modification. Whenever it exceeds just a tiny
perturbation, it has a strong non-linear impact on the spec-
trum: the eigenvalues can only loosely and abstractly be
bounded by Horn’s inequalities (Bhatia, 2001), and noth-
ing is known on the impact on the eigenvectors.

4.3. Diagonally modified Laplacians are f -adjustments

Lemma 4.2 shows that every f -adjusting can be understood
as a diagonal modification of the form L(W ) +X = L(A)
for someX ∈ diag(Rn) andA ∈W�. This rises the ques-
tion whether also the converse is true: does every such di-
agonal modification imply that A is an f -adjustment of W ?
The following theorem gives a positive answer.
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Theorem 4.3 (Complete Characterization). For any
W ∈W with L(W ) 6= 0 consider all solutions (X,A, c) ∈
diag(Rn)×W� × R of the equation

L(W ) +X = c · L(A).
For c ≤ 0 no solution exists. For c > 0, all solutions are
given by A = W f ,c and X + I = D̃fF

−1 = Z for any
choice of f ∈ Rn>0. For connected G(W ), choosing f is
equivalent to choosing any Z ∈ diag(Rn>0) with spectral
radius ρ(Z−1W̃1) = 1. This determines

√
f uniquely (up

to scaling) as the eigenvector corresponding to the simple
eigenvalue 1 of the matrix Z−1W̃1.

Theorem 4.3 gives two further results for connected graphs:

(i) In order to transform L(W ) by a diagonal modification
into another normalized Laplacian matrix, we are free to
orient the identity matrix in L(W ) = I − W̃1 toward any
“direction” Y ∈ diag(Rn>0). But at the same time this de-
termines only a single possible “distance” µ := ρ(Y −1W̃1)
for which indeed it holds that µY − W̃1 ∈ L(W�), be-
cause only then ρ((µY )−1W̃1) = 1. Moreover, it follows
that µY − W̃1 = L(W f ,1), where

√
f is the eigenvector of

(µY )−1W̃1 corresponding to the simple eigenvalue 1.

(ii) We get deeper insights into the structure of the devia-
tion error d̃/f under f -scaling: given any vector of relative
deviations ξ ∈ Rn>0, there exists a unique (up to scaling)
vector f ∈ Rn>0 that satisfies d̃/f = αξ for a unique α > 0.
In particular this implies that no vector f 6= d can be ob-
tained by f -scaling exactly as the new degree vector d̃, not
even up to scaling, because the zero-deviation case ξ = 1
is already reached for f = d.

These two results generalize to unconnected graphs by ap-
plying them individually to each connected component. In
particular the uniqueness is affected in the way that f may
be scaled individually within each connected component.

4.4. Application: f -adjusted spectral clustering

We are going to show that the spectral clustering technique
generalizes to weak graph matrices. This allows to apply it
to any f -adjusted graph. Spectral clustering of a connected
graph G = (V,E,W ) relies on a relaxation for solving the
NP-hard problem of minimizing the normalized cut value

NCut(S, S) = cutG(S, S)
(
volG(S)

−1 + volG(S)
−1)

over all S ⊆ V and S := V \S. Instead of the optimal char-
acteristic vector, the relaxation determines a real-valued
score vector s :=

√
D−1v2, where v2 denotes the sec-

ond smallest eigenvector of L(W ). Thresholding is used to
define S from s. We refer to s as the NCut score vector.
Variants use multiple smallest eigenvectors v2,v3, . . . ,v`
for embedding vertex i ∈ V in R`−1 at the i’th coordinate
entries of v2, . . . ,v`, and then apply for example k-means
on the embedded points in order to identify k clusters.

Since the (f , c∗)-adjusted graph has no negative selfloops,
we can apply any spectral clustering technique to G(W f ,c∗)
as usual. Lemma 4.1 shows that L(W f ,c∗) and Lf (W )
share the same eigenvectors in the same order. Thus, the
NCut score vector does not change by considering Lf (W )
instead of L(W f ,c∗). Consequently, in all variants of spec-
tral clustering we can simply replace L(W ) by Lf (W ) for
any f ∈ Rn>0 in order to study the normalized cuts of the
graphs G(W f ,c) for all c > 0 simultaneously, even though
they contain negative selfloops for c < c∗.

5. Geometric Interpretation
Assume that we are given a graph G plus the meta-
information that it is some neighborhood graph built on
an unknown sample from an unknown density. Our goal
is to infer from G about structural properties of the un-
derlying density. The additional meta-information allows
to interpret certain quantities in G, such as volumes and
cut weights, in a meaningful way.

In the following we show that our modification of G still
keeps the geometric interpretation of volumes and cut
weights in the modified graph G. Thus we can think of
modifying edge weights as of modifying the underlying
density, although the unknown sample points remain fixed
at their original positions. These insights provide answers
to the following questions: how to interpret clustering re-
sults for G? How to choose f in a meaningful way? Can
we use f to “merge” external information into the graph in
order to extract hidden information from G?

5.1. Geometric graphs

In a random geometric graph, each vertex i ∈ V is iden-
tified with a sample point xi ∈ Rd drawn i.i.d. according
to some continuous probability density p : X → R on a
compact domain X ⊆ Rd. The edge set and weights are
given from the construction of a neighborhood graph on
these sample points. Prominent choices are:

(i) the Gaussian graph: the complete graph with Gaussian
weights wij = exp(− 1

2‖xi − xj‖
2/σ2))

(ii) the unweighted r-graph, which has an edge ij of unit
weight if and only if ‖xi − xj‖ ≤ r
(iii) the Gaussian weighted kNN graph, which has an edge
ij of Gaussian weight if and only if xj is among the nearest
k neighbors of xi or vice versa.

The results in this section refer to the limit case n→∞.
We consider the following convergence conditions: for
the Gaussian graph we require that n → ∞, σ → 0,
nσd+1/ log n → ∞. For the r-graph that n → ∞,
r → 0, nrd+1/ log n → ∞. For the Gaussian weighted
kNN graph that n → ∞, k → ∞, k/ log n → ∞,
nσd+1 →∞, (k/n)1/d ≥ σα for some α ∈]0, 1[.



The f -Adjusted Graph Laplacian: a Diagonal Modification with a Geometric Interpretation

We require that the following regularity conditions are
satisfied: X has a smooth boundary with bounded cur-
vature. p is twice differentiable with bounded gradient,
and bounded away from zero, that is p(x) ≥ pmin > 0
for x ∈ X .

5.2. Different views on graphs

We introduce a distinction between three different “views”
on the graph. These views help us to interpret graph modifi-
cations in terms of modifications applied to the underlying
probability distribution.

Discrete graph view. This is the well-known setting of
the discrete graph with cutG and volG as introduced in
Section 3.1. Specifically, we do not have access to the in-
formation about the underlying space. This is the standard
situation for algorithms like spectral clustering or Isomap.
In particular, in the graph view we cannot evaluate index
sets of the form {i | xi ∈ A} where A is a subset of Rd.

Continuous space view. Here we define volumes and
cuts with respect to the underlying density p. Specifi-
cally, we define the p-volume of a measurable A ⊆ X
as volp(A) := p(A) =

∫
A
p(x) dx. Given a hyperplane H ,

we interpret it as a cut of the underlying space in the two
half-spaces denoted by H+ and H−. We denote its cor-
responding p-weight as cutp(H) :=

∫
H
p(x) dx. In this

work we focus on cuts induced by hyperplanes. We be-
lieve that all stated results can be generalized to any other
cut surfaces that are sufficiently regular.

Interspace view. This view “mediates” between the
discrete and continuous world. Its objects are not ac-
cessible to algorithms on graphs, but they serve as a
theoretical construction to express the relationships be-
tween discrete and continuous cuts and volumes. In
this view, we assume that we can evaluate index sets of
the form V (A) := {i | xi ∈ A} ⊆ V where A is a subset
of Rd. For any vector d and any sample drawn from p,
we refer to vold(A) := volG(V (A)) =

∑
xi∈A di as the

interspace volume of A with respect to vector d. Intu-
itively, it sums over the degrees as provided in the dis-
crete graph view, while the sum is indexed by the sam-
ple points as provided by the continuous space view.
Moreover, let cutW (H) := cutG(V (H−), V (H+)) =∑
xi∈H−,xj∈H+ wij denote the interspace cut weight of

the cut H with respect to weight matrix W . Again, it sums
over the edge weights as in the graph view, while the sum-
mands are indicated by the sample points in the space view.

5.3. Geometric problem statement

We already stated the problem informally as modifying a
given neighborhood graph from density p such that its vol-
umes and cuts “looks like” those of a neighborhood graph

from an alternative density p. We are now ready to state this
requirement formally by using the interspace view concept.

Geometric Graph Adjustment Problem Given a neigh-
borhood graphG = (V,E,W ) built on a sample from den-
sity p : X → R, and a second density p : X → R. How
can we define a modified graph G = (V,E,W ) such that,
in the limit case, vold(A) ≈ volp(A) for all measurable
sets A ⊆ X and cutW (H) ≈ cutp(H) for all cuts H?

The vertex set and the corresponding sample points remain
fixed throughout the modification. All that is allowed to
change are edges and edge weights. As the term modifica-
tion indicates, G should stay “similar” to G. This can be
quantified in different ways. Here, we focus on the con-
straint that the edge sets E and E coincide up to selfloops.

It is well known that |V (A)| is proportional to p(A) in ex-
pectation and that the degree di of vertex i can serve, up
to global scaling, as a consistent estimate of the underly-
ing density p(xi) at sample point xi. This motivates the
following obvious approach to fit G’s interspace volumes
to p-volumes: determine fi proportional to p(xi), and use
f -selflooping to let the modified graph G attain f as its de-
gree vector. However it is not obvious how to defineG such
that further the interspace cut weights in G correspond to
p-weights. We will see in the following that this is pro-
vided by f -scaling. Since f -adjusting combines both ap-
proaches, it provides both goals simultaneously. Moreover,
if we want to avoid negative selfloops inG, then we can ap-
ply (f , c∗)-adjusting, which keeps all cut weights and vol-
ume proportions intact; it just scales all volumes by c∗.

5.4. Convergence of f -adjusted volumes

Recall that the interspace volume of any A ⊆ Rd is defined
as vold(A) =

∑
xi∈A di. This expression already shows

how we can intuitively think of discrete vertex degrees as a
weight distribution on the underlying space: the positions
of the sample points are distributed according to density p,
and each sample point is additionally weighted by di. Since
the degree di can serve as a density estimate for p(xi), this
weighting brings in an additional factor p. Therefore we
expect that the interspace volume vold(A) behaves like the
p2-volume

∫
A
p2(x)dx in the limit case. Moreover, if we

consider any graph modification that changes the original
degree vector d into f , then this affects the above expres-
sion by replacing each individual di by fi, while the in-
dex set {i | xi ∈ A} remains the same. Thus, if the
new vertex degrees fi are given as fi := f(xi) for some
continuous function f : X → R>0 then we expect that
the interspace volume volf (A) behaves like the fp-volume∫
A
f(x)p(x)dx in the limit case. Indeed this intuition is

correct. The following proposition shows that the inter-
space volume and the continuous fp-volume are propor-
tionally related as n→∞.
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Proposition 5.1. (Interspace Volumes) Let G be a geo-
metric graph based on n vertices drawn according to p.
Denote its degree vector by d and let f : X → R>0 be
a continuous function. Define the vector f := (f(xi))i,
and let G be any graph modification of G that attains
the degrees d = f . Then, under the convergence con-
ditions mentioned above, for any measurable A ⊂ Rd,
C · vold(A)→ volf ·p(A) almost surely as n→∞, where
C is a scaling constant that depends on n, d.

This result shows that we can modify the graph such that
the interspace volume of the new graph corresponds to any
density p we would like, as long as p is absolutely contin-
uous with respect to p (that is, sets A with p(A) = 0 also
have p(A) = 0). In Section 5.6 and Section 2 we outline a
number of important consequences and applications.

5.5. Convergence of f -adjusted cut weights

In order to study the cut weights after (f , c)-adjusting, we
can solely focus on f -scaling, since it provides exactly the
same cut weights. Again we can derive the intuition from
the interspace view: let cutW (H) =

∑
xi∈H−,xj∈H+ wij

denote the interspace cut weight according to any hyper-
plane H . f -scaling replaces each edge weight wij in this
sum by the new weight w̃ij := wij ·

√
(fifj)/(didj). As-

sume that the original interspace cut weight cutW (H) be-
haves like the p2-weight

∫
H
p2(x)dx in the limit. Then we

expect due to
√

(fifj)/(didj) ∼ fp−1 that the modified
interspace cut weight cutW̃ (H) behaves like the fp-weight∫
H
f(x)p(x)dx. The following proposition makes this in-

tuition explicit, by relating the interspace cut weights after
f -scaling to the continuous fp-weights.

Proposition 5.2. (Interspace Cuts) Let G be a geometric
graph based on n vertices drawn according to p. Denote its
degree vector by d and let f : X → R>0 be a continuous
function that is twice differentiable and has bounded gradi-
ent. Define the vector f := (f(xi))i, and let G̃ be the cor-
responding f -scaled graph with weight matrix W̃f . Con-
sider a hyperplane H in Rd. Then, under the convergence
conditions mentioned above, C · cutW̃f

(H)→ cutf ·p(H)
almost surely as n→∞, where C is a scaling constant
that depends on n, d.

The proofs of both propositions in this section are based on
the arguments in Maier et al. (2009), who study volumes
and cut weights in neighborhood graphs.

Note that the results on the interspace cut weights are
perfectly aligned with the results on the interspace vol-
umes in the sense that both share the same integrand∫
f(x)p(x)dx. Since f -adjusting provides the same cut

weights as f -scaling, and further degree vector f , we
get that the interspace volumes and interspace cuts of
the f -adjusted graph both converge to the continuous
fp-volumes and fp-cuts, respectively (up to scaling). Fur-

ther, (f , c)-adjusting simply puts another global scaling
factor c on all volumes.

5.6. Interesting consequences

The intuitive interpretation of the geometric results is as
follows: the continuous volumes and cuts change under
f -adjusting from

∫
p2 to

∫
fp. This implies a number of

interesting special cases:

(1) In the original graph (case f = d), both interspace
volumes and interspace cuts correspond to the continuous
quantities of the density p2. This shows that the original
notion of volume and cut in the graph has an artifact in
the geometric setting in the sense that it does not corre-
spond to volumes according to the original density, but to
the squared density. See below for an illustration.

(2) f -adjusting to uniform vertex degrees f = 1 corre-
sponds to the continuous quantities of the original den-
sity p. This choice removes the artifact of (1).

(3) f -adjusting to inverse degrees f = d−1 corresponds to
a continuous density that is uniform. This can be used to
remove density information altogether and make the under-
lying volumes behave “uniformly”. The density removal
application in Section 2.1 relies on this strategy.

(4) More generally, all three above cases are modifications
of the form f(x) = g(p(x)) for some g : R>0 → R>0. In
practice, we can replace the p(x) inside g by any density
estimate (such as the degrees in the original graph). If, ad-
ditionally, g(αx) = const(α)g(x) for all α > 0, then any
global scaling factor of the density estimate simply trans-
lates in a global scaling factor of the continuous quantities.
This approach describes the target density p implicitly, rel-
ative to p. See the supplement for an application to the
biased random walks studied by Zlatić et al. (2010), and
for further details on the implicit definition of p from p.

(5) For any twice differentiable function f : X → R>0,
define the new degree vector f = (f(xi))i. In this setting,
interspace cuts and volumes correspond to the quantities as
provided by the density f · p. This case is particularly in-
teresting for spatial corrections of biased sample data, as in
Section 2.2, or if sample coordinates are known.

Anomaly in Volumes and Cuts As mentioned above
in (1), cuts and volumes in the original graph repre-
sent integrals over the squared density p2. To illus-
trate this anomaly, we consider in Figure 3 the density
p : [0, 1]2 → R, p(x, y) = 2x. Let G = (V,E,W ) de-
note the 200-NN graph built on 5000 sample points drawn
from p with Gaussian weighted edges (σ = 0.03).

Volume anomaly: assume that we want to partition V into
L ·∪ R by splitting the sample points at some x ∈ [0, 1]
into vertices to its left L and to its right R. The split point
should be such that L and R cover the same probability
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mass of the underlying density p. The correct approach is
then to choose L and R such that |L| ≈ |R|, which de-
fines x2 in Figure 3. In contrast to that, constraining to
volG(L) ≈ volG(R) expands low density regions, since the
split point x3 is now implicitly set according to the squared
density. Constraining to

∑
i∈L d

−1
i ≈

∑
j∈R d

−1
j gives

x1. This lets L and R cover the same uniform amount of
p’s support {x ∈ Rd | p(x) > 0}, hiding any other density
information. Note that the analytically expected value of
xi is 0.51/i, which gives roughly (0.5, 0.71, 0.79).

Cut weight anomaly: consider vertical cuts at all positions
x ∈ [0.1, 0.9]. Fitting a cubic polynomial ax3+bx2+cx+d
to the cut weights of the original graph gives, averaged over
10 runs, the coefficients (−0.06, 1.30,−0.04, 0.01), which
clearly shows the quadratic behavior. For the 1-adjusted
graph we get (−0.08,−0.08, 1.13,−0.11), which is basi-
cally linear as expected, since it corresponds to p with-
out squaring. Finally, the d2-adjusted graph provides
(1.21, 0.16,−0.06, 0.01) which has a significant cubic
term as expected, since its cuts integrate over p3.

Whenever we are interested in p (which is usually the case),
we must not consider the original graph, but the 1-adjusted
graph, as it provides the desired volumes and cuts. In par-
ticular, spectral clustering of a sample drawn from p ap-
proximates the normalized cut of p2, not of p. We can
remove this artifact by replacing the typically used nor-
malized Laplacian L(W ) with the 1-adjusted Laplacian
L1(W ). But note that squaring p can be beneficial for the
clustering result, since it emphasizes high density clusters.
However, we are no longer restricted to squaring: we can
approximate the normalized cut of the modified density pr

for any r ∈ R simply by taking the dr−1-adjusted Lapla-
cian for spectral clustering.

6. Further Related Work
Another approximative strategy to change the degree vec-
tor of a graph to some vector f is iterative matrix scal-
ing. Pukelsheim (2014) presents recent results on Iterative
Proportional Fitting, which scales row and column sums
alternately to f until convergence. Knight et al. (2014)
study a multiplicative symmetrization for f = 1. Itera-
tive matrix scaling allows for a statistical interpretation, as
it converges to the relative entropy closest solution among
all non-negative matrices that provide the degree vector f
(Csiszar, 1975). However, in contrast to f -adjusting, no ge-
ometric interpretation of the resulting cut weights is known.

Bapat et al. (2001) study diagonal modifications of the un-
normalized Laplacian. Note that L(W ) + X /∈ L(W�)
for all X 6= 0, hence no diagonal modification of the un-
normalized Laplacian represents the unnormalized Lapla-
cian of any other graph. Nevertheless, diagonal modi-
fications of L(W ) can provide useful meta-information
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Figure 3. Left: 5000 sample points with heat colors indicating the
degrees in the weighted kNN-graph. Dotted lines mark from left
to right the estimated split points (x1, x2, x3) ≈ (0.51, 0.7, 0.77)
as described in text. Right: polynomials fitted to the cut weights
of a single instance of the original graph G, its 1-adjustment and
its d2-adjustment, for vertical cuts at x ∈ [0.1, 0.9].

on G. Wu et al. (2012) consider this diagonal modification
for X ≥ 0, and show how to interpret (L(W )+X)−1X as
meaningful random walk absorption probabilities on G.

7. Discussion
We introduce f -adjusting as a transformation of a given
graph G into another graph G. We show that f -adjusting
corresponds to a natural diagonal modification of the nor-
malized Laplacian that further allows for a clear geometric
interpretation in terms of a density shift.

The algebraic interpretation shows that f -adjusting rep-
resents all diagonal modifications of L(W ) of the form
L(W ) +X ∈ L(W�). This is the normalized Laplacian’s
pendant to the fact that f -selflooping represents all diago-
nal modifications of W of the form W +X ∈ W�. Thus,
f -adjusting acts on the normalized Laplacian in the same
way as f -selflooping acts on the adjacency matrix.

For the geometric interpretation we introduce an explicit
distinction between three different views on a graph. In par-
ticular the interspace view is a helpful tool, since it serves
as a bridge between the discrete graph world and the con-
tinuous world of density functions beneath. In terms of
these views we express how f -adjusting represents a mod-
ification applied to the underlying density p. As a result,
volumes and cuts in G refer to well-specified continuous
quantities. This allows to apply any volume and cut based
algorithm to the graph as if it were drawn according to an-
other distribution.

More experiments and details can be found in the supple-
mentary material.
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This supplement consists of three sections. Section A provides further applications that were skipped from the paper.
Section B provides all proofs for paper’s Section 4 (Algebraic Interpretation), including several further details. Section C
provides details for paper’s Section 5 (Geometric Interpretation).

A. Further Applications

The first application studies a certain approach of biased random walks from our new geometric perspective. The second
application deals with Semi-Supervised Learning.

A.1. Topologically biased random walks

f -adjusting a graph changes most of the properties of the random walk on the graph. The stationary distribution is now ob-
viously proportional to f rather than d. Hitting times and commute times are affected as well. Zlatić et al. (2010) study what
they call “vertex centered biased random walks”: implicitly they modify the random walk matrix P = D−1W in a way that
can be represented as P̃f = D̃−1f W̃f for W̃f being the f -scaled graph with f = d� exp(2β · d/‖d‖∞), where � denotes
the Hadamard product and exp(·) is applied entry-wise. They observe that their particular choice leads to much better
clustering results. They conclude this from studying eigenvalues and eigenvectors of the symmetrization D̃−1/2f W̃f D̃

−1/2
f .

Since these quantities correspond to the eigenvalues and eigenvectors of L(W̃ ), their approach can be understood in terms
of normalized cuts of the f -scaled graph. Based on our analysis, we can now give an intuitive explanation of their approach:
their new random walk aims at studying the modified density p̃(x) = exp(2β · p(x)/pmax) · p(x)2. Hence, they amplify
high-density regions in space exponentially stronger than low-density regions, which drastically strengthens any density
cluster structure. Of course this only works to a certain extent, because it runs into the same problem as studying the
density pr for large r: suppose that A and B denote disjoint geometric areas of two different clusters at slightly different
“density plateaus”, that is, there exist a < b such that the level sets to every threshold t ∈ [a, b] only show, say, A but not
B. For any moderate bias/amplification (“small β > 0”, or “small r > 1”), A and B are both emphasized over any much
lower density areas between them. However, since A and B lie on different plateaus, they are affected in an increasingly
different way for a larger amplification. If the amplification is too strong, thenB is suppressed like other low-density areas,
since A is favored too much over anything else.

Further, note that the exponential scaling in the modified random walk is applied to p2 instead of p. Our technique
suggests that applying the modification f = exp(β · d/‖d‖∞) is a more natural choice, since it applies the intended
exponential influence directly on p. This implies to study the modified density p̃(x) = exp(β · p(x)/pmax) · p(x), without
squaring. Finally, one could fix the influence of the deviation d̃ 6= f on the spectrum by considering Lf (W ) everywhere
instead of L(W̃f ).
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A.2. Semi-Supervised Learning (SSL)

A.2.1. MERGING VERTEX WEIGHTS INTO EDGE WEIGHTS

Assume that we have additional knowledge given as vertex weights. For example in network traffic analysis one has to deal
with both edge congestion and vertex congestion. Moreover, it has been shown by Montenegro (2003) and Kannan et al.
(2006) that considering both edge bottlenecks and vertex bottlenecks simultaneously can drastically improve mixing time
bounds for random walks. However, many algorithms focus only on edge similarities, so does label propagation. In order
to make the vertex weights visible to the algorithm, we have to transform them into edge weights. The trivial strategy of
introducing selfloops does not affect label propagation at all, since selfloops do not change the probabilities of the random
trajectories. Our framework suggests to merge vertex weights into edge weights via f -adjusting (where only the implied
f -scaling takes an influence on label propagation).

Figure 1. Label propagation on original graph (left) and f -adjusted graph (right), showing Label Propagation on the two moons data set
with one labeled point per class (shown in blue). Black squares mark misclassified vertices.

As an example, consider the two-moons dataset for an unweighted 10NN graph on 1000 vertices with one labeled vertex
per cluster. Label propagation alone provides the rather bad results in Figure 1 (left). Now we add additional knowledge by
computing a measure of local centrality for each vertex: denote by N3(i) the set of vertices that have shortest path distance
exactly 3 to vertex i. Let ϕi be the sum of all pairwise shortest path distances between any two vertices in N3(i). Then
ϕ−1i penalizes those vertices that lie close to sharp cluster boundaries. Incorporating these vertex weights by f -adjusting
with fi := exp(−5 ·φi) gives the almost perfect result for label propagation on the adjusted graph (Figure 1, right).

A.2.2. LABEL PROPAGATION LIMIT BEHAVIOR

The soft labels computed by the label propagation algorithm in case of few labeled vertices tend to be flat, with sharp
spikes at the labeled vertices. In this situation, a meaningful threshold is increasingly difficult to find (Nadler et al., 2009).
Figure 2 (left) illustrates this problem for a Gaussian-weighted 50NN-graph on 2000 points (xi, yi, zi) sampled from
N (µ, 1)×N (0, 1)×N (0, 0.1), where µ ∈ {0, 4} for the 1000 points of each class, respectively. For each class, a single
vertex (denoted as `a resp. `b) near to µ is labeled.

x
y

s

x
y

s

Figure 2. Soft threshold values s of label propagation on original graph (left) and f -adjusted graph (right). Both graphs are built on the
same sample drawn from two Gaussians, where each Gaussian is labeled by a single label point near to its center.

Figure 2 (right) shows the soft labels for the f -adjusted graph with fi := di · exp(−4 ·min{hd(i, `a),hd(i, `b)}), wherein
hd(x, y) denotes the hop-distance, that is the smallest number of edges on an xy-path in G. This adjustment can be
interpreted as extending the areas of attraction from single points (the labeled ones) to larger sets (neighborhoods around
labeled points). This biases the label propagation algorithm towards any labeled vertex, providing a sharp separation in the
soft labels. Instead of hd, any other distance measure can be used, for example some quantity that is derived from a coarser
cluster structure.
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B. Algebraic Interpretation
First we summarize the notation. Then we derive some general properties of weak graph matrices. Finally, we put some
effort into proving the main result of the algebraic interpretation, Theorem 4.3.

B.1. Notation

By the term graph matrix we refer to any element of W := {X ∈ Rn×n≥0 | X = XT , X1 > 0}. We generalize
this to W� := {X ∈ W + diag(Rn) | X1 > 0} = {X ∈ Rn×n≥0 + diag(Rn) | X = XT , X1 > 0}, the set of
weak graph matrices, whose elements further allow for negative diagonal entries as long as all row sums remain positive.
Obviously W ⊂W�.

Every weak graph matrix W ∈ W� corresponds to an undirected weighted graph G(W ) := (V,E,W ) that has W as
its weighted adjacency matrix, and edge set E := {ij | wij 6= 0}. With d := W1 and D := diag(d), we define the
unnormalized Laplacian L(W ) = [lij ] := D −W and the normalized Laplacian L(W ) = [`ij ] :=

√
D−1L(W )

√
D−1 =

I −
√
D−1W

√
D−1. If all off-diagonal entries of W are zero, then all vertices in G(W ) are isolated (each with a positive

selfloop attached). We refer to this special case as a trivial graph. A graph is trivial if and only if L(W ) = L(W ) = 0. It
is non-trivial if and only if n > 1 and wij 6= 0 for some i 6= j.

For f ∈ Rn>0 and c > 0 we define the following (weak) graph matrices

for W ∈W : f -scaled W̃f :=
√
FD−1W

√
FD−1 ∈W where F := diag(f)

for W ∈W� : f -selflooped W ◦f := W −D + F ∈W�

for W ∈W : (f , c)-adjusted W f ,c := W̃f − D̃f + cF ∈W� where D̃f := diag(W̃f1).

We consider the matrix decorations ,̃ ◦ and as operators on the matrixW , with the indices f and c as additional parameter
values. For example, for any matrix A ∈ W and any vector x ∈ Rn>0 we get that A◦x := A− diag(A1) + diag(x). Note
that (f , c)-adjusting is equal to f -scaling followed by cf -selflooping, that is W f ,c = (W̃f )

◦
c f .

For W ∈W, we define the f -adjusted Laplacian Lf (W ) as the normalized Laplacian of the f -adjusted graph,

Lf (W ) := L(W f ,1).

We study some of its properties in the following. In particular, Lemma 4.2 shows that Lf (W ) is a diagonal modification
of L(W ), that is Lf (W ) = L(W ) +X for some X ∈ diag(Rn).

B.2. General properties of weak graph matrices

W is closed under f -scaling: W ∈ W ⇒ W̃f ∈ W. However, W� is not closed under f -scaling, since for example
W =

(
−5
6

6
3

)
∈ W� would give that W̃1 =

(
−5
2

2
1/3

)
/∈ W�. For that reason, we consider f -scaling and f -adjusting

only applied to non-weak graph matrices.

W� is closed under f -selflooping, but W is not : for example W =
(
0
2

2
0

)
∈ W gives that W ◦1 =

(
−1
2

2
−1

)
/∈ W.

However, we achieve some sense of closedness of W when restricting to cf -selflooping for c ≥ c∗W,f as defined in the next
proposition.

Proposition B.1. Let W ∈ W�, f ∈ Rn>0 and c > 0. Define c∗W,f := maxi∈V {(di − wii)/fi} ≥ 0. Then it holds
that W ◦c f ∈W if and only if c ≥ c∗W,f .

Proof. FromW ◦c f = W−D+cF we get thatW ◦c f has no negative selfloop if and only ifwii−di+cfi ≥ 0 for all i ∈ V . In
the case c ≥ c∗W,f we get thatwii−di+cfi ≥ wii−di+maxi∈V {(di−wii)/fi}·fi = maxi∈V {(di−wii)}−(di−wii) ≥ 0
for all i ∈ V . For c < c∗W,f , choose k ∈ {i ∈ V | (di−wii)/fi = c∗W,f}, and get thatwkk−dk+cfk < wkk−dk+c∗W,f ·fk =
wkk − dk + (dk − wkk)/fk · fk = 0.
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Remark 1. It holds that c∗W,f = 0 if and only if W is trivial (because then di = wii for all i ∈ V ).

Remark 2. For non-trivial W ∈W� and any f ∈ Rn>0 we get the non-trivial partition:

{W ◦c f | c > 0} = {W ◦c f | 0 < c < c∗W,f}︸ ︷︷ ︸
⊆ W�\W

∪̇ {W ◦c f | c ≥ c∗W,f}︸ ︷︷ ︸
⊆ W

.

Fact B.2. For every W ∈W� it holds that W ◦cd ∈W for all positive c ≥ c∗W,d.

Proof. For trivial W this is obvious, and for non-trivial W this follows from Remark 2.

Fact B.3. For every W ∈W, f ∈ Rn>0 and c, a > 0 it holds that W̃af = a · W̃f and that W af ,c = a ·W f ,c.

Proof. By definition we get that W̃af =
√
aFD−1W

√
aFD−1 = a

√
FD−1W

√
FD−1 = a · W̃f , which further implies

that D̃af = a · D̃f . It follows that W af ,c = W̃af − D̃af + caF = a · (W̃f − D̃f + cF ) = a ·W f ,c.

Let us summarize some easy facts on the main diagonal of L(W ) = [lij ] and L(W ) = [`ij ] without proofs:

Fact B.4. For W ∈W it holds for all i ∈ V that:

(i) 0 ≤ wii ≤ di, 0 ≤ wii/di ≤ 1

(ii) lii = di − wii ∈ [0, di] with lii = 0 if and only if i is an isolated vertex.

(iii) `ii = 1− wii/di ∈ [0, 1] with `ii = 0 if and only if i is an isolated vertex.

These results generalize to weak graph matrices (now wii < 0 is possible) as follows:

Fact B.5. For W ∈W� it holds for all i ∈ V that:

(i) −∞ < wii ≤ di, −∞ < wii/di ≤ 1

(ii) lii = di − wii ∈ [0,∞) with lii = 0 if and only if i is an isolated vertex, and lii > di if and only if i has a
negative selfloop.

(iii) `ii = 1 − wii/di ∈ [0,∞) with `ii = 0 if and only if i is an isolated vertex, and `ii > 1 if and only if i has a
negative selfloop.

Trivially it holds that W = W ◦d . The next lemma shows how W and W ◦cd are related for all c > 0.

Lemma B.6. For all W ∈W� it holds that L(W ) = c · L(W ◦cd) for all c > 0.

Proof. L(W ◦cd) =
√

(cD)−1(cD − (W −D + cD))
√

(cD)−1 = c−1
√
D−1(D −W )

√
D−1 = c−1L(W ).
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This easy yet powerful lemma gives that all normalized Laplacians in {L(W ◦cd) | c > 0} share the same eigenvectors with
their corresponding eigenvalues simply scaled according to c. This implies for example that positive semi-definiteness of
L(W ) and L(W ) generalizes to non-weak graph matrices, as the next lemma shows.

Lemma B.7. For W ∈ W� it holds that L(W ) is positive semi-definite. Further, 0 is an eigenvalue of L(W ) with
multiplicity equal to the number of connected components in G(W ), and

√
d a corresponding eigenvector.

Proof. Adding/Removing selfloops does not affect the number of connected components. Thus, all results follow directly
from Lemma B.6 and Fact B.2, since there exists c > 0 with W ◦cd ∈W and L(W ) = c · L(W ◦cd). All stated properties are
well-known for non-weak graph matrices.

It is obvious that A = cW implies that L(A) = L(W ). The following lemma shows that for connected graph matrices
furthermore equivalence holds.

Lemma B.8. Let n > 1. For connected G(W ) ∈ G(W�) and any A ∈W� it holds that L(W ) = L(A) if and only if
A = c ·W for some c > 0.

Proof. “⇐”. A = cW for c > 0 yields L(A) = I −
√

(cD)−1cW
√

(cD)−1 = I −
√
D−1W

√
D−1 = L(W ). “⇒”. Let

[`ij ] := L(W ) = L(A) =: [`Aij ]. Further let t := A1 > 0. First, we show that t = αd for some α > 0. By Lemma B.7
we get that

√
d is the unique (up to scaling) eigenvector of L(W ) to the eigenvalue 0, similarly

√
t for L(A). Hence, if

t 6= αd for all α ∈ R, then L(W ) 6= L(A), since they differ in their first eigenspace. Otherwise we may choose a positive
α and get that ti = α · di for all i ∈ V .

For every i 6= j we get from `ij = wij/
√
didj = aij/

√
titj = `Aij that aij = wij ·

√
titj(didj)−1 = α · wij . For i = j

we get from `ij = (di − wii)/di = (ti − aii)/ti = `Aij that di − wii = di − aii/α, hence aii = α · wii.

Remark 3. With Fact B.3 this lemma also gives that Lf (W ) = Lαf (W ) for all α > 0. Further, for connected G(W ), even
the opposite holds: Lf (W ) = Lg(W ) if and only if f = αg for some α ∈ R>0.

B.3. f -adjustments are diagonally modified Laplacians

The following two lemmas are stated in the paper. Their proofs are straightforward.

Lemma 4.1 (Scaling Relation). For all W ∈W, f ∈ Rn>0 and c > 0 it holds that

L(W f ,1) = c · L(W f ,c).

Proof. This can be seen from W f ,1 = (W̃f )
◦
c f and applying Lemma B.6 to W̃f , or directly as follows:

c · L(W f ,c) = c ·
√

(cF )−1(cF − (W̃f − D̃f + cF ))
√

(cF )−1

=
√
F−1(F − (W̃f − D̃f + F ))

√
F−1

= L(W f ,1)
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Lemma 4.2 (Diagonally Modified Laplacian). For all W ∈W and f ∈ Rn>0 it holds that

Lf (W ) = D̃fF
−1 − W̃1.

Proof. Right from the definitions we get that:

Lf (W ) = I −
√
F−1(W̃ − D̃f + F )

√
F−1

= I −
√
F−1
√
FD−1W

√
FD−1

√
F−1 + D̃fF

−1 − I
= D̃fF

−1 −
√
D−1W

√
D−1

Remark 4. Recall that L(W ) = I − W̃1, hence

Lf (W ) = L(W )− (I − D̃fF
−1)︸ ︷︷ ︸

∈ diag(Rn)

=: L(W )− diag(h)

for h := (I −
√
F−1D−1W

√
FD−1)1, where h = (hi)i can be expressed element-wise as:

hi = 1−
n∑
j=1

wij

√
fj/fi√
didj

.

Remark 5. The trivial relation Ld(W ) = L(W ) is attained for h = (I − D−1W )1 = 0, which is noteworthy, since
D−1W is the random walk transition matrix.

B.4. Diagonally modified Laplacians are f -adjustments

We are now going to prove two lemmas that finally lead to our main result.

Lemma B.9 (Characterization of f -adjusted Laplacians). For connected G(W ) ∈ G(W) let

Λ := {Lf (W ) | f ∈ Rn>0}

denote the Laplacian orbit of W under f -adjusting. Further let

Λ′ := {Z − W̃1 | Z ∈ diag(Rn>0), ρ(Z−1W̃1) = 1}

for ρ(·) the Perron root of its argument. Then it holds that Λ = Λ′ with the relation Z = D̃fF
−1, wherein

√
f is the

unique (up to scaling) right eigenvector of Z−1W̃1 to eigenvalue 1.

Proof. It is well-known that G(W ) is connected if and only if W is irreducible. This implies, for any choice of
Z ∈ diag(Rn>0), that Z−1W̃1 is irreducible (and non-negative), too, since it has the same non-zero-pattern as W . This
allows to apply various aspects of the Perron-Frobenius-Theorem (PFT), see for example Stańczak et al. (2006) for an
overview.

Λ ⊆ Λ′: fix any Lf (W ) ∈ Λ for some f > 0 and set Z := D̃fF
−1 ∈ diag(Rn>0). We prove that ρ(Z−1W̃1) = 1 by

finding an all-positive eigenvector x to the following eigenvalue problem:

Z−1
√
D−1W

√
D−1x = x. (?)
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We propose that
√
f is such an eigenvector. Plugging D̃f = diag(

√
FD−1W

√
FD−11) into D̃fF

−1 = Z element-wise,
gives with Z = diag(z1, . . . , zn) that

D̃fF
−1 = Z

⇔
n∑
j=1

wij√
didj

·
√
fj = zi ·

√
fi for all i = 1, . . . , n

⇔
√
D−1W

√
D−1
√
f = Z

√
f

⇔ Z−1
√
D−1W

√
D−1
√
f =

√
f

(??)

Thus
√
f is indeed a solution to (?), hence an all-positive (right) eigenvector of Z−1W̃1 to the (existing) eigenvalue 1.

By PFT, there is exactly one eigenvalue providing all-positive eigenvectors. Further it determines the spectral radius and
is simple. Thus, we have that ρ(Z−1W̃1) = 1 and that the corresponding left and right eigenvectors are unique (up to
scaling). With Lemma 4.2 we get that Z = D̃fF

−1 is a valid choice for Z to represent Lf (W ) as an element in Λ′.

Λ′ ⊆ Λ: fix any Z − W̃1 ∈ Λ′ for some Z ∈ diag(Rn>0) with ρ(Z−1W̃1) = 1. By irreducibility of Z−1W̃1, there
exists by PFT a unique (up to scaling) all-positive solution x̂ of (?). By defining f := x̂2 we get that

√
f is a solution

to the eigenvalue problem (?). From (??) we see that this is equivalent to Z = D̃fF
−1. Thus, we get that Z − W̃1 =

D̃fF
−1 − W̃1 = Lf (W ) ∈ Λ for this unique (up to scaling) choice of f .

Remark 6. This lemma generalizes to unconnected graphs as follows: there is a permutation P of rows and columns such
that W ′ = PWPT has block diagonal form, wherein each block-submatrix is irreducible. Thus, all above arguments
can be carried out on each block individually, by restricting f to just the entries belonging to that block (= connected
component). This relaxes the uniqueness in the way, that now f may be scaled by an individual scaling factor chosen
independently for each connected component.

We have shown that f -adjusting can be understood as a diagonal modification of the form L(W ) +X = L(A) for some
X ∈ diag(Rn) and A ∈ W�. So far the question is left open if further the converse is true: does every such diagonal
modification imply that A is an f -adjustment of W ? We now answer this in the affirmative.

Lemma B.10 (Characterization of Diagonally Modified Laplacians). Let W ∈ W. Then L(W ) +X = L(A)
holds true for X ∈ diag(Rn) and A ∈W� if and only if A is an f -adjustment of W for some f ∈ Rn>0. Formally,

Λ = {L(W ) +X | X ∈ diag(Rn), L(W ) +X ∈ L(W�)}

with Λ the Laplacian orbit of W under f -adjusting.

Proof. “⊆”. This direction is clear by Lemma 4.2.

“⊇”. With Y := X + I we have that L(A) = Y −
√
D−1W

√
D−1 =: [`Aij ] for some A ∈W�. First we want to show that

this implies that Y = diag(y1, . . . , yn) has an all-positive diagonal. Fix any i ∈ V . From A ∈W� and Fact B.5 it follows
that `Aii ≥ 0, and from W ∈ W that wii ≥ 0. Thus, we get from `Aii = yi − wii/di ≥ 0 that yi ≥ wii/di ≥ 0. Thus yi is
non-negative. Now assume that yi = 0. This implies that wii = 0, hence `Aii = 0, so i must be an isolated vertex in G(A).
However, in G(W ) vertex i cannot be isolated, since wii = 0 implies by the positive degree constraint that wij > 0 for

some j 6= i. For such j it holds that −aij/
√
dAi d

A
j = `Aij = `ij = −wij/

√
didj < 0, hence that aij > 0 in contradiction

to i being an isolated vertex in A. Therefore, yi > 0 for all i ∈ V .

In the following we assume w.l.o.g. that W is connected, since all arguments can be applied to each connected component
individually, independent of all other components.

Lemma B.9 gives that for any all-positive diagonal matrix Y (in particular as chosen above) there exists some α > 0 and
some f -adjustment W f =: Mα ∈W� for some f ∈ Rn>0 such that L(Mα) = αY −

√
D−1W

√
D−1 ∈ Λ. We now show
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that for no β 6= α any Mβ ∈ W� with L(Mβ) = βY −
√
D−1W

√
D−1 exists. This finally implies that M1 itself is the

f -adjustment of W , which gives that L(A) = L(M1) ∈ Λ.

Therefore, fix any Mβ ∈ W� with L(Mβ) = βY −
√
D−1W

√
D−1 for some β ∈ R. Setting ε := β − α gives that

L(Mβ) = βY −
√
D−1W

√
D−1 = L(Mα) + εY . Now assume that ε > 0. By Lemma B.7, L(Mβ) is positive semi-

definite with v :=
√
Mβ1 an all-positive eigenvector to the eigenvalue 0. We get the contradiction 0 = vTL(Mβ)v =

vTL(Mα)v + εvTY v > 0, because vTL(Mα)v ≥ 0 by positive semi-definiteness of L(Mα), and εvTY v > 0 by all-
positivity of v and Y . Now assume that ε < 0. Let w :=

√
Mα1 denote the all-positive eigenvector of L(Mα) to the

eigenvalue 0. We get the contradiction 0 ≤ wTL(Mβ)w = wTL(Mα)w + εwTY w < 0, because wTL(Mα)w = 0, and
εwTY w < 0 by all-positivity of w and Y , and the first inequality due to positive semi-definiteness of L(Mβ). Thus, for
no ε 6= 0 any graph matrix of this form exists.

Now we have all ingredients to prove our main result on the algebraic interpretation of f -adjusting:

Theorem B.11 (Complete Characterization for Connected Graphs). For n > 1 and connected G(W ) ∈ G(W)
consider all solutions (X,A, c) ∈ diag(Rn)×W� × R of the equation

L(W ) +X = c · L(A).

For c ≤ 0 no solution exists. For c > 0, all solutions are given byA = W f ,c andX+I = D̃fF
−1 = Z for any choice

of f ∈ Rn>0. This is equivalent to choosing any Z ∈ diag(Rn>0) with Perron root ρ(Z−1W̃1) = 1, which determines√
f as the unique (up to scaling) right Perron eigenvector.

Proof. Let L(W ) =: [`ij ] and L(A) =: [`Aij ]. Since W is non-trivial, there exist i 6= j with wij > 0, hence `ij < 0.
The case c < 0 would imply that `Aij > 0, which is impossible for all A ∈ W�. The case c = 0 would imply that
L(W ) + X = 0, hence that all off-diagonal elements in W are zero, in contradiction to being non-trivial. Thus, no
solutions for c ≤ 0 exist.

Now consider the case c = 1, that is any solution of the formL(W )+X = L(A). We get from Lemma B.10 that every such
solution corresponds to fixing some f ∈ Rn>0 and setting A := W f ,1. This implies by Lemma 4.2 that X + I = D̃fF

−1.
It remains to show that this is equivalent to choosing Z ∈ diag(Rn>0) with the desired properties. For fixed f , we get from
Lemma B.9 that D̃fF

−1 = X + I = Z for some Z ∈ diag(Rn>0) with Perron eigenvalue ρ(Z−1W̃1) = 1 and
√
f the

corresponding right Perron eigenvector. The other way round, Lemma B.9 gives that choosing any Z ∈ diag(Rn>0) with
ρ(Z−1W̃1) = 1 implies by setting X := Z− I that L(W ) +X = L(A) for A = W f ,1, and further that Z = D̃fF

−1 with√
f being determined as the unique (up to scaling) right Perron eigenvector.

Now consider the case c > 0, that is L(W )+X = c·L(A) forX ∈ diag(Rn) andA ∈W�. From c·L(A)
B.6
= L(A◦c−1A1)

we get that L(W )+X equals the normalized Laplacian of a weak graph matrix. Thus, L(W )+X
B.10
= L(W g,1) for some

g ∈ Rn>0. This gives that L(A) = c−1L(W g,1)
4.1
= L(W g,c). Thus we have that A B.8

= α ·W g,c
B.3
= Wαg,c for some

α > 0. So A is the (f , c)-adjustment of W for f := αg. It follows as before that X + I = D̃g diag(g)−1 = D̃fF
−1 = Z

for some Z ∈ diag(Rn>0) with Perron eigenvalue ρ(Z−1W̃1) = 1 and
√
g a corresponding right Perron eigenvector as

well as
√
f =
√
αg another one, unique up to scaling.

For the other way round, choose any f ∈ Rn>0 (or equivalently any Z ∈ diag(Rn>0)). Setting A := W f ,c implies that

L(W f ,1)
4.1
= c · L(A) = L(W ) +X , hence by Lemma 4.2 that X + I = D̃fF

−1.

Remark 7. For arbitrary c > 0, the theorem implies that L(W ) + X = c · L(A) is a solution if and only if c · L(A) =
c · L(W f ,c) = L(W f ,1) = Lf (W ) for the specific vector f , that is if and only if L(W ) +X ∈ L(W�).
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Remark 8. From the special case c = 1 we get that all solutions (X,A) ∈ diag(Rn)×W� of the equation L(W ) +X =
L(A) are given by L(W ) + X = Lf (W ) for every f ∈ Rn>0. Furthermore, f and X are related to each other by
ρ((X + I)−1W̃1) = 1 with X + I ∈ diag(Rn>0) and

√
f the corresponding eigenvector.

In our paper we state Theorem B.11 slightly different as follows:

Theorem 4.3 (Complete Characterization). For any W ∈ W with L(W ) 6= 0 consider all solutions (X,A, c) ∈
diag(Rn)×W� × R of the equation

L(W ) +X = c · L(A).

For c ≤ 0 no solution exists. For c > 0, all solutions are given by A = W f ,c and X + I = D̃fF
−1 = Z for any

choice of f ∈ Rn>0. For connected G(W ), choosing f is equivalent to choosing any Z ∈ diag(Rn>0) with spectral
radius ρ(Z−1W̃1) = 1. This determines

√
f uniquely (up to scaling) as the eigenvector corresponding to the simple

eigenvalue 1 of the matrix Z−1W̃1.

Remark 9. All diagonal modifications of W with W +X ∈W� obviously correspond to f -selflooping, that is modifying
selfloops in any possible way. Theorem 4.3 shows a similar result for the normalized Laplacian, namely that all diagonal
modifications of L(W ) with L(W ) + X ∈ L(W�) correspond to f -adjusting for every f ∈ Rn>0. This shows that
f -adjusting is a very natural graph modification.



The f -Adjusted Graph Laplacian: a Diagonal Modification with a Geometric Interpretation (Supplement)

C. Geometric Interpretation

In this section we provide more details on the convergence of the modified interspace quantities to their corresponding
modified continuous quantities. Both our propositions are already motivated in the paper in terms of the sum expressions
that define the interspace volumes and cut weights, respectively.

The proofs heavily rely on the arguments in Maier et al. (2009), where the convergence of interspace volumes and cut
weights to their corresponding continuous quantities is proven for different types of neighborhood graphs, for a fixed
density p : X → R>0. They show that volumes and cut weights refer to the continuous quantities

∫
p2 in the limit. They

study different types of neighborhood graphs for a single density p. In contrast to that, we relate two neighborhood graphs
of the same type, but according to different densities p and p̃ = fp to each other.

The limit quantities
∫
p2 combine two different effects, each rising one factor of p. These two effects are:

(i) one factor p comes from the sampling mechanism, which distributes the sample points according to p

(ii) another factor p refers to the weighted degrees in the original graph, which serve as a density estimate on p

This gets particularly apparent in the interspace view. In light of this we ask the question: “Can we modify these effects by
modifying edge weights in the given graph ?”

The first effect (i) cannot be modified by us, since the unknown sample is fixed. Therefore, the positions of the sample
points are always determined by a sampling mechanism according to p. However, we observe that the second effect (ii)
is not required to refer to degrees that estimate p. It can be chosen to represent any other function f on the underlying
space (as long as it satisfies the same technical assumptions that are made on p). Since we have access to the graph, we
can change its degrees by changing its edge weights plus adding selfloops in any way that we want. This gives us the
opportunity to influence the second effect freely.

There is no geometric interpretation of volumes and cuts under arbitrary modifications applied to the graph. But if we
modify the degrees and the cut weights by f -adjusting, and if we further assume that f is determined by any suitable
continuous function f , then we can interpret the resulting volumes and cuts in G in terms of

∫
fp, compared to their

original interpretation as
∫
p2 in G.

Technically, we achieve this by sneaking in a new term corresponding to f everywhere along the proofs in Maier et al.
(2009). This allows for “changing” the limit quantities

∫
p2 into any

∫
p =

∫
fp, for free to choose f . The full proofs

would cover at least 10 pages, and mainly deal with technical considerations on boundary effects. For that reason, we
decided to just sketch the general proof strategies here. The interested reader is referred to Maier et al. (2009).

Proposition 5.1. (Interspace volumes) LetG be a geometric graph based on n vertices drawn according to p. Denote
its degree vector by d and let f : X → R>0 be a continuous function. Define the vector f := (f(xi))i, and let G
be any graph modification of G that attains the degrees d = f . Then, under the convergence conditions mentioned
above, for all measurable A ⊂ Rd, C · vold(A)→ volf ·p(A) almost surely as n→∞, where C is a scaling constant
that depends on n, d.

Proof Sketch. The general line of argument is to decompose the deviations in bias and variance term. The convergence of
the bias term is straightforward to see, the convergence of the variance term can be proved by concentration arguments.

Proposition 5.2. (Interspace cuts) Let G be a geometric graph based on n vertices drawn according to p. Denote its
degree vector by d and let f : X → R>0 be a continuous function that is twice differentiable and has bounded gradi-
ent. Define the vector f := (f(xi))i, and let G̃ be the corresponding f -scaled graph with weight matrix W̃f . Consider
a hyperplaneH in Rd. Then, under the convergence conditions mentioned above, C · cutW̃f

(H)→ cutf ·p(H) almost
surely as n→∞, where C is a scaling constant that depends on n, d.
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Proof Sketch. The variance part can be solved by concentration arguments. For the bias term, we need to count the edges
in the graph that cross the hyperplane H . The main ingredient therefore is that we can control the distance of connected
points in the graph, with high probability. By concentration arguments we know that with high probability, each point
x is connected to all points within a certain distance rx, and is not connected to points exceeding a certain distance
Rx. For counting edges, we then need to compute the probability mass of the intersection of those balls with the given
hyperplane H .

Remark 10. We believe that all results generalize from hyperplanes to any other cut surfaces that are sufficiently regular.

Remark 11. A nice consequence of our modification is that we can implicitly define f relatively to p, just by defining f
as a modification applied to d in the graph. For example, and as argued below, f := dr refers implicitly to defining the
underlying function f := β · pr+1 for some global scaling factor β that only depends on r, the sample size n and the
intrinsic dimension d. This approach is only limited by the fact that the degrees d do not estimate p exactly, since they
provide estimates that are proportional to p. Precisely, di = αn,d · p(xi) for some global scaling factor αn,d that depends
on n and d. Usually n is known, but as long as we do not know d, we have to make sure that the unknown estimation factor
αn,d passes our modification just as another global scaling factor, without introducing some distortion. For example, in the
case f = dr we get that the implicitly defined function f equals f = αr+1

n,d · pr+1 = const · pr+1 as intended. However, if
we define f := ad2 +bd+c1 for a, b, c ∈ R>0, then the implicitly defined function f would not refer to f = ap2 +bp+c,
but to f = aα2

n,dp
2 + bαn,dp + c instead. Hence the unknown estimation factor αn,d introduces a distortion that implies

that f cannot be represented as f = γ(ap2 + bp+ c) for any scaling factor γ.

Note that f = dr is not the only valid choice of implicitly defining f in terms of p. See for example Section A.1.

Moreover, if d is given as prior information, or from some estimate on the intrinsic dimension, then we can determine αn,d
and use it to define f implicitly from p in much more various ways. For example, if we want to study ap2 + bp + c, then
defining the new degrees by f := ad2 + bαn,dd + cα2

n,d1 would indeed represent f = aα2
n,dp

2 + bα2
n,dp + α2

n,dc =

const · (ap2 + bp+ c) as intended. Hence any good estimate on the intrinsic dimension allows for more powerful ways of
how to define f from p implicitly, in order to study volumes and cuts according to

∫
fp.
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