Lecture 2:

Mirror descent and online decision making

Sébastien Bubeck

Machine Learning and Optimization group, MSR AI

Research

< □ > < @ > < 注 > < 注 > ... 注

Recall that we are looking for a rule to select $p_t \in \Delta_n$ based on $\ell_1, \ldots, \ell_{t-1} \in [-1, 1]^n$, such that we can control the regret with respect to any comparator $q \in \Delta_n$:

$$\sum_{t=1}^{T} \langle \ell_t, p_t - q \rangle \, .$$

Recall that we are looking for a rule to select $p_t \in \Delta_n$ based on $\ell_1, \ldots, \ell_{t-1} \in [-1, 1]^n$, such that we can control the regret with respect to any comparator $q \in \Delta_n$:

$$\sum_{t=1}^T \langle \ell_t, p_t - q \rangle \, .$$

In the game-theoretic approach we saw that the *movement* of the algorithm, $\sum_{t=1}^{T} \|p_t - p_{t+1}\|_1$, was the key quantity to control.

Recall that we are looking for a rule to select $p_t \in \Delta_n$ based on $\ell_1, \ldots, \ell_{t-1} \in [-1, 1]^n$, such that we can control the regret with respect to any comparator $q \in \Delta_n$:

$$\sum_{t=1}^{T} \langle \ell_t, p_t - q \rangle \, .$$

In the game-theoretic approach we saw that the *movement* of the algorithm, $\sum_{t=1}^{T} ||p_t - p_{t+1}||_1$, was the key quantity to control. In fact the same is true in general up to an additional "1-lookahead" term:

$$\sum_{t=1}^T \langle \ell_t, p_t - q
angle \leq \sum_{t=1}^T \langle \ell_t, p_{t+1} - q
angle + \sum_{t=1}^T \|p_t - p_{t+1}\|_1 \,.$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

Recall that we are looking for a rule to select $p_t \in \Delta_n$ based on $\ell_1, \ldots, \ell_{t-1} \in [-1, 1]^n$, such that we can control the regret with respect to any comparator $q \in \Delta_n$:

$$\sum_{t=1}^{T} \langle \ell_t, p_t - q \rangle \, .$$

In the game-theoretic approach we saw that the *movement* of the algorithm, $\sum_{t=1}^{T} ||p_t - p_{t+1}||_1$, was the key quantity to control. In fact the same is true in general up to an additional "1-lookahead" term:

$$\sum_{t=1}^T \langle \ell_t, p_t - q
angle \leq \sum_{t=1}^T \langle \ell_t, p_{t+1} - q
angle + \sum_{t=1}^T \| p_t - p_{t+1} \|_1 \,.$$

In other words p_{t+1} (which can depend on ℓ_t) is trading off being "good" for ℓ_t , while at the same time remaining close to p_t .

This view of the problem is closely related to the following setting in *online algorithms*:

This view of the problem is closely related to the following setting in *online algorithms*:

• At each time step t the algorithm maintains a state $i_t \in [n]$.

This view of the problem is closely related to the following setting in *online algorithms*:

- At each time step t the algorithm maintains a state $i_t \in [n]$.
- ▶ Upon the observation of a loss function $\ell_t : [n] \to \mathbb{R}_+$ the algorithm can update the state to i_{t+1} .

This view of the problem is closely related to the following setting in *online algorithms*:

- At each time step t the algorithm maintains a state $i_t \in [n]$.
- ► Upon the observation of a loss function l_t : [n] → ℝ₊ the algorithm can update the state to i_{t+1}.
- ► The associated cost is composed of a service cost ℓ_t(i_{t+1}) and a movement cost d(i_t, i_{t+1}) (d is some underlying metric on [n]).

This view of the problem is closely related to the following setting in *online algorithms*:

- At each time step t the algorithm maintains a state $i_t \in [n]$.
- ► Upon the observation of a loss function l_t : [n] → ℝ₊ the algorithm can update the state to i_{t+1}.
- ► The associated cost is composed of a service cost ℓ_t(i_{t+1}) and a movement cost d(i_t, i_{t+1}) (d is some underlying metric on [n]).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• Typically interested in competitive ratio rather than regret.

This view of the problem is closely related to the following setting in *online algorithms*:

- At each time step t the algorithm maintains a state $i_t \in [n]$.
- ► Upon the observation of a loss function l_t : [n] → ℝ₊ the algorithm can update the state to i_{t+1}.
- ► The associated cost is composed of a service cost ℓ_t(i_{t+1}) and a movement cost d(i_t, i_{t+1}) (d is some underlying metric on [n]).
- Typically interested in competitive ratio rather than regret. **Connection:** If i_t is played at random from p_t , and consequent samplings are appropriately coupled, then the term we want to bound

$$\sum_{t=1}^{T} \langle \ell_t, p_{t+1} - q \rangle + \sum_{t=1}^{T} \| p_t - p_{t+1} \|_1,$$

æ

exactly corresponds to the sum of expected service cost and expected movement when the metric is trivial (i.e., $d \equiv 1$).

A natural algorithm to consider is gradient descent:

$$x_{t+1} = x_t - \eta \ell_t \,,$$

A natural algorithm to consider is gradient descent:

$$x_{t+1} = x_t - \eta \ell_t \,,$$

which can equivalently be viewed as

$$x_{t+1} = \operatorname*{argmin}_{x \in \mathbb{R}^n} \langle x, \ell_t \rangle + \frac{1}{2\eta} \|x - x_t\|_2^2.$$

A natural algorithm to consider is gradient descent:

$$x_{t+1} = x_t - \eta \ell_t \,,$$

which can equivalently be viewed as

$$x_{t+1} = \operatorname*{argmin}_{x \in \mathbb{R}^n} \langle x, \ell_t \rangle + \frac{1}{2\eta} \|x - x_t\|_2^2.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

This clearly does not seem adapted to our situation where we want to measure movement with respect to the ℓ_1 -norm.

A natural algorithm to consider is gradient descent:

$$x_{t+1} = x_t - \eta \ell_t \,,$$

which can equivalently be viewed as

$$x_{t+1} = \operatorname*{argmin}_{x \in \mathbb{R}^n} \langle x, \ell_t \rangle + \frac{1}{2\eta} \|x - x_t\|_2^2.$$

This clearly does not seem adapted to our situation where we want to measure movement with respect to the ℓ_1 -norm.

Side comment: another equivalent definition is as follows, say with $x_1 = 0$, $\sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i$

$$x_{t+1} = \operatorname*{argmin}_{x \in \mathbb{R}^n} \langle x, \sum_{s \le t} \ell_s \rangle + \frac{1}{2\eta} \|x\|_2^2 \, .$$

(日) (四) (문) (문) (문)

This view is called "Follow The Regularized Leader" (FTRL)

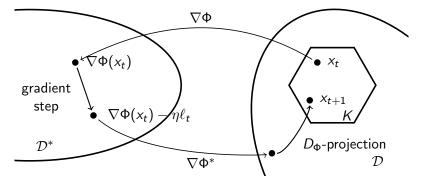
Mirror Descent (Nemirovski and Yudin 87)

Mirror Descent (Nemirovski and Yudin 87)

Mirror map/regularizer: convex function $\Phi : \mathcal{D} \supset \mathcal{K} \rightarrow \mathbb{R}$. Bregman divergence: $D_{\Phi}(x; y) = \Phi(x) - \Phi(y) - \nabla \Phi(y) \cdot (x - y)$. Note that $\nabla_x D_{\Phi}(x; y) = \nabla \Phi(x) - \nabla \Phi(y)$.

Mirror Descent (Nemirovski and Yudin 87)

Mirror map/regularizer: convex function $\Phi : \mathcal{D} \supset \mathcal{K} \rightarrow \mathbb{R}$. Bregman divergence: $D_{\Phi}(x; y) = \Phi(x) - \Phi(y) - \nabla \Phi(y) \cdot (x - y)$. Note that $\nabla_x D_{\Phi}(x; y) = \nabla \Phi(x) - \nabla \Phi(y)$.



Assume now a continuous time setting where the losses are revealed incrementally and the algorithm can respond instantaneously: the service cost is now $\int_{t\in\mathbb{R}_+} \ell(t)\cdot x(t)dt$ and the movement cost is $\int_{t\in\mathbb{R}_+} \|x'(t)\|_1 dt$.

Assume now a continuous time setting where the losses are revealed incrementally and the algorithm can respond instantaneously: the service cost is now $\int_{t\in\mathbb{R}_+} \ell(t)\cdot x(t)dt$ and the movement cost is $\int_{t\in\mathbb{R}_+} \|x'(t)\|_1 dt$.

Denote $N_{\mathcal{K}}(x) = \{\theta : \theta \cdot (y - x)\} \le 0, \ \forall y \in \mathcal{K}\}$ and recall that $x^* \in \operatorname*{argmin}_{x \in \mathcal{K}} f(x) \Leftrightarrow -\nabla f(x^*) \in N_{\mathcal{K}}(x^*)$

Assume now a continuous time setting where the losses are revealed incrementally and the algorithm can respond instantaneously: the service cost is now $\int_{t\in\mathbb{R}_+} \ell(t)\cdot x(t)dt$ and the movement cost is $\int_{t\in\mathbb{R}_+} \|x'(t)\|_1 dt$.

Denote $N_{\mathcal{K}}(x) = \{\theta : \theta \cdot (y - x)\} \le 0, \forall y \in \mathcal{K}\}$ and recall that $x^* \in \operatorname*{argmin}_{x \in \mathcal{K}} f(x) \Leftrightarrow -\nabla f(x^*) \in N_{\mathcal{K}}(x^*)$

$$x(t + \varepsilon) = \operatorname*{argmin}_{x \in K} D_{\Phi}(x, \nabla \Phi^*(\nabla \Phi(x(t)) - \varepsilon \eta \ell(t)))$$

Assume now a continuous time setting where the losses are revealed incrementally and the algorithm can respond instantaneously: the service cost is now $\int_{t\in\mathbb{R}_+} \ell(t)\cdot x(t)dt$ and the movement cost is $\int_{t\in\mathbb{R}_+} \|x'(t)\|_1 dt$.

Denote $N_{\mathcal{K}}(x) = \{\theta : \theta \cdot (y - x)\} \le 0, \forall y \in \mathcal{K}\}$ and recall that $x^* \in \operatorname*{argmin}_{x \in \mathcal{K}} f(x) \Leftrightarrow -\nabla f(x^*) \in N_{\mathcal{K}}(x^*)$

$$egin{aligned} & x(t+arepsilon) &= \operatorname*{argmin}_{x\in \mathcal{K}} D_{\Phi}(x,
abla \Phi^*(
abla \Phi(x(t)) - arepsilon \eta \ell(t))) \ & \Leftrightarrow
abla \Phi(x(t+arepsilon)) -
abla \Phi(x(t)) + arepsilon \eta \ell(t) \in -N_{\mathcal{K}}(x(t+arepsilon))) \end{aligned}$$

Assume now a continuous time setting where the losses are revealed incrementally and the algorithm can respond instantaneously: the service cost is now $\int_{t\in\mathbb{R}_+} \ell(t)\cdot x(t)dt$ and the movement cost is $\int_{t\in\mathbb{R}_+} \|x'(t)\|_1 dt$.

Denote $N_{\mathcal{K}}(x) = \{\theta : \theta \cdot (y - x)\} \le 0, \forall y \in \mathcal{K}\}$ and recall that $x^* \in \operatorname*{argmin}_{x \in \mathcal{K}} f(x) \Leftrightarrow -\nabla f(x^*) \in N_{\mathcal{K}}(x^*)$

$$\begin{split} x(t+\varepsilon) &= \operatorname*{argmin}_{x\in\mathcal{K}} D_{\Phi}(x,\nabla\Phi^*(\nabla\Phi(x(t))-\varepsilon\eta\ell(t))) \\ \Leftrightarrow \nabla\Phi(x(t+\varepsilon)) - \nabla\Phi(x(t)) + \varepsilon\eta\ell(t) \in -N_{\mathcal{K}}(x(t+\varepsilon)) \\ \Leftrightarrow \nabla^2\Phi(x(t))x'(t) \in -\eta\ell(t) - N_{\mathcal{K}}(x(t)) \end{split}$$

Theorem (BCLLM17)

The above differential inclusion admits a (unique) solution $x : \mathbb{R}_+ \to \mathcal{X}$ provided that K is a compact convex set, Φ is strongly convex, and $\nabla^2 \Phi$ and ℓ are Lipschitz.

$$abla^2 \Phi(x(t)) x'(t) = -\eta \ell(t) - \lambda(t), \ \lambda(t) \in N_{\mathcal{K}}(x(t))$$

$$abla^2 \Phi(x(t)) x'(t) = -\eta \ell(t) - \lambda(t), \ \lambda(t) \in N_{\mathcal{K}}(x(t))$$

Recall $D_{\Phi}(y; x) = \Phi(y) - \Phi(x) - \nabla \Phi(x) \cdot (y - x)$,

$$\nabla^2 \Phi(x(t)) x'(t) = -\eta \ell(t) - \lambda(t), \ \lambda(t) \in N_K(x(t))$$

Recall $D_{\Phi}(y; x) = \Phi(y) - \Phi(x) - \nabla \Phi(x) \cdot (y - x),$
 $\partial_t D_{\Phi}(y; x(t)) = -\nabla^2 \Phi(x(t)) x'(t) \cdot (y - x(t))$
 $= (\eta \ell(t) + \lambda(t)) \cdot (y - x(t))$

$$\leq \eta \ell(t) \cdot (y - x(t))$$

$$\nabla^{2}\Phi(x(t))x'(t) = -\eta\ell(t) - \lambda(t), \ \lambda(t) \in N_{\mathcal{K}}(x(t))$$

Recall $D_{\Phi}(y;x) = \Phi(y) - \Phi(x) - \nabla\Phi(x) \cdot (y-x),$
 $\partial_{t}D_{\Phi}(y;x(t)) = -\nabla^{2}\Phi(x(t))x'(t) \cdot (y-x(t))$
 $= (\eta\ell(t) + \lambda(t)) \cdot (y-x(t))$

$$= (\eta \ell(t) + \lambda(t)) \cdot (y - x(t))$$

$$\leq \eta \ell(t) \cdot (y - x(t))$$

Lemma

The mirror descent path $(x(t))_{t\geq 0}$ satisfies for any comparator point y,

$$\int \ell(t) \cdot (x(t) - y) dt \leq \frac{D_{\Phi}(y; x(0))}{\eta}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

٠

$$\nabla^2 \Phi(x(t))x'(t) = -\eta \ell(t) - \lambda(t), \ \lambda(t) \in N_K(x(t))$$

Recall $D_{\Phi}(y; x) = \Phi(y) - \Phi(x) - \nabla \Phi(x) \cdot (y - x),$
 $\partial_t D_{\Phi}(y; x(t)) = -\nabla^2 \Phi(x(t))x'(t) \cdot (y - x(t))$
 $= (\eta \ell(t) + \lambda(t)) \cdot (y - x(t))$

The mirror descent path $(x(t))_{t\geq 0}$ satisfies for any comparator point y,

$$\int \ell(t) \cdot (x(t) - y) dt \leq \frac{D_{\Phi}(y; x(0))}{\eta}$$

 $\leq \eta \ell(t) \cdot (y - x(t))$

Thus to control the regret it only remains to bound the movement $\cot \int_{t \in \mathbb{R}_+} ||x'(t)||_1 dt$ (recall that this continuous time setting is only valid for the 1-lookahead setting, i.e., MTS).

How to control $||x'(t)||_1 = ||(\nabla^2 \Phi(x(t)))^{-1}(\eta \ell(t) + \lambda(t))||_1$? A particularly pleasant inequality would be to relate this to say $\eta \ell(t) \cdot x(t)$, in which case one would get a final regret bound of the form (up to a multiplicative factor $1/(1 - \eta)$):

$$\frac{D_{\Phi}(y;x(0))}{\eta}+\eta L^*\,.$$

How to control $||x'(t)||_1 = ||(\nabla^2 \Phi(x(t)))^{-1}(\eta \ell(t) + \lambda(t))||_1$? A particularly pleasant inequality would be to relate this to say $\eta \ell(t) \cdot x(t)$, in which case one would get a final regret bound of the form (up to a multiplicative factor $1/(1 - \eta)$):

$$\frac{D_{\Phi}(y;x(0))}{\eta} + \eta L^* \,.$$

Ignore for a moment the Lagrange multiplier $\lambda(t)$ and assume that $\Phi(x) = \sum_{i=1}^{n} \varphi(x_i)$. We want to relate $\sum_{i=1}^{n} \ell_i(t)/\varphi''(x_i(t))$ to $\sum_{i=1}^{n} \ell_i(t)x_i(t)$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

How to control $||x'(t)||_1 = ||(\nabla^2 \Phi(x(t)))^{-1}(\eta \ell(t) + \lambda(t))||_1$? A particularly pleasant inequality would be to relate this to say $\eta \ell(t) \cdot x(t)$, in which case one would get a final regret bound of the form (up to a multiplicative factor $1/(1 - \eta)$):

$$\frac{D_{\Phi}(y;x(0))}{\eta} + \eta L^* \,.$$

Ignore for a moment the Lagrange multiplier $\lambda(t)$ and assume that $\Phi(x) = \sum_{i=1}^{n} \varphi(x_i)$. We want to relate $\sum_{i=1}^{n} \ell_i(t)/\varphi''(x_i(t))$ to $\sum_{i=1}^{n} \ell_i(t)x_i(t)$. Making them equal gives $\Phi(x) = \sum_i x_i \log x_i$ with corresponding dynamics:

$$x_i'(t) = -\eta x_i(t)(\ell_i(t) + \mu(t)).$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

In particular $||x'(t)||_1 \leq 2\eta \ell(t) \cdot x(t)$.

How to control $||x'(t)||_1 = ||(\nabla^2 \Phi(x(t)))^{-1}(\eta \ell(t) + \lambda(t))||_1$? A particularly pleasant inequality would be to relate this to say $\eta \ell(t) \cdot x(t)$, in which case one would get a final regret bound of the form (up to a multiplicative factor $1/(1 - \eta)$):

$$\frac{D_{\Phi}(y;x(0))}{\eta} + \eta L^* \,.$$

Ignore for a moment the Lagrange multiplier $\lambda(t)$ and assume that $\Phi(x) = \sum_{i=1}^{n} \varphi(x_i)$. We want to relate $\sum_{i=1}^{n} \ell_i(t)/\varphi''(x_i(t))$ to $\sum_{i=1}^{n} \ell_i(t)x_i(t)$. Making them equal gives $\Phi(x) = \sum_i x_i \log x_i$ with corresponding dynamics:

$$x_i'(t) = -\eta x_i(t)(\ell_i(t) + \mu(t)).$$

In particular $||x'(t)||_1 \le 2\eta\ell(t) \cdot x(t)$. We note that this algorithm is exactly a continuous time version of

the MW studied at the beginning of the first lecture.

The more classical discrete-time algorithm and analysis Ignoring the Lagrangian and assuming $\ell'(t) = 0$ one has

 $\partial_t^2 D_{\Phi}(y; x(t)) = \nabla^2 \Phi(x(t))[x'(t), x'(t)] = \eta^2 (\nabla^2 \Phi(x(t)))^{-1}[\ell(t), \ell(t)].$

The more classical discrete-time algorithm and analysis Ignoring the Lagrangian and assuming $\ell'(t) = 0$ one has

$$\partial_t^2 D_{\Phi}(y; x(t)) = \nabla^2 \Phi(x(t))[x'(t), x'(t)] = \eta^2 (\nabla^2 \Phi(x(t)))^{-1}[\ell(t), \ell(t)]$$

Thus provided that the Hessian of Φ is well-conditioned on the scale of a mirror step, one expects a discrete time analysis to give a regret bound of the form (with the notation $\|h\|_{x} = \sqrt{\nabla^{2}\Phi(x)[h,h]}$)

$$\frac{D_{\Phi}(y;x_1)}{\eta} + \eta \sum_{t=1}^{T} \|\ell_t\|_{x_t,*}^2.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

The more classical discrete-time algorithm and analysis Ignoring the Lagrangian and assuming $\ell'(t) = 0$ one has

$$\partial_t^2 D_{\Phi}(y; x(t)) = \nabla^2 \Phi(x(t))[x'(t), x'(t)] = \eta^2 (\nabla^2 \Phi(x(t)))^{-1}[\ell(t), \ell(t)]$$

Thus provided that the Hessian of Φ is well-conditioned on the scale of a mirror step, one expects a discrete time analysis to give a regret bound of the form (with the notation $\|h\|_{x} = \sqrt{\nabla^{2}\Phi(x)[h,h]}$)

$$\frac{D_{\Phi}(y;x_1)}{\eta} + \eta \sum_{t=1}^{T} \|\ell_t\|_{x_t,*}^2.$$

Theorem

The above is valid with a factor 2/c on the second term, provided that the following implication holds true for any $y_t \in \mathbb{R}^n$,

$$abla \Phi(y_t) \in [
abla \Phi(x_t),
abla \Phi(x_t) - \eta \ell_t] \Rightarrow
abla^2 \Phi(y_t) \succeq c
abla^2 \Phi(x_t).$$

For FTRL one instead needs this for any $y_t \in [x_t, x_{t+1}]$.

Let $\Phi(x) = \sum_{i=1}^{n} (x_i \log x_i - x_i)$ and $K = \Delta_n$. One has $\nabla \Phi(x) = \log(x_i)$ and thus the update step in the dual looks like:

 $\nabla \Phi(y_t) = \nabla \Phi(x_t) - \eta \ell_t \Leftrightarrow y_{i,t} = x_{i,t} \exp(-\eta \ell_t(i)).$

Let $\Phi(x) = \sum_{i=1}^{n} (x_i \log x_i - x_i)$ and $K = \Delta_n$. One has $\nabla \Phi(x) = \log(x_i)$ and thus the update step in the dual looks like:

$$\nabla \Phi(y_t) = \nabla \Phi(x_t) - \eta \ell_t \Leftrightarrow y_{i,t} = x_{i,t} \exp(-\eta \ell_t(i)).$$

Furthermore the projection step to K amounts simply to a renormalization. Indeed $\nabla_x D_{\Phi}(x, y) = \sum_{i=1}^n \log(x_i/y_i)$ and thus

$$p = \operatorname*{argmin}_{x \in \Delta_n} D_{\Phi}(x, y) \Leftrightarrow \exists \mu \in \mathbb{R} : \log(p_i/y_i) = \mu, \forall i \in [n].$$

Let $\Phi(x) = \sum_{i=1}^{n} (x_i \log x_i - x_i)$ and $K = \Delta_n$. One has $\nabla \Phi(x) = \log(x_i)$ and thus the update step in the dual looks like:

$$\nabla \Phi(y_t) = \nabla \Phi(x_t) - \eta \ell_t \Leftrightarrow y_{i,t} = x_{i,t} \exp(-\eta \ell_t(i)).$$

Furthermore the projection step to K amounts simply to a renormalization. Indeed $\nabla_x D_{\Phi}(x, y) = \sum_{i=1}^n \log(x_i/y_i)$ and thus

$$p = \operatorname*{argmin}_{x \in \Delta_n} D_{\Phi}(x, y) \Leftrightarrow \exists \mu \in \mathbb{R} : \log(p_i/y_i) = \mu, \forall i \in [n].$$

The analysis considers the potential $D_{\Phi}(i^*, p_t) = -\log(p_t(i^*))$, which in fact exactly corresponds to what we did in the second slide of the first lecture.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Let $\Phi(x) = \sum_{i=1}^{n} (x_i \log x_i - x_i)$ and $K = \Delta_n$. One has $\nabla \Phi(x) = \log(x_i)$ and thus the update step in the dual looks like:

$$\nabla \Phi(y_t) = \nabla \Phi(x_t) - \eta \ell_t \Leftrightarrow y_{i,t} = x_{i,t} \exp(-\eta \ell_t(i)).$$

Furthermore the projection step to K amounts simply to a renormalization. Indeed $\nabla_x D_{\Phi}(x, y) = \sum_{i=1}^n \log(x_i/y_i)$ and thus

$$p = \operatorname*{argmin}_{x \in \Delta_n} D_{\Phi}(x, y) \Leftrightarrow \exists \mu \in \mathbb{R} : \log(p_i/y_i) = \mu, \forall i \in [n].$$

The analysis considers the potential $D_{\Phi}(i^*, p_t) = -\log(p_t(i^*))$, which in fact exactly corresponds to what we did in the second slide of the first lecture.

Note also that the well-conditioning comes for free when $\ell_t(i) \ge 0$, and in general one just needs $\|\eta \ell_t\|_{\infty}$ to be O(1).

Propensity score for the bandit game Key idea: replace ℓ_t by $\tilde{\ell}_t$ such that $\mathbb{E}_{i_t \sim p_t} \tilde{\ell}_t = \ell_t$. The propensity score normalized estimator is defined by:

$$\widetilde{\ell}_t(i) = \frac{\ell_t(i_t)}{p_t(i)} \mathbb{1}\{i = i_t\}.$$

Propensity score for the bandit game _

Key idea: replace ℓ_t by $\tilde{\ell}_t$ such that $\mathbb{E}_{i_t \sim p_t} \tilde{\ell}_t = \ell_t$. The propensity score normalized estimator is defined by:

$$\widetilde{\ell}_t(i) = \frac{\ell_t(i_t)}{p_t(i)} \mathbb{1}\{i = i_t\}.$$

The Exp3 strategy corresponds to doing MW with those estimators. Its regret is upper bounded by,

$$\mathbb{E}\sum_{t=1}^{T} \langle p_t - q, \ell_t \rangle = \mathbb{E}\sum_{t=1}^{T} \langle p_t - q, \widetilde{\ell}_t \rangle \leq \frac{\log(n)}{\eta} + \eta \mathbb{E}\sum_t \|\widetilde{\ell}_t\|_{p_{t,*}}^2,$$

where $\|h\|_{p,*}^2 = \sum_{i=1}^n p(i)h(i)^2.$

Propensity score for the bandit game _

Key idea: replace ℓ_t by $\tilde{\ell}_t$ such that $\mathbb{E}_{i_t \sim p_t} \tilde{\ell}_t = \ell_t$. The propensity score normalized estimator is defined by:

$$\widetilde{\ell}_t(i) = \frac{\ell_t(i_t)}{p_t(i)} \mathbb{1}\{i = i_t\}.$$

The Exp3 strategy corresponds to doing MW with those estimators. Its regret is upper bounded by,

$$\mathbb{E}\sum_{t=1}^{T} \langle p_t - q, \ell_t \rangle = \mathbb{E}\sum_{t=1}^{T} \langle p_t - q, \widetilde{\ell}_t \rangle \leq \frac{\log(n)}{\eta} + \eta \mathbb{E}\sum_t \|\widetilde{\ell}_t\|_{p_t,*}^2,$$

where $||h||_{p,*}^2 = \sum_{i=1}^n p(i)h(i)^2$. Amazingly the variance term is automatically controlled:

$$\mathbb{E}_{i_t \sim p_t} \sum_{i=1}^n p_t(i) \widetilde{\ell}_t(i)^2 \leq \mathbb{E}_{i_t \sim p_t} \sum_{i=1}^n \frac{\mathbb{1}\{i=i_t\}}{p_t(i_t)} = n.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Propensity score for the bandit game _

Key idea: replace ℓ_t by $\tilde{\ell}_t$ such that $\mathbb{E}_{i_t \sim p_t} \tilde{\ell}_t = \ell_t$. The propensity score normalized estimator is defined by:

$$\widetilde{\ell}_t(i) = \frac{\ell_t(i_t)}{p_t(i)} \mathbb{1}\{i = i_t\}.$$

The Exp3 strategy corresponds to doing MW with those estimators. Its regret is upper bounded by,

$$\mathbb{E}\sum_{t=1}^{T} \langle p_t - q, \ell_t \rangle = \mathbb{E}\sum_{t=1}^{T} \langle p_t - q, \widetilde{\ell}_t \rangle \leq \frac{\log(n)}{\eta} + \eta \mathbb{E}\sum_t \|\widetilde{\ell}_t\|_{p_t,*}^2,$$

where $||h||_{p,*}^2 = \sum_{i=1}^n p(i)h(i)^2$. Amazingly the variance term is automatically controlled:

$$\mathbb{E}_{i_t \sim p_t} \sum_{i=1}^n p_t(i) \widetilde{\ell}_t(i)^2 \leq \mathbb{E}_{i_t \sim p_t} \sum_{i=1}^n \frac{\mathbb{1}\{i=i_t\}}{p_t(i_t)} = n.$$

Thus with $\eta = \sqrt{n \log(n)/T}$ one gets $R_T \leq 2\sqrt{Tn \log(n)}$.

Simple extensions

• Removing the extraneous $\sqrt{\log(n)}$

- Contextual bandit
- Bandit with side information
- Different scaling per actions

More subtle refinements

- Sparse bandit
- Variance bounds
- First order bounds
- Best of both worlds
- Impossibility of \sqrt{T} with switching cost

◆□▶ ◆舂▶ ◆注≯ ◆注≯ □注□

- Impossibility of oracle models
- Knapsack bandits