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Abstract

In the present paper, we propose an exact test on the structure of the covari-
ance matrix. In its development the properties of the Wishart distribution
are used. Unlike the classical likelihood-ratio type tests and the tests based
on the empirical distance, whose statistics depend on the total variance and
the generalized variance only, the proposed approach provides more informa-
tion about the changes in the covariance matrix. Via an extensive simulation
study the new approach is compared with the existent asymptotic tests.
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1. Introduction

Tests about the covariance matrix have significantly increased its pop-
ularity recently. Historically, the first test on the covariance matrix was
suggested by Mauchly (1940) that is based on the likelihood ratio approach.
Because the statistic of this test depends on the determinant and the trace of
the sample covariance matrix, the so-called generalized and total variances
respectively, it requires that the sample covariance matrix is non-singular
which is the case with probability one when the sample size is larger than
the process dimension. Gupta and Xu (2006) extended the likelihood-ratio
test to non-normal distributions by deriving the asymptotic expansion of the
test statistic under the null hypothesis, while Bai et al. (2009) considered
a modification of the likelihood-ratio test. The second approach considered
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in statistical literature is based on the empirical distance initially suggested
by John (1971) and Nagao (1974). These test statistics with some modifica-
tions can also be applied for testing the covariance matrix in case of high-
dimensional data (cf. Ledoit and Wolf (2002), Chen at al. (2010)) even when
the sample size is smaller than the process dimension. Other approaches are
based on the largest eigenvalue of the covariance matrix (Johnstone (2001,
2008)) or they are derived by using the methods of random matrix theory
(cf. Cai and Jiang (2011)).

In this paper we derive an exact test about the covariance matrix. In
the development of this test the properties of the Wishart distribution are
used. Since an exact test is developed it always correctly sized. Moreover,
the suggested test can also be applied if the sample size is much smaller than
the dimension of the process. Via an extensive simulation study we show
that the new approach performs very well if changes in a few elements of the
covariance matrix take places.

The rest of the paper is structured as follows. In Section 2, we introduce
a test about the covariance matrix. The distribution of the test statistic
is derived under both the null and alternative hypothesis. In Section 3, an
extension of the test is provided. A very useful stochastic representation of
the test statistic is obtained under H0 which shows that under the null hy-
pothesis the distribution is independent of the target matrix specified under
H0. In Section 4, the distributional properties of the test statistic under H1

are studied via an extensive Monte-Carlo study. Some proofs are given in
the appendix (Section 5).

2. Test based on a column of the covariance matrix

Let X1, ...,Xn ∼ iiNp(µ,Σ), p > 2, be an independent sample from the
multivariate normal distribution with known mean vector µ. Without loss
of generality we assume that µ = 0p, where 0p stands for the p-dimensional
vector of zeroes. The covariance matrix Σ is estimated by

S =
1

n

n∑
i=1

XiX
′
i . (1)

If µ is an unknown quantity then instead of (1) we use the sample co-
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variance matrix for estimating Σ expressed as

S̃ =
1

n− 1

n∑
i=1

(Xi − X̄)(Xi − X̄)′ with X̄ =
1

n

n∑
i=1

Xi . (2)

The two approaches differ only slightly from each other since it holds that
(see, e.g. Muirhead (1982, p. 90))

S ∼ Wp(n,Σ) and S̃ ∼ Wp(n− 1,Σ) ,

where the symbol Wp(n,Σ) stands for the p-dimensional Wishart distribution
with n degrees of freedom and covariance matrix Σ (cf. Muirhead (1982),
Srivastava (2003)). Moreover, both estimators are unbiased as well as asymp-
totically normally distributed (Muirhead (1982, p. 90-91)). The last result is
usually used for the derivation of asymptotic tests on the covariance matrix.

In this paper we consider an alternative approach that is based on the
distributional properties of the Wishart distribution and the singular Wishart
distribution (Srivastava (2003), Bodnar and Okhrin (2008)). First, an exact
test is proposed which is based on a column of the sample covariance matrix
and then it is generalized. In the derivation, no assumption on p, like n ≥ p,
is imposed. The results hold in all possible cases, i.e. for n ≥ p and n <
p. While the properties of the Wishart distribution are applied for n ≥ p,
we make use of the distributional results derived for the singular Wishart
distribution in the case of n < p.

We assume that Σ = Σ0 under H0 and Σ = Σ1 under H1. The matrices
Σ0, Σ1, and S are partitioned as follows

Σ0 =

[
ξ0 ν ′0
ν0 Ξ0

]
,Σ1 =

[
ξ1 ν ′1
ν1 Ξ1

]
, and S =

[
v t′

t W

]
. (3)

Let Υ0 = Ξ0−ν0ν
′
0/ξ0 and Υ1 = Ξ1−ν1ν

′
1/ξ1. Without loss of generality

we now present a test based on the first column of the covariance matrix
Σ0. In case of the i-th column the test statistic can be derived similarly.
Here, instead of the partitions (3), we construct the partition for the (i, i)-
th element of the matrices Σ0, Σ1, and S as follows. Let ξ0,i denote the
(i, i)-th element of the matrix Σ0, i = 1, ..., p. By ν0,i we denote the i-th
column of the matrix Σ0 without ξ0,i. Let Ξ0,i denote a square matrix of
order p − 1, which is obtained from the matrix Σ0 by deleting the i-th row
and the i-th column. Finally, Υ0,i = Ξ0,i − ν0,iν

′
0,i/ξ0,i is calculated. In
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the same way we define ξ1,i, ν1,i, Ξ1,i, Υ1,i, vi, ti, and Wi by splitting Σ1

and S correspondingly. For presentation purposes we drop the index i in the
notations if i = 1.

The hypotheses are given by

H0 : Σ = dΣ0 against H1 : Σ = Σ1 6= dΣ0 , (4)

where d > 0 denotes an arbitrary (un)known constant. We define

η1 =
√
nΥ

−1/2
0

(
t

v
− ν0

ξ0

)
v1/2 (5)

Let φk(.;µ,Σ) stand for the density function of the k-dimensional multivari-
ate normal distribution with mean vector µ and covariance matrix Σ. In
Theorem 1 we derive the distributions of the random vector η1 under both
H0 and H1 hypotheses.

Theorem 1. a) Let Xi ∼ iidNp(0p,Σ1), i = 1, ..., n. Then the density
function of η1 is given by

fη1
(x) = 2

√
πn(n−1)/2

2(n−1)/2ξ
(n−1)/2
1 Γ

(
n
2

)φp−1 (x; 0p−1,Ω + ξ1∆∆′) (6)

×
∫ ∞
0

yn−1φ1

(
y;

∆′Ω−1x
√
n(ξ−11 + ∆′Ω−1∆)

, n−1(ξ−11 + ∆′Ω−1∆)−1
)
dy ,

where

∆ = Υ
−1/2
0

(
ν1

ξ1
− ν0

ξ0

)
and Ω = Υ

−1/2
0 Υ1Υ

−1/2
0 .

b) Let Xi ∼ iidNp(0p,Σ0), i = 1, ..., n. Then η1 ∼ Np−1(0p−1, Ip−1), where
Ik denotes a k × k identity matrix.

The part a) of Theorem 1 is proved in the appendix. The part b) follows
directly from the part a) by noting that ∆ = 0p−1 and Ω = Ip−1 in this case
as well as using the fact that

nn/2

2n/2ξ
n/2
1 Γ

(
n
2

)tn−1 exp

(
− n

2ξ1
t2
)

is the density function of a squared gamma-distributed random variable.
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For testing (4), we introduce the test statistic given by

T1 = η′1η1 , (7)

which is motivated by the distributional properties of η1. The distribution
of T1 is derived in Theorem 2.

Theorem 2. a) Let Xi ∼ iidNp(0p,Σ1), i = 1, ..., n. Let Ω = PΛP′ be
the eigenvalue decomposition of Ω where Λ = diag(λ1, ..., λp−1) is the diag-
onal matrix of eigenvalues and P is the corresponding orthogonal matrix of
eigenvectors. Then the distribution function of T1 is given by

FT1(x) =
1

2
− nn/2

2n/2ξ
n/2
1 πΓ

(
n
2

) ∫ ∞
0

∫ ∞
0

yn/2−1 exp

(
−n

2

(
y

ξ1

))
sin θ(u, y)

uρ(u, y)
dudy ,

(8)
where

b(y) = (b1(y), ..., bp−1(y))′ =
√
nP′Ω−1/2∆

√
y , (9)

θ(u, y) =
1

2

p−1∑
j=1

(
1

tan(λju)
+
bj(y)2λju

1 + λ2ju
2

)
− ux

2
, (10)

ρ(u, y) =

p−1∏
j=1

(1 + λ2ju
2)1/4 exp

(
1

2

bj(y)2λ2ju
2

1 + λ2ju
2

)
. (11)

(12)

b) Let Xi ∼ iidNp(0p,Σ0), i = 1, ..., n. Then T1 ∼ χ2
p−1.

The proof of Theorem 2a) is given in the appendix. The part b) follows
directly from Theorem 1a). Under an additional assumption imposed on
Ω the density of T1 can be presented in an analytical form. This result is
formulated as Corollary 1 below.

In the following we also use the generalized hypergeometric function (cf.
Muirhead (1982, p. Ch. 1.3)), i.e.

pFq(a1, a2, ..., ap; c1, c2, ..., cq;x) =

∏q
l=1 Γ(cl)∏p
j=1 Γ(aj)

∞∑
i=0

∏p
j=1 Γ(aj + i)∏q
l=1 Γ(cl + i)

zi

i!
.

The technical computation of a hypergeometric function is a standard routine
within many mathematical software packages like, e.g., in Mathematica. In
the statement of Corollary 1 we make use of 1F1(.; .; .), while in its proof (see
appendix) 0F1(.; .) is used.
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Corollary 1. Under the assumptions of Theorem 2 if Ω = Ip−1 then the
density function of T1 is given by

fT1(x) =
1

(1 + λ)n/2
fp−1(x) 1F1

(
n

2
;
p− 1

2
;

λx

2(1 + λ)

)
(13)

where fk denotes the density of the χ2
k-distribution with k degrees of freedom

and

λ = ξ1∆
′∆ = ξ1

(
ν1

ξ1
− ν0

ξ0

)′
Υ−10

(
ν1

ξ1
− ν0

ξ0

)
, (14)

which is a measure of the population distance between ν1/ξ1 and ν0/ξ0.

The proposed test on the covariance matrix possesses several advantages.
First, the test statistic (7) has a classical distribution under H0. Hence, the
test is easy to perform by comparing the values of the test statistic with
the quantile of the χ2-distribution. Second, if Ω = Ip−1 then the result of
Corollary 1 allows us to study the power of the suggested test, which appears
to be a function of one parameter λ only.
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Figure 1: Probability of rejection of the null hypothesis as a function of λ (α = 0.05) for
p ∈ {2, 5, 10, 25}, n = 60.

In Figures 1 and 2, we plot the power function of the test T1 in case of
Ω = Ip−1 as a function of λ for different values of p ∈ {2, 5, 10, 25} as well as
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Figure 2: Probability of rejection of the null hypothesis as a function of λ (α = 0.05) for
p ∈ {2, 5, 10, 25}, n = 120.

n = 60 (Figure 1) and n = 120 (Figure 2). Note that the power function is
a decreasing function of p for a fixed value of λ and an increasing function
with respect to n. It is quite large in the case p = 2 for both values of n,
while for larger values of p the power becomes smaller. On the other hand
we note that the parameter λ is, usually, larger for larger values of p.

3. Test on the covariance matrix

In this section we extend the results of the previous section by taking the
maximum over the individual test statistics Tj’s calculated for the jth column
of the sample covariance matrix. Namely, for testing (4) we consider the
following test statistic expressed as

T = max
j∈{1,...,p}

{Tj} . (15)

The application of the test statistic (15) is motivated by the observation that
Tj’s are influenced in different ways by different changes in the covariance
matrix. In order to ensure that similar changes in the columns of the covari-
ance matrix are treated in the same way, the maximum of the individual test
statistics is calculated.
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In the following theorem we derive a very important stochastic represen-
tation of the test statistic (15) under H0 which appears to be independent
of Σ0.

Theorem 3. Let Xi ∼ iidNp(0p,Σ0), i = 1, ..., n, Ui ∼ iiNp(0p, Ip), i =
1, ..., n, and let

SU =
1

n

n∑
i=1

UiU
′
i . (16)

Then under H0 the test statistic T is equal in distribution to

T
d
= max

j∈{1,...,p}

{
n

(
S′U;jSU;j

sU;jj

− sU;jj

)}
, (17)

where SU;j is the j-th column of SU and sU;jj is the j-th diagonal element of
SU.

The proof of Theorem 3 is given in the appendix. Later on, the distri-
bution of the test statistic T under H0 we denote by T (p, n), whereas the
symbol Tβ(p, n) stands for its β-quantile. The null hypothesis in (4) is re-
jected if T > T1−α(p, n). The result of Theorem 3 allows us to derive the
critical value for the test T1−α(p, n) which appears to be independent of Σ0

and, consequently, it can be applied for different choices of Σ0. It is remark-
able to note that the critical value of the test depends only on the dimension
of Xi and the sample size n.

Next, we study this point in detail. In Table 1, we present the upper
quantiles T1−α(p, n) of the distribution T (p, n) for different values of p and n.
These values are calculated by applying the result of Theorem 3 and they are
based on the 105 independently simulated random vectors Ui. We observe
that the values of n have only a minor impact on the corresponding quantiles
for fixed p.

In Table 2 we provide further analysis of this observation. Here, the
estimated probabilities PH0(T > T1−α(p, 30)) (the first and third rows in
each panel) are presented as well as the relative differences (the second and
fourth row in each panel) calculated as

rp,α =
α− PH0(T > T1−α(p, 30))

α
.

We observe that all estimated probabilities are very close to the correspond-
ing significant levels α. The relative differences are also small with highest
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Table 1: The estimated quantiles T1−α(p, n) of the distribution T (p, n) for n = 30 (the
first row in each panel), n = 60 (the second row in each panel), and n = 120 (the third
row in each panel) in case of α ∈ {0.1, 0.05, 0.01} and p ∈ {2, 4, 6, 8, 10, 12, 14}.

α\p 2 4 6 8 10 12 14
3.081197 8.711363 13.34424 17.30745 21.06636 24.59540 28.00077 n = 30

0.1 3.016870 8.725965 13.21182 17.27303 21.20263 24.69749 28.17860 n = 60
2.873459 8.540466 13.13826 17.35949 20.99666 24.81323 28.24585 n = 120
4.286687 10.427932 15.06843 19.36323 23.18504 26.90867 30.26823 n = 30

0.05 4.279034 10.275211 14.91522 19.26061 23.22965 27.36723 30.56959 n = 60
4.223091 10.251880 15.01471 19.34528 23.15833 26.84275 30.60427 n = 120
7.266405 14.218312 18.91408 23.70290 27.37060 31.43515 35.24717 n = 30

0.01 7.184371 13.840018 19.08365 23.47222 27.68378 31.63213 35.46858 n = 60
7.121917 14.018406 18.92412 23.46961 27.85884 31.64072 35.58516 n = 120

values achieved for α = 0.01 with maximum smaller than 0.2. This obser-
vation shows that the critical values are not significantly influenced by the
sample size if it is large enough compared to p. For instance, even for 10-
dimensional case it is enough to calculate the critical values for n = 30 and
use them for larger values of n.

Table 2: The estimated probabilities PH0
(T > T1−α(p, 30)) (the first and third rows

in each panel) and the relative differences rp,α = (α − PH0
(T > T1−α(p, 30)))/α (the

second and fourth row in each panel) for n ∈ {60, 120}, α ∈ {0.1, 0.05, 0.01}, and p ∈
{2, 4, 6, 8, 10, 12, 14}.

α\p 2 4 6 8 10 12 14
0.1 0.0963 0.0986 0.0935 0.0972 0.0989 0.1065 0.1049 n=60

0.037 0.014 0.065 0.028 0.011 -0.065 -0.049 n=60
0.0833 0.0945 0.0964 0.0993 0.1051 0.1023 0.1060 n=120
0.167 0.055 0.036 0.007 -0.051 -0.023 -0.060 n=120

0.05 0.0481 0.0489 0.0496 0.0499 0.0462 0.0475 0.0507 n=60
0.038 0.022 0.008 0.002 0.076 0.050 -0.014 n=60
0.0489 0.0467 0.0541 0.0473 0.0502 0.0488 0.0488 n=120
0.022 0.066 -0.082 0.054 -0.004 0.024 0.024 n=120

0.01 0.0100 0.0081 0.0103 0.0084 0.0106 0.0112 0.0102 n=60
0.0 0.190 -0.030 0.160 -0.060 -0.120 -0.020 n=60

0.0085 0.0086 0.0117 0.0091 0.0115 0.0114 0.0102 n=120
0.150 0.140 -0.170 0.090 -0.150 -0.140 -0.020 n=120
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4. Simulation study

In this section we study the size and power of the test (15) and compare it
with the existent asymptotic tests for the covariance matrix. It is noted that
both n and p can be considerably large, i.e. p→∞ and n→∞. Moreover,
we impose no restriction on the ratio p/n. Whenever it is necessary the limit
p/n→ c ∈ [0,∞) is used for n, p→∞.

4.1. Benchmark asymptotic tests

For testing the hypothesis

H0 : Σ = σ2I against H0 : Σ 6= σ2I (18)

several asymptotic tests are suggested in literature. Concerning the approach
used in their derivation, the tests can be divided in three groups. The first
group consists of the tests that are obtained from the application of the
likelihood-ratio approach. The empirical distance method is implied in the
derivation of the tests from the second group, while the testing procedures
from the third group are based on the methods of the random matrix the-
ory. Below, we briefly review the most important tests from each group and
study their size. In the next section, the power functions are evaluated and
compared with each other and with the derived exact test of Section 3.

Historically, the first test for the hypotheses (18) was suggested by Mauchly
(1940), whose test statistic is given by

T̃LR = n
(
p ln |σ2| − ln |S|+ tr(S/σ2)− p

)
. (19)

For the values of n that are of moderate size a further modification of the
test statistic (19) is expressed as (see, e.g., Rencher (2002, Ch. 7.2))

TLR =

(
1− 1

6n− 1

(
2p+ 1− 2

p+ 1

))
TLR . (20)

Both the test statistics T̃LR and TLR are asymptotically χ2
p(p+1)/2-distributed

under H0. The exact moments of these test statistics are given by Muirhead
(1982, Ch. 8.4).

Bai et al. (2009) suggested a further modification of the likelihood ratio
test for the case when the dimension is large compared to the sample size
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which is derived by using the central limit theorem for linear spectral statis-
tics of sample covariance matrices (cf. Bai and Silverstein (2004)). The test
statistic of this test is given by

TBJY Z = v(c)−1/2

(
T̃LR
n
− pF yn(c)−m(c)

)
, (21)

with m(c) = −ln(1− c)/2, v(c) = −2ln(1− c)− 2c where c is defined at the
beginning of Section 3. The symbol F yn(.) denotes the Marčenko-Pastur law
of index yn = p/n (cf. Bai et al. (2009)). Under the null hypothesis, the test
statistic (21) has the standard normal distribution.

The main disadvantage of the tests based on the likelihood approach is
that they are based on the determinant of the sample covariance matrix and
as a result they can only be used if n > p since in the opposite case the sample
covariance matrix is singular. In order to overcome this difficulty, alternative
approaches are considered in literature which are based on the empirical
distance between the sample covariance matrix and the corresponding target
value. For testing (18) John (1971) suggested

TJn =
1

p
tr

[(
S

(1/p)tr(S)
− I

)2
]
. (22)

Ledoit and Wolf (2002) showed that the asymptotic distribution of TJn, which
is the χ2

p(p+1)/2−1-distribution, is also valid in the case of the (p, n)-asymptotic,
i.e. when p → ∞ and n → ∞. In contrast to this result, Ledoit and
Wolf (2002) proved that the asymptotic distribution of the Nagao’s (1973)
statistic in terms of (p, n)-asymptotic does not coincide with the asymptotic
distribution in case of the n-asymptotic.

A further test for the high-dimensional covariance matrix is discussed in
Srivastava (2005) with the statistic given by

TS =
n2

(n− 1)(n+ 2)

1

p

[
tr(S2)− 1

n
(trS)2

]
/(trS/p)2 − 1 , (23)

while Fisher et al. (2010) considered

TFSG =
n√

8(8 + 12c+ c2)
(24)

×

τp [trS4 + btrS3trS + c∗(trS2)2 + dtrS2(trS)2 + e(trS)4]
n4

(n−1)2(n+2)2
1
p2

[
trS2 − 1

n
(trS)2

]2 − 1

 ,
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where p/n→ c and the constants τ , b, c∗, d, and e are defined in Theorem 1
of Fisher et al. (2010).

Let
∑∗ denote the summation over mutually different indices (see Chen

et al. (2010, p. 811)) and let

Y1 = 1
n

∑n
i=1 X′iXi , Y2 =

1

P 2
n

∑
i 6=j

X′iXj ,

Y3 = 1
P 2
n

∑
i 6=j X′iXiX

′
jXj , Y4 =

1

P 2
n

∑
i 6=j

(X′iXj)
2 ,

Y5 = 1
P 3
n

∑∗
i,j,k X′iXjX

′
jXk , Y6 =

1

P 4
n

∗∑
i,j,k,l

X′iXjX
′
kXl ,

with P k
n = n!/(n − k)!. The test statistic of the test suggested by Chen et

al. (2010) is given by

TCZZ = p

[
Y4 − 2Y5 + Y6

(Y1 − Y2)2

]
− 1 , (25)

while Ahmad (2010) considered

TA = p
Y4
Y3
− 1 . (26)

The test statistics (23), (24), (25), and (26) are asymptotically standard
normally distributed under H0. Moreover, from the derivation of these tests,
it follows that they all are one-sided.

In the comparison study we also consider two tests derived using the
methods of the random matrix theory. The first one was suggested by John-
stone (2001) which is based on the largest eigenvalue of the sample covariance
matrix. The test statistic is given by

TJ =
l1 − µnp
σnp

, (27)

where l1 denotes the largest eigenvalue of nS and

µnp = (
√
n− 1 +

√
p)2 and σnp = (

√
n− 1 +

√
p)

(
1√
n− 1

+
1
√
p

)1/3

.
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Johnstone (2001) derived the asymptotic distribution of TJ under H0 which
follows the Tracy-Widom law that is tabulated. Its important critical values
are given, for example, in Johnstone (2008).

Cai and Jiang (2011) considered a further test. Let rij be the sample
correlation coefficient and let

Ln = max
1≤i<j≤p

rij . (28)

The test statistic is given by

TCJ = nL2
n − 4 ln p+ ln ln p , (29)

which under the null hypothesis of zero population correlations has an ex-
treme distribution of type I with the distribution function expressed as

F (y) = e−(1/
√
8π)e−y/2

for y ∈ IR .

Next, we analyze the size of the test derived in this paper as well as of the
benchmark asymptotic tests. The analysis is performed by carrying out a
Monte Carlo study. In each case, a sample of 105 independent observations is
simulated. Then, the relative frequencies of the rejection of H0 are calculated.
In the simulation study we chose Σ0 = Ip. The size of each test is presented
for p ∈ {5, 10, 25} with n ∈ {30, ..., 250} in Figure 3 and for n ∈ {10, 20}
with p ∈ {10, ..., 100} in Figure 4. Because in most of the cases considered in
Figure 4 the determinant of the sample covariance matrix is equal zero, we
drop the tests based on the generalized variances (TLR and TBJY Z statistics)
from the discussion.

In Figure 3 we observe that the tests based on the TJ , TCJ , and TFSG
statistics are considerably undersized, whereas the tests based on TA, TBJY Z ,
and TCZZ are usually oversized. In contrast to these tests the rest of the
competitors are properly sized in almost all of the cases considered. The
situation changes if n becomes smaller than p. In these cases non of the
asymptotic tests is properly sized, especially for n = 10. The tests TA and
TCZZ are significantly oversized, while the results for the tests based on TJ ,
TCJ , and TFSG lie always significantly below the desired significance level.

4.2. Comparison study

Because it is rather difficult to derive some analytical results concerning
the distributions of the considered test statistics under H1, we will carry
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Figure 3: The estimated probabilities PH0
(T > T1−α) for p ∈ {5, 10, 25} and n ∈

{30, ..., 250}.
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Figure 4: The estimated probabilities PH0
(T > T1−α) for p ∈ {10, ..., 100}, n ∈ {10, 20}.

out a Monte Carlo study. In each case, a sample of 10000 independent
observations is simulated. Then, the relative frequencies of the rejection of
H0 are calculated. In the simulation study we chose Σ0 = Ip. The matrix
Σ1 is obtained from Σ0 by changing its (1, 2)th and (2, 1)th elements given
by ν1,1 ∈ {−0.9,−0.8, ...,−0.1, 0, 0.1, ..., 0.9}. The significance level is fixed
at α = 0.05. The values of the power function are approximated for several
dimensions of the random vectors Xi, i.e. p = 5, 10, 25, and for several sample
sizes n = 30, 60, 120, 250.

In Figures 5-7, the results of the simulation study are given. The case
of p = 5 is treated in Figure 5, while Figures 6-7 show the values of the
power functions for p = 10 and p = 25, respectively. We observe a very good
performance of the new test which is ranked second. The best performance
is reached by the test suggested in Cai and Jiang (2011). Although it is
significantly undersized this test is ranked first in almost all of the consid-
ered cases. Such a results is not surprising since changes in covariances are
considered and the test of Cai and Jiang (2011) was especially derived for
these types of changes in the covariance matrix. On the third and the fourth
places the tests based on the TLR and TBJY Z are present. It is also noted that
the test derived from the likelihood ratio approach is significantly oversized
for p = 25, which is not the case for its improved version suggested by Bai
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Figure 5: The estimated probabilities PH1
(T > T1−α) for p = 5, n ∈ {30, 60, 120, 250},

and ν1,1 ∈ {−0.9,−0.8, ...,−0.1, 0, 0.1, ..., 0.9}.
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et al. (2009). The worst results are observed for the tests based on the TFSG
and TJ statistics, although the findings for the TJ statistic are expected since
this test is based on the maximum eigenvalue of the covariance matrix and,
as a result, it is not powerful enough to detect changes that have a minor
impact on this quantity. A change in one of the correlation coefficients can
be one of such possible situations. Finally, we note that the results obtained
are robust with respect to the sample size and the dimension of Xi.

n=30

0.
2

0.
4

0.
6

0.
8

−0.9 −0.6 −0.3 0.3 0.6 0.9

T
TJn

TS

TFSG

TLR
TCZZ

TA
TJ

TCJ

TBJYZ

n=60

0.
2

0.
4

0.
6

0.
8

1

−0.9 −0.6 −0.3 0.3 0.6 0.9

n=120

0.
2

0.
4

0.
6

0.
8

1

−0.9 −0.6 −0.3 0.3 0.6 0.9

n=250

0.
2

0.
4

0.
6

0.
8

1

−0.9 −0.6 −0.3 0.3 0.6 0.9

Figure 6: The estimated probabilities PH1(T > T1−α) for p = 10, n ∈ {30, 60, 120, 250},
and ν1,1 ∈ {−0.9,−0.8, ...,−0.1, 0, 0.1, ..., 0.9}.

5. Appendix

In this section the proofs of Theorems 1a, 2a, 3 and of Corollary 1 are pre-
sented. In the case of n ≥ p the proofs are given by applying Theorem 3.2.10
of Muirhead (1982). For n < p similar results are derived by using Lemma
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Figure 7: The estimated probabilities PH1
(T > T1−α) for p = 25, n ∈ {30, 60, 120, 250},

and ν1,1 ∈ {−0.9,−0.8, ...,−0.1, 0, 0.1, ..., 0.9}.
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1 of Bodnar and Okhrin (2008) that extends Theorem 3.2.10 of Muirhead to
the case of n < p. For this reason we next present the detailed proofs in the
case of n ≥ p and note, wherever it is necessary, what has to be done for
n < p.

Proof of Theorem 1a:
Application of Theorem 3.2.10 of Muirhead (1982) leads to

t|v ∼ Np−1
(
ν1ξ

−1
1 v,

1

n
Υ1v

)
.

If n < p then the last identity also holds following Lemma 1b) of Bodnar and
Okhrin (2008).

It holds that
t

v
|v ∼ Np−1

(
ν1

ξ1
,

1

n

Υ1

v

)
and, hence,

η1|v ∼ Np−1
(√

nΥ
−1/2
0

(
ν1

ξ1
− ν0

ξ0

)√
v,Υ

−1/2
0 Υ1Υ

−1/2
0

)
. (30)

Let

∆ = Υ
−1/2
0

(
ν1

ξ1
− ν0

ξ0

)
and Ω = Υ

−1/2
0 Υ1Υ

−1/2
0 .

Because nv/ξ1 ∼ χ2
n (see, e.g. Muirhead (1982, Theorem 3.2.10) for n ≥ p

and Lemma 1a) of Bodnar and Okhrin (2008) for n < p) the unconditional
density of η1 is given by

fη1
(x) =

π−(p−1)/22−(p−1)/2

|Ω|1/2
nn/2

2n/2ξ
n/2
1 Γ

(
n
2

)
×

∫ ∞
0

zn/2−1 exp

(
−1

2

(
nz

ξ1
+ (x−

√
n∆
√
z)′Ω−1(x−

√
n∆
√
z)

))
dz.

19



The transformation z = y2 yields

fη1
(x) =

π−(p−1)/22−(p−1)/2

|Ω|1/2
nn/2

2n/2ξ
n/2
1 Γ

(
n
2

)
× 2

∫ ∞
0

yn−1 exp

(
−1

2

(
ny2

ξ1
+ (x−

√
n∆y)′Ω−1(x−

√
n∆y)

))
dy

= 2
π−(p−1)/22−(p−1)/2nn/2

|Ω|1/22n/2ξn/21 Γ
(
n
2

) exp

(
−1

2

(
x′
(

Ω−1 − Ω−1∆∆′Ω−1

ξ−11 + ∆′Ω−1∆

)
x

))

×
∫ ∞
0

yn−1 exp

(
−n(ξ−11 + ∆′Ω−1∆)

2

(
y −

√
n∆′Ω−1x

n(ξ−11 + ∆′Ω−1∆)

)2
)
dy .

The last integral is evaluated as

fη1
(x) = 2

√
2πnn/2

|Ω|1/22n/2ξn/21 Γ
(
n
2

) n−1/2(ξ−11 + ∆′Ω−1∆)−1/2∣∣∣∣Ω−1 − Ω−1∆∆′Ω−1

ξ−1
1 +∆′Ω−1∆

∣∣∣∣1/2
× φp−1

(
x; 0p−1,

(
Ω−1 − Ω−1∆∆′Ω−1

ξ−11 + ∆′Ω−1∆

)−1)

×
∫ ∞
0

yn−1φ

(
y;

√
n∆′Ω−1x

n(ξ−11 + ∆′Ω−1∆)
, n−1(ξ−11 + ∆′Ω−1∆)−1

)
dy .

The applications of Theorem 18.1.1 and Theorem 18.2.8 of Harville (1997)
leads to∣∣∣∣Ω−1 − Ω−1∆∆′Ω−1

ξ−11 + ∆′Ω−1∆

∣∣∣∣ = |Ω−1|(ξ−11 + ∆′Ω−1∆)−1

× (ξ−11 + ∆′Ω−1∆−∆′Ω−1∆)

= |Ω|−1(ξ−11 + ∆′Ω−1∆)−1ξ−11 ,(
Ω−1 − Ω−1∆∆′Ω−1

ξ−11 + ∆′Ω−1∆

)−1
= Ω +

∆∆′

ξ−1
1 +∆′Ω−1∆

1− ∆′Ω−1ΩΩ−1∆
ξ−1
1 +∆′Ω−1∆

= Ω + ξ1∆∆′ .
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Hence,

fη1
(x) = 2

√
πn(n−1)/2

2(n−1)/2ξ
(n−1)/2
1 Γ

(
n
2

)φp−1 (x; 0p−1,Ω + ξ1∆∆′)

×
∫ ∞
0

yn−1φ

(
y;

√
n∆′Ω−1x

n(ξ−11 + ∆′Ω−1∆)
, n−1(ξ−11 + ∆′Ω−1∆)−1

)
dy .

The theorem is proved.

Proof of Theorem 2a: From the proof of Theorem 2a we get

η1|v = y ∼ Np−1
(√

n∆
√
y,Ω

)
.

Let Ω = PΛP′ be the eigenvalue decomposition of Ω where Λ = diag(λ1, ...,
λp−1) is the diagonal matrix of eigenvalues and P is the corresponding orthog-
onal matrix of eigenvectors. Then (cf., Mathai and Provost (1992, Chapter
4))

T1|v = y
d
=

p−1∑
i=1

λi(Zi + bi(y))2

where b(y) = (b1(y), ..., bp−1(y))′ is given in (9) and

Z = (Z1, ..., Zp)
′ = P′Ω−1/2(η1 −

√
n∆
√
y) .

Using the results of Imhof (1961), we obtain the conditional distribution
function of T1 given v = y expressed as

FT1|v=y(x) =
1

2
− 1

π

∫ ∞
0

sin θ(u, y)

uρ(u, y)
du , (31)

where θ(u, y) and uρ(u, y) are defined in (10) and (11). Because nv/ξ1 ∼ χ2
n

(see, e.g. Muirhead (1982, Theorem 3.2.10), multiplying (31) by the density
of v and integrating out y leads to the expression given in the statement of
Theorem 2a.

Proof of Corollary 1: From the proof of Theorem 2a we get

η1|v ∼ Np−1
(√

n∆
√
v, Ip−1

)
.
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Thus,
T1|v = η′1η1|v ∼ χ2

p−1(λ̃v)

with

λ̃ = n∆′∆ = n

(
ν1

ξ1
− ν0

ξ0

)′
Υ−10

(
ν1

ξ1
− ν0

ξ0

)
.

Using the fact that nv/ξ1 ∼ χ2
n (see, e.g. Muirhead (1982, Theorem

3.2.10) for n ≥ p and Lemma 1a) of Bodnar and Okhrin (2008) for n < p)
the unconditional density of T1 is given by

fT1(x) =
nn/2

2n/2ξ
n/2
1 Γ

(
n
2

) ∫ ∞
0

yn/2−1 exp

(
−n

2

(
y

ξ1

))
fχ2

p−1(λ̃y)
(x)dy .

Let fp−1 denote the density of the χ2
p−1-distribution. The application of

the identity (Muirhead (1982, Theorem 1.3.4))

fχ2
p−1(λ̃y)

(x) = exp

(
−1

2
λ̃y

)
0F1

(
p− 1

2
;
1

4
λ̃yx

)
fp−1(x) ,

leads to

fT1(x) =
nn/2

2n/2ξ
n/2
1 Γ

(
n
2

)fp−1(x)

×
∫ ∞
0

yn/2−1 exp

(
−1

2
(nξ−11 + λ̃)y

)
0F1

(
p− 1

2
;
1

4
λ̃yx

)
dy .

The last integral is evaluated by using Lemma 1.3.3 of Muirhead (1982)
and is equal to

fT1(x) =
nn/2

2n/2ξ
n/2
1 Γ

(
n
2

)
× fp−1(x)Γ

(n
2

) 2n/2

(nξ−11 + λ̃)n/2
1F1

(
n

2
;
p− 1

2
;

λ̃x

2(nξ−11 + λ̃)

)

=
1

(1 + n−1ξ1λ̃)n/2
fp−1(x) 1F1

(
n

2
;
p− 1

2
;

λ̃x

2(nξ−11 + λ̃)

)

Noting that λ = ξ1λ̃/n completes the proof.
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Proof of Theorem 3:
First, we rewrite the expression of the statistic Ti. Without loss of generality
we perform the calculations only in the case of T1 and note that a similar
approach can be used for Ti, i = 1, ..., p.

Let Xi = (X1i X′2i)
′. Then it holds that

T1 = η′1η1 = n

(
t

v
− ν0

ξ0

)′
Υ−10

(
t

v
− ν0

ξ0

)
v

=

(∑n
i=1 X2iX1i − ν0

ξ0

∑n
i=1X

2
1i

)′
Υ−10

(∑n
i=1 X2iX1i − ν0

ξ0

∑n
i=1X

2
1i

)
∑n

i=1X
2
1i

=
1∑n

i=1X
2
1i

( ∑n
i=1X

2
1i∑n

i=1 X2iX1i

)′ [
−ν0

ξ0
Ip−1

]′
× Υ−10

[
−ν0

ξ0
Ip−1

]( ∑n
i=1X

2
1i∑n

i=1 X2iX1i

)
=

1∑n
i=1X

2
1i

(
n∑
i=1

X1iXi

)′ [
−ν0

ξ0
Ip−1

]′
Υ−10

[
−ν0

ξ0
Ip−1

]( n∑
i=1

X1iXi

)
.

Because[
−ν0

ξ0
Ip−1

]′
Υ−10

[
−ν0

ξ0
Ip−1

]

=

 (
ν0

ξ0

)′
Υ−10

ν0

ξ0
−
(
ν0

ξ0

)′
Υ−10

−Υ−10

(
ν0

ξ0

)′
Υ−10

 = Σ−1 −
(

ξ−10 0′p−1
0p−1 0p−1,p−1

)
,

where the expression of the inverse of the partitioned matrix was used (see,
e.g. Harville (1997, Corollary 8.5.12)), we get

T1 =
1∑n

i=1X
2
1i

( n∑
i=1

X1iXi

)′
Σ−1

(
n∑
i=1

X1iXi

)
−

(
n∑
i=1

X2
1i

)2

/σ0;11

 .

Let Ui = Σ
−1/2
0 Xi where Σ

−1/2
0 is the Cholesky squared root of the matrix

Σ−10 . Then

T1 =
(
∑n

i=1 U1iUi)
′
(
∑n

i=1 U1iUi)∑n
i=1 U

2
1i

−
n∑
i=1

U2
1i , (32)

where Ui = (U1i U′2i)
′. Taking the maximum over Tj, j = 1, ..., p, we get the

statement of Theorem 3.
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