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Abstract In this paper, we derive an exact test for a column of the covariance matrix.
The test statistic is calculated by using a single observation. The exact distributions
of the test statistic are derived under both the null and alternative hypotheses. We also
obtain an analytical expression of the power function of the test for the equality of a
column of the covariance matrix to a given vector. It is shown that the information
contained in a single vector is large enough to ensure a good performance of the test.
Moreover, the suggested test can be applied for time-dependent multivariate Gaussian
processes.
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848 T. Bodnar, A. K. Gupta

1 Introduction

In the classical test theory on the covariance matrix the sample covariance matrix is,
usually, used for constructing a test statistic. Under the assumptions that the sample size
is larger than the order of the covariance matrix and the observations are independently
and identically normally distributed it holds that the sample covariance matrix has a
Wishart distribution (see, e.g. Gupta and Nagar 2000, Theorem 3.3.6). Using this
property different tests on the structure of the covariance matrix were suggested (cf.,
Anderson 2003; Muirhead 1982; Rencher 2002; Gupta and Xu 2006) and improved
estimates of the covariance and the precision matrices were derived (see, e.g., Bodnar
and Gupta 2009, 2011; Gupta et al. 2005; Sarr and Gupta 2009 and reference therein).

In some important practical situations we are not able to collect data of size larger
than the process dimension which consists of independent observations. It might hap-
pen that the dimension of the stochastic process is too large or/and the data are depen-
dent. The example of those data can be easily found in economics, especially in
portfolio theory. In this case, we have to deal with data of a smaller frequency or in
order to avoid the assumption of independence the estimation of the covariance matrix
can be based on a single process realization.

For such problems the properties of the singular Wishart distribution are applied
in the test theory (see, e.g. Schott 2007; Srivastava 2005; Srivastava and Yanagihara
2010). The singular Wishart distribution appears to be the distribution of the sample
covariance matrix when the sample size is smaller than the dimension of the process.
The distribution theory for the singular Wishart distribution has recently been discussed
in a number of papers (see, e.g., Díaz-García et al. 1997; Srivastava 2003; Bodnar and
Okhrin 2008). Bodnar et al. (2009) applied the distributional properties of the singular
Wishart distribution for deriving the sequential procedures for detecting changes in
the covariance matrix of the Gaussian process. In the present paper, we derive an exact
test for a column of the covariance matrix. One of the main advantage of the suggested
approach is that it can be applied for time dependent stochastic processes.

The rest of the paper is structured as follows. In Sect. 2, main results are presented.
Here, we introduce an estimator for the covariance matrix based on a single observation
and derive a test for a column of the covariance matrix. The distribution of the test
statistic is obtained under both the null and alternative hypotheses. We prove that
under the null hypothesis the test statistic has a central χ2-distribution, while under
H1 the density function depends only on the process dimension and a positive constant.
The last result simplifies significantly the study of the test power. Final remarks are
presented in Sect. 3, while all proofs are given in the “Appendix” (Sect. 3).

2 Main results

Let X ∼ Np(μ,Σ), p > 2, with known mean vector μ. Without loss of generality
we assume that μ = 0p, where 0p stands for the p-dimensional vector of zeroes.
If this assumption does not hold then the vector X̃ = X − μ should be considered
instead of X. Moreover, the derived results can also be applied if the mean vector μ

is unknown. In this case, we assume that X1 ∼ Np(μ,Σ), X2 ∼ Np(μ,Σ), and
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Test for column of covariance matrix 849

X1, X2 are independent. Then in the test statistic, the vector X should be replaced by
X̆ = X1 − X2.

Before we present the main results of this section, an estimator of the covariance
matrix has to be introduced. We apply the point estimator based on the single obser-
vation, i.e. the covariance matrix Σ is estimated by

V = XX′. (1)

It holds that V has a singular p-dimensional Wishart distribution with 1 degree of
freedom and the covariance matrix Σ (see, e.g. Srivastava 2003). This assertion is
denoted by V ∼ Wp(1,Σ). Although the matrix V is singular (its rank is equal to 1),
it provides us an unbiased estimator of Σ .

We assume that Σ = Σ0 (a known matrix) under H0 and Σ = Σ1 under H1. The
matrices Σ0, Σ1, and V are partitioned as follows

Σ0 =
[

σ0;11 Σ0;12
Σ0;21 Σ0;22

]
, Σ1 =

[
σ1;11 Σ1;12
Σ1;21 Σ1;22

]
, and V =

[
v11 V12
V21 V22

]
(2)

Let Σ0;22·1 = Σ0;22 − Σ0;21Σ
′
0;21/σ0;11, Σ1;22·1 = Σ1;22 − Σ1;21Σ

′
1;21/σ1;11.

Without loss of generality we now present a test for the first column of the covari-
ance matrix Σ0. For the i th column the test statistic can be derived similarly. In this
case instead of the partitions (2), we construct the partition for the (i, i)th element
of the matrices Σ0,Σ1, and V as follows. Let σ0;i i denotes the (i, i)th element of
the matrix Σ0, i = 1, . . . , p. By Σ0;21,i we denote the i th column of the matrix
Σ0 without σ0;i i . Let Σ0;22,i denote a quadratic matrix of order p − 1, which is
obtained from the matrix Σ0 by deleting the i th row and the i th column. Finally,
Σ0;22·1,i = Σ0;22,i − Σ0;21,iΣ

′
0;21,i/σ0;i i is calculated. In the same way we define

σ1;i i ,Σ1;21,i ,Σ1;22,i ,Σ1;22·1,i , vi i , V21,i , V22,i , and V22·1,i by splitting Σ1 and V
correspondingly.

We are interested in deriving a test for the first column of the covariance matrix
based on the single observation X. The hypotheses to be tested are given by

H0 : Σ12 = cΣ0;12 against H1 : Σ12 = Σ1;12 �= cΣ0;12, (3)

where c > 0 denotes an arbitrary (un)known constant.
We define

η = Σ
−1/2
0;22·1

(
V21

v11
− Σ0;21

σ0;11

)
v

1/2
11 . (4)

Let Φ(.) denote the cumulative distribution function of the univariate standard normal
distribution. Let φk(.;μ,Σ) stand for the density function of the k-dimensional multi-
variate normal distribution with mean vector μ and covariance matrix Σ . In Theorem 1
we derive the distributions of the random vector η under both H0 and H1 hypotheses.
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850 T. Bodnar, A. K. Gupta

Theorem 1 Let X ∼ Np(0p,Σ). Then

a) the density function of η is given by

fη(x) = 2φp−1
(
x; 0p−1,Ω + σ1;11ΔΔ′)Φ

⎛
⎝ Δ′Ω−1x√

σ−1
1;11 + Δ′Ω−1Δ

⎞
⎠ (5)

where

Δ = Σ
−1/2
0;22·1

(
Σ1;21

σ1;11
− Σ0;21

σ0;11

)
and Ω = Σ

−1/2
0;22·1Σ1;22·1Σ−1/2

0;22·1 .

b) under H0, η ∼ Np−1(0p−1, Ip−1), where Ik denotes a k × k identity matrix.

The part a) of Theorem 1 is proved in the “Appendix”. The part b) follows directly
from the part a) by noting that Δ = 0p−1 in this case. The result of part b) is also
given by Bodnar and Okhrin (2008, Corollary 1a). The results of Theorem 1 show
that the random vector η has a multivariate skew-normal distribution (cf. Azzalini
2005; Domínguez-Molina et al. 2007), while it has a standard multivariate normal
distribution under H0.

Next, we introduce the test statistic given by

T = η′η, (6)

which is motivated by the distributional properties of η.
In the following we also use the generalized hypergeometric function (cf. Muirhead

1982, p. Ch. 1.3), i.e.

p Fq(a1, a2, . . . , ap; b1, b2, . . . , bq ; x) =
∏q

l=1 Γ (bl)∏p
j=1 Γ (a j )

∞∑
i=0

∏p
j=1 Γ (a j + i)∏q
l=1 Γ (bl + i)

zi

i ! .

The technical computation of a hypergeometric function is a standard routine within
many mathematical software packages like, e.g., in Mathematica.

The distribution of T is derived in Theorem 2. In the statement of the theorem we
make use of 1 F1(.; .; .), while in the proof of Theorem 2 0 F1(.; .) is used.

Theorem 2 Let X ∼ Np(0p,Σ). Then

a) the density function of T is given by

fT (x) = 1

(1 + λ)1/2 f p−1(x) 1 F1

(
1

2
; p − 1

2
; λx

2(1 + λ)

)
(7)

where fk denotes the density of the χ2
k -distribution with k degrees of freedom and

λ=σ1;11Δ
′Ω−1Δ=σ1;11

(
Σ1;21

σ1;11
− Σ0;21

σ0;11

)′
Σ−1

1;22·1
(

Σ1;21

σ1;11
− Σ0;21

σ0;11

)
. (8)
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Test for column of covariance matrix 851

Fig. 1 Probability of rejection of the null hypothesis as a function of λ (α = 0.05)

b) under H0, T ∼ χ2
p−1.

The proof of Theorem 2a) is given in the “Appendix”. The part b) follows directly

from part a) by noting that λ = 0 and 1 F1

(
1
2 ; p−1

2 ; 0
)

= 1 under H0. The symbol

λ possesses an interesting interpretation. It measures the distance between Σ1;21 and
Σ0;21.

The suggested test on the covariance matrix possesses several advantages. First,
only one observation of the process is used for constructing the test statistic. As a
result, the test can also be applied to correlated data for checking if the i th column
of the covariance matrix for each observation of the sample is equal to a preselected
vector. Second, the test statistic (6) possesses the classical distribution under H0.
Hence, the test is easy to perform by comparing the values of the test statistic with the
quantile of the χ2-distribution. Third, the result of Theorem 2a) allows us to study the
power of the suggested test. The power function is a function of only one parameter λ.

In Fig. 1, we plot the power function of the test as a function of λ for different
values of p ∈ {2, 5, 10, 50}. Note that the power function is a decreasing function of
p for a fixed value of λ. It is quite large in the case p = 2, while for larger values of p
the power becomes small. On the other hand we note that the parameter λ is, usually,
larger for larger values of p. Hence, the suggested test is powerful enough to reject
the null hypothesis for moderate and larger values of λ.

3 Summary

The covariance matrix is, usually, used as a risk measure for multivariate processes. As
a result, testing for the structure of the covariance matrix is a very important problem
which has a lot of applications in practice.

In the present paper we used a single observation of the multivariate Gaussian
process for constructing an estimator of the covariance matrix. Although, this estimator
does not possess one of the main properties of the covariance matrix, namely it is not
positive definite, it appears to be unbiased and has sufficient amount of information for
deriving a test on the covariance matrix. We suggest an exact test on a column of the
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covariance matrix and derive the distribution of the test statistic under the null and the
alternative hypothesis. Under the null hypothesis the test statistic is χ2

p−1-distributed.
Using the distributional results obtained under H1 we calculate the power function of
the test, which appears to be a function only of the process dimension and a positive
constant.

One of the main advantages of the approach suggested in this paper is that it can be
applied for time-dependent multivariate data because only a single observation vector,
for example the most recent one, from the multivariate stochastic process is used.
Consequently, the distribution of the test statistic under the null hypothesis as well as
under the alternative hypothesis does not depend on the time dependent structure of the
stochastic process. The only assumption needed for the application of the suggested
approach is that the components of the multivariate stochastic process are multivariate
normally distributed at each time point. However, no assumption is assumed on the
dependence structure between two observation vectors from the stochastic process.
The approach can be applied to the multivariate Gaussian processes as well as to their
extensions for which the elements of the stochastic process at each time point are
multivariate normally distributed but not obviously the joint distribution calculated
for elements from different time points is normal.

Acknowledgments The authors are thankful to the Referees and the Editor for their suggestions which
have improved the presentation in the paper.

Appendix

In this section the proofs of Theorems 1a and 2a are given.

Proof of Theorem 1a Application of Lemma 1b by Bodnar and Okhrin (2008) leads
to

V21|v11 ∼ Np−1(Σ1;21σ
−1
1;11v11,Σ1;22·1v11).

Thus,

V21

v11
|v11 ∼ Np−1

(
Σ1;21

σ1;11
,
Σ1;22·1

v11

)

and, hence,

η|v11 ∼ Np−1

(
Σ

−1/2
0;22·1

(
Σ1;21

σ1;11
− Σ0;21

σ0;11

) √
v11,Σ

−1/2
0;22·1Σ1;22·1Σ−1/2

0;22·1
)

. (9)

Let

Δ = Σ
−1/2
0;22·1

(
Σ1;21

σ1;11
− Σ0;21

σ0;11

)
and Ω = Σ

−1/2
0;22·1Σ1;22·1Σ−1/2

0;22·1 .

Because v11/σ1;11 ∼ χ2
1 (see, e.g. Srivastava 2003, Corollary 3.4) the unconditional

density of η is given by

123

Author's personal copy



Test for column of covariance matrix 853

fη(x) = π−p/22−p/2

σ
1/2
1;11|Ω|1/2

×
∞∫

0

y−1/2exp

(
−1

2

(
y

σ1;11
+ (x − Δ

√
y)′Ω−1(x − Δ

√
y)

))
dy

The transformation y = t2 yields

fη(x) = π−p/22−p/2

σ
1/2
1;11|Ω|1/2

2

∞∫
0

exp

(
−1

2

(
t2

σ1;11
+ (x − Δt)′Ω−1(x − Δt)

))
dt

= π−p/22−p/2

σ
1/2
1;11|Ω|1/2

2exp

(
−1

2

(
x′

(
Ω−1 − Ω−1ΔΔ′Ω−1

σ−1
1;11 + Δ′Ω−1Δ

)
x

))

×
∞∫

0

exp

⎛
⎝−σ−1

1;11 + Δ′Ω−1Δ

2

(
t − Δ′Ω−1x

σ−1
1;11 + Δ′Ω−1Δ

)2
⎞
⎠dt .

The last integral is evaluated as

fη(x) = 1

σ
1/2
1;11|Ω|1/2

(σ−1
1;11 + Δ′Ω−1Δ)−1/2

∣∣∣∣Ω−1 − Ω−1ΔΔ′Ω−1

σ−1
1;11+Δ′Ω−1Δ

∣∣∣∣
1/2

×φp−1

⎛
⎝x; 0p−1,

(
Ω−1 − Ω−1ΔΔ′Ω−1

σ−1
1;11 + Δ′Ω−1Δ

)−1
⎞
⎠

× 2

∞∫
0

φ

(
t; Δ′Ω−1x

σ−1
1;11 + Δ′Ω−1Δ

, (σ−1
1;11 + Δ′Ω−1Δ)−1

)
dt .

The applications of Theorem 18.1.1 and Theorem 18.2.8 of Harville (1997)
leads to

∣∣∣∣∣Ω−1 − Ω−1ΔΔ′Ω−1

σ−1
1;11 + Δ′Ω−1Δ

∣∣∣∣∣ = |Ω−1|(σ−1
1;11 + Δ′Ω−1Δ)−1

× (σ−1
1;11 + Δ′Ω−1Δ − Δ′Ω−1Δ)

= |Ω|−1(σ−1
1;11 + Δ′Ω−1Δ)−1σ−1

1;11,(
Ω−1 − Ω−1ΔΔ′Ω−1

σ−1
1;11 + Δ′Ω−1Δ

)−1

= Ω +
ΔΔ′

σ−1
1;11+Δ′Ω−1Δ

1 − Δ′Ω−1ΩΩ−1Δ

σ−1
1;11+Δ′Ω−1Δ

= Ω + σ1;11ΔΔ′.
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Hence,

fη(x) = φp−1
(
x; 0p−1,Ω + σ1;11ΔΔ′)

× 2

(
1 − Φ

(
0; Δ′Ω−1x

σ−1
1;11 + Δ′Ω−1Δ

, (σ−1
1;11 + Δ′Ω−1Δ)−1

))
,

where the symbol Φ(.;μ, σ 2) denotes the cumulative distribution function of the
normal distribution with mean μ and variance σ 2. The statement of Theorem 1a
follows from the identity Φ(x;μ, σ 2) = Φ ((x − μ)/σ). The theorem is proved. �	
Proof of Theorem 2a From the proof of Theorem 1a we get

η|v11 ∼ Np−1
(
Δ

√
v11,Ω

)
.

Thus,

T |v11 = η′η|v11 ∼ χ2
p−1(λ̃v11)

with

λ̃ = Δ′Ω−1Δ =
(

Σ1;21

σ1;11
− Σ0;21

σ0;11

)′
Σ−1

1;22·1
(

Σ1;21

σ1;11
− Σ0;21

σ0;11

)
.

Using the fact that v11/σ1;11 ∼ χ2
1 (see, e.g. Srivastava 2003, Corollary 3.4) the

unconditional density of T is given by

fT (x) = π−1/22−1/2

σ
1/2
1;11

∞∫
0

y−1/2exp

(
−1

2

(
y

σ1;11

))
fχ2

p−1(λ̃v11)
(x)dy.

Let f p−1 denote the density of the χ2
p−1-distribution. The application of the identity

(Muirhead 1982, Theorem 1.3.4)

fχ2
p−1(λ̃y)(x) = exp

(
−1

2
λ̃y

)
0 F1

(
p − 1

2
; 1

4
λ̃yx

)
f p−1(x),

leads to

fT (x) = π−1/22−1/2

σ
1/2
1;11

f p−1(x)

×
∞∫

0

y−1/2exp

(
−1

2
(σ−1

1;11 + λ̃)y

)
0 F1

(
p − 1

2
; 1

4
λ̃yx

)
dy .
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The last integral is calculated by using Lemma 1.3.3 of Muirhead (1982) and
finally we get,

fT (x) = π−1/22−1/2

σ
1/2
1;11

f p−1(x)Γ (1/2)(σ−1
1;11 + λ̃)−1/221/2

× 1 F1

(
1

2
; p − 1

2
; λ̃x

2(σ−1
1;11 + λ̃)

)

= 1

(1 + σ1;11λ̃)1/2
f p−1(x) 1 F1

(
1

2
; p − 1

2
; λ̃x

2(σ−1
1;11 + λ̃)

)
.

Noting that λ = σ−1
1;11λ̃ completes the proof. The theorem is proved. �	
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