
Lecture 2:
Mirror descent and online decision making

Sébastien Bubeck
Machine Learning and Optimization group, MSR AI



Stability as an algorithmic guiding principle

Recall that we are looking for a rule to select pt ∈ ∆n based on
`1, . . . , `t−1 ∈ [−1, 1]n, such that we can control the regret with
respect to any comparator q ∈ ∆n:

T∑
t=1

〈`t , pt − q〉 .

In the game-theoretic approach we saw that the movement of the
algorithm,

∑T
t=1 ‖pt − pt+1‖1, was the key quantity to control. In

fact the same is true in general up to an additional “1-lookahead”
term:

T∑
t=1

〈`t , pt − q〉 ≤
T∑
t=1

〈`t , pt+1 − q〉+
T∑
t=1

‖pt − pt+1‖1 .

In other words pt+1 (which can depend on `t) is trading off being
“good” for `t , while at the same time remaining close to pt .



Stability as an algorithmic guiding principle

Recall that we are looking for a rule to select pt ∈ ∆n based on
`1, . . . , `t−1 ∈ [−1, 1]n, such that we can control the regret with
respect to any comparator q ∈ ∆n:

T∑
t=1

〈`t , pt − q〉 .

In the game-theoretic approach we saw that the movement of the
algorithm,

∑T
t=1 ‖pt − pt+1‖1, was the key quantity to control.

In
fact the same is true in general up to an additional “1-lookahead”
term:

T∑
t=1

〈`t , pt − q〉 ≤
T∑
t=1

〈`t , pt+1 − q〉+
T∑
t=1

‖pt − pt+1‖1 .

In other words pt+1 (which can depend on `t) is trading off being
“good” for `t , while at the same time remaining close to pt .



Stability as an algorithmic guiding principle

Recall that we are looking for a rule to select pt ∈ ∆n based on
`1, . . . , `t−1 ∈ [−1, 1]n, such that we can control the regret with
respect to any comparator q ∈ ∆n:

T∑
t=1

〈`t , pt − q〉 .

In the game-theoretic approach we saw that the movement of the
algorithm,

∑T
t=1 ‖pt − pt+1‖1, was the key quantity to control. In

fact the same is true in general up to an additional “1-lookahead”
term:

T∑
t=1

〈`t , pt − q〉 ≤
T∑
t=1

〈`t , pt+1 − q〉+
T∑
t=1

‖pt − pt+1‖1 .

In other words pt+1 (which can depend on `t) is trading off being
“good” for `t , while at the same time remaining close to pt .



Stability as an algorithmic guiding principle

Recall that we are looking for a rule to select pt ∈ ∆n based on
`1, . . . , `t−1 ∈ [−1, 1]n, such that we can control the regret with
respect to any comparator q ∈ ∆n:

T∑
t=1

〈`t , pt − q〉 .

In the game-theoretic approach we saw that the movement of the
algorithm,

∑T
t=1 ‖pt − pt+1‖1, was the key quantity to control. In

fact the same is true in general up to an additional “1-lookahead”
term:

T∑
t=1

〈`t , pt − q〉 ≤
T∑
t=1

〈`t , pt+1 − q〉+
T∑
t=1

‖pt − pt+1‖1 .

In other words pt+1 (which can depend on `t) is trading off being
“good” for `t , while at the same time remaining close to pt .



Metrical task systems [Borodin, Linial, Saks 1982]
This view of the problem is closely related to the following setting
in online algorithms:

I At each time step t the algorithm maintains a state it ∈ [n].

I Upon the observation of a loss function `t : [n]→ R+ the
algorithm can update the state to it+1.

I The associated cost is composed of a service cost `t(it+1) and
a movement cost d(it , it+1) (d is some underlying metric on
[n]).

I Typically interested in competitive ratio rather than regret.

Connection: If it is played at random from pt , and consequent
samplings are appropriately coupled, then the term we want to
bound

T∑
t=1

〈`t , pt+1 − q〉+
T∑
t=1

‖pt − pt+1‖1 ,

exactly corresponds to the sum of expected service cost and
expected movement when the metric is trivial (i.e., d ≡ 1).



Metrical task systems [Borodin, Linial, Saks 1982]
This view of the problem is closely related to the following setting
in online algorithms:

I At each time step t the algorithm maintains a state it ∈ [n].

I Upon the observation of a loss function `t : [n]→ R+ the
algorithm can update the state to it+1.

I The associated cost is composed of a service cost `t(it+1) and
a movement cost d(it , it+1) (d is some underlying metric on
[n]).

I Typically interested in competitive ratio rather than regret.

Connection: If it is played at random from pt , and consequent
samplings are appropriately coupled, then the term we want to
bound

T∑
t=1

〈`t , pt+1 − q〉+
T∑
t=1

‖pt − pt+1‖1 ,

exactly corresponds to the sum of expected service cost and
expected movement when the metric is trivial (i.e., d ≡ 1).



Metrical task systems [Borodin, Linial, Saks 1982]
This view of the problem is closely related to the following setting
in online algorithms:

I At each time step t the algorithm maintains a state it ∈ [n].

I Upon the observation of a loss function `t : [n]→ R+ the
algorithm can update the state to it+1.

I The associated cost is composed of a service cost `t(it+1) and
a movement cost d(it , it+1) (d is some underlying metric on
[n]).

I Typically interested in competitive ratio rather than regret.

Connection: If it is played at random from pt , and consequent
samplings are appropriately coupled, then the term we want to
bound

T∑
t=1

〈`t , pt+1 − q〉+
T∑
t=1

‖pt − pt+1‖1 ,

exactly corresponds to the sum of expected service cost and
expected movement when the metric is trivial (i.e., d ≡ 1).



Metrical task systems [Borodin, Linial, Saks 1982]
This view of the problem is closely related to the following setting
in online algorithms:

I At each time step t the algorithm maintains a state it ∈ [n].

I Upon the observation of a loss function `t : [n]→ R+ the
algorithm can update the state to it+1.

I The associated cost is composed of a service cost `t(it+1) and
a movement cost d(it , it+1) (d is some underlying metric on
[n]).

I Typically interested in competitive ratio rather than regret.

Connection: If it is played at random from pt , and consequent
samplings are appropriately coupled, then the term we want to
bound

T∑
t=1

〈`t , pt+1 − q〉+
T∑
t=1

‖pt − pt+1‖1 ,

exactly corresponds to the sum of expected service cost and
expected movement when the metric is trivial (i.e., d ≡ 1).



Metrical task systems [Borodin, Linial, Saks 1982]
This view of the problem is closely related to the following setting
in online algorithms:

I At each time step t the algorithm maintains a state it ∈ [n].

I Upon the observation of a loss function `t : [n]→ R+ the
algorithm can update the state to it+1.

I The associated cost is composed of a service cost `t(it+1) and
a movement cost d(it , it+1) (d is some underlying metric on
[n]).

I Typically interested in competitive ratio rather than regret.

Connection: If it is played at random from pt , and consequent
samplings are appropriately coupled, then the term we want to
bound

T∑
t=1

〈`t , pt+1 − q〉+
T∑
t=1

‖pt − pt+1‖1 ,

exactly corresponds to the sum of expected service cost and
expected movement when the metric is trivial (i.e., d ≡ 1).



Metrical task systems [Borodin, Linial, Saks 1982]
This view of the problem is closely related to the following setting
in online algorithms:

I At each time step t the algorithm maintains a state it ∈ [n].

I Upon the observation of a loss function `t : [n]→ R+ the
algorithm can update the state to it+1.

I The associated cost is composed of a service cost `t(it+1) and
a movement cost d(it , it+1) (d is some underlying metric on
[n]).

I Typically interested in competitive ratio rather than regret.

Connection: If it is played at random from pt , and consequent
samplings are appropriately coupled, then the term we want to
bound

T∑
t=1

〈`t , pt+1 − q〉+
T∑
t=1

‖pt − pt+1‖1 ,

exactly corresponds to the sum of expected service cost and
expected movement when the metric is trivial (i.e., d ≡ 1).



Gradient descent/regularization approach

A natural algorithm to consider is gradient descent:

xt+1 = xt − η`t ,

which can equivalently be viewed as

xt+1 = argmin
x∈Rn

〈x , `t〉+
1

2η
‖x − xt‖2

2 .

This clearly does not seem adapted to our situation where we
want to measure movement with respect to the `1-norm.

Side comment: another equivalent definition is as follows, say with
x1 = 0,

xt+1 = argmin
x∈Rn

〈x ,
∑
s≤t

`s〉+
1

2η
‖x‖2

2 .

This view is called “Follow The Regularized Leader” (FTRL)



Gradient descent/regularization approach

A natural algorithm to consider is gradient descent:

xt+1 = xt − η`t ,

which can equivalently be viewed as

xt+1 = argmin
x∈Rn

〈x , `t〉+
1

2η
‖x − xt‖2

2 .

This clearly does not seem adapted to our situation where we
want to measure movement with respect to the `1-norm.

Side comment: another equivalent definition is as follows, say with
x1 = 0,

xt+1 = argmin
x∈Rn

〈x ,
∑
s≤t

`s〉+
1

2η
‖x‖2

2 .

This view is called “Follow The Regularized Leader” (FTRL)



Gradient descent/regularization approach

A natural algorithm to consider is gradient descent:

xt+1 = xt − η`t ,

which can equivalently be viewed as

xt+1 = argmin
x∈Rn

〈x , `t〉+
1

2η
‖x − xt‖2

2 .

This clearly does not seem adapted to our situation where we
want to measure movement with respect to the `1-norm.

Side comment: another equivalent definition is as follows, say with
x1 = 0,

xt+1 = argmin
x∈Rn

〈x ,
∑
s≤t

`s〉+
1

2η
‖x‖2

2 .

This view is called “Follow The Regularized Leader” (FTRL)



Gradient descent/regularization approach

A natural algorithm to consider is gradient descent:

xt+1 = xt − η`t ,

which can equivalently be viewed as

xt+1 = argmin
x∈Rn

〈x , `t〉+
1

2η
‖x − xt‖2

2 .

This clearly does not seem adapted to our situation where we
want to measure movement with respect to the `1-norm.

Side comment: another equivalent definition is as follows, say with
x1 = 0,

xt+1 = argmin
x∈Rn

〈x ,
∑
s≤t

`s〉+
1

2η
‖x‖2

2 .

This view is called “Follow The Regularized Leader” (FTRL)



Mirror Descent (Nemirovski and Yudin 87)

Mirror map/regularizer: convex function Φ : D ⊃ K → R.
Bregman divergence: DΦ(x ; y) = Φ(x)− Φ(y)−∇Φ(y) · (x − y).
Note that ∇xDΦ(x ; y) = ∇Φ(x)−∇Φ(y).

D
D∗

K

xt

xt+1

DΦ-projection

∇Φ(xt)

∇Φ(xt)− η`t

gradient
step

∇Φ

∇Φ∗



Mirror Descent (Nemirovski and Yudin 87)

Mirror map/regularizer: convex function Φ : D ⊃ K → R.
Bregman divergence: DΦ(x ; y) = Φ(x)− Φ(y)−∇Φ(y) · (x − y).
Note that ∇xDΦ(x ; y) = ∇Φ(x)−∇Φ(y).

D
D∗

K

xt

xt+1

DΦ-projection

∇Φ(xt)

∇Φ(xt)− η`t

gradient
step

∇Φ

∇Φ∗



Mirror Descent (Nemirovski and Yudin 87)

Mirror map/regularizer: convex function Φ : D ⊃ K → R.
Bregman divergence: DΦ(x ; y) = Φ(x)− Φ(y)−∇Φ(y) · (x − y).
Note that ∇xDΦ(x ; y) = ∇Φ(x)−∇Φ(y).

D
D∗

K

xt

xt+1

DΦ-projection

∇Φ(xt)

∇Φ(xt)− η`t

gradient
step

∇Φ

∇Φ∗



Continuous-time mirror descent
Assume now a continuous time setting where the losses are
revealed incrementally and the algorithm can respond
instantaneously: the service cost is now

∫
t∈R+

`(t) · x(t)dt and the

movement cost is
∫
t∈R+

‖x ′(t)‖1dt.

Denote NK (x) = {θ : θ · (y − x)〉 ≤ 0, ∀y ∈ K} and recall that

x∗ ∈ argmin
x∈K

f (x)⇔ −∇f (x∗) ∈ NK (x∗)

x(t + ε) = argmin
x∈K

DΦ(x ,∇Φ∗(∇Φ(x(t))− εη`(t)))

⇔ ∇Φ(x(t + ε))−∇Φ(x(t)) + εη`(t) ∈ −NK (x(t + ε))

⇔ ∇2Φ(x(t))x ′(t) ∈ −η`(t)− NK (x(t))

Theorem (BCLLM17)

The above differential inclusion admits a (unique) solution
x : R+ → X provided that K is a compact convex set, Φ is
strongly convex, and ∇2Φ and ` are Lipschitz.



Continuous-time mirror descent
Assume now a continuous time setting where the losses are
revealed incrementally and the algorithm can respond
instantaneously: the service cost is now

∫
t∈R+

`(t) · x(t)dt and the

movement cost is
∫
t∈R+

‖x ′(t)‖1dt.

Denote NK (x) = {θ : θ · (y − x)〉 ≤ 0, ∀y ∈ K} and recall that

x∗ ∈ argmin
x∈K

f (x)⇔ −∇f (x∗) ∈ NK (x∗)

x(t + ε) = argmin
x∈K

DΦ(x ,∇Φ∗(∇Φ(x(t))− εη`(t)))

⇔ ∇Φ(x(t + ε))−∇Φ(x(t)) + εη`(t) ∈ −NK (x(t + ε))

⇔ ∇2Φ(x(t))x ′(t) ∈ −η`(t)− NK (x(t))

Theorem (BCLLM17)

The above differential inclusion admits a (unique) solution
x : R+ → X provided that K is a compact convex set, Φ is
strongly convex, and ∇2Φ and ` are Lipschitz.



Continuous-time mirror descent
Assume now a continuous time setting where the losses are
revealed incrementally and the algorithm can respond
instantaneously: the service cost is now

∫
t∈R+

`(t) · x(t)dt and the

movement cost is
∫
t∈R+

‖x ′(t)‖1dt.

Denote NK (x) = {θ : θ · (y − x)〉 ≤ 0, ∀y ∈ K} and recall that

x∗ ∈ argmin
x∈K

f (x)⇔ −∇f (x∗) ∈ NK (x∗)

x(t + ε) = argmin
x∈K

DΦ(x ,∇Φ∗(∇Φ(x(t))− εη`(t)))

⇔ ∇Φ(x(t + ε))−∇Φ(x(t)) + εη`(t) ∈ −NK (x(t + ε))

⇔ ∇2Φ(x(t))x ′(t) ∈ −η`(t)− NK (x(t))

Theorem (BCLLM17)

The above differential inclusion admits a (unique) solution
x : R+ → X provided that K is a compact convex set, Φ is
strongly convex, and ∇2Φ and ` are Lipschitz.



Continuous-time mirror descent
Assume now a continuous time setting where the losses are
revealed incrementally and the algorithm can respond
instantaneously: the service cost is now

∫
t∈R+

`(t) · x(t)dt and the

movement cost is
∫
t∈R+

‖x ′(t)‖1dt.

Denote NK (x) = {θ : θ · (y − x)〉 ≤ 0, ∀y ∈ K} and recall that

x∗ ∈ argmin
x∈K

f (x)⇔ −∇f (x∗) ∈ NK (x∗)

x(t + ε) = argmin
x∈K

DΦ(x ,∇Φ∗(∇Φ(x(t))− εη`(t)))

⇔ ∇Φ(x(t + ε))−∇Φ(x(t)) + εη`(t) ∈ −NK (x(t + ε))

⇔ ∇2Φ(x(t))x ′(t) ∈ −η`(t)− NK (x(t))

Theorem (BCLLM17)

The above differential inclusion admits a (unique) solution
x : R+ → X provided that K is a compact convex set, Φ is
strongly convex, and ∇2Φ and ` are Lipschitz.



Continuous-time mirror descent
Assume now a continuous time setting where the losses are
revealed incrementally and the algorithm can respond
instantaneously: the service cost is now

∫
t∈R+

`(t) · x(t)dt and the

movement cost is
∫
t∈R+

‖x ′(t)‖1dt.

Denote NK (x) = {θ : θ · (y − x)〉 ≤ 0, ∀y ∈ K} and recall that

x∗ ∈ argmin
x∈K

f (x)⇔ −∇f (x∗) ∈ NK (x∗)

x(t + ε) = argmin
x∈K

DΦ(x ,∇Φ∗(∇Φ(x(t))− εη`(t)))

⇔ ∇Φ(x(t + ε))−∇Φ(x(t)) + εη`(t) ∈ −NK (x(t + ε))

⇔ ∇2Φ(x(t))x ′(t) ∈ −η`(t)− NK (x(t))

Theorem (BCLLM17)

The above differential inclusion admits a (unique) solution
x : R+ → X provided that K is a compact convex set, Φ is
strongly convex, and ∇2Φ and ` are Lipschitz.



The basic calculation
∇2Φ(x(t))x ′(t) = −η`(t)− λ(t), λ(t) ∈ NK (x(t))

Recall DΦ(y ; x) = Φ(y)− Φ(x)−∇Φ(x) · (y − x),

∂tDΦ(y ; x(t)) = −∇2Φ(x(t))x ′(t) · (y − x(t))

= (η`(t) + λ(t)) · (y − x(t))

≤ η`(t) · (y − x(t))

Lemma
The mirror descent path (x(t))t≥0 satisfies for any comparator
point y , ∫

`(t) · (x(t)− y)dt ≤ DΦ(y ; x(0))

η
.

Thus to control the regret it only remains to bound the movement
cost

∫
t∈R+

‖x ′(t)‖1dt (recall that this continuous time setting is

only valid for the 1-lookahead setting, i.e., MTS).



The basic calculation
∇2Φ(x(t))x ′(t) = −η`(t)− λ(t), λ(t) ∈ NK (x(t))

Recall DΦ(y ; x) = Φ(y)− Φ(x)−∇Φ(x) · (y − x),

∂tDΦ(y ; x(t)) = −∇2Φ(x(t))x ′(t) · (y − x(t))

= (η`(t) + λ(t)) · (y − x(t))

≤ η`(t) · (y − x(t))

Lemma
The mirror descent path (x(t))t≥0 satisfies for any comparator
point y , ∫

`(t) · (x(t)− y)dt ≤ DΦ(y ; x(0))

η
.

Thus to control the regret it only remains to bound the movement
cost

∫
t∈R+

‖x ′(t)‖1dt (recall that this continuous time setting is

only valid for the 1-lookahead setting, i.e., MTS).



The basic calculation
∇2Φ(x(t))x ′(t) = −η`(t)− λ(t), λ(t) ∈ NK (x(t))

Recall DΦ(y ; x) = Φ(y)− Φ(x)−∇Φ(x) · (y − x),

∂tDΦ(y ; x(t)) = −∇2Φ(x(t))x ′(t) · (y − x(t))

= (η`(t) + λ(t)) · (y − x(t))

≤ η`(t) · (y − x(t))

Lemma
The mirror descent path (x(t))t≥0 satisfies for any comparator
point y , ∫

`(t) · (x(t)− y)dt ≤ DΦ(y ; x(0))

η
.

Thus to control the regret it only remains to bound the movement
cost

∫
t∈R+

‖x ′(t)‖1dt (recall that this continuous time setting is

only valid for the 1-lookahead setting, i.e., MTS).



The basic calculation
∇2Φ(x(t))x ′(t) = −η`(t)− λ(t), λ(t) ∈ NK (x(t))

Recall DΦ(y ; x) = Φ(y)− Φ(x)−∇Φ(x) · (y − x),

∂tDΦ(y ; x(t)) = −∇2Φ(x(t))x ′(t) · (y − x(t))

= (η`(t) + λ(t)) · (y − x(t))

≤ η`(t) · (y − x(t))

Lemma
The mirror descent path (x(t))t≥0 satisfies for any comparator
point y , ∫

`(t) · (x(t)− y)dt ≤ DΦ(y ; x(0))

η
.

Thus to control the regret it only remains to bound the movement
cost

∫
t∈R+

‖x ′(t)‖1dt (recall that this continuous time setting is

only valid for the 1-lookahead setting, i.e., MTS).



The basic calculation
∇2Φ(x(t))x ′(t) = −η`(t)− λ(t), λ(t) ∈ NK (x(t))

Recall DΦ(y ; x) = Φ(y)− Φ(x)−∇Φ(x) · (y − x),

∂tDΦ(y ; x(t)) = −∇2Φ(x(t))x ′(t) · (y − x(t))

= (η`(t) + λ(t)) · (y − x(t))

≤ η`(t) · (y − x(t))

Lemma
The mirror descent path (x(t))t≥0 satisfies for any comparator
point y , ∫

`(t) · (x(t)− y)dt ≤ DΦ(y ; x(0))

η
.

Thus to control the regret it only remains to bound the movement
cost

∫
t∈R+

‖x ′(t)‖1dt (recall that this continuous time setting is

only valid for the 1-lookahead setting, i.e., MTS).



Controlling the movement and how the entropy arises

How to control ‖x ′(t)‖1 = ‖(∇2Φ(x(t)))−1(η`(t) + λ(t))‖1? A
particularly pleasant inequality would be to relate this to say
η`(t) · x(t), in which case one would get a final regret bound of
the form (up to a multiplicative factor 1/(1− η)):

DΦ(y ; x(0))

η
+ ηL∗ .

Ignore for a moment the Lagrange multiplier λ(t) and assume that
Φ(x) =

∑n
i=1 ϕ(xi ). We want to relate

∑n
i=1 `i (t)/ϕ′′(xi (t)) to∑n

i=1 `i (t)xi (t). Making them equal gives Φ(x) =
∑

i xi log xi with
corresponding dynamics:

x ′i (t) = −ηxi (t)(`i (t) + µ(t)) .

In particular ‖x ′(t)‖1 ≤ 2η`(t) · x(t).
We note that this algorithm is exactly a continuous time version of
the MW studied at the beginning of the first lecture.



Controlling the movement and how the entropy arises

How to control ‖x ′(t)‖1 = ‖(∇2Φ(x(t)))−1(η`(t) + λ(t))‖1? A
particularly pleasant inequality would be to relate this to say
η`(t) · x(t), in which case one would get a final regret bound of
the form (up to a multiplicative factor 1/(1− η)):

DΦ(y ; x(0))

η
+ ηL∗ .

Ignore for a moment the Lagrange multiplier λ(t) and assume that
Φ(x) =

∑n
i=1 ϕ(xi ). We want to relate

∑n
i=1 `i (t)/ϕ′′(xi (t)) to∑n

i=1 `i (t)xi (t).

Making them equal gives Φ(x) =
∑

i xi log xi with
corresponding dynamics:

x ′i (t) = −ηxi (t)(`i (t) + µ(t)) .

In particular ‖x ′(t)‖1 ≤ 2η`(t) · x(t).
We note that this algorithm is exactly a continuous time version of
the MW studied at the beginning of the first lecture.



Controlling the movement and how the entropy arises

How to control ‖x ′(t)‖1 = ‖(∇2Φ(x(t)))−1(η`(t) + λ(t))‖1? A
particularly pleasant inequality would be to relate this to say
η`(t) · x(t), in which case one would get a final regret bound of
the form (up to a multiplicative factor 1/(1− η)):

DΦ(y ; x(0))

η
+ ηL∗ .

Ignore for a moment the Lagrange multiplier λ(t) and assume that
Φ(x) =

∑n
i=1 ϕ(xi ). We want to relate

∑n
i=1 `i (t)/ϕ′′(xi (t)) to∑n

i=1 `i (t)xi (t). Making them equal gives Φ(x) =
∑

i xi log xi with
corresponding dynamics:

x ′i (t) = −ηxi (t)(`i (t) + µ(t)) .

In particular ‖x ′(t)‖1 ≤ 2η`(t) · x(t).

We note that this algorithm is exactly a continuous time version of
the MW studied at the beginning of the first lecture.



Controlling the movement and how the entropy arises

How to control ‖x ′(t)‖1 = ‖(∇2Φ(x(t)))−1(η`(t) + λ(t))‖1? A
particularly pleasant inequality would be to relate this to say
η`(t) · x(t), in which case one would get a final regret bound of
the form (up to a multiplicative factor 1/(1− η)):

DΦ(y ; x(0))

η
+ ηL∗ .

Ignore for a moment the Lagrange multiplier λ(t) and assume that
Φ(x) =

∑n
i=1 ϕ(xi ). We want to relate

∑n
i=1 `i (t)/ϕ′′(xi (t)) to∑n

i=1 `i (t)xi (t). Making them equal gives Φ(x) =
∑

i xi log xi with
corresponding dynamics:

x ′i (t) = −ηxi (t)(`i (t) + µ(t)) .

In particular ‖x ′(t)‖1 ≤ 2η`(t) · x(t).
We note that this algorithm is exactly a continuous time version of
the MW studied at the beginning of the first lecture.



The more classical discrete-time algorithm and analysis
Ignoring the Lagrangian and assuming `′(t) = 0 one has

∂2
tDΦ(y ; x(t)) = ∇2Φ(x(t))[x ′(t), x ′(t)] = η2(∇2Φ(x(t)))−1[`(t), `(t)] .

Thus provided that the Hessian of Φ is well-conditioned on the
scale of a mirror step, one expects a discrete time analysis to give
a regret bound of the form (with the notation
‖h‖x =

√
∇2Φ(x)[h, h])

DΦ(y ; x1)

η
+ η

T∑
t=1

‖`t‖2
xt ,∗ .

Theorem
The above is valid with a factor 2/c on the second term, provided
that the following implication holds true for any yt ∈ Rn,

∇Φ(yt) ∈ [∇Φ(xt),∇Φ(xt)− η`t ]⇒ ∇2Φ(yt) � c∇2Φ(xt) .

For FTRL one instead needs this for any yt ∈ [xt , xt+1].



The more classical discrete-time algorithm and analysis
Ignoring the Lagrangian and assuming `′(t) = 0 one has

∂2
tDΦ(y ; x(t)) = ∇2Φ(x(t))[x ′(t), x ′(t)] = η2(∇2Φ(x(t)))−1[`(t), `(t)] .

Thus provided that the Hessian of Φ is well-conditioned on the
scale of a mirror step, one expects a discrete time analysis to give
a regret bound of the form (with the notation
‖h‖x =

√
∇2Φ(x)[h, h])

DΦ(y ; x1)

η
+ η

T∑
t=1

‖`t‖2
xt ,∗ .

Theorem
The above is valid with a factor 2/c on the second term, provided
that the following implication holds true for any yt ∈ Rn,

∇Φ(yt) ∈ [∇Φ(xt),∇Φ(xt)− η`t ]⇒ ∇2Φ(yt) � c∇2Φ(xt) .

For FTRL one instead needs this for any yt ∈ [xt , xt+1].



The more classical discrete-time algorithm and analysis
Ignoring the Lagrangian and assuming `′(t) = 0 one has

∂2
tDΦ(y ; x(t)) = ∇2Φ(x(t))[x ′(t), x ′(t)] = η2(∇2Φ(x(t)))−1[`(t), `(t)] .

Thus provided that the Hessian of Φ is well-conditioned on the
scale of a mirror step, one expects a discrete time analysis to give
a regret bound of the form (with the notation
‖h‖x =

√
∇2Φ(x)[h, h])

DΦ(y ; x1)

η
+ η

T∑
t=1

‖`t‖2
xt ,∗ .

Theorem
The above is valid with a factor 2/c on the second term, provided
that the following implication holds true for any yt ∈ Rn,

∇Φ(yt) ∈ [∇Φ(xt),∇Φ(xt)− η`t ]⇒ ∇2Φ(yt) � c∇2Φ(xt) .

For FTRL one instead needs this for any yt ∈ [xt , xt+1].



MW is mirror descent with the negentropy

Let Φ(x) =
∑n

i=1(xi log xi − xi ) and K = ∆n. One has
∇Φ(x) = log(xi ) and thus the update step in the dual looks like:

∇Φ(yt) = ∇Φ(xt)− η`t ⇔ yi ,t = xi ,t exp(−η`t(i)) .

Furthermore the projection step to K amounts simply to a
renormalization. Indeed ∇xDΦ(x , y) =

∑n
i=1 log(xi/yi ) and thus

p = argmin
x∈∆n

DΦ(x , y)⇔ ∃µ ∈ R : log(pi/yi ) = µ, ∀i ∈ [n] .

The analysis considers the potential DΦ(i∗, pt) = − log(pt(i
∗)),

which in fact exactly corresponds to what we did in the second
slide of the first lecture.
Note also that the well-conditioning comes for free when `t(i) ≥ 0,
and in general one just needs ‖η`t‖∞ to be O(1).



MW is mirror descent with the negentropy

Let Φ(x) =
∑n

i=1(xi log xi − xi ) and K = ∆n. One has
∇Φ(x) = log(xi ) and thus the update step in the dual looks like:

∇Φ(yt) = ∇Φ(xt)− η`t ⇔ yi ,t = xi ,t exp(−η`t(i)) .

Furthermore the projection step to K amounts simply to a
renormalization. Indeed ∇xDΦ(x , y) =

∑n
i=1 log(xi/yi ) and thus

p = argmin
x∈∆n

DΦ(x , y)⇔ ∃µ ∈ R : log(pi/yi ) = µ, ∀i ∈ [n] .

The analysis considers the potential DΦ(i∗, pt) = − log(pt(i
∗)),

which in fact exactly corresponds to what we did in the second
slide of the first lecture.
Note also that the well-conditioning comes for free when `t(i) ≥ 0,
and in general one just needs ‖η`t‖∞ to be O(1).



MW is mirror descent with the negentropy

Let Φ(x) =
∑n

i=1(xi log xi − xi ) and K = ∆n. One has
∇Φ(x) = log(xi ) and thus the update step in the dual looks like:

∇Φ(yt) = ∇Φ(xt)− η`t ⇔ yi ,t = xi ,t exp(−η`t(i)) .

Furthermore the projection step to K amounts simply to a
renormalization. Indeed ∇xDΦ(x , y) =

∑n
i=1 log(xi/yi ) and thus

p = argmin
x∈∆n

DΦ(x , y)⇔ ∃µ ∈ R : log(pi/yi ) = µ, ∀i ∈ [n] .

The analysis considers the potential DΦ(i∗, pt) = − log(pt(i
∗)),

which in fact exactly corresponds to what we did in the second
slide of the first lecture.

Note also that the well-conditioning comes for free when `t(i) ≥ 0,
and in general one just needs ‖η`t‖∞ to be O(1).



MW is mirror descent with the negentropy

Let Φ(x) =
∑n

i=1(xi log xi − xi ) and K = ∆n. One has
∇Φ(x) = log(xi ) and thus the update step in the dual looks like:

∇Φ(yt) = ∇Φ(xt)− η`t ⇔ yi ,t = xi ,t exp(−η`t(i)) .

Furthermore the projection step to K amounts simply to a
renormalization. Indeed ∇xDΦ(x , y) =

∑n
i=1 log(xi/yi ) and thus

p = argmin
x∈∆n

DΦ(x , y)⇔ ∃µ ∈ R : log(pi/yi ) = µ, ∀i ∈ [n] .

The analysis considers the potential DΦ(i∗, pt) = − log(pt(i
∗)),

which in fact exactly corresponds to what we did in the second
slide of the first lecture.
Note also that the well-conditioning comes for free when `t(i) ≥ 0,
and in general one just needs ‖η`t‖∞ to be O(1).



Propensity score for the bandit game
Key idea: replace `t by ˜̀

t such that Eit∼pt
˜̀
t = `t . The propensity

score normalized estimator is defined by:

˜̀
t(i) =

`t(it)

pt(i)
1{i = it} .

The Exp3 strategy corresponds to doing MW with those
estimators. Its regret is upper bounded by,

E
T∑
t=1

〈pt − q, `t〉 = E
T∑
t=1

〈pt − q, ˜̀t〉 ≤ log(n)

η
+ ηE

∑
t

‖˜̀t‖2
pt ,∗ ,

where ‖h‖2
p,∗ =

∑n
i=1 p(i)h(i)2. Amazingly the variance term is

automatically controlled:

Eit∼pt

n∑
i=1

pt(i)˜̀t(i)2 ≤ Eit∼pt

n∑
i=1

1{i = it}
pt(it)

= n.

Thus with η =
√
n log(n)/T one gets RT ≤ 2

√
Tn log(n).



Propensity score for the bandit game
Key idea: replace `t by ˜̀

t such that Eit∼pt
˜̀
t = `t . The propensity

score normalized estimator is defined by:

˜̀
t(i) =

`t(it)

pt(i)
1{i = it} .

The Exp3 strategy corresponds to doing MW with those
estimators. Its regret is upper bounded by,

E
T∑
t=1

〈pt − q, `t〉 = E
T∑
t=1

〈pt − q, ˜̀t〉 ≤ log(n)

η
+ ηE

∑
t

‖˜̀t‖2
pt ,∗ ,

where ‖h‖2
p,∗ =

∑n
i=1 p(i)h(i)2.

Amazingly the variance term is
automatically controlled:

Eit∼pt

n∑
i=1

pt(i)˜̀t(i)2 ≤ Eit∼pt

n∑
i=1

1{i = it}
pt(it)

= n.

Thus with η =
√
n log(n)/T one gets RT ≤ 2

√
Tn log(n).



Propensity score for the bandit game
Key idea: replace `t by ˜̀

t such that Eit∼pt
˜̀
t = `t . The propensity

score normalized estimator is defined by:

˜̀
t(i) =

`t(it)

pt(i)
1{i = it} .

The Exp3 strategy corresponds to doing MW with those
estimators. Its regret is upper bounded by,

E
T∑
t=1

〈pt − q, `t〉 = E
T∑
t=1

〈pt − q, ˜̀t〉 ≤ log(n)

η
+ ηE

∑
t

‖˜̀t‖2
pt ,∗ ,

where ‖h‖2
p,∗ =

∑n
i=1 p(i)h(i)2. Amazingly the variance term is

automatically controlled:

Eit∼pt

n∑
i=1

pt(i)˜̀t(i)2 ≤ Eit∼pt

n∑
i=1

1{i = it}
pt(it)

= n.

Thus with η =
√

n log(n)/T one gets RT ≤ 2
√
Tn log(n).



Propensity score for the bandit game
Key idea: replace `t by ˜̀

t such that Eit∼pt
˜̀
t = `t . The propensity

score normalized estimator is defined by:

˜̀
t(i) =

`t(it)

pt(i)
1{i = it} .

The Exp3 strategy corresponds to doing MW with those
estimators. Its regret is upper bounded by,

E
T∑
t=1

〈pt − q, `t〉 = E
T∑
t=1

〈pt − q, ˜̀t〉 ≤ log(n)

η
+ ηE

∑
t

‖˜̀t‖2
pt ,∗ ,

where ‖h‖2
p,∗ =

∑n
i=1 p(i)h(i)2. Amazingly the variance term is

automatically controlled:

Eit∼pt

n∑
i=1

pt(i)˜̀t(i)2 ≤ Eit∼pt

n∑
i=1

1{i = it}
pt(it)

= n.

Thus with η =
√

n log(n)/T one gets RT ≤ 2
√
Tn log(n).



Simple extensions

I Removing the extraneous
√

log(n)

I Contextual bandit

I Bandit with side information

I Different scaling per actions



More subtle refinements

I Sparse bandit

I Variance bounds

I First order bounds

I Best of both worlds

I Impossibility of
√
T with switching cost

I Impossibility of oracle models

I Knapsack bandits


