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Abstract: In this paper a new technique for monitoring shifts in covariance ma-

trices of Gaussian processes is developed. The processes we monitor are obtained

from the covariance matrices estimated using a single observation. These processes

follow independent Gaussian distribution in the in-control state, thus allowing for

application of standard control charts. Furthermore, in contrary to the existing

literature, the suggested procedure is asymptotically robust to the shifts in the

mean. The explicit out-of-control distribution for an arbitrary moment of the shift

is derived. The performance of numerous multivariate control charts is evaluated

in an extensive simulation study.

Key words and phrases: singular Wishart distribution, CUSUM, EWMA, skew-

normal distribution, expected delay.

1 Introduction

The purpose of statistical process control is to detect a structural break in a

process as soon as possible after its occurrence. Its methods are widely applied

in Engineering and now become increasingly important in other fields, i.e. in

Economics, Medicine, Chemistry, and Finance. For a few of most relevant ap-

plications see Frisén (1992), Sonesson and Bock (2003), Lawson and Kleinman

(2005), Schipper and Schmid (2001), Andersson, Bock and Frisén (2004), Schmid

and Tzotchev (2004), Messaoud, Weihs and Hering (2008), Bodnar (2007), Golos-

noy, Okhrin, Ragulin and Schmid (2011), among others). New fields impose new

assumptions on the data driven process. In this paper we concentrate on the

covariance matrix as a multivariate volatility measure. Surveillance of volatil-

ity has recently become important particularly in finance for monitoring of the

riskiness of an asset or of a portfolio.

Control charts are the main tools of statistical process control. A control

statistic is derived individually for each quantity of interest and for each type

of the chart. The value of the control statistic is updated using the incoming

information and compared to a prespecified critical value. If it is exceeded,

it is a sign of a potential change in the parameters of the underlying process.

The simplest control chart without memory for the mean of an independent

univariate Gaussian process was suggested by Shewhart (1931). The memory

effect of the chart was exploited in the schemes of Page (1954) and Roberts

(1959), called CUSUM and EWMA control charts respectively. The former chart
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is based on sequential probability ratio test and has some optimality properties

(cf. Moustakides (1986)).

Different application areas lead to the extension of the univariate control

charts to the multivariate case. Unfortunately, since the de-aggregation of the

multivariate quantities to univariate characteristics is not unique, the procedures

can be implemented in many alternative ways. A direct multivariate generaliza-

tion of the Shewhart chart was suggested by Hotteling (1947). The EWMA chart

was extended by Lowry, Woodall, Champ and Rigdon (1992). The CUSUM chart

depends in the multivariate case on the size and direction of the expected shift.

For that reason several authors proposed schemes for the mean which depend

only on the magnitude of the expected shift like, Crosier (1988), Pignatiello and

Runger (1990), Ngai and Zhang (2001).

In many applications we are interested not only in the mean of the process,

but also in the variance. In the univariate case it is technically straightforward

to adapt the mentioned procedures to the monitoring of, for example, squared

observations. In practice, however, this leads frequently to non-standard dis-

tributions of the control statistics and substantially complicates the monitoring

process. This becomes even more evident in the multivariate case while moni-

toring the covariance matrix. Because of this, the discussion is mostly restricted

to the special cases of EWMA schemes (see Yeh, Huwang and Wu (2005), Śliwa

and Schmid (2005), Reynolds and Cho (2006), Huwang, Yeh and Wu (2007)).

Due to the technical difficulties in the derivation the application of CUSUM

charts for covariance matrices is rather limited (see Hawkins (1981), Hawkins

(1991)). Among few others, Chan and Zhang (2001) suggested a CUSUM type

control chart for the covariance matrix of independent observations based on the

projection pursuit method.

A typical problem of control charts for the variance or covariance matrix is

the sensitivity of this chart to the changes in the mean vector. Thus a control

chart for the volatility would signal a detected shift even if the true variance stays

constant, but the mean changes and vise versa (see Morais and Pacheco (2001)).

This is particularly important in practical applications, since changes in the mean

and in the variance frequently occur together, but should be separated by the

monitoring scheme. To our knowledge, only Huwang et al. (2007) suggested a



Robust surveillance of covariance matrices 4

monitoring scheme for the covariance which is robust to shifts in the mean vector.

In this paper we introduce a new technique, which allows us to apply the

standard EWMA or CUSUM control charts for the mean directly to monitor the

variance of a Gaussian vector. Moreover, the suggested technique is robust to the

shifts in the mean of the observed process. This is attained in two steps. First,

we eliminate the potential shift in the mean by detrending the observation via

the exponentially weighted moving average. Second, the detrended quantities are

transformed to follow approximately uncorrelated Gaussian distributions. A shift

in the covariance matrix of the original process would lead to shifts in the mean

of the transformed process. We derive the explicit out-of-control distribution

of the transformed quantities if such a shift occurs. This implies that standard

monitoring techniques for the mean vector can be applied to detect a shift in

the covariance matrix. Another advantage of the suggested methodology, is the

fact that it allows us to use a single multivariate observation to estimate the

covariance matrix.

The rest of the paper is organized as follows. In the next section the change

point model is presented. Then we specify the transformed process and analyze

its properties. Furthermore, we review the multivariate control charts used for

monitoring. The simulation study in Section 4 compares the modified charts

for the covariance with the charts based on the transformed Gaussian quantities

introduced in this paper. An empirical illustration is presented in Section 5. The

proofs are given in the appendix.

2 Models for the Target and the Observed Processes

In the definition of the control problem we distinguish between the target process

and the observed process. The target process is defined as a process that fulfills

the quality requirement. Usually, it depends on some parameters. These pa-

rameters can be set to corresponding target values (industry) or estimated using

previous data (economics, finance). The observed process is the actual process

that is observed in practice. Our aim is to make a conclusion if the observed and

the target processes coincide.

We denote the target process by {Yt}. It is assumed that Y1, ...,Yn are
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identical and independently normally distributed with Yi ∼ Np(µ0,Σ0), Σ0 =

D0R0D0. The matrices D0 and R0 are the diagonal matrix of standard devia-

tions and the correlation matrix respectively. We assume that all parameters of

the target process are known. Note, that, usually, this assumption is not fulfilled

in practice. Especially in economic applications, the parameters of the target

process are unknown and have to be estimated. It leads to an additional estima-

tion risk. The impact of parameter uncertainty in the target process is not the

task of our paper. The point has been already discussed by Kramer and Schmid

(2000) and Albers and Kallenberg (2004). Without loss of generality we assume

that µ0 = 0.

The observed process we denote by {Xt}. To model the observed process we

apply the change-point framework given by

Xt ∼

{
Np(0,Σ0), t < q

Np(µ,D∆R∆D∆), t ≥ q
, (1)

where D∆ and R∆ are the diagonal matrix and the correlation matrix after

the change. It is assumed that the target and observed processes coincide, i.e.

Xt = Yt, for t < q. The matrices D∆ and R∆ as well as q ∈ IN are unknown. In

case q <∞ we say that there is a change at the time point q. If q =∞, the target

process coincides with the observed process for all t ∈ N+ and hence the observed

process is in control. The in-control covariance matrix Σ0 is called the target

covariance matrix. If the change occurs the process is said to be out of control.

The change can be in the mean vector, in the variances, in the correlations or in

any combination of these quantities simultaneously.

In order to simplify the notations the out-of-control covariance matrix is

denoted by Σ. Later on, the expectation calculated with respect to model (1)

with q <∞ is denoted by Eq(.), while E∞(.) stands for the expectation calculated

under the assumption that the process is in control and similarly for the variance

V arq(·) vs. V ar∞(·). Similar notations are used for the variance and covariance.

Note that Xt = Yt for t ≤ 0, i.e. both processes are the same up to time point

0.
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3 Control Charts for the Covariance Matrix

In this section, we introduce new control charts for the covariance matrix which

are robust to the changes in the mean vector. Our approach is based on the

properties of the singular Wishart distribution (see, e.g. Srivastava (2003)) and

it is applied to a single observation of the observed process Xt.

The signals produced by any surveillance procedure applied to Xt give us an

indication of some structural change in the process. However, a clear assignment

of a given signal to an actual change is hardly possible. For example, a signal

coming from a control chart for the covariance matrix can be caused either by a

change in the variances or even by a change in the mean behavior. We suggest

a monitoring procedure for the covariance matrix, which is robust to changes in

the mean. Thus any signal coming form the suggested control scheme can be

unambiguously assigned to changes in the covariance matrix.

Let

Zt = λZXt + (1− λZ)Zt−1 (2)

= λZ

t−1∑
l=0

(1− λZ)lXt−l + (1− λZ)Z0 = λZ

t−1∑
l=0

(1− λZ)lXt−l (3)

with Z0 = 0 and λZ ∈ (0, 1]. We consider the adjusted observation of the process

{Xt} given by

X̃t = Xt − Zt . (4)

Subtracting the EWMA statistics from the original process Xt corrects the pro-

cess for potential changes in the mean behavior. Thus any jumps in the mean

are eliminated in the long run via this transformation and this allows for tightly

focused monitoring of the covariance matrix. In Lemma 3.1, we present the ex-

pressions for the mean vector and the covariance matrix of X̃t.

Lemma 3.1. Let Y1, ...,Yn be an identically independently distributed Gaussian

process with Yi ∼ Np(0,Σ0). We assume that the observed process {Xt} is de-

fined according to the model (1). Then it follows that

a) µ(q, t) = Eq(X̃t) = (1− λZ)t−q+1µ for q ≤ t;
b) Σ(q, t) = V arq(X̃t) = (1− λZ)2 λZ((1−λZ)2t−2q−(1−λZ)2t−2)

2−λZ Σ0
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+ (1− λZ)2
(

1 + λZ
2−λZ (1− (1− λZ)2t−2q)

)
Σ for q ≤ t;

c) Covq(X̃t, X̃t−τ ) = −λZ(1− λZ)τ+1

(
Σ− 1−λZ

2−λZ

(
(1− (1− λZ)2(t−τ−q))Σ

+ ((1− λZ)2(t−τ−q) − (1− λZ)2(t−τ−1))Σ0

))
for q ≤ t− τ .

and Covq(X̃t, X̃t−τ ) = −λZ(1−λZ)τ+1
(

1− 1−λZ
2−λZ (1− (1− λZ)2(t−τ−1))

)
Σ0 for

t− τ < q ≤ t.

The proof of Lemma 3.1 is given in the appendix. From Lemma 3.1a, it

follows that limt→∞Eq(X̃t) = 0, which means that for the larger values of t, the

mean vector of X̃ tends to zero vector. Furthermore, changes in the mean vec-

tor of Xt do not influence the covariance matrix of X̃t as well as the covariance

matrix between X̃t and X̃t−τ . Moreover, from the proof of Lemma 3.1c) we get

for q > t− τ that Covq(X̃t, X̃t−τ ) = Cov∞(X̃t, X̃t−τ ), where Cov∞(X̃t, X̃t−τ ) is

the in-control covariance matrix between X̃t and X̃t−τ given in Corollary 3.1c)

below. We study this point more detailed after Theorem 3.1. In Corollary 3.1

the in-control quantities are presented. The proof of Corollary 3.1 follows from

Lemma 3.1 by replacing µ = 0 and Σ = Σ0.

Corollary 3.1. Let Y1, ...,Yn be an identically independently distributed Gaus-

sian process with Yi ∼ Np(0,Σ0). We assume that the observed process {Xt} is

defined according to the model (1). Then it follows that

a) E∞(X̃t) = 0;

b) V ar∞(X̃t) = (1− λZ)2
(

1 + λZ
2−λZ (1− (1− λZ)2t−2)

)
Σ0;

c) Cov∞(X̃t, X̃t−τ ) = −λZ(1− λZ)τ+1
(

1− 1−λZ
2−λZ (1− (1− λZ)2(t−τ−1))

)
Σ0.

We consider

R∞(λZ ; τ, t) = V ar∞(X̃t)
−1/2Cov∞(X̃t, X̃t−τ )V ar∞(X̃t)

−1/2

= −λZ(1− λZ)τ−1 1 + (1− λZ)2(t−τ)−1

2− λZ(1− λZ)2t−2
I = r(λZ ; τ, t)I.

If Σ0 is a diagonal matrix, then R∞(λZ ; τ, t) is an autocorrelation matrix between

Xt and Xt−τ . It can be noted that R∞(λZ ; τ, t) is independent of Σ0. Moreover,
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Figure 1: Plot of r(λZ ; τ,∞) as a function of λZ for different values of the lag τ .

R∞(λZ ; τ, t) = R1(λZ ; τ, t), i.e. the correlation matrix in the in-control and in

the out-of-control states are the same if q = 1.

Consider now the scalar function r(λZ ; τ, t). It holds that r(λZ ; τ, t) ≤ 0 with

r(λZ ; τ, t) = 0 only for λZ = 0 or λZ = 1. Because 0 < λZ ≤ 1 we obtain that

r(λZ ; τ, t) is a decreasing function in t with the minimum attained at the limit

given by limt→∞ r(λZ ; τ, t) = r(λZ ; τ,∞) = −λZ(1−λZ)τ−1/2. From the picture

we conclude that the autocorrelation in X̃t is minor. This holds particularly for

small values of λZ , i.e. less than 0.1, which are most relevant in practice. Thus

the sequence X̃t is approximately uncorrelated and the standard procedures for

independent process can be applied.

Based on the distributional properties of X̃t we suggest control charts for

detecting changes in the covariance matrix that are robust to changes in the

mean vector of Xt. Moreover, from the proof of Lemma 3.1 we conclude that the

in-control covariance matrix of X̃t is given by

V ar∞(X̃t) = h(λZ ; t)Σ0, with

h(λZ ; t) = (1− λZ)2

(
1 +

λZ
2− λZ

(1− (1− λZ)2t−2)

)
.

Because Σ0(t) is proportional to V ar∞(X̃t) we apply the approach of Bodnar,
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Bodnar and Okhrin (2009), who derived sequential surveillance for the covari-

ance matrix based on the properties of the singular Wishart distribution. These

procedures are designed to detect changes in the covariance matrix of the nor-

mally distributed random vector which are not proportional to the in-control

covariance matrix. To see this, note that V ar∞(X̃t) is proportional to Σ0 and

the coefficient cancels out in the control statistic.

3.1 Transformation of the observed process

As an estimator of the covariance matrix we use the point estimate based on a

single observation. At the time point t the covariance matrix is estimated by

Vt = X̃tX̃
′
t, where X̃t is given in (4) with Zt as in (2). The matrix Vt follows a

singular Wishart distribution, i.e.

Vt ∼Wp(1, h(λZ ; t)Σ0) (5)

in the in-control state. In the out-of-control state it holds that

Vt ∼ Wp(1,Σ(q, t),Ω(q, t)) with (6)

Ω(q, t) = Σ(q, t)−1µ(q, t)µ(q, t)′ .

The symbol Wp(1,Σ) denotes the p-dimensional singular Wishart distribution

with 1 degree of freedom and the covariance matrix Σ, while Wp(1,Σ,Ω) stands

for the p-dimensional non-central singular Wishart distribution with 1 degree of

freedom, the covariance matrix Σ, and the non-centrality matrix Ω (cf. Bodnar

and Okhrin (2008)). The vector µ(q, t) and the matrix Σ(q, t) are given in Lemma

3.1.

The rank of the matrix Vt is equal to one with probability one. It is not new

to apply the unbiased point estimator Vt for monitoring purposes. Yeh et al.

(2005) used Vt to update the matrix variate EWMA recursion, while Bodnar

et al. (2009) obtained control charts for the covariance matrix that are based on

the distributional properties of the singular Wishart distribution.

The standard control schemes for the covariance matrix are mainly based on

the determinant and cannot be directly applied to the point estimator Vt. In this

paper we use the properties of the singular Wishart distribution to transform Vt

to a set of Gaussian vectors. Then the mean charts can be immediately applied



Robust surveillance of covariance matrices 10

to monitoring the shifts in the variance. Let σ0;ii denote the (i, i)-th element of

the matrix Σ0, i = 1, ..., p. By Σ0;21,i we denote the i-th column of the matrix

Σ0 without σ0;ii. Let Σ0;22,i denote a quadratic matrix of order p − 1, which is

obtained from the matrix Σ0 by deleting the i-th row and the i-th column. Let

Σ0;22·1,i = Σ0;22,i − Σ0;21,iΣ
′
0;21,i/σ0;ii. In the same way we define vt;ii, Vt;21,i,

Vt;22,i, Vt;22·1,i, σii(q, t), Σ21,i(q, t), Σ22,i(q, t), and Σ22·1,i(q, t) by partitioning

Vt and Σ(q, t) respectively.

For detecting changes in the covariance matrix of the process {Xt}, we con-

sider the sequences of ηi,t expressed as

ηi,t = Σ
−1/2
0;22·1,i(Vt;21,i/vt;ii −Σ0;21,i/σ0;ii)v

1/2
t;ii . (7)

The exact distributions of ηi,t in the in-control and out-of-control states are de-

rived in Theorem 3.1. It is shown that the mean of these quantities reacts to

the changes in the covariance matrix of the original process {Xt}. Due to the

transformation of Xt to X̃t in (4) any shift in the mean of ηi,t can be uniquely

assigned to a shift in the covariance matrix of Xt. This implies that ηi,t has

two advantages. First, the standard control schemes for the mean can be used

for monitoring the variance. Second, the surveillance is robust to changes in the

mean of the original process.

Theorem 3.1. Let Y1, ...,Yn be an identically independently distributed Gaus-

sian process with Yi ∼ Np(0,Σ0). We assume that the observed process {Xt} is

defined according to the model (1). Then it follows that

a) in the in-control state

ηi,t ∼ Np−1(0p−1, Ip−1)

and is independent of vt;ii;
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b) in the out-control state the density of ηi,t is given by

fηi,t;q(z) =

√
1 + σii(q, t)δi(q, t)′Ξi(q, t)−1δi(q, t)

π−(p−1)/22−(p−1)/2|Ξi(q, t)|1/2

×

(
exp

(
−1

2

(
z′Ξi(q, t)

−1z− (δi(q, t)
′Ξi(q, t)

−1z + ν(q, t))2

σii(q, t)−1 + δi(q, t)′Ξi(q, t)−1δi(q, t)
− 2g(z; q, t)

))

× Φ

(
δi(q, t)

′Ξi(q, t)
−1z + ν(q, t)√

σii(q, t)−1 + δi(q, t)′Ξi(q, t)−1δi(q, t)

)

+ exp

(
−1

2

(
z′Ξi(q, t)

−1z− (δi(q, t)
′Ξi(q, t)

−1z− ν(q, t))2

σii(q, t)−1 + δi(q, t)′Ξi(q, t)−1δi(q, t)
+ 2g(z; q, t)

))
× Φ

(
δi(q, t)

′Ξi(q, t)
−1z− ν(q, t)√

σii(q, t)−1 + δi(q, t)′Ξi(q, t)−1δi(q, t)

))
,

where

g(z; q, t) = [0 z′Σ
1/2
0;22·1,i]Σ(q, t)−1µ(q, t),

ν(q, t) = [1 Σ′0;21,i/σ0;ii]Σ(q, t)−1µ(q, t) ,

δi(q, t) = Σ
−1/2
0;22·1,i

(
Σ21,i(q, t)

σii(q, t)
− Σ0;21,i

σ0;ii

)
,

Ξi(q, t) = Σ
−1/2
0;22·1,iΣ22·1,i(q, t)Σ

−1/2
0;22·1,i ,

and Φ(.) denotes the distribution function of the univariate standard normal

distribution.

For the proof of the first part of the theorem we refer to Bodnar and Okhrin

(2008). The proof of the second part is given in the appendix. If µ = 0 then the

out-of-control density is simplified to

fηi,t;q
(z) = 2

√
1 + σii(q, t)δi(q, t)′Ξi(q, t)−1δi(q, t)

π−(p−1)/22−(p−1)/2|Ξi(q, t)|1/2

×exp
(
−1

2

(
z′Ξi(q, t)

−1z− (δi(q, t)
′Ξi(q, t)

−1z)2

σii(q, t)−1 + δi(q, t)′Ξi(q, t)−1δi(q, t)

))
×Φ

(
δi(q, t)

′Ξi(q, t)
−1z√

σii(q, t)−1 + δi(q, t)′Ξi(q, t)−1δi(q, t)

)
.
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Using the identities (cf. Harville (1997), Theorem 18.1.1 and Theorem 18.2.8)∣∣∣∣Ξi(q, t)
−1 − Ξi(q, t)

−1δi(q, t)δi(q, t)
′Ξi(q, t)

−1

σii(q, t)−1 + δi(q, t)′Ξi(q, t)−1δi(q, t)

∣∣∣∣
= |Ξi(q, t)

−1|(σii(q, t)−1 + δi(q, t)
′Ξi(q, t)

−1δi(q, t))
−1

× (σii(q, t)
−1 + δi(q, t)

′Ξi(q, t)
−1δi(q, t)− δi(q, t)′Ξi(q, t)

−1δi(q, t))

= |Ξi(q, t)|−1(σii(q, t)
−1 + δi(q, t)

′Ξi(q, t)
−1δi(q, t))

−1σii(q, t)
−1 ,

and (
Ξi(q, t)

−1 − Ξi(q, t)
−1δi(q, t)δi(q, t)

′Ξi(q, t)
−1

σii(q, t)−1 + δi(q, t)′Ξi(q, t)−1δi(q, t)

)−1

= Ξi(q, t) +

δi(q,t)δi(q,t)
′

σii(q,t)−1+δi(q,t)′Ξi(q,t)−1δi(q,t)

1− δi(q,t)′Ξi(q,t)−1Ξi(q,t)Ξi(q,t)−1δi(q,t)

σii(q,t)−1+δi(q,t)′Ξi(q,t)−1δi(q,t)

= Ξi(q, t) + σii(q, t)δi(q, t)δi(q, t)
′ .

we get

fηi,t;q
(z) = 2φp−1(z; Ξi(q, t) + σii(q, t)δi(q, t)δi(q, t)

′)

× Φ

(
δi(q, t)

′Ξi(q, t)
−1z√

σii(q, t)−1 + δi(q, t)′Ξi(q, t)−1δi(q, t)

)
, (8)

where φm(.; Σ) stands for the density function of the m-dimensional normal dis-

tribution with zero mean vector and covariance matrix Σ. The last equality

shows that the random vector ηi,t in the out-of-control state under the assump-

tion µ = 0 has a multivariate skew normal distribution (cf. Azzalini (2005),

Domı́nguez-Molina, González-Faŕıas, Ramos-Quiroga and Gupta (2007)), while

it is standard multivariate normally distributed in the in-control state. Moreover,

using the properties of the multivariate skew normal distribution we get

Eq(ηi,t) =

√
2

π

(Ξi(q, t) + σii(q, t)δi(q, t)δi(q, t)
′)Ξi(q, t)

−1δi(q, t)√
σii(q, t)−1

√
(1 + σii(q, t)δi(q, t)′Ξi(q, t)−1δi(q, t))2

=

√
2

π

√
σii(q, t)δi(q, t) .

Hence, the out-of-sample mean vector of ηi,t is not equal to zero iff δi(q, t) 6= 0,

i.e. a change in the covariance matrix is present such that the out-of-control

covariance matrix of Xt is not proportional to the in-control covariance matrix

Σ0.
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3.2 Asymptotic robustness to shifts in the mean

Next, we analyze the influence of changes in the mean vector on the out-of-control

distribution of ηi,t. For simplicity we put q = 1 and note that the results with a

moderate effort can be generalized to an arbitrary q and to the cases when the

shift in the mean does not occur simultaneously with the shift in the covariance

matrix. For q = 1 we get

µ(1, t) = (1− λZ)tµ ,

Σ(1, t) = (1− λZ)2

(
1 +

λZ
2− λZ

(1− (1− λZ)2t−2)

)
Σ = h(λZ ; t)Σ ,

δi(1, t) = Σ
−1/2
0;22·1

(
Σ21,i(1, t)

σii(1, t)
− Σ0;21

σ0;11

)
= δi ,

Ξi(1, t) = Σ
−1/2
0;22·1Σ22·1,i(1, t)Σ

−1/2
0;22·1 = h(λZ ; t)Ξi ,

g(z; 1, t) = [0 Σ
1/2
0;22·1z]Σ(1, t)−1µ(1, t) =

(1− λZ)t

h(λZ ; t)
[0 Σ

1/2
0;22·1z]Σ−1µ

=
(1− λZ)t

h(λZ ; t)
g(z) ,

ν(1, t) = [1 Σ0;21/σ0;11]Σ(1, t)−1µ(1, t) =
(1− λZ)t

h(λZ ; t)
[1 Σ0;21/σ0;11]Σ−1µ

=
(1− λZ)t

h(λZ ; t)
ν .

Thus,

a1(t) =

(
z′Ξi(1, t)

−1z− (δi(1, t)
′Ξi(1, t)

−1z± ν(1, t))2

σii(1, t)−1 + δi(1, t)′Ξi(1, t)−1δi(1, t)
∓ 2g(z; 1, t)

)
= h−1(λZ ; t)

(
z′Ξ−1

i z−
(δ′iΞ

−1
i z± (1− λZ)tν)2

σ−1
ii + δ′iΞ

−1
i δi

∓ 2(1− λZ)tg(z)

)
and

a2(t) =
δi(1, t)

′Ξi(1, t)
−1z± ν(1, t)√

σii(1, t)−1 + δi(1, t)′Ξi(1, t)−1δi(1, t)

= h−1/2(λZ ; t)
δ′iΞ

−1
i z± (1− λZ)tν

σ−1
ii + δ′iΞ

−1
i δi

.
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Because h(λZ ; t)→ h∗(λZ) = (1− λZ)2
(

1 + λZ
2−λZ

)
6= 0 we obtain that

fηi,t;1
(z) → f∗i;1(z) = 2

√
1 + σiiδ

′
iΞ
−1
i δi

π−(p−1)/22−(p−1)/2(h∗(λZ))p/2|Ξi|1/2
(9)

× exp

(
− 1

2h∗(λZ)

(
z′Ξ−1

i z−
(δ′iΞ

−1
i z)2

σ−1
ii + δ′iΞ

−1
i δi

))

× Φ

 1√
h∗(λZ)

δ′iΞ
−1
i z√

σ−1
ii + δ′iΞ

−1
i δi


= 2φp−1(z;h∗(λZ)(Ξi + σiiδiδ

′
i))Φ

(
1√

h∗(λZ)

δ′iΞ
−1
i z

σ−1
ii + δ′iΞ

−1
i δi

)
,

which is independent of µ and is the same as one given in (8) for the case q = 1.

The last identity shows that the out-of-control distribution of ηi,t is robust to

changes in the mean vector of Xt for sufficiently large t. Moreover, since only ν

and g(z) depend on µ and both quantities are present in the expression of the

density for ηi,t given in Theorem 3.1b with factor (1−λZ)t−q+1 the density f(z)

converges to f∗(z) quite fast especially for larger values of λZ . We provide a

further investigation of this point in Section 4 where the results of the simulation

study are given.

In the first part of Theorem 3.1 it is shown that ηi,t follows the standard

normal distribution for each i and t. In the out-of-control state we observe a

change in the mean vector of ηi,t as soon as δi(q, t) 6= 0, i.e. the elements of the

i-th column of both matrices are not proportional. This is, however, not the case

if we consider the change point model as in (1). Thus, the transformation ηi,t

translates the shift in the covariance matrix into a shift in the mean. Note that

the covariance matrix and the distribution of ηi,t change in the out-of-control

state too.

4 Simulation study

The normality and the shift in the mean caused by the shift in the covariance

matrix allow us to use the standard multivariate EWMA and CUSUM control

schemes of Crosier (1988), Pignatiello and Runger (1990), Lowry et al. (1992),
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and Ngai and Zhang (2001) to monitor changes in the means of the processes

{ηi,t}. Note that we have p vectors ηi,t and each of them should be monitored.

To cope with this problem we follow the approach of Woodall and Ncube (1985).

The simultaneous use of univariate control charts for each i is considered to be a

single joint control chart. This control chart gives an alarm if at least one of the

individual charts signals a shift. Sections 4.1 and 4.2 contain technical details of

the implementation of these charts.

As benchmark we consider the control chart of Huwang et al. (2007) which

monitors the covariances of the process directly and is robust to changes in the

mean vector. To the best of our knowledge it is the only control chart for the

covariance matrix available in literature that is robust to changes in the mean

vector. This control scheme is discussed in Section 4.3.

4.1 CUSUM control charts

In the multivariate generalization of the univariate CUSUM by Crosier (1986)

the univariate quantities are replaced with vectors. In contrary to the univariate

charts, where the control statistic is shrunk against zero by a multiple of the

standard deviation, the multivariate control statistic is scaled along some pre-

determined direction. Here we monitor the processes {ηi,t} using the CUSUM

scheme of Crosier (1988). Let ‖a‖ =
√
a2

1 + a2
2 + ...+ a2

p be the Euclidean norm

of the p-dimensional vector a. Let Ci,t = ||Si,t−1 + ηi,t||, where

Si,t =

{
0 if Ci,t ≤ k

(Si,t−1 + ηi,t)(1− k
Ci,t

) if Ci,t > k
(10)

for t ≥ 1 with Si,0 = 0 and for some predetermined constant k > 0, which plays

the role of a reference value. Each individual control scheme is characterized by

MCUSUMi,t, which is equal to the length of the vector Si,t, i.e.

MCUSUMi,t = (S′i,tSi,t)
1/2 = max{0, Ci,t − k} . (11)

The control statistic of the joint scheme is defined by

MCUSUMt = max1≤i≤p{MCUSUMi,t}. (12)

The scheme gives an out-of-control signal if MCUSUMt exceeds a preselected

control limit h, which is determined within a simulation study.
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Pignatiello and Runger (1990) proposed two types of multivariate CUSUM

charts, namely MC1 and MC2. Let Si;m,l =
∑l

j=m+1 ηi,t for l,m ≥ 0. The

control statistic of the individual control charts is defined as

MC1i,t = max{‖Si;t−ni,t,t‖ − kni,t, 0} , t ≥ 1 , (13)

where

ni,t =

{
nt−1 + 1 if MC1i,t−1 > 0

1 if MC1i,t−1 = 0
(14)

Similarly as for the MCUSUM chart, the joint MC1 scheme is constructed via

the control statistics

MC1t = max1≤i≤p{MC1i,t}. (15)

The chart signals an alarm if MC1t > h for some fixed critical value h. The

second considered by Pignatiello and Runger (1990) chart is based on

MC2t = max1≤i≤p{MC2i,t} , (16)

where

MC2i,t = max{0,MC2i,t−1 +D2
i,t − p− k} , t ≥ 1 (17)

with D2
i,t = η′i,tηi,t and MC2i,0 = 0. The control scheme gives an alarm as soon

as MC2t > h.

The PPCUSUM chart of Ngai and Zhang (2001) is derived using the projec-

tion pursuit approach. Applying this approach to the processes ηi,t we obtain

the following CUSUM statistic

PPCUSUMt = max1≤i≤p{PPCUSUMi,t} (18)

with

PPCUSUMi,t = max{0, ‖Si;t−1,t‖ − k, ‖Si;t−2,t‖ − 2k, ... , ‖Si;0,t‖ − tk} (19)

for t ≥ 1 with Si;t−v,t defined above. Similarly as above the signal is given if

PPCUSUMt > h.
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4.2 MEWMA control charts

An alternative class of more heuristically motivated charts constitute the EWMA

schemes. Similarly as for the CUSUM charts, the multivariare EWMA chart is a

direct generalization of the univariate scheme. Following Lowry et al. (1992) we

define Zi,t = rηi,t + (1 − r)Zi,t−1 with Zi,0 = 0. For computational efficiency it

is common to use variance of Zi,t. For the completeness of the study we consider

both the exact and the asymptotic cases. The control statistic of the individual

charts is defined by

Qi,t =
2− r

r(1− (1− r)2t)
Z′i,tZi,t and Qai,t =

2− r
r

Z′i,tZi,t (20)

respectively. In the simulation study we use only the asymptotic case. The joint

MEWMA statistic is then given by

MEWMAt = max1≤i≤p{Qi,t} and MEWMAat = max1≤i≤p{Qai,t} .
(21)

Alternatively, the the EWMA chart can be based on the Mahalanobis dis-

tance of ηi,t. This scalar quantity is subsequently monitored by the classical

EWMA recursion. The individual control chart in this case is given by

QMi,t = rD2
i,t + (1− r)QMi,t−1 with QMi,0 = p− 1 . (22)

As above the joint scheme is characterized by

MEWMAMt = max1≤i≤p{QMi,t} . (23)

Both EWMA charts signal an alarm as soon as the corresponding control statis-

tic exceeds the preselected control limit.

4.3 Benchmark chart

Huwang et al. (2007) suggested the MEWMV control chart for detecting changes

in the covariance matrix of the normally distributed random vector that is in-

sensitive to changes in the mean vector. The control statistics is given by

MEWMVt = r(Xt − Zt)(Xt − Zt)
′ + (1− r)MEWMVt−1,
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with Zt = λ̃ZXt + (1 − λ̃Z)Zt−1 and MEWMV0 = (X1 − Z1)(X1 − Z1)′ and

Y0 = 0. We can select either equal or different smoothing parameters in both

recursions. In the simulation study we set λ̃Z = 0.2 and optimize the chart

with respect to r. This makes the chart comparable with other charts, which

depend on a single parameter too. The choice of λ̃Z is in line with the results

of the simulation study by Huwang et al. (2007), where the best results are

obtained for λ̃Z = 0.2. The MEWMV chart gives an alarm if |tr(MEWMVt)−
E(tr(MEWMVt))|/

√
V ar(tr(MEWMVt)) exceeds some preselected level. Note

that the MEWMV chart is easier to implement and to calibrate compared to

the above mentioned schemes, since only the trace has to be computed and no

simultaneous charts are needed.

4.4 Setup of study and summary of the results

The goal of this section is to compare the effectiveness of the control charts

derived in the previous sections. The run length of a control chart is a standard

building block for most of the performance measures is defined by

tA = inf{t ∈ N : Ct ≥ c},

where Ct denotes the control statistic and c denotes the control limit. The run

length is equal to the number of observations till the first alarm of the chart.

The most popular performance measure is the average run length (ARL). The

ARL measures the average number of observations until the first alarm. All charts

are calibrated to provide the same in-control average run length ARL∞ = E(tA).

We chose ARL∞ = 200. This allows us to determine the control limit c for each

chart.

The performance measure we use is the maximum expected delay (MED)

(see Frisén (1992), Knoth (2003)). In the case of the ARL we always assume

that the shift occurs at the first moment of time. This is, however, not a feasible

assumption in practical applications. The expected delay assumes the shift at an

arbitrary time point q and is defined as

EDq(tA) = Eq(tA − q + 1|tA ≥ q) (24)

provided Eq(tA) <∞. ED measures the delay in detecting the shift, if we know

that the alarm is given after the shift has occurred. To overcome the dependency
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on q, Pollak and Siegmund (1975) propose the use of the maximum expected

delay

MED = sup
q≥1

EDq(tA) (25)

which can be considered as the criterion for the worst-case scenario. The chart

with the smallest MED is argued to be the best one.

If there is no shift the MED coincides with the in-control ARL. If the shift

occurs at q = 1 then the MED and the out-of-control ARL are equal. Moreover,

the MED coincides with the out-of-control ARL for the Shewhart chart used for

detecting changes in the mean of the univariate Gaussian process with indepen-

dent observations. The application of the MED instead of the ARL is motivated

by dealing with the inertia behavior of a control chart, i.e. the tendency of the

chart to detect a shift, if it is in-control over a certain period of time (see, e.g.,

Woodall and Mahmoud (2005)). If a control chart can built a large amount of

inertia, then the MED is maximized for larger values of q and it can be much

higher than the corresponding ARL (e.g., the MC1 chart). For the control charts

which are less inertial, the largest ED is usually obtained for q = 1 (e.g., the

PPCUSUM chart). In this case the MED is close to the out-of-control ARL.

The problem is, however, that MED is very sensitive to R∆ or/and D∆. There-

fore, it is rarely possible to determine a chart which uniformly outperforms its

alternatives.

Because no explicit formulas for the MED and the optimal control limit are

available we use a Monte Carlo study. In our study 105 independent realizations

of the target process are generated to estimate ARL∞. The control limits of all

charts are determined using the regula falsi method (see, e.g., Conte and de Boor

(1981)) to achieve ARL∞ = 200. Note that it is impossible to compute the

maximum of ED over all possible values of q. For this reason we take only a

bounded interval 1 ≤ q ≤ Q. In our study Q is set to 30. To estimate the MED

we use 106 replications.

The target process is defined to be a four-dimensional Gaussian process with

the mean vector µ0 = 0 and the covariance matrix Σ0 = (0.3|i−j|)i,j=1,...,4. Con-

sequently, it holds that D0 = I and R0 = Σ0. In order to compare the control

charts two out-of-control situations are considered. The first one is given by gen-

erating changes in the variance of the first two variables. In this case it holds that
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σ∆;11 = d11σ0;11 and σ∆;22 = d22σ0;22 with d11, d22 ∈ {0.5, 0.75, 1.0, 1.25, 1.5, 1.75,

2.0}. In the second out-of-control situation the changes in the correlation coef-

ficient ρ21 are generated by taking ρ∆;21 ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
with ρ0;21 = 0.3 being the target value.

The purpose of process monitoring is not only to give an alarm if a shift

occurs, but also to provide us with insights about the causes of the alarm. The

control charts developed in this paper are aimed to detect shifts in the covariance

matrix. From the other side they are robust to shifts in the mean. This simplifies

the monitoring, but complicates the diagnostics and the analysis of the causes

of the alarm. To assess the impact of additional shifts in the mean vector we

perform a study with the out-of-control means given by µ = (0.5, 0.5, 0, 0)′ and

µ = (1.0, 1.0, 0, 0)′.

The control schemes depend on further design parameters. The CUSUM

charts depend on the reference values k and the EWMA charts on the smooth-

ing parameter r. In our study k takes values from the set {0.0, 0.1, .., 1.6, 1.7}.
Larger values than 1.7 are not considered because it turned out that they lead

to numerically instable results. The smoothing parameter of EWMA charts is

taken equal to r ∈ {0.1, 0.2, ..., 1.0}. Note that the Shewhart chart is a special

case of the EWMA chart if r = 1.0. For each type of the chart we choose the

optimal value of the design parameter (either k or r) which leads to the smallest

out-of-control ARL or to the smallest MED.

The results of the simulation study are illustrated in Tables 1 to 4. Table 1

contains the values of the MED for different shifts d11 and d22 and without shifts

in the mean. Each line in each block corresponds to one of the charts: MCUSUM,

MC1, MC2, MEWMA, MEWMAM, MEWMV, PPCUSUM. We conclude that

the MED decreases for each chart with increasing d11. The MED also increases

if d22 increases and is larger than one. The evidence is mixed for d22 < 1.

The chart with the best performance are MC2 and MEWMAM. The first one

appears to be better for larger values of d22, while the second one has smaller

MED for smaller shifts. Most importantly note that control schemes based on

the suggested transformation clearly dominate the benchmark chart of Huwang

et al. (2007).

Tables 2 and 3 provide the results for the same shifts in the covariance
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matrix, but with shifts in the mean. Overall tendency of the MED is similar

as in the case of constant mean, i.e. the MC2 and MEWMAM dominate the

alternatives. More important is, however, the direct comparison of the results in

Table 1 with the results in these tables. We conclude that the shift in the mean

has practically no impact on the values of the MED, stressing the robustness of

the control charts for the variance to shifts in the mean. A minor reduction in

the MED can be observed in Table 3. However, the shift in the mean considered

here is large leading to slower convergence in (9). The scheme of Huwang et al.

(2007) shows also a robust performance, however, with uniformly larger MED

values.

The impact of shifts in the correlations is summarized in Table 4. The first

block contains the results for no shifts in the mean, while the next two blocks

correspond to the shifts both in the correlations and in the mean vector. In

contrary to the case with the shifts in the variances, here the MC1 chart clearly

outperforms the alternatives. Note that for increasing correlation coefficients

some of the chart have the MED value, which is larger than the in-control ARL.

This is an unsatisfactory characteristic of these schemes. The shift in the mean

has, however, no impact on the performance of the charts. The later point is

studied in Table 5 in detail. Here, we present the MEDs calculated when only

shifts in the first two components of the mean vector occur and the covariance

matrix stays constant. We observe that the MC1, the MC2, the MEWMA,

the MEWMAM, and the PPCUSUM charts are relatively robust to changes in

the mean vector. In contrast, the MEWMV reacts slightly stronger, whereas the

MCUSUM control scheme is the worst one with respect to the robustness against

changes in the mean vector. Thus we conclude that the suggested methodology

is in general successful in eliminating the impact of shifts in the mean.

It is known in the literature that monitoring some types of test statistics

based on the EWMA of the sample observations is generally more effective than

monitoring the EWMA of some types of statistics calculated from the original

data. This holds for CUSUM charts too. Our results point towards a partially

opposite evidence, since the MEWMAM and the MC2 charts outperform the

MEWMA and the MC1 charts, respectively. This is another indication that the

control charts derived from the ηi,t’s are not just merely detecting a shift in the
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Table 1: Maximum expected delay (MED) for different values of the shifts d11 and d22

and without shifts in the mean vector

d11\d22 0.5 0.75 1.0 1.25 1.5 1.75 2.0

84.98 (1.2) 86.20 (1.3) 68.27 (1.5) 37.25 (1.5) 19.53 (1.5) 11.74 (1.6) 8.06 (1.5)

82.27 (0.7) 86.25 (1.2) 71.11 (1.4) 40.37 (1.4) 20.74 (1.4) 12.26 (1.4) 8.26 (1.5)

69.74 (3.0) 72.82 (3.0) 54.15 (3.0) 27.00 (3.0) 14.54 (3.0) 9.36 (3.0) 6.82 (3.1)

1.25 83.96 (0.1) 88.36 (0.4) 72.46 (0.5) 40.43 (0.6) 20.76 (0.6) 12.26 (0.6) 8.24 (0.7)

68.03 (0.1) 71.24 (0.1) 53.40 (0.1) 25.68 (0.1) 14.14 (0.1) 9.36 (0.1) 6.86 (0.2)

112.13 (1.0) 101.38 (0.9) 63.34 (0.2) 34.10 (0.2) 19.71 (0.3) 12.64 (0.5) 8.89 (0.7)

77.64 (0.8) 81.11 (1.1) 67.96 (1.1) 37.46 (1.3) 18.91 (1.5) 11.12 (1.5) 7.43 (1.5)

29.49 (1.5) 29.82 (1.6) 26.80 (1.5) 19.94 (1.5) 13.35 (1.5) 9.23 (1.6) 6.82 (1.7)

29.24 (1.4) 29.95 (1.4) 27.80 (1.4) 21.37 (1.4) 14.33 (1.5) 9.75 (1.6) 7.10 (1.6)

23.64 (3.0) 24.28 (3.0) 21.22 (3.0) 14.74 (3.0) 10.11 (3.0) 7.40 (3.1) 5.75 (3.3)

1.50 30.57 (0.5) 31.12 (0.5) 28.35 (0.6) 21.31 (0.6) 14.17 (0.6) 9.60 (0.7) 7.00 (0.7)

23.03 (0.1) 23.65 (0.1) 20.52 (0.1) 14.33 (0.1) 9.95 (0.1) 7.42 (0.1) 5.81 (0.2)

38.19 (0.9) 35.05 (0.4) 27.35 (0.3) 19.45 (0.3) 13.47 (0.4) 9.70 (0.5) 7.37 (0.8)

26.93 (1.1) 27.75 (1.3) 25.78 (1.5) 19.46 (1.4) 12.82 (1.5) 8.67 (1.5) 6.30 (1.7)

14.96 (1.5) 15.03 (1.5) 14.17 (1.5) 11.94 (1.5) 9.28 (1.6) 7.15 (1.7) 5.63 (1.7)

14.83 (1.4) 15.04 (1.4) 14.49 (1.4) 12.53 (1.4) 9.81 (1.5) 7.51 (1.6) 5.89 (1.6)

12.55 (3.0) 12.71 (3.0) 11.77 (3.0) 9.54 (3.0) 7.43 (3.1) 5.91 (3.1) 4.85 (3.3)

1.75 15.50 (0.6) 15.55 (0.6) 14.77 (0.6) 12.54 (0.7) 9.70 (0.7) 7.38 (0.8) 5.76 (0.8)

12.58 (0.1) 12.73 (0.1) 11.69 (0.1) 9.55 (0.1) 7.49 (0.1) 5.94 (0.2) 4.91 (0.3)

18.28 (0.8) 17.35 (0.5) 15.22 (0.4) 12.35 (0.4) 9.64 (0.5) 7.55 (0.6) 5.98 (0.8)

13.57 (1.3) 13.83 (1.3) 13.12 (1.5) 11.30 (1.5) 8.76 (1.7) 6.63 (1.7) 5.19 (1.7)

9.42 (1.5) 9.46 (1.6) 9.10 (1.6) 8.16 (1.6) 6.86 (1.6) 5.65 (1.7) 4.72 (1.7)

9.39 (1.4) 9.47 (1.4) 9.23 (1.5) 8.41 (1.5) 7.15 (1.7) 5.90 (1.6) 4.89 (1.7)

8.31 (3.0) 8.38 (3.0) 7.93 (3.1) 6.89 (3.1) 5.79 (3.3) 4.86 (3.3) 4.15 (3.6)

2.00 9.68 (0.6) 9.72 (0.7) 9.35 (0.6) 8.39 (0.7) 7.06 (0.8) 5.78 (0.8) 4.78 (0.8)

8.44 (0.2) 8.47 (0.2) 7.98 (0.2) 6.95 (0.2) 5.81 (0.2) 4.89 (0.2) 4.18 (0.3)

10.98 (0.8) 10.64 (0.8) 9.82 (0.8) 8.62 (0.7) 7.21 (0.7) 5.97 (0.7) 4.94 (0.8)

8.47 (1.5) 8.58 (1.5) 8.34 (1.5) 7.51 (1.5) 6.34 (1.6) 5.17 (1.6) 4.30 (1.7)

Note: In the in-control state d11 = d22 = 1. The order of the charts is MCUSUM, MC1, MC2, MEWMA,

MEWMAM, MEWMV, PPCUSUM. The in-control ARL is 200. The optimal parameters of the charts are given in

parenthesis. 106 replications are used in the simulation study.

mean vector, but rather a change in the distribution as well and supports the

results of Theorem 3.1.

We thank the anonymous referee for pointing our attention to this fact.
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Table 2: Maximum expected delay (MED) for different values of the shifts d11 and d22

and with shifts in the mean vector (µ = (0.5, 0.5, 0, 0)′)

d11\d22 0.5 0.75 1.0 1.25 1.5 1.75 2.0

84.97 (1.4) 85.64 (1.4) 68.02 (1.6) 37.00 (1.5) 19.12 (1.5) 11.41 (1.6) 7.81 (1.6)

81.94 (0.1) 85.69 (1.4) 70.62 (1.4) 39.86 (1.4) 20.46 (1.4) 11.99 (1.4) 8.13 (1.4)

70.69 (3.0) 73.29 (3.0) 54.52 (3.0) 27.19 (3.0) 14.63 (3.0) 9.32 (3.2) 6.75 (3.2)

1.25 83.76 (0.1) 87.59 (0.4) 71.27 (0.6) 39.65 (0.6) 20.25 (0.6) 11.92 (0.7) 8.02 (0.7)

67.19 (0.1) 70.46 (0.1) 52.24 (0.1) 24.78 (0.1) 13.57 (0.1) 9.00 (0.1) 6.62 (0.2)

110.36 (1.0) 100.27 (0.7) 62.75 (0.2) 33.58 (0.2) 19.41 (0.3) 12.38 (0.5) 8.56 (0.6)

77.56 (0.9) 81.07 (1.1) 67.77 (1.1) 37.62 (1.5) 18.90 (1.5) 11.03 (1.5) 7.45 (1.5)

29.25 (1.5) 29.35 (1.5) 26.29 (1.5) 19.48 (1.5) 12.97 (1.6) 8.86 (1.6) 6.58 (1.6)

28.98 (1.3) 29.67 (1.4) 27.45 (1.4) 20.94 (1.4) 14.03 (1.4) 9.54 (1.4) 6.94 (1.6)

23.79 (3.0) 24.47 (3.0) 21.30 (3.0) 14.88 (3.0) 10.13 (3.2) 7.34 (3.2) 5.64 (3.5)

1.50 30.32 (0.6) 30.57 (0.6) 27.86 (0.6) 20.82 (0.6) 13.79 (0.7) 9.33 (0.7) 6.80 (0.7)

22.68 (0.1) 23.14 (0.1) 19.90 (0.1) 13.90 (0.1) 9.60 (0.1) 7.16 (0.2) 5.59 (0.2)

37.69 (1.0) 34.59 (0.5) 27.08 (0.3) 19.19 (0.3) 13.26 (0.4) 9.45 (0.6) 7.08 (0.7)

27.03 (1.1) 27.74 (1.2) 25.70 (1.5) 19.47 (1.5) 12.74 (1.5) 8.68 (1.6) 6.29 (1.5)

14.75 (1.5) 14.77 (1.6) 13.84 (1.5) 11.59 (1.7) 8.95 (1.6) 6.88 (1.7) 5.46 (1.6)

14.63 (1.4) 14.80 (1.4) 14.26 (1.4) 12.25 (1.4) 9.60 (1.4) 7.35 (1.6) 5.74 (1.7)

12.58 (3.0) 12.73 (3.1) 11.83 (3.2) 9.55 (3.1) 7.34 (3.2) 5.80 (3.2) 4.71 (3.5)

1.75 15.21 (0.6) 15.31 (0.6) 14.41 (0.6) 12.22 (0.6) 9.39 (0.7) 7.15 (0.7) 5.60 (0.7)

12.37 (0.1) 12.41 (0.1) 11.35 (0.1) 9.13 (0.1) 7.21 (0.1) 5.75 (0.2) 4.72 (0.2)

17.88 (0.7) 17.01 (0.6) 14.84 (0.5) 12.05 (0.5) 9.33 (0.5) 7.29 (0.7) 5.81 (0.7)

13.60 (1.5) 13.83 (1.2) 13.18 (1.5) 11.28 (1.5) 8.72 (1.5) 6.62 (1.5) 5.16 (1.5)

9.32 (1.6) 9.25 (1.6) 8.84 (1.6) 7.90 (1.6) 6.60 (1.6) 5.44 (1.7) 4.54 (1.7)

9.29 (1.4) 9.32 (1.4) 9.06 (1.4) 8.24 (1.5) 6.99 (1.6) 5.76 (1.6) 4.77 (1.7)

8.21 (3.2) 8.29 (3.2) 7.84 (3.4) 6.82 (3.2) 5.67 (3.6) 4.73 (3.5) 4.02 (3.5)

2.00 9.55 (0.7) 9.51 (0.6) 9.15 (0.6) 8.18 (0.7) 6.85 (0.7) 5.63 (0.7) 4.65 (0.8)

8.29 (0.2) 8.29 (0.2) 7.79 (0.2) 6.73 (0.2) 5.63 (0.2) 4.74 (0.2) 4.05 (0.3)

10.76 (0.8) 10.39 (0.8) 9.55 (0.7) 8.31 (0.6) 6.94 (0.6) 5.73 (0.7) 4.78 (0.9)

8.49 (1.5) 8.56 (1.5) 8.35 (1.5) 7.48 (1.5) 6.35 (1.5) 5.21 (1.5) 4.30 (1.7)

Note: In the in-control state d11 = d22 = 1. The order of the charts is MCUSUM, MC1, MC2, MEWMA,

MEWMAM, MEWMV, PPCUSUM. The in-control ARL is 200. The optimal parameters of the charts are given in

parenthesis. 106 replications are used in the simulation study.
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Table 3: Maximum expected delay (MED) for different values of the shifts d11 and d22

and with shifts in the mean vector (µ = (1.0, 1.0, 0, 0)′)

d11\d22 0.5 0.75 1.0 1.25 1.5 1.75 2.0

83.39 (1.5) 83.11 (1.5) 64.74 (1.5) 34.30 (1.5) 17.43 (1.5) 10.30 (1.7) 7.07 (1.7)

81.89 (0.1) 85.73 (1.2) 71.03 (1.5) 39.83 (1.5) 20.24 (1.5) 11.79 (1.6) 7.90 (1.6)

70.80 (3.0) 73.18 (3.0) 55.02 (3.0) 27.05 (3.0) 14.64 (3.0) 9.39 (3.1) 6.73 (3.5)

1.25 81.67 (0.1) 86.72 (0.4) 71.66 (0.4) 39.99 (0.7) 20.31 (0.7) 11.74 (0.6) 7.84 (0.7)

64.68 (0.1) 66.36 (0.1) 47.53 (0.1) 21.85 (0.1) 11.84 (0.1) 7.90 (0.1) 5.89 (0.2)

107.23 (1.0) 95.55 (0.9) 61.90 (0.2) 32.78 (0.3) 18.23 (0.4) 11.37 (0.5) 7.77 (0.7)

77.75 (0.7) 81.93 (1.0) 67.99 (1.4) 37.50 (1.5) 18.98 (1.4) 11.06 (1.5) 7.44 (1.4)

28.31 (1.5) 27.99 (1.5) 24.64 (1.5) 17.85 (1.7) 11.61 (1.6) 7.95 (1.7) 5.90 (1.7)

28.57 (1.3) 29.43 (1.3) 27.29 (1.4) 20.83 (1.5) 13.78 (1.5) 9.27 (1.6) 6.74 (1.5)

23.94 (3.0) 24.41 (3.0) 21.24 (3.0) 14.81 (3.0) 10.19 (3.0) 7.33 (3.3) 5.65 (3.6)

1.50 29.73 (0.4) 30.26 (0.4) 27.82 (0.6) 20.75 (0.7) 13.61 (0.7) 9.16 (0.7) 6.64 (0.7)

21.49 (0.1) 21.48 (0.1) 17.90 (0.1) 12.14 (0.1) 8.43 (0.1) 6.29 (0.2) 4.98 (0.2)

35.36 (0.9) 32.57 (0.8) 25.91 (0.4) 17.94 (0.4) 12.14 (0.5) 8.61 (0.8) 6.33 (0.8)

27.11 (1.2) 28.00 (1.2) 25.75 (1.4) 19.40 (1.5) 12.80 (1.5) 8.67 (1.6) 6.30 (1.5)

13.99 (1.5) 13.83 (1.5) 12.82 (1.7) 10.47 (1.7) 8.02 (1.6) 6.10 (1.7) 4.89 (1.7)

14.37 (1.3) 14.61 (1.3) 13.98 (1.5) 12.05 (1.5) 9.35 (1.5) 7.10 (1.6) 5.57 (1.7)

12.56 (3.1) 12.78 (3.1) 11.77 (3.1) 9.54 (3.1) 7.38 (3.1) 5.79 (3.5) 4.71 (3.6)

1.75 14.93 (0.5) 15.00 (0.6) 14.23 (0.6) 12.01 (0.7) 9.27 (0.7) 6.99 (0.7) 5.43 (0.7)

11.57 (0.1) 11.41 (0.1) 10.20 (0.1) 8.06 (0.1) 6.34 (0.1) 5.07 (0.2) 4.25 (0.2)

16.57 (0.8) 15.65 (0.8) 13.84 (0.6) 11.09 (0.5) 8.49 (0.8) 6.51 (0.8) 5.17 (0.8)

13.55 (1.4) 13.76 (1.3) 13.19 (1.5) 11.20 (1.5) 8.76 (1.6) 6.63 (1.6) 5.20 (1.5)

8.85 (1.7) 8.67 (1.7) 8.15 (1.6) 7.14 (1.7) 5.95 (1.7) 4.88 (1.7) 4.14 (1.7)

9.04 (1.4) 9.07 (1.4) 8.82 (1.5) 7.98 (1.6) 6.77 (1.6) 5.58 (1.5) 4.63 (1.6)

8.19 (3.3) 8.29 (3.4) 7.84 (3.4) 6.84 (3.5) 5.69 (3.5) 4.73 (4.0) 3.98 (3.9)

2.00 9.29 (0.6) 9.26 (0.6) 8.90 (0.7) 7.99 (0.7) 6.68 (0.7) 5.44 (0.8) 4.49 (0.7)

7.74 (0.2) 7.65 (0.2) 7.00 (0.2) 5.98 (0.2) 5.02 (0.2) 4.25 (0.2) 3.68 (0.3)

9.87 (0.8) 9.52 (0.8) 8.69 (0.8) 7.50 (0.8) 6.24 (0.8) 5.12 (0.9) 4.29 (0.8)

8.47 (1.4) 8.57 (1.5) 8.32 (1.5) 7.53 (1.5) 6.30 (1.6) 5.21 (1.5) 4.32 (1.6)

Note: In the in-control state d11 = d22 = 1. The order of the charts is MCUSUM, MC1, MC2, MEWMA,

MEWMAM, MEWMV, PPCUSUM. The in-control ARL is 200. The optimal parameters of the charts are given in

parenthesis. 106 replications are used in the simulation study.
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5 Empirical Illustration

The covariance matrices of financial asset returns play a key role as risk measures

in portfolio theory and asset allocation. Since the seminal paper of Markowitz

(1952), it is well-known that the optimal portfolios in most models depend on

the estimated covariance matrix. Thus monitoring the covariance matrices can

be considered as monitoring the risk on financial markets and therefore has a

direct impact on determining optimal portfolios and financial decision-making.

The covariance matrices are estimated using asset returns, which are com-

puted using closing prices, i.e. the observed price at the end of trading day.

Thus, these covariance matrices are an ideal field of application for the suggested

methods of monitoring covariance matrices using a single observation. We employ

financial indices for four countries in our study: Standard & Poor 500, FTSE 100,

DAX 30 and NIKKEI 225. To clarify the feasibility of the assumptions needed for

the suggested control schemes, we analyze the autocorrelation pattern and nor-

mality of the daily returns. Figure 2 shows the empirical autocorrelation function

for all four series with the dash horizontal line marking the area of insignificant

autocorrelations. Additionally the p-values of the Pierce-Box test for autocorre-

lation with 20 lags are given in the first row of Table 6. Relying on both results

we can conclude that the autocorrelation can be neglected. The assumption of

normality is verified for each time series using the Kolmogorov-Smirnov test with

the p-values given in the second row of Table 6. We used for estimation the data

which precedes the Euro-zone crisis (see below), but for other periods the results

are very similar.

Note that the violation the above assumption is not always dangerous. In

many examples the autocorrelation is weak, has minor impact on the perfor-

mance of the charts (see Okhrin and Schmid (2008)) and will influence all of

them in a fairly similar manner. Furthermore, considered control charts remain

robust if the assumption of normality is replaced by the assumption of elliptically

contoured distributions which include a large number of heavy-tailed distribu-

tions. The reason behind this observation is that the control procedures do not

detect changes in the covariance matrix which are proportional to the in-control

matrix. However, in case of elliptically contoured distributions, the conditional
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Table 5: Maximum expected delay (MED) for different values of the shifts µ1 and µ2 in

the mean vector (no shifts in the covariance matrix)

µ1\µ2 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

178.18 (1.6) 186.45 (1.6) 187.96 (1.5) 186.24 (1.5) 178.43 (1.5) 160.45 (1.5) 126.76 (1.5)

196.19 (0.2) 196.78 (0.2) 197.66 (0.2) 196.06 (0.2) 196.71 (0.2) 197.98 (0.2) 196.88 (0.2)

197.71 (4.3) 198.51 (4.3) 198.01 (3.2) 197.66 (3.2) 197.77 (4.3) 197.61 (3.2) 197.56 (4.3)

-1.5 197.52 (0.6) 197.91 (0.7) 197.23 (0.6) 197.35 (0.7) 197.34 (0.7) 197.61 (1.0) 197.69 (0.6)

196.73 (0.2) 197.09 (0.2) 197.83 (0.2) 197.27 (0.2) 197.94 (0.4) 196.89 (0.2) 197.30 (0.2)

166.99 (1.0) 179.41 (0.9) 185.93 (0.9) 189.49 (0.9) 190.15 (0.9) 188.98 (0.9) 180.81 (0.9)

197.58 (1.1) 197.96 (1.6) 196.75 (1.1) 196.76 (1.1) 197.11 (1.1) 197.73 (1.1) 197.13 (1.1)

185.64 (1.6) 194.07 (1.5) 195.69 (1.6) 194.35 (1.5) 192.31 (1.5) 183.11 (1.6) 161.40 (1.5)

197.11 (0.2) 196.54 (0.2) 196.91 (0.2) 196.95 (0.2) 196.45 (0.2) 196.75 (0.2) 195.53 (0.2)

198.79 (4.2) 198.80 (4.3) 198.08 (3.6) 198.96 (3.6) 198.04 (4.3) 198.08 (3.6) 197.27 (4.3)

-1.0 197.12 (0.6) 198.31 (0.7) 198.22 (0.4) 197.31 (0.6) 196.82 (0.6) 197.32 (1.0) 197.21 (0.6)

197.23 (0.2) 197.20 (0.2) 197.81 (0.2) 198.46 (0.2) 197.60 (0.2) 195.99 (0.2) 196.17 (0.2)

179.39 (0.9) 188.95 (0.9) 193.93 (0.9) 196.92 (0.9) 197.26 (0.9) 194.92 (0.9) 188.81 (0.9)

197.79 (0.5) 197.94 (1.7) 197.84 (1.1) 198.10 (1.1) 196.45 (1.7) 196.68 (1.1) 197.14 (1.1)

188.84 (1.6) 194.81 (1.5) 196.94 (1.5) 198.14 (0.0) 196.14 (1.5) 192.61 (1.6) 179.24 (1.6)

197.35 (1.0) 197.07 (0.2) 196.21 (0.2) 197.68 (0.2) 196.12 (0.2) 197.20 (0.2) 196.38 (0.2)

197.51 (4.3) 198.62 (3.6) 198.50 (4.3) 197.99 (3.2) 198.86 (3.6) 198.12 (3.6) 198.04 (4.3)

-0.5 198.14 (0.4) 197.12 (0.6) 197.33 (0.6) 197.26 (0.6) 197.04 (0.6) 197.93 (1.0) 197.24 (0.7)

197.02 (0.2) 197.39 (0.2) 199.08 (0.4) 199.18 (0.2) 197.94 (0.2) 196.48 (0.2) 197.47 (0.2)

187.25 (0.9) 193.59 (0.9) 197.28 (0.8) 198.07 (0.9) 198.87 (0.9) 196.07 (0.9) 190.35 (0.9)

196.87 (1.7) 198.52 (1.1) 197.09 (1.1) 197.67 (1.1) 197.20 (1.1) 197.57 (1.7) 197.75 (1.1)

187.10 (1.6) 194.55 (1.5) 197.64 (0.0) 198.15 (0.0) 197.81 (1.5) 194.96 (1.5) 186.29 (1.6)

197.91 (0.2) 196.99 (0.2) 197.13 (0.2) 198.70 (0.2) 197.44 (0.2) 197.80 (0.3) 196.85 (0.2)

198.78 (4.3) 198.25 (4.0) 198.60 (4.3) 198.06 (3.2) 198.27 (3.2) 198.06 (4.3) 198.20 (4.3)

0.0 197.60 (0.7) 197.61 (0.6) 197.82 (0.6) 198.14 (0.6) 197.57 (1.0) 197.59 (0.6) 197.77 (0.7)

197.18 (0.2) 198.24 (0.2) 199.60 (0.4) 200.50 (0.4) 199.00 (0.2) 196.12 (0.2) 196.85 (0.2)

190.04 (0.9) 195.14 (0.9) 198.65 (0.9) 199.07 (0.9) 198.59 (0.9) 196.46 (0.9) 189.45 (0.9)

197.86 (1.7) 196.53 (1.1) 196.72 (1.1) 198.62 (1.1) 197.11 (1.1) 197.61 (1.1) 197.04 (1.6)

179.39 (1.5) 191.70 (1.5) 195.63 (1.5) 197.80 (1.5) 197.62 (1.5) 195.63 (1.5) 187.67 (1.6)

196.66 (0.2) 197.53 (0.2) 197.39 (0.2) 196.88 (0.2) 197.09 (0.2) 196.64 (0.2) 196.98 (0.2)

198.49 (4.3) 197.65 (3.2) 198.34 (4.3) 198.47 (3.2) 197.91 (4.3) 198.45 (4.3) 198.46 (3.6)

0.5 197.77 (0.6) 197.36 (0.6) 197.67 (0.6) 197.31 (0.6) 197.29 (0.6) 197.67 (0.4) 195.96 (0.6)

197.99 (0.2) 197.74 (0.2) 198.00 (0.2) 199.28 (0.2) 199.37 (0.4) 196.48 (0.2) 196.97 (0.2)

189.88 (0.9) 195.42 (0.9) 198.97 (0.9) 198.88 (0.9) 197.60 (0.2) 194.42 (0.9) 187.15 (0.9)

197.28 (1.1) 197.63 (1.7) 197.92 (1.7) 196.93 (1.1) 197.65 (1.1) 197.27 (1.7) 197.20 (1.1)

161.79 (1.5) 183.73 (1.6) 191.82 (1.5) 195.82 (1.5) 195.06 (1.5) 193.80 (1.5) 185.27 (1.5)

196.92 (0.2) 196.46 (0.2) 198.04 (0.2) 197.23 (0.2) 198.34 (0.3) 196.25 (0.2) 197.08 (0.2)

198.37 (3.6) 197.72 (3.6) 197.82 (4.3) 198.52 (4.3) 197.51 (4.3) 197.82 (4.3) 198.18 (4.3)

1.0 196.09 (0.6) 196.97 (1.0) 197.43 (0.6) 197.10 (0.6) 197.41 (0.6) 197.55 (0.6) 196.83 (0.6)

197.12 (0.2) 196.65 (0.2) 197.59 (0.4) 197.45 (0.2) 197.79 (0.2) 196.80 (0.2) 196.62 (0.2)

189.28 (0.9) 194.86 (0.9) 195.65 (0.9) 195.93 (0.9) 194.40 (0.9) 189.12 (0.9) 180.31 (0.9)

196.76 (1.7) 197.62 (1.7) 196.88 (1.7) 197.21 (1.1) 197.30 (1.1) 198.30 (1.1) 197.64 (1.7)

127.00 (1.5) 161.82 (1.7) 178.60 (1.5) 187.09 (1.6) 188.71 (1.5) 186.40 (1.5) 177.51 (1.6)

196.89 (0.2) 197.19 (0.2) 196.92 (0.2) 196.55 (0.2) 197.27 (0.2) 197.02 (0.2) 196.17 (0.2)

198.07 (3.2) 198.14 (4.3) 197.62 (3.2) 198.41 (4.3) 197.85 (3.2) 197.97 (3.6) 196.91 (4.3)

1.5 196.56 (0.6) 197.16 (0.6) 197.13 (0.4) 197.20 (0.6) 196.81 (0.6) 198.32 (1.0) 197.38 (0.6)

198.15 (0.2) 196.65 (0.2) 196.52 (0.2) 196.73 (0.2) 196.67 (0.2) 198.09 (0.2) 198.63 (0.4)

181.21 (0.9) 189.43 (0.9) 191.27 (0.9) 190.14 (1.0) 187.26 (0.9) 178.96 (0.9) 167.10 (0.9)

197.07 (1.1) 196.49 (1.1) 198.04 (1.7) 197.16 (1.7) 197.33 (1.7) 197.59 (1.1) 197.25 (1.7)

ppcusum

Note: In the in-control state µ1 = µ2 = 0. The order of the charts is MCUSUM, MC1, MC2, MEWMA, MEWMAM,

MEWMV, PPCUSUM. The in-control ARL is 200. The optimal parameters of the charts are given in parenthesis.

106 replications are used in the simulation study.
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Figure 2: Empirical autocorrelation functions for the returns of the four financial indices.

distribution of the random vector given a random variable, the so-called gener-

ating variable, is normal, whereas the realization of the generating variable is

given as a multiplicative factor in the formula for the covariance matrix (see, e.g.

Gupta, Varga and Bodnar (2013)).

Index DAX NIKKEI S&P FTSE

p-value (PB) 0.8602 0.9683 0.4125 0.6543

p-value (KS) 0.6327 0.7509 0.8032 0.7317

Table 6: p-values of the Pierce-Box test for autocorrelation with m = 20 (first row) and

p-values of the Kolmogorov-Smirnov test for normality (second row).

Increases in risk of country indices (or increases in volatility) are usually

linked to some important macroeconomic events and frequently lead to increases

in the correlation between markets. In our analysis, we concentrate on three

such events: the bankruptcy of Lehmann Brothers in September 2008, the Greek
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crisis of government debt in April 2010 and the Euro-zone crisis in July-August

2011. We use the MC1, the MEWMAM and the MEWMV control schemes to

assess how long the charts need to detect changes in financial risk, measured by

the covariance matrices.

Determining the in-control state is a difficult problem in non-manufacturing

examples, since frequently there is no target value for the process parameters,

e.g. expected return or the variances/covariances of returns. We estimated the

parameters using the period of 90 days which ends on the first plotted day, i.e.

approximately 50 days before the expected financial crash. The purpose of these

50 days is to eliminate any disturbances which precede the crash and might

be expected by market participants. The estimation window of 90 is common

in finance and corresponds roughly to 3 months of daily data. Taking shorter

periods leads to increased estimation risk, while longer periods might cause bias

due to structural breaks. Due to specific properties and high volatility of index

returns and to multivariate nature of the problem, statistical search for the period

of constant parameters is useless. The estimated in-control covariance matrix is

used to transform the returns to have the same in-control parameters as those in

the simulation study.

The chart parameters are as follows: MC1 (λZ = 0.2, k = 0.1, critical limit

15.2856), MEWMAM (λZ = 0.2, r = 0.5, critical limit 6.52985) and MEWMV

(λZ = 0.2, r = 0.5, critical limit 3.47993). The control statistics for all three

charts are plotted for each crisis period in Figure 4. We conclude that MEWMAM

and MEWMV show very synchronous performance, giving signals in all three

period on the same day. The MC1 chart outperforms the alternatives for the

Euro crisis, but has a relatively large delay for the other two periods. The

inertia of this type of chart (cf. Woodall and Mahmoud (2005)) provides an

explanation for this observation. The main reason is that the truncation of the

control statistic to zero does not help much to deal with the inertia problem in

the multivariate case as it does in the univariate case. In the multivariate case,

the reset of the control statistic to zero means that the norm of the cumulative

sum is relatively small. In contrast, the test statistic is not obviously set to zero if

the norm of the cumulative sum vector is large, but its direction is opposite to the

direction of the shift. As a result, in the next period the shift could compensate
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the previous value. It leads to a small value of the test statistic which is then

reset to zero. Since several MC1 control charts are performed simultaneously,

the situation may become even worse.

Since the precise start of the crises is unknown, it is difficult to assess the

delay of the employed control measures. For example, the Lehmann Brothers

bankruptcy filing was announced on the 15th September 2008, however, rumours

about the bankruptcy were wide spread already a few weeks before this date.

These rumours had already led to a 45% plunge in the share price on the 9th

of September. As Lehmann Brothers was an widely-observed international cor-

poration, this plunge has already had an impact on world financial markets and

thereby caused signals in the suggested surveillance schemes for market risks.

The same refers to the other two crises, where the exact starting date is not

known. Thus the suggested control charts can be successfully used to detect

the time point, when some important events found their reflection in the overall

risks on financial markets. Nevertheless, the results of monitoring of financial

data have to be interpreted carefully and without definit conclusions as in man-

ufacturing sector. The national financial which we consider are influenced by

numerous factors, which are linked to national and worldwide affairs. Thus it is

not possible to identify the cause of a shift uniquely. For example, determining

which event led to the shift on 02.09.2008 is rather difficult and mainly heuristic.

The shifts which occur one week later are persistent and much stronger. Those

can be assigned with high probability to the collapse of Lehmann Brothers.

To asses the robustness of the chart we also apply the simple MEWMA chart

with asymptotic limits (MEWMAa) to the asset returns to detect any potential

shifts in the process mean. The smoothing parameter and the critical value are

set to 0.1 and 12.73 respectively (see Lowry et al. (1992)) and the same setup

as in the charts for the variance. The chart signals frequently, implying that

there are shifts both in the means and in the variances/covariances of the index

returns. It is also interesting to note that at the end of 2008 as well as at the

end of 2011, only changes in the covariance matrix are present, whereas at the

end of the Greek crisis the MEWMAa control chart does not detect any changes

in the mean vector.
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Figure 3: The control statistics of MEWMAa chart applied to detect shifts in the mean

of the index returns during the three crisis periods.
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6 Summary

In this paper we deal with monitoring shifts in the covariance matrices of Gaus-

sian processes. To develop a control scheme robust to the shifts in the mean,

the observations are detrended. Subsequently, the covariance matrix, estimated

using a single observation, is transformed to follow approximately uncorrelated

multivariate Gaussian distribution. This allows us to apply the classical charts

for shifts in the mean. Within the simulations study we assess the advantages of

the proposed procedure and compare it with a benchmark.

Acknowledgements

The authors appreciate the financial support of the German Science Founda-

tion (DFG), projects BO3521/2 and OK103/1, ”Wishart Processes in Statistics

and Econometrics: Theory and Applications”. The second author is partly sup-

ported by the German Science Foundation (DFG) via the Research Unit 1735

”Structural Inference in Statistics: Adaptation and Efficiency”. The authors are

grateful to the referees and the editor for their suggestions, which have improved

the presentation in the paper.



Robust surveillance of covariance matrices 33
L
e
h
m
a
n
n

B
ro

th
e
rs

G
re
e
k
cr
is
is

E
u
ro

cr
is
is

05101520

MC1

A
ug

 0
8

S
ep

 0
8

O
kt

 0
8

N
ov

 0
8

D
ez

 0
8

20
08

−
09

−
30

0102030

MC1

F
eb

 1
0

M
rz

 1
0

A
pr

 1
0

M
ai

 1
0

Ju
n 

10
Ju

l 1
0

20
10

−
05

−
20

0204060

MC1

Ju
n 

11
Ju

l 1
1

A
ug

 1
1

S
ep

 1
1

O
kt

 1
1

20
11

−
07

−
06

050100150

MEWMAM

A
ug

 0
8

S
ep

 0
8

O
kt

 0
8

N
ov

 0
8

D
ez

 0
8

20
08

−
09

−
02

051015

MEWMAM

F
eb

 1
0

M
rz

 1
0

A
pr

 1
0

M
ai

 1
0

Ju
n 

10
Ju

l 1
0

20
10

−
04

−
28

010203040

MEWMAM

Ju
n 

11
Ju

l 1
1

A
ug

 1
1

S
ep

 1
1

O
kt

 1
1

20
11

−
07

−
21

020406080100120

MEWMV

A
ug

 0
8

S
ep

 0
8

O
kt

 0
8

N
ov

 0
8

D
ez

 0
8

20
08

−
09

−
02

05101520

MEWMV

F
eb

 1
0

M
rz

 1
0

A
pr

 1
0

M
ai

 1
0

Ju
n 

10
Ju

l 1
0

20
10

−
04

−
28

051015202530

MEWMV

Ju
n 

11
Ju

l 1
1

A
ug

 1
1

S
ep

 1
1

O
kt

 1
1

20
11

−
07

−
21

F
ig

u
re

4:
T

h
e

co
n
tr

ol
st

at
is

ti
cs

fo
r

M
C

1
(t

o
p

),
M

E
W

M
A

M
(m

id
d

le
)

a
n

d
M

E
W

M
V

(b
o
tt

o
m

)
fo

r
th

re
e

cr
is

is
p

er
io

d
s

o
f

L
eh

m
a
n

n

B
ro

th
er

s
(l

ef
t)

,
G

re
ek

cr
is

is
(m

id
d

le
)

a
n

d
E

u
ro

cr
is

is
(r

ig
h
t)

w
it

h
th

e
cr

it
ic

a
l
li

m
it

s
(h

o
ri

zo
n
ta

l
li

n
es

)
a
n

d
th

e
fi

rs
t

si
g
n

a
ls

(v
er

ti
ca

l

li
n

es
).

F
or

th
e

es
ti

m
at

io
n

of
th

e
in

-c
on

tr
o
l

p
a
ra

m
et

er
s

th
e

la
st

9
0

tr
a
d

in
g

d
ay

s
a
re

u
se

d
.



Robust surveillance of covariance matrices 34

7 Appendix

This section contains the proofs.

Proof of Lemma 3.1

a) It holds that

Eq(X̃t) = Eq(Xt)− Eq(Zt)

= µ− λZ
t−q∑
l=0

(1− λZ)lEq(Xt−l) = µ− λZ
t−q∑
l=0

(1− λZ)lµ

=

(
1− λZ

1− (1− λZ)t−q+1

1− (1− λZ)

)
µ = (1− λZ)t−q+1µ .

b) We get

V arq(X̃t) = V arq(Xt − Zt)

= V arq

(
(1− λZ)Xt − λZ(1− λZ)

t−2∑
l=0

(1− λZ)lXt−1−l

)

= (1− λZ)2V arq(Xt) + λ2
Z(1− λZ)2

t−2∑
l=0

(1− λZ)2lV arq(Xt−1−l)

= (1− λZ)2Σ + λ2
Z(1− λZ)2

t−2∑
l=t−q

(1− λZ)2lΣ0

+ λ2
Z(1− λZ)2

t−q−1∑
l=0

(1− λZ)2lΣ

= (1− λZ)2λ2
Z

(1− λZ)2t−2q − (1− λZ)2t−2

1− (1− λZ)2
Σ0

+ (1− λZ)2

(
1 + λ2

Z

1− (1− λZ)2t−2q

1− (1− λZ)2

)
Σ

= (1− λZ)2λZ((1− λZ)2t−2q − (1− λZ)2t−2)

2− λZ
Σ0

+ (1− λZ)2

(
1 +

λZ
2− λZ

(1− (1− λZ)2t−2q)

)
Σ .
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c) Let X̆t = Xt − E(Xt). Then it holds that

Covq(X̃t, X̃t−τ )

= Eq
(
(Xt − E(Xt)− (Zt − E(Zt)))(Xt−τ − E(Xt−τ )− (Zt−τ − E(Zt−τ )))′

)
= Eq

((
(1− λZ)X̆t − λZ(1− λZ)

t−2∑
l=0

(1− λZ)lX̆t−1−l

)

×

(
(1− λZ)X̆t−τ − λZ(1− λZ)

t−τ−2∑
l=0

(1− λZ)lX̆t−τ−1−l

)′)

= −λZ(1− λZ)Eq

(
t−2∑
l=τ−1

(1− λZ)lX̆t−1−l

×

(
(1− λZ)X̆t−τ − λZ(1− λZ)

t−τ−2∑
l=0

(1− λZ)lX̆t−τ−1−l

)′)

= −λZ(1− λZ)Eq

(1− λZ)τ−1X̆t−τ +
t−τ−2∑
l̃=0

(1− λZ)l̃+τX̆t−τ−1−l̃


×

(
(1− λZ)X̆t−τ − λZ(1− λZ)

t−τ−2∑
l=0

(1− λZ)lX̆t−τ−1−l

)′
= −λZ(1− λZ)

(
(1− λZ)τΣ− λZ(1− λZ)(1− λZ)τ

×

t−τ−q−1∑
l=0

(1− λZ)2lΣ +
t−τ−2∑
l=t−τ−q

(1− λZ)2lΣ0

)

= −λZ(1− λZ)τ+1

(
Σ− λZ(1− λZ)

(
1− (1− λZ)2(t−τ−q)

1− (1− λZ)2
Σ

+
(1− λZ)2(t−τ−q) − (1− λZ)2(t−τ−1)

1− (1− λZ)2
Σ0

))

= −λZ(1− λZ)τ+1

(
Σ− 1− λZ

2− λZ

(
(1− (1− λZ)2(t−τ−q))Σ

+ ((1− λZ)2(t−τ−q) − (1− λZ)2(t−τ−1))Σ0

))
.

Proof of Theorem 3.1

a) For the proof of this part we refer to Bodnar and Okhrin (2008).
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b) Without loss of generality we present the proof only for the case i = 1 and

note that for the other values the proof is similar. In order to simply the notation

the index i is dropped. From the definition of Vt we get

Vt ∼Wp(1,Σ(q, t),Ω(q, t)) with Ω(q, t) = Σ(q, t)−1µ(q, t)µ(q, t)′ .

(26)

Since Vt consists only of two functionally independent components vt;11 and

Vt;21, i.e. Vt;22 = Vt;21Vt;12/v
−1
t;11, we can write that

Vt =
[
1 (Vt;21/vt;11)′

]′
vt;11

[
1 (Vt;21/vt;11)′

]
.

Thus, the density of Vt, i.e. the density of vt;11 and Vt;21 is given by (cf. Srivas-

tava (2003, Corrollary 3.2))

fVt(C) =
π(1−p)/22−p/2
√
π|Σ(q, t)|1/2

|c11|−
p
2 (27)

× exp
(
− 1

2
tr(Σ(q, t)−1C)

)
0F1

(
1

2
;
1

4
Ω(q, t)Σ(q, t)−1C

)
,

The symbol 0F1(.; .) denotes the hypergeometric function of the matrix argument

(see Muirhead (1982), p. 258 for the definition and properties).

It holds that

tr(Σ(q, t)−1C) = tr

(
σ11(q, t)−1c11

+

(
C21

c11
− Σ21(q, t)

σ11(q, t)

)′
Σ22·1(q, t)−1

(
C21

c11
− Σ21(q, t)

σ11(q, t)

)
c11

)
.

Then the joint density of vt;11 and Vt;21 is then given by

fvt;11,Vt;21(c11,C21) =
π(1−p)/22−p/2
√
π|Σ(q, t)|1/2

c
− p

2
11 exp

(
−σ11(q, t)−1c11

2

)
× 0F1

(
1

2
;
1

4
Ω(q, t)Σ(q, t)−1

[
1 (C21/c11)′

]′
c11

[
1 (C21/c11)′

])
× exp

(
− c11

2

(
C21

c11
− Σ21(q, t)

σ11(q, t)

)′
Σ22·1(q, t)−1

(
C21

c11
− Σ21(q, t)

σ11(q, t)

))
.

Making the transformation

x = C21c
−1
11 and y = c11
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with the Jacobian ck−1
11 yields

fvt;11,Vt;21/vt;11(y,x) =
π−p/22−p/2

|Σ(q, t)|1/2
y

p−2
2 exp

(
−σ11(q, t)−1y

2

)
× 0F1

(
1

2
;
1

4
Ω(q, t)Σ(q, t)−1[1 x′]′y[1 x′]

)
× exp

(
− y

2

(
x− Σ21(q, t)

σ11(q, t)

)′
Σ22·1(q, t)−1

(
x− Σ21(q, t)

σ11(q, t)

))
.

Using the definition of the matrix hypergeometric function and the fact that the

non-negative eigenvalues of the matrices

Ω(q, t)Σ(q, t)−1[1x′]′y[1 x′] and [1 x′]Ω(q, t)Σ(q, t)−1[1x′]′y

coincide, we get

fvt;11,Vt;21/vt;11(y,x) =
π−p/22−p/2

|Σ(q, t)|1/2
y

p−2
2 0F1

(
1

2
;
1

4
[1 x′]Ω(q, t)Σ(q, t)−1[1 x′]′y

)
× exp

(
− y

2

(
σ11(q, t)−1 +

(
x− Σ21(q, t)

σ11(q, t)

)′
Σ22·1(q, t)−1

(
x− Σ21(q, t)

σ11(q, t)

)))
.

Since

0F1(
1

2
; z) = (exp(2

√
z) + exp(−2

√
z))/2 = cosh(2

√
z)

and Ω(q, t) = Σ(q, t)−1µ(q, t)µ(q, t)′, it follows that

fvt;11,Vt;21/vt;11(y,x) =
π−p/22−p/2

|Σ(q, t)|1/2
y

p−2
2 cosh(|[1 x′]Σ(q, t)−1µ(q, t)|√y)

× exp
(
− y

2

(
σ11(q, t)−1 +

(
x− Σ21(q, t)

σ11(q, t)

)′
Σ22·1(q, t)−1

(
x− Σ21(q, t)

σ11(q, t)

)))
.

Let

g(z; q, t) = [0 z′Σ
1/2
0;22·1]Σ(q, t)−1µ(q, t), ν(q, t) =

[
1

Σ′0;21

σ0;11

]
Σ(q, t)−1µ(q, t) ,

δ(q, t) = Σ
−1/2
0;22·1

(
Σ21(q, t)

σ11(q, t)
− Σ0;21

σ0;11

)
, Ξ(q, t) = Σ

−1/2
0;22·1Σ22·1(q, t)Σ

−1/2
0;22·1 .

Using the transformation z = Σ
−1/2
0;22·1(x − Σ0;21/σ0;11)

√
y with the Jacobian

|Σ0;22·1|1/2y−(p−1)/2 and the fact that |Σ(q, t)| = σ11(q, t)|Σ22·1(q, t)| we get

fvt;11,η1,t
(y, z) =

π−p/22−p/2

σ11(q, t)1/2|Ξ(q, t)|1/2
y−

1
2 cosh(|g(z; q, t) + ν(q, t)

√
y|)

× exp

(
−1

2

(
y

σ11(q, t)
+ (z− δ(q, t)

√
y)′Ξ(q, t)−1(z− δ(q, t)

√
y)

))
.
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Hence, the density of η1,t is given by

fη1,t
(z) =

π−p/22−p/2

σ11(q, t)1/2|Ξ(q, t)|1/2

∫ ∞
0

y−
1
2 cosh(g(z; q, t) + ν(q, t)

√
y)

× exp

(
−1

2

(
y

σ11(q, t)
+ (z− δ(q, t)

√
y)′Ξ(q, t)−1(z− δ(q, t)

√
y)

))
dy ,

where we use that cosh(x) = cosh(−x). The transformation y = τ2 yields

fη1,t
(z) =

π−p/22−p/2

σ11(q, t)1/2|Ξ(q, t)|1/2

×
∫ ∞

0
(exp(g(z; q, t) + ν(q, t)τ) + exp(−g(z; q, t)− ν(q, t)τ))

× exp

(
−1

2

(
τ2

σ11(q, t)
+ (z− δ(q, t)τ)′Ξ(q, t)−1(z− δ(q, t)τ)

))
dτ

= I1(z) + I2(z) ,

where

I1(z) =
π−p/22−p/2

σ11(q, t)1/2|Ξ(q, t)|1/2

× exp

(
−1

2

(
z′Ξ(q, t)−1z− (δ(q, t)′Ξ(q, t)−1z + ν(q, t))2

σ11(q, t)−1 + δ(q, t)′Ξ(q, t)−1δ(q, t)
− 2g(z; q, t)

))
×
∫ ∞
0

exp

(
− σ11(q, t)−1 + δ(q, t)′Ξ(q, t)−1δ(q, t)

2

×
(
τ − δ(q, t)′Ξ(q, t)−1z + ν(q, t)

σ11(q, t)−1 + δ(q, t)′Ξ(q, t)−1δ(q, t)

)2
)
dτ

=

√
1 + σ11(q, t)δ(q, t)′Ξ(q, t)−1δ(q, t)

π−(p−1)/22−(p−1)/2|Ξ(q, t)|1/2

× exp

(
−1

2

(
z′Ξ(q, t)−1z− (δ(q, t)′Ξ(q, t)−1z + ν(q, t))2

σ11(q, t)−1 + δ(q, t)′Ξ(q, t)−1δ(q, t)
− 2g(z; q, t)

))
×
(

1− Φ

(
0;

δ(q, t)′Ξ(q, t)−1z + ν(q, t)

σ11(q, t)−1 + δ(q, t)′Ξ(q, t)−1δ(q, t)
, (σ11(q, t)−1 + δ(q, t)′Ξ(q, t)−1δ(q, t))−1

))
.

where Φ(.;µ, σ2) denotes the distribution function of the normal distribution
with mean µ and variance σ2. Similarly,

I2(z)

√
1 + σ11(q, t)δ(q, t)′Ξ(q, t)−1δ(q, t)

π−(p−1)/22−(p−1)/2|Ξ(q, t)|1/2

× exp

(
−1

2

(
z′Ξ(q, t)−1z− (δ(q, t)′Ξ(q, t)−1z− ν(q, t))2

σ11(q, t)−1 + δ(q, t)′Ξ(q, t)−1δ(q, t)
+ 2g(z; q, t)

))
×
(

1− Φ

(
0;

δ(q, t)′Ξ(q, t)−1z− ν(q, t)

σ11(q, t)−1 + δ(q, t)′Ξ(q, t)−1δ(q, t)
, (σ11(q, t)−1 + δ(q, t)′Ξ(q, t)−1δ(q, t))−1

))
.
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Putting the last two expressions together and using the identities Φ(0;µ, σ2) =

Φ(−µ/σ) and 1− Φ(−x) = Φ(x) we get the statement of Theorem 3.1.
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