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This note reports simulation results for the discrete-time regression-type
model and the estimator based on local minima from [1]. The application of

estimator ÎV
hn,rn
n , (2.8) in [1], given by
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requires access to the functions Ψn. Though we have deduced theoretical
properties of Ψ = limn→∞Ψn and (Ψn) in [1], closed forms of these func-
tions are not accessible what makes the application more intricate. One way
to apply the estimator in practice is to employ a Monte Carlo approxima-
tion of Ψn for a certain value of K in hn = K2/3(nλ)−2/3. Besides employing
Monte Carlo approximations of Ψn, we also discuss a very simple first-order
approximated version of our estimator here. In particular, this will help us
to understand the behavior of the method for different choices of bin-widths
hn.
When hn ∝ n−2/3 and the noise level is small compared to the volatility,
i.e.λ−1 � σt for all t, or when we choose K in hn = K2/3λ−2/3n−2/3 suffi-
ciently large, the local minima, (3.1) in [1], are predominantly determined
by mini∈In

k
Xtni

. In accordance with high signal-to-noise ratios as found for
high-frequency real data within the traditional centered noise model, see [3]
and [2], and a realistic fit of real data examples, we are typically in situations
where λ−1 � σt for all t, and thus the approximation mn,k ≈ mini∈In

k
Xtni

might be adequate to yield an efficient finite-sample estimator. Figure 1 illus-
trates simulated observations from a setup with large signal-to-noise ratio in
which the bin-wise minima mn,k, k = 0, . . . , h−1n −1, are close to mini∈In

k
Xtni

.
The limit law of mini∈In

k
Xtni
−Xkhn is explicit. The joint density of the end-

point of the process Z =
∫
σdW on [0, t] and its minimum on the interval is
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Fig 1. Interval [0, 0.01] with first 10 bins for one simulation of a Brownian motion X with
exponential errors, n = 100000, hn = 0.001, nhn = 100 for λ = 200. Bin-wise minima are
marked by diamonds.

well-known and derived with

P
(

min
0≤s≤t

Zs < m,Zt ≥ w
)

=

∫ 2m−w

−∞
(2πσ2)−1/2 exp {−1/(2σ2)z2}dz

and thus given by

g(m,w) =
2(w − 2m)

σ3
√

2π
exp {−1/(2σ2)(2m− w)2},m ∈ (−∞, 0], w ∈ [m,∞) .

In particular this yields with k = bth−1n c, when we act as ifmn,k = mini∈In
k
Xtni

:

lim
n→∞

h−1/2n E[Ln,k] = −
È

(2/π)σt ,(1.2a)

lim
n→∞

h−1n E[L2n,k] = σ2t ,(1.2b)

lim
n→∞

h−1n E[Ln,k+1Rn,k] = (1/2)σ2t ,(1.2c)

and that Ψ(σ2t ) = 2σ2t (π − 2)/π .(1.2d)

Figure 2 draws a comparison between
∑h−1

n /2
k=1 (mn,2k − mn,2k−1)

2 and the
approximation σ2(π− 2)/π for σ ∈ [0, 1], n = 100000, nhn = 100 and λ−1 =
0.005 and λ−1 = 0.05, respectively. We conclude for Kλ = K/λ in hn =
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Fig 2.
∑

k(mn,2k −mn,2k−1)2 based on highly precise Monte Carlo means (points), n =
100000, nhn = 100, compared to σ2(π − 2)/π (solid line) against σ for σ = u/100, u =
1, . . . , 100. Exponential error distribution with λ−1 = 0.005 (left), λ−1 = 0.05 (right).

�
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n−2/3 large enough the simplified version of estimator ÎV
hn,rn
n :
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π
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We analyse the estimators’ finite-sample performances in the following sim-
ulation study. Observe that the main building block, a sum of squared dif-
ferences of local minima, is the same for estimators (1.1) and (1.3). The only
difference is that for (1.3) we approximate Ψn by the linear function from
(1.2d).

1.1. Simulations. We simulate observations Yi = Xi/n + εi, i = 0, . . . , n,
with X an Itô process with constant drift a = 0.1. First, we consider a model
with a deterministic Lipschitz volatility function:

σ2t = 0.1
�
1− 0.4 sin

�
3
4πt

��
, t ∈ [0, 1].(1.4)

A stochastic volatility model is also implemented:

σ2t =

�∫ t

0
c · ρ dWs +

∫ t

0

È
1− ρ2 · c dW⊥s

�
· σ̃t ,(1.5a)

with W⊥ a standard Brownian motion independent of W , c = 0.05, ρ = 0.5,
and σ̃t, t ∈ [0, 1], a deterministic seasonality function

σ̃t = 0.1
�
1− t

1
3 + 0.5 · t2

�
,(1.5b)
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Fig 3. Deterministic intra-day squared volatility shape function σ̃t, t ∈ [0, 1] from (1.5b),
with three simulated paths for σ2

t , t ∈ [0, 1] from (1.5a).

which mimics a typical intra-day shape of squared volatility. These volatility
dynamics are illustrated in Figure 3. From our experience in extensive simu-
lation experiments we can report that the estimators perform almost equally
well in the deterministic and the random volatility case. Furthermore, we
shall see that estimators (1.1) and (1.3) exhibit comparable variances. Thus,
it will be informative to restrict to estimator (1.3) for the stochastic volatil-
ity model.
We simulate one-sided errors according to a parametric specification with ex-

ponential errors εi
iid∼ Exp(λ) or uniformly distributed errors εi

iid∼ U[0, λ−1].
We compare the estimators’ precisions for different bin-widths hn for n =
100000 and n = 10000. Sample sizes from the order flow of (only) best bid
or ask prices are in practice in this range where n = 100000 is a rather
usual sample size for one trading day and liquid stocks. We consider four

different scenarios of noise dilution: εi
iid∼ Exp(λ) with λ = 20, 200, 2000

and εi
iid∼ U[0, λ−1] with λ = 200. From empirical studies as [3] and [2] we

consider λ ∈ (200, 2000) a realistic range. The high noise level scenario for
the complex volatility model is for illustration of the estimator’s reaction.
Since the estimator’s variance hinges on the realised volatility path, we fix
one path simulated from model (1.5a) for the iterations in Table 3, to assure
good comparability. In this realisation of (1.5a) the true integrated squared
volatility equals ca. 0.036. For (1.4) it equals ca. 0.072. In Table 2 results for
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n = 100000 εi
iid∼ Exp(λ = 2000) εi

iid∼ Exp(λ = 200)

h−1
n nhn Biasn1/3 Varn2/3 Bias2%MSE Biasn1/3 Varn2/3 Bias2%MSE

500 200 0.0015 0.1031 0.00 0.0332 0.1171 0.93

1000 100 0.0068 0.0542 0.08 0.0407 0.0518 3.10

10000 10 0.1393 0.0060 76.40 0.8688 0.0085 98.88

n = 10000 εi
iid∼ Exp(λ = 2000) εi

iid∼ Exp(λ = 200)

h−1
n nhn Biasn1/3 Varn2/3 Bias2%MSE Biasn1/3 Varn2/3 Bias2%MSE

100 100 0.0020 0.1227 0.00 0.0179 0.1200 0.26

500 20 0.0183 0.0219 1.35 0.0555 0.0239 11.43

1000 10 0.0392 0.0116 11.75 0.1401 0.0138 58.72

Table 1. Simulation results for integrated squared volatility estimator (1.3) in volatility
specification (1.4) based on first-order approximation of Ψ. Bias rescaled with factor n1/3,
variance rescaled with factor n2/3 and percentage of (systematic) squared bias in MSE.

the original estimator (1.1) are presented. We use a Monte Carlo approxi-
mation of Ψn for each configuration and for the respective values of n and
hn. The coarse grid size r−1n hn is set by r−1n = 100 for most configurations

which led to slightly smaller variances than setting r−1n = bh−1/2n c. Only in
the case that h−1n = 100 we use r−1n = 20.

The simulation results presented in Tables 1, 2 and 3 show the following:

• Estimator (1.1) asks for a Monte Carlo approximation of Ψn first and
thus is more elaborate than (1.3). The variances of both estimators are
almost equal. Since estimator (1.1) shows no relevant bias, it performs
well and allows to reach the smallest variances by choosing hn small
enough. Since the variances of (1.3) and (1.1) are very close to each
other, we restrict to the explicit estimator (1.3) in Table 3.
• For an accurate choice of hn, estimator (1.3) guarantees a highly

precise estimation of integrated squared volatility. In Table 3, for
n = 100000, λ = 200 the bin-width h−1n = 2000, nhn = 50, yields
the minimal MSE. In this case the MSE equals ca. 0.014n−2/3. The
rescaled variances are quite small though the simple estimator (1.3)
relies on a first-order approximation and uses only one half of the bins.
• Yet, the systematic bias of (1.3) by the first-order approximation
mn,k ≈ mini∈In

k
Xtni

prevents us from choosing hn small enough to
attain the lowest variance, see Tables 1 and 3. The best MSE in Table
3 for n = 100000, λ = 200, is achieved when the variance is still almost



6 M. BIBINGER, M. JIRAK & M. REISS

n = 100000 εi
iid∼ Exp(λ = 2000) εi

iid∼ Exp(λ = 200)

h−1
n r−1

n Biasn1/3 Varn2/3 Bias2%MSE Biasn1/3 Varn2/3 Bias2%MSE

500 100 -0.0069 0.1051 0.04 -0.0194 0.1049 0.36

1000 100 0.0095 0.0528 0.17 -0.0148 0.0571 0.38

10000 100 0.0064 0.0056 0.72 0.0066 0.0077 0.56

n = 10000 εi
iid∼ Exp(λ = 2000) εi

iid∼ Exp(λ = 200)

h−1
n r−1

n Biasn1/3 Varn2/3 Bias2%MSE Biasn1/3 Varn2/3 Bias2%MSE

100 20 -0.0078 0.1168 0.05 0.0029 0.1199 0.00

500 100 -0.0136 0.0237 0.77 -0.0008 0.0257 0.00

1000 100 0.0086 0.0125 0.59 0.0109 0.0135 0.87

Table 2. Simulation results for integrated squared volatility estimator (1.1) in volatility
specification (1.4). Bias rescaled with factor n1/3, variance rescaled with factor n2/3 and
percentage of (systematic) squared bias in MSE.

3 times larger than its minimum.
• The estimators perform equally well also for semi-martingale random

volatilities with leverage.

Altogether, the results are promising that relevant efficiency gains by
exploiting limit order book price levels and estimation approaches stimulated
from model (1.3) in [1] are attainable. Estimator (1.3) provides a simple
and computationally fast estimation without Monte Carlo approximations.
However, due to its bias it comes close but does not attain the same high
efficiency.

A crucial and practically relevant question is if our method infers on the
same integrated squared volatility as in the traditional model, i.e. if both
hypothetical underlying objects correspond to each other. For our intra-day
data example of the FB stock on 06/02/2014, used for Figure 2 of [1], we
find with the asymptotically efficient locally parametric Fourier estimator by
[4] applied to 37972 traded prices an integrated squared volatility estimate
0.00033. The tuning block-width for the approach is fixed to 38 blocks. When
we apply method (1.3) with h−1n = 1000 bins to the 212463 available level
1 ask prices we obtain an estimate 0.00037 for integrated squared volatility.
Based on 209175 level 1 bids and local maxima an analogous estimator
yields 0.00038. Estimates are quite robust against different choices of hn.
Therefore, while estimation based on bids and asks is very close to each
other, the gap to the estimate in the Gaussian noise model is a bit larger.
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Still, this first impression indicates that the idea of the same underlying
efficient price and its volatility is reasonable. A rigorous extensive empirical
comparison of both approaches in practice remains open for consideration
in further research.

Conclusion. The simulation studies demonstrate the high precision of
our estimation approach in realistic finite-sample settings. It is shown that
for applications one may use a very simple and explicit estimator derived by
a first-order approximation when involving accurate bin-widths. Whenever
(nhnλ)−1 �

√
hnσt, t ∈ [0, 1], already the first-order term of Ψn and the

simple estimator (1.3) guarantee a precise estimation of integrated squared
volatility. However, refinements of the estimation method stimulated by the
model with one-sided errors from [1] should further improve upon the prac-
tical performance. Computing the second-order term in the expansion as
K → ∞ is one task to improve the efficiency and avoid a Monte Carlo ap-
proximation. While building upon the methodology of [1], this point poses a
non-trivial extension which goes beyond the scope of the current work and
is left for future research.
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n = 100000 εi
iid∼ Exp(λ = 2000) εi

iid∼ Exp(λ = 200)

h−1
n nhn Biasn1/3 Varn2/3 Bias2%MSE Biasn1/3 Varn2/3 Bias2%MSE

100 1000 0.0003 0.1841 0.00 0.0047 0.1614 0.01

500 200 0.0004 0.0389 0.00 0.0128 0.0351 0.47

800 125 0.0028 0.0236 0.00 0.0302 0.0239 3.67

1000 100 0.0034 0.0183 0.06 0.0298 0.0185 4.60

1250 80 0.0034 0.0121 0.09 0.0427 0.0156 10.44

2000 50 0.0153 0.0082 2.76 0.0713 0.0094 35.00

5000 20 0.0398 0.0031 33.75 0.2261 0.0041 92.61

10000 10 0.0857 0.0016 81.73 0.6698 0.0032 99.29

20000 5 0.2036 0.0009 97.75 3.0679 0.0068 99.92

n = 100000 εi
iid∼ Exp(λ = 20) εi

iid∼ U[0, 1/200]

h−1
n nhn Biasn1/3 Varn2/3 Bias2%MSE Biasn1/3 Varn2/3 Bias2%MSE

100 1000 0.0164 0.1610 0.17 -0.0068 0.1408 0.03

500 200 0.0806 0.0315 17.08 0.0119 0.0292 0.48

800 125 0.1499 0.0218 50.73 0.0215 0.0211 2.14

1000 100 0.1885 0.0175 66.99 0.0237 0.0128 4.21

1250 80 0.2565 0.0128 83.69 0.0387 0.0110 7.49

2000 50 0.5491 0.0114 96.35 0.0592 0.0089 28.25

5000 20 4.4579 0.0490 99.75 0.1782 0.0040 88.86

10000 10 32.426 1.0599 99.89 0.4804 0.0026 98.89

20000 5 256.13 32.935 99.95 1.6122 0.0030 99.90

n = 10000 εi
iid∼ Exp(λ = 2000) εi

iid∼ Exp(λ = 200)

h−1
n nhn Biasn1/3 Varn2/3 Bias2%MSE Biasn1/3 Varn2/3 Bias2%MSE

100 100 0.0009 0.0301 0.00 0.0000 0.0285 0.00

200 50 0.0071 0.0142 0.35 0.0112 0.0152 0.83

500 20 0.0127 0.0058 2.71 0.0318 0.0060 14.50

1000 10 0.0201 0.0028 12.26 0.0883 0.0033 69.97

2000 5 0.0491 0.0015 61.86 0.2530 0.0023 96.51

n = 10000 εi
iid∼ Exp(λ = 20) εi

iid∼ U[0, 1/200]

h−1
n nhn Biasn1/3 Varn2/3 Bias2%MSE Biasn1/3 Varn2/3 Bias2%MSE

100 100 0.0347 0.0302 3.83 0.0067 0.0293 0.15

200 50 0.0715 0.0160 24.24 0.0066 0.0143 0.30

500 20 0.3395 0.0111 91.19 0.0242 0.0060 8.86

1000 10 1.6902 0.0385 98.67 0.0557 0.0031 49.73

2000 5 12.088 0.7573 99.48 0.1359 0.0019 90.79

Table 3. Simulation results for integrated squared volatility estimator (1.3) for (1.5a)
based on first-order approximation of Ψ. Bias rescaled with factor n1/3, variance rescaled
with factor n2/3 and percentage of (systematic) squared bias in MSE.
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