
Lecture 1:
Introduction to regret analysis

Sébastien Bubeck
Machine Learning and Optimization group, MSR AI

Basic setting of online learning

Parameters: finite set of actions [n] and number of rounds T ≥ n.
Protocol: For each round t ∈ [T], player chooses it ∈ [n] and
simultaneously adversary chooses a loss function `t : [n]→ [0, 1].

Feedback model: In the full information game the player observes
the complete loss function `t . In the bandit game the player only
observes her own loss `t(it).

Performance measure: The regret is the difference between the
player’s accumulated loss and the minimum loss she could have
obtained had she known all the adversary’s choices:

RT := E
T∑
t=1

`t(it)− min
i∈[n]

E
T∑
t=1

`t(i) =: LT − min
i∈[n]

Li ,T .

What’s it about? Full information game is about hedging, while
bandit game also features the fundamental tension between
exploration and exploitation.

Basic setting of online learning

Parameters: finite set of actions [n] and number of rounds T ≥ n.

Protocol: For each round t ∈ [T], player chooses it ∈ [n] and
simultaneously adversary chooses a loss function `t : [n]→ [0, 1].

Feedback model: In the full information game the player observes
the complete loss function `t . In the bandit game the player only
observes her own loss `t(it).

Performance measure: The regret is the difference between the
player’s accumulated loss and the minimum loss she could have
obtained had she known all the adversary’s choices:

RT := E
T∑
t=1

`t(it)− min
i∈[n]

E
T∑
t=1

`t(i) =: LT − min
i∈[n]

Li ,T .

What’s it about? Full information game is about hedging, while
bandit game also features the fundamental tension between
exploration and exploitation.

Basic setting of online learning

Parameters: finite set of actions [n] and number of rounds T ≥ n.
Protocol: For each round t ∈ [T], player chooses it ∈ [n] and
simultaneously adversary chooses a loss function `t : [n]→ [0, 1].

Feedback model: In the full information game the player observes
the complete loss function `t . In the bandit game the player only
observes her own loss `t(it).

Performance measure: The regret is the difference between the
player’s accumulated loss and the minimum loss she could have
obtained had she known all the adversary’s choices:

RT := E
T∑
t=1

`t(it)− min
i∈[n]

E
T∑
t=1

`t(i) =: LT − min
i∈[n]

Li ,T .

What’s it about? Full information game is about hedging, while
bandit game also features the fundamental tension between
exploration and exploitation.

Basic setting of online learning

Parameters: finite set of actions [n] and number of rounds T ≥ n.
Protocol: For each round t ∈ [T], player chooses it ∈ [n] and
simultaneously adversary chooses a loss function `t : [n]→ [0, 1].

Feedback model: In the full information game the player observes
the complete loss function `t . In the bandit game the player only
observes her own loss `t(it).

Performance measure: The regret is the difference between the
player’s accumulated loss and the minimum loss she could have
obtained had she known all the adversary’s choices:

RT := E
T∑
t=1

`t(it)− min
i∈[n]

E
T∑
t=1

`t(i) =: LT − min
i∈[n]

Li ,T .

What’s it about? Full information game is about hedging, while
bandit game also features the fundamental tension between
exploration and exploitation.

Basic setting of online learning

Parameters: finite set of actions [n] and number of rounds T ≥ n.
Protocol: For each round t ∈ [T], player chooses it ∈ [n] and
simultaneously adversary chooses a loss function `t : [n]→ [0, 1].

Feedback model: In the full information game the player observes
the complete loss function `t . In the bandit game the player only
observes her own loss `t(it).

Performance measure: The regret is the difference between the
player’s accumulated loss and the minimum loss she could have
obtained had she known all the adversary’s choices:

RT := E
T∑
t=1

`t(it)− min
i∈[n]

E
T∑
t=1

`t(i) =: LT − min
i∈[n]

Li ,T .

What’s it about? Full information game is about hedging, while
bandit game also features the fundamental tension between
exploration and exploitation.

Basic setting of online learning

Parameters: finite set of actions [n] and number of rounds T ≥ n.
Protocol: For each round t ∈ [T], player chooses it ∈ [n] and
simultaneously adversary chooses a loss function `t : [n]→ [0, 1].

Feedback model: In the full information game the player observes
the complete loss function `t . In the bandit game the player only
observes her own loss `t(it).

Performance measure: The regret is the difference between the
player’s accumulated loss and the minimum loss she could have
obtained had she known all the adversary’s choices:

RT := E
T∑
t=1

`t(it)− min
i∈[n]

E
T∑
t=1

`t(i) =: LT − min
i∈[n]

Li ,T .

What’s it about? Full information game is about hedging, while
bandit game also features the fundamental tension between
exploration and exploitation.

Applications

These challenges (scarce feedback, robustness to non i.i.d. data,
exploration vs exploitation) are crucial components of many
practical problems, hence the success of online learning and bandit
theory!

AI for games Brain computer interface Medical trials

Packets routing Ad placement Hyperparameter opt

Applications

These challenges (scarce feedback, robustness to non i.i.d. data,
exploration vs exploitation) are crucial components of many
practical problems, hence the success of online learning and bandit
theory!

AI for games Brain computer interface Medical trials

Packets routing Ad placement Hyperparameter opt

Hedging with multiplicative weights [Freund and Schapire
96, Littlestone and Warmuth 94, Vovk 90]

Assume for simplicity `t(i) ∈ {0, 1}. MW keeps weights wi ,t for
each action, plays from normalized weights, and update as follows:

wi ,t+1 = (1− η`t(i))wi ,t .

Key insight: if i∗ does not make a mistake on round t then we
get “closer” to δi∗ (i.e., we learn), and otherwise we might get
confused but i∗ had to pay for it.

Theorem
For any η ∈ [0, 1/2] and i ∈ [n],

LT ≤ (1 + η)Li ,T +
log(n)

η
.

By optimizing η one gets RT ≤ 2
√
T log(n).

Note that Ω(
√
T log(n)) is the best one could hope for.

Hedging with multiplicative weights [Freund and Schapire
96, Littlestone and Warmuth 94, Vovk 90]

Assume for simplicity `t(i) ∈ {0, 1}. MW keeps weights wi ,t for
each action, plays from normalized weights, and update as follows:

wi ,t+1 = (1− η`t(i))wi ,t .

Key insight: if i∗ does not make a mistake on round t then we
get “closer” to δi∗ (i.e., we learn), and otherwise we might get
confused but i∗ had to pay for it.

Theorem
For any η ∈ [0, 1/2] and i ∈ [n],

LT ≤ (1 + η)Li ,T +
log(n)

η
.

By optimizing η one gets RT ≤ 2
√
T log(n).

Note that Ω(
√
T log(n)) is the best one could hope for.

Hedging with multiplicative weights [Freund and Schapire
96, Littlestone and Warmuth 94, Vovk 90]

Assume for simplicity `t(i) ∈ {0, 1}. MW keeps weights wi ,t for
each action, plays from normalized weights, and update as follows:

wi ,t+1 = (1− η`t(i))wi ,t .

Key insight: if i∗ does not make a mistake on round t then we
get “closer” to δi∗ (i.e., we learn), and otherwise we might get
confused but i∗ had to pay for it.

Theorem
For any η ∈ [0, 1/2] and i ∈ [n],

LT ≤ (1 + η)Li ,T +
log(n)

η
.

By optimizing η one gets RT ≤ 2
√
T log(n).

Note that Ω(
√
T log(n)) is the best one could hope for.

Hedging with multiplicative weights [Freund and Schapire
96, Littlestone and Warmuth 94, Vovk 90]

Assume for simplicity `t(i) ∈ {0, 1}. MW keeps weights wi ,t for
each action, plays from normalized weights, and update as follows:

wi ,t+1 = (1− η`t(i))wi ,t .

Key insight: if i∗ does not make a mistake on round t then we
get “closer” to δi∗ (i.e., we learn), and otherwise we might get
confused but i∗ had to pay for it.

Theorem
For any η ∈ [0, 1/2] and i ∈ [n],

LT ≤ (1 + η)Li ,T +
log(n)

η
.

By optimizing η one gets RT ≤ 2
√
T log(n).

Note that Ω(
√
T log(n)) is the best one could hope for.

Potential based analysis
Define ψ(t) =

∑n
i=1 wi ,t . One has:

ψ(t + 1) =
n∑

i=1

(1− η`t(i))wi ,t = ψ(t)(1− η〈pt , `t〉) ,

so that (since ψ(1) = n):

ψ(T + 1) = n
T∏
t=1

(1− η〈pt , `t〉) ≤ n exp(−ηLT) .

On the other hand ψ(T + 1) ≥ wi ,T+1 = (1− η)Li,T , and thus:

ηLT − log

(
1

1− η

)
Li ,T ≤ log(n) ,

and the proof is concluded by log
(

1
1−η

)
≤ η + η2 for η ∈ [0, 1/2].

The mirror descent framework (Lec. 2) will give a principled
approach to derive both the MW algorithm and its analysis.

Potential based analysis
Define ψ(t) =

∑n
i=1 wi ,t . One has:

ψ(t + 1) =
n∑

i=1

(1− η`t(i))wi ,t = ψ(t)(1− η〈pt , `t〉) ,

so that (since ψ(1) = n):

ψ(T + 1) = n
T∏
t=1

(1− η〈pt , `t〉) ≤ n exp(−ηLT) .

On the other hand ψ(T + 1) ≥ wi ,T+1 = (1− η)Li,T , and thus:

ηLT − log

(
1

1− η

)
Li ,T ≤ log(n) ,

and the proof is concluded by log
(

1
1−η

)
≤ η + η2 for η ∈ [0, 1/2].

The mirror descent framework (Lec. 2) will give a principled
approach to derive both the MW algorithm and its analysis.

Potential based analysis
Define ψ(t) =

∑n
i=1 wi ,t . One has:

ψ(t + 1) =
n∑

i=1

(1− η`t(i))wi ,t = ψ(t)(1− η〈pt , `t〉) ,

so that (since ψ(1) = n):

ψ(T + 1) = n
T∏
t=1

(1− η〈pt , `t〉) ≤ n exp(−ηLT) .

On the other hand ψ(T + 1) ≥ wi ,T+1 = (1− η)Li,T

, and thus:

ηLT − log

(
1

1− η

)
Li ,T ≤ log(n) ,

and the proof is concluded by log
(

1
1−η

)
≤ η + η2 for η ∈ [0, 1/2].

The mirror descent framework (Lec. 2) will give a principled
approach to derive both the MW algorithm and its analysis.

Potential based analysis
Define ψ(t) =

∑n
i=1 wi ,t . One has:

ψ(t + 1) =
n∑

i=1

(1− η`t(i))wi ,t = ψ(t)(1− η〈pt , `t〉) ,

so that (since ψ(1) = n):

ψ(T + 1) = n
T∏
t=1

(1− η〈pt , `t〉) ≤ n exp(−ηLT) .

On the other hand ψ(T + 1) ≥ wi ,T+1 = (1− η)Li,T , and thus:

ηLT − log

(
1

1− η

)
Li ,T ≤ log(n) ,

and the proof is concluded by log
(

1
1−η

)
≤ η + η2 for η ∈ [0, 1/2].

The mirror descent framework (Lec. 2) will give a principled
approach to derive both the MW algorithm and its analysis.

Potential based analysis
Define ψ(t) =

∑n
i=1 wi ,t . One has:

ψ(t + 1) =
n∑

i=1

(1− η`t(i))wi ,t = ψ(t)(1− η〈pt , `t〉) ,

so that (since ψ(1) = n):

ψ(T + 1) = n
T∏
t=1

(1− η〈pt , `t〉) ≤ n exp(−ηLT) .

On the other hand ψ(T + 1) ≥ wi ,T+1 = (1− η)Li,T , and thus:

ηLT − log

(
1

1− η

)
Li ,T ≤ log(n) ,

and the proof is concluded by log
(

1
1−η

)
≤ η + η2 for η ∈ [0, 1/2].

The mirror descent framework (Lec. 2) will give a principled
approach to derive both the MW algorithm and its analysis.

A principled game-theoretic approach to regret analysis
[Abernethy, Warmuth, Yellin 2008; Rakhlin, Sridharan, Tewari 2010; B., Dekel, Koren, Peres 2015]

Let us focus on an oblivious adversary, that is he chooses
`1, . . . , `T ∈ L at the beginning of the game.

A deterministic player’s strategy is specified by a sequence of
operators a1, . . . , aT , where in the full information case
as : ([0, 1]n)s−1 → K, and in the bandit case as : Rs−1 → K.
Denote A the set of such sequences of operators.

Write RT (a, `) for the regret of playing strategy a ∈ A against loss
sequence ` ∈ LT . Now we are interested in:

inf
µ∈∆(A)

sup
`∈LT

Ea∼µRT (a, `) = sup
ν∈∆(LT)

inf
µ∈∆(A)

E`∼ν,a∼µRT (a, `) ,

where the swap of min and max comes from Sion’s minimax
theorem.
In other words we can study the minimax regret by designing a
strategy for a Bayesian scenario where ` ∼ ν and ν is known.

A principled game-theoretic approach to regret analysis
[Abernethy, Warmuth, Yellin 2008; Rakhlin, Sridharan, Tewari 2010; B., Dekel, Koren, Peres 2015]

Let us focus on an oblivious adversary, that is he chooses
`1, . . . , `T ∈ L at the beginning of the game.

A deterministic player’s strategy is specified by a sequence of
operators a1, . . . , aT , where in the full information case
as : ([0, 1]n)s−1 → K, and in the bandit case as : Rs−1 → K.
Denote A the set of such sequences of operators.

Write RT (a, `) for the regret of playing strategy a ∈ A against loss
sequence ` ∈ LT . Now we are interested in:

inf
µ∈∆(A)

sup
`∈LT

Ea∼µRT (a, `) = sup
ν∈∆(LT)

inf
µ∈∆(A)

E`∼ν,a∼µRT (a, `) ,

where the swap of min and max comes from Sion’s minimax
theorem.
In other words we can study the minimax regret by designing a
strategy for a Bayesian scenario where ` ∼ ν and ν is known.

A principled game-theoretic approach to regret analysis
[Abernethy, Warmuth, Yellin 2008; Rakhlin, Sridharan, Tewari 2010; B., Dekel, Koren, Peres 2015]

Let us focus on an oblivious adversary, that is he chooses
`1, . . . , `T ∈ L at the beginning of the game.

A deterministic player’s strategy is specified by a sequence of
operators a1, . . . , aT , where in the full information case
as : ([0, 1]n)s−1 → K, and in the bandit case as : Rs−1 → K.
Denote A the set of such sequences of operators.

Write RT (a, `) for the regret of playing strategy a ∈ A against loss
sequence ` ∈ LT .

Now we are interested in:

inf
µ∈∆(A)

sup
`∈LT

Ea∼µRT (a, `) = sup
ν∈∆(LT)

inf
µ∈∆(A)

E`∼ν,a∼µRT (a, `) ,

where the swap of min and max comes from Sion’s minimax
theorem.
In other words we can study the minimax regret by designing a
strategy for a Bayesian scenario where ` ∼ ν and ν is known.

A principled game-theoretic approach to regret analysis
[Abernethy, Warmuth, Yellin 2008; Rakhlin, Sridharan, Tewari 2010; B., Dekel, Koren, Peres 2015]

Let us focus on an oblivious adversary, that is he chooses
`1, . . . , `T ∈ L at the beginning of the game.

A deterministic player’s strategy is specified by a sequence of
operators a1, . . . , aT , where in the full information case
as : ([0, 1]n)s−1 → K, and in the bandit case as : Rs−1 → K.
Denote A the set of such sequences of operators.

Write RT (a, `) for the regret of playing strategy a ∈ A against loss
sequence ` ∈ LT . Now we are interested in:

inf
µ∈∆(A)

sup
`∈LT

Ea∼µRT (a, `) = sup
ν∈∆(LT)

inf
µ∈∆(A)

E`∼ν,a∼µRT (a, `) ,

where the swap of min and max comes from Sion’s minimax
theorem.

In other words we can study the minimax regret by designing a
strategy for a Bayesian scenario where ` ∼ ν and ν is known.

A principled game-theoretic approach to regret analysis
[Abernethy, Warmuth, Yellin 2008; Rakhlin, Sridharan, Tewari 2010; B., Dekel, Koren, Peres 2015]

Let us focus on an oblivious adversary, that is he chooses
`1, . . . , `T ∈ L at the beginning of the game.

A deterministic player’s strategy is specified by a sequence of
operators a1, . . . , aT , where in the full information case
as : ([0, 1]n)s−1 → K, and in the bandit case as : Rs−1 → K.
Denote A the set of such sequences of operators.

Write RT (a, `) for the regret of playing strategy a ∈ A against loss
sequence ` ∈ LT . Now we are interested in:

inf
µ∈∆(A)

sup
`∈LT

Ea∼µRT (a, `) = sup
ν∈∆(LT)

inf
µ∈∆(A)

E`∼ν,a∼µRT (a, `) ,

where the swap of min and max comes from Sion’s minimax
theorem.
In other words we can study the minimax regret by designing a
strategy for a Bayesian scenario where ` ∼ ν and ν is known.

A Doob strategy [B., Dekel, Koren, Peres 2015]

Since we known ν, we also know the distribution of i∗. In fact as
we make observations, we can update our knowledge of i∗ with the
posterior distribution. Denote Et for this posterior distribution
(e.g., in full information Et := E[·|`1, . . . , `t−1]).

By convexity of ∆([n]) =: ∆n it is natural to consider playing from:

pt := Et δi∗ .

In other words we are playing from the posterior distribution of the
optimum, a kind of “probability matching”. This is also called
Thompson Sampling.
The regret of this strategy can be controlled via the movement of
this Doob martingale (recall ‖`t‖∞ ≤ 1)

E
T∑
t=1

〈pt − δi∗ , `t〉 = E
T∑
t=1

〈pt − pt+1, `t〉 ≤ E
T∑
t=1

‖pt − pt+1‖1 .

A Doob strategy [B., Dekel, Koren, Peres 2015]

Since we known ν, we also know the distribution of i∗. In fact as
we make observations, we can update our knowledge of i∗ with the
posterior distribution. Denote Et for this posterior distribution
(e.g., in full information Et := E[·|`1, . . . , `t−1]).
By convexity of ∆([n]) =: ∆n it is natural to consider playing from:

pt := Et δi∗ .

In other words we are playing from the posterior distribution of the
optimum, a kind of “probability matching”. This is also called
Thompson Sampling.

The regret of this strategy can be controlled via the movement of
this Doob martingale (recall ‖`t‖∞ ≤ 1)

E
T∑
t=1

〈pt − δi∗ , `t〉 = E
T∑
t=1

〈pt − pt+1, `t〉 ≤ E
T∑
t=1

‖pt − pt+1‖1 .

A Doob strategy [B., Dekel, Koren, Peres 2015]

Since we known ν, we also know the distribution of i∗. In fact as
we make observations, we can update our knowledge of i∗ with the
posterior distribution. Denote Et for this posterior distribution
(e.g., in full information Et := E[·|`1, . . . , `t−1]).
By convexity of ∆([n]) =: ∆n it is natural to consider playing from:

pt := Et δi∗ .

In other words we are playing from the posterior distribution of the
optimum, a kind of “probability matching”. This is also called
Thompson Sampling.
The regret of this strategy can be controlled via the movement of
this Doob martingale (recall ‖`t‖∞ ≤ 1)

E
T∑
t=1

〈pt − δi∗ , `t〉 = E
T∑
t=1

〈pt − pt+1, `t〉 ≤ E
T∑
t=1

‖pt − pt+1‖1 .

How stable is a martingale?

Question: is a martingale in ∆n “stable”? Following famous
inequality is a possible answer (proof on the next slide):

E
T∑
t=1

‖pt − pt+1‖2
1 ≤ 2 log(n) .

This yields by Cauchy-Schwarz:

E
T∑
t=1

‖pt − pt+1‖1 ≤

√√√√T × E
T∑
t=1

‖pt − pt+1‖2
1 ≤

√
2T log(n) .

Thus we have recovered the regret bound of MW (in fact with an
optimal constant) by a purely geometric argument!

How stable is a martingale?

Question: is a martingale in ∆n “stable”? Following famous
inequality is a possible answer (proof on the next slide):

E
T∑
t=1

‖pt − pt+1‖2
1 ≤ 2 log(n) .

This yields by Cauchy-Schwarz:

E
T∑
t=1

‖pt − pt+1‖1 ≤

√√√√T × E
T∑
t=1

‖pt − pt+1‖2
1 ≤

√
2T log(n) .

Thus we have recovered the regret bound of MW (in fact with an
optimal constant) by a purely geometric argument!

How stable is a martingale?

Question: is a martingale in ∆n “stable”? Following famous
inequality is a possible answer (proof on the next slide):

E
T∑
t=1

‖pt − pt+1‖2
1 ≤ 2 log(n) .

This yields by Cauchy-Schwarz:

E
T∑
t=1

‖pt − pt+1‖1 ≤

√√√√T × E
T∑
t=1

‖pt − pt+1‖2
1 ≤

√
2T log(n) .

Thus we have recovered the regret bound of MW (in fact with an
optimal constant) by a purely geometric argument!

Entropic proof of cotype for `n1

E
T∑
t=1

‖pt − pt+1‖2
1 ≤ 2 log(n) .

By Pinsker’s inequality:

1

2
‖pt − pt+1‖2

1 ≤ Ent(pt+1; pt) = Entt(i
∗|`t ; i∗) .

Now essentially by definition one has (recall that
I (X ,Y) = H(X)− H(X |Y) = EYEnt(pX |Y ; pX)):

E`tEntt(i∗|`t ; i∗) = Ht(i
∗)− Ht+1(i∗) .

Proof concluded by telescopic sum and maximal entropy being
log(n).

Entropic proof of cotype for `n1

E
T∑
t=1

‖pt − pt+1‖2
1 ≤ 2 log(n) .

By Pinsker’s inequality:

1

2
‖pt − pt+1‖2

1 ≤ Ent(pt+1; pt) = Entt(i
∗|`t ; i∗) .

Now essentially by definition one has (recall that
I (X ,Y) = H(X)− H(X |Y) = EYEnt(pX |Y ; pX)):

E`tEntt(i∗|`t ; i∗) = Ht(i
∗)− Ht+1(i∗) .

Proof concluded by telescopic sum and maximal entropy being
log(n).

Entropic proof of cotype for `n1

E
T∑
t=1

‖pt − pt+1‖2
1 ≤ 2 log(n) .

By Pinsker’s inequality:

1

2
‖pt − pt+1‖2

1 ≤ Ent(pt+1; pt) = Entt(i
∗|`t ; i∗) .

Now essentially by definition one has (recall that
I (X ,Y) = H(X)− H(X |Y) = EYEnt(pX |Y ; pX)):

E`tEntt(i∗|`t ; i∗) = Ht(i
∗)− Ht+1(i∗) .

Proof concluded by telescopic sum and maximal entropy being
log(n).

Entropic proof of cotype for `n1

E
T∑
t=1

‖pt − pt+1‖2
1 ≤ 2 log(n) .

By Pinsker’s inequality:

1

2
‖pt − pt+1‖2

1 ≤ Ent(pt+1; pt) = Entt(i
∗|`t ; i∗) .

Now essentially by definition one has (recall that
I (X ,Y) = H(X)− H(X |Y) = EYEnt(pX |Y ; pX)):

E`tEntt(i∗|`t ; i∗) = Ht(i
∗)− Ht+1(i∗) .

Proof concluded by telescopic sum and maximal entropy being
log(n).

A more general story: M-cotype

Let us generalize the setting. In online linear optimization, the
player plays xt ∈ K ⊂ Rn, and the adversary plays `t ∈ L ⊂ Rn.
We assume that there is a norm ‖ · ‖ such that ‖xt‖ ≤ 1 and
‖`t‖∗ ≤ 1.

The same game-theoretic argument goes through, and
denoting x∗ = argminx∈K

∑T
t=1〈`t , x〉, xt := Etx

∗, one has

E
T∑
t=1

〈`t , xt − x∗〉 = E
T∑
t=1

〈`t , xt − xt+1〉 ≤ E
T∑
t=1

‖xt − xt+1‖ .

The norm ‖ · ‖ has M-cotype (C , q) if for any martingale (xt) one
has: (

E
T∑
t=1

‖xt − xt+1‖q
)1/q

≤ C E‖xT+1‖ .

In particular this gives a regret in C T 1−1/q.

A more general story: M-cotype

Let us generalize the setting. In online linear optimization, the
player plays xt ∈ K ⊂ Rn, and the adversary plays `t ∈ L ⊂ Rn.
We assume that there is a norm ‖ · ‖ such that ‖xt‖ ≤ 1 and
‖`t‖∗ ≤ 1. The same game-theoretic argument goes through, and
denoting x∗ = argminx∈K

∑T
t=1〈`t , x〉, xt := Etx

∗, one has

E
T∑
t=1

〈`t , xt − x∗〉 = E
T∑
t=1

〈`t , xt − xt+1〉 ≤ E
T∑
t=1

‖xt − xt+1‖ .

The norm ‖ · ‖ has M-cotype (C , q) if for any martingale (xt) one
has: (

E
T∑
t=1

‖xt − xt+1‖q
)1/q

≤ C E‖xT+1‖ .

In particular this gives a regret in C T 1−1/q.

A more general story: M-cotype

Let us generalize the setting. In online linear optimization, the
player plays xt ∈ K ⊂ Rn, and the adversary plays `t ∈ L ⊂ Rn.
We assume that there is a norm ‖ · ‖ such that ‖xt‖ ≤ 1 and
‖`t‖∗ ≤ 1. The same game-theoretic argument goes through, and
denoting x∗ = argminx∈K

∑T
t=1〈`t , x〉, xt := Etx

∗, one has

E
T∑
t=1

〈`t , xt − x∗〉 = E
T∑
t=1

〈`t , xt − xt+1〉 ≤ E
T∑
t=1

‖xt − xt+1‖ .

The norm ‖ · ‖ has M-cotype (C , q) if for any martingale (xt) one
has: (

E
T∑
t=1

‖xt − xt+1‖q
)1/q

≤ C E‖xT+1‖ .

In particular this gives a regret in C T 1−1/q.

A more general story: M-cotype

Let us generalize the setting. In online linear optimization, the
player plays xt ∈ K ⊂ Rn, and the adversary plays `t ∈ L ⊂ Rn.
We assume that there is a norm ‖ · ‖ such that ‖xt‖ ≤ 1 and
‖`t‖∗ ≤ 1. The same game-theoretic argument goes through, and
denoting x∗ = argminx∈K

∑T
t=1〈`t , x〉, xt := Etx

∗, one has

E
T∑
t=1

〈`t , xt − x∗〉 = E
T∑
t=1

〈`t , xt − xt+1〉 ≤ E
T∑
t=1

‖xt − xt+1‖ .

The norm ‖ · ‖ has M-cotype (C , q) if for any martingale (xt) one
has: (

E
T∑
t=1

‖xt − xt+1‖q
)1/q

≤ C E‖xT+1‖ .

In particular this gives a regret in C T 1−1/q.

A lower bound via M-type of the dual
Interestingly the analysis via cotype is tight in the following sense.

First if M-cotype (C , q) holds for ‖ · ‖, then so does M-type
(C ′, p) for ‖ · ‖∗ (where p is the conjugate of q), i.e., for any
martingale difference sequence (`t) one has

E

∥∥∥∥∥
T∑
t=1

`t

∥∥∥∥∥
∗

≤ C ′

(
E

T∑
t=1

‖`t‖p∗

)1/p

.

Moreover one can show that the violation of type/cotype can be
witnessed by a martingale with unit norm increments. Thus if
M-cotype (C , q) fails for ‖ · ‖, there must exist a martingale
difference sequence (`t) with ‖`t‖∗ = 1 that violates the above
inequality. In particular:

E
T∑
t=1

〈`t , xt − x∗〉 = E

∥∥∥∥∥
T∑
t=1

`t

∥∥∥∥∥
∗

≥ C ′T 1/p = C ′T 1−1/q .

Important: these are “dimension-free arguments”, if one brings
the dimension in the bounds then the story changes.

A lower bound via M-type of the dual
Interestingly the analysis via cotype is tight in the following sense.
First if M-cotype (C , q) holds for ‖ · ‖, then so does M-type
(C ′, p) for ‖ · ‖∗ (where p is the conjugate of q), i.e., for any
martingale difference sequence (`t) one has

E

∥∥∥∥∥
T∑
t=1

`t

∥∥∥∥∥
∗

≤ C ′

(
E

T∑
t=1

‖`t‖p∗

)1/p

.

Moreover one can show that the violation of type/cotype can be
witnessed by a martingale with unit norm increments. Thus if
M-cotype (C , q) fails for ‖ · ‖, there must exist a martingale
difference sequence (`t) with ‖`t‖∗ = 1 that violates the above
inequality. In particular:

E
T∑
t=1

〈`t , xt − x∗〉 = E

∥∥∥∥∥
T∑
t=1

`t

∥∥∥∥∥
∗

≥ C ′T 1/p = C ′T 1−1/q .

Important: these are “dimension-free arguments”, if one brings
the dimension in the bounds then the story changes.

A lower bound via M-type of the dual
Interestingly the analysis via cotype is tight in the following sense.
First if M-cotype (C , q) holds for ‖ · ‖, then so does M-type
(C ′, p) for ‖ · ‖∗ (where p is the conjugate of q), i.e., for any
martingale difference sequence (`t) one has

E

∥∥∥∥∥
T∑
t=1

`t

∥∥∥∥∥
∗

≤ C ′

(
E

T∑
t=1

‖`t‖p∗

)1/p

.

Moreover one can show that the violation of type/cotype can be
witnessed by a martingale with unit norm increments. Thus if
M-cotype (C , q) fails for ‖ · ‖, there must exist a martingale
difference sequence (`t) with ‖`t‖∗ = 1 that violates the above
inequality.

In particular:

E
T∑
t=1

〈`t , xt − x∗〉 = E

∥∥∥∥∥
T∑
t=1

`t

∥∥∥∥∥
∗

≥ C ′T 1/p = C ′T 1−1/q .

Important: these are “dimension-free arguments”, if one brings
the dimension in the bounds then the story changes.

A lower bound via M-type of the dual
Interestingly the analysis via cotype is tight in the following sense.
First if M-cotype (C , q) holds for ‖ · ‖, then so does M-type
(C ′, p) for ‖ · ‖∗ (where p is the conjugate of q), i.e., for any
martingale difference sequence (`t) one has

E

∥∥∥∥∥
T∑
t=1

`t

∥∥∥∥∥
∗

≤ C ′

(
E

T∑
t=1

‖`t‖p∗

)1/p

.

Moreover one can show that the violation of type/cotype can be
witnessed by a martingale with unit norm increments. Thus if
M-cotype (C , q) fails for ‖ · ‖, there must exist a martingale
difference sequence (`t) with ‖`t‖∗ = 1 that violates the above
inequality. In particular:

E
T∑
t=1

〈`t , xt − x∗〉 = E

∥∥∥∥∥
T∑
t=1

`t

∥∥∥∥∥
∗

≥ C ′T 1/p = C ′T 1−1/q .

Important: these are “dimension-free arguments”, if one brings
the dimension in the bounds then the story changes.

A lower bound via M-type of the dual
Interestingly the analysis via cotype is tight in the following sense.
First if M-cotype (C , q) holds for ‖ · ‖, then so does M-type
(C ′, p) for ‖ · ‖∗ (where p is the conjugate of q), i.e., for any
martingale difference sequence (`t) one has

E

∥∥∥∥∥
T∑
t=1

`t

∥∥∥∥∥
∗

≤ C ′

(
E

T∑
t=1

‖`t‖p∗

)1/p

.

Moreover one can show that the violation of type/cotype can be
witnessed by a martingale with unit norm increments. Thus if
M-cotype (C , q) fails for ‖ · ‖, there must exist a martingale
difference sequence (`t) with ‖`t‖∗ = 1 that violates the above
inequality. In particular:

E
T∑
t=1

〈`t , xt − x∗〉 = E

∥∥∥∥∥
T∑
t=1

`t

∥∥∥∥∥
∗

≥ C ′T 1/p = C ′T 1−1/q .

Important: these are “dimension-free arguments”, if one brings
the dimension in the bounds then the story changes.

What about the bandit game? [Russo, Van Roy 2014]
So far we only talked about the hedging aspect of the problem. In
particular for the full information game the “learning” part happens
automatically. This is captured by the fact that the variation in
the posterior is lower bounded by the instantaneous regret:

Et〈pt − δi∗ , `t〉 = Et〈pt − pt+1, `t〉 ≤ Et‖pt − pt+1‖1 .

In the bandit game the first equality is not true anymore and thus
the inequality does not hold a priori. In fact this is the whole
difficulty: learning is now costly because of the tradeoff between
exploration and exploitation.
Importantly note that the cotype inequality for `1 is proved by
relating the `1 variation squared to the mutual information
between OPT and the feedback. Thus a weaker inequality that
would suffice is:

Et〈pt − δi∗ , `t〉 ≤ C
√

It(i∗, (it , `t(it))),

which would lead to a regret in C
√
T log(n).

What about the bandit game? [Russo, Van Roy 2014]
So far we only talked about the hedging aspect of the problem. In
particular for the full information game the “learning” part happens
automatically. This is captured by the fact that the variation in
the posterior is lower bounded by the instantaneous regret:

Et〈pt − δi∗ , `t〉 = Et〈pt − pt+1, `t〉 ≤ Et‖pt − pt+1‖1 .

In the bandit game the first equality is not true anymore and thus
the inequality does not hold a priori. In fact this is the whole
difficulty: learning is now costly because of the tradeoff between
exploration and exploitation.

Importantly note that the cotype inequality for `1 is proved by
relating the `1 variation squared to the mutual information
between OPT and the feedback. Thus a weaker inequality that
would suffice is:

Et〈pt − δi∗ , `t〉 ≤ C
√

It(i∗, (it , `t(it))),

which would lead to a regret in C
√
T log(n).

What about the bandit game? [Russo, Van Roy 2014]
So far we only talked about the hedging aspect of the problem. In
particular for the full information game the “learning” part happens
automatically. This is captured by the fact that the variation in
the posterior is lower bounded by the instantaneous regret:

Et〈pt − δi∗ , `t〉 = Et〈pt − pt+1, `t〉 ≤ Et‖pt − pt+1‖1 .

In the bandit game the first equality is not true anymore and thus
the inequality does not hold a priori. In fact this is the whole
difficulty: learning is now costly because of the tradeoff between
exploration and exploitation.
Importantly note that the cotype inequality for `1 is proved by
relating the `1 variation squared to the mutual information
between OPT and the feedback. Thus a weaker inequality that
would suffice is:

Et〈pt − δi∗ , `t〉 ≤ C
√
It(i∗, (it , `t(it))),

which would lead to a regret in C
√

T log(n).

The Russo-Van Roy analysis
Let ¯̀

t(i) = Et`t(i) and ¯̀
t(i , j) = Et(`t(i)|i∗ = j). Then

Et〈pt − δi∗ , `t〉 =
∑
i

pt(i)(¯̀
t(i)− ¯̀

t(i , i)) ,

and

It((it , `t(it)), i∗) =
∑
i ,j

pt(i)pt(j)Ent(Lt(`t(i)|i∗ = j)‖Lt(`t(i)))

Now using Cauchy-Schwarz the instantaneous regret is bounded by√
n
∑
i

pt(i)2(¯̀
t(i)− ¯̀

t(i , i))2 ≤
√
n
∑
i ,j

pt(i)pt(j)(¯̀
t(i)− ¯̀

t(i , j))2 .

Pinsker’s inequality gives (using ‖`t‖∞ ≤ 1):

(¯̀
t(i)− ¯̀

t(i , j))2 ≤ Ent(Lt(`t(i)|i∗ = j)‖Lt(`t(i))) ,

Thus one obtains

Et〈pt − δi∗ , `t〉 ≤
√

n It((it , `t(it)), i∗) .

The Russo-Van Roy analysis
Let ¯̀

t(i) = Et`t(i) and ¯̀
t(i , j) = Et(`t(i)|i∗ = j). Then

Et〈pt − δi∗ , `t〉 =
∑
i

pt(i)(¯̀
t(i)− ¯̀

t(i , i)) ,

and

It((it , `t(it)), i∗) =
∑
i ,j

pt(i)pt(j)Ent(Lt(`t(i)|i∗ = j)‖Lt(`t(i)))

Now using Cauchy-Schwarz the instantaneous regret is bounded by√
n
∑
i

pt(i)2(¯̀
t(i)− ¯̀

t(i , i))2 ≤
√
n
∑
i ,j

pt(i)pt(j)(¯̀
t(i)− ¯̀

t(i , j))2 .

Pinsker’s inequality gives (using ‖`t‖∞ ≤ 1):

(¯̀
t(i)− ¯̀

t(i , j))2 ≤ Ent(Lt(`t(i)|i∗ = j)‖Lt(`t(i))) ,

Thus one obtains

Et〈pt − δi∗ , `t〉 ≤
√

n It((it , `t(it)), i∗) .

The Russo-Van Roy analysis
Let ¯̀

t(i) = Et`t(i) and ¯̀
t(i , j) = Et(`t(i)|i∗ = j). Then

Et〈pt − δi∗ , `t〉 =
∑
i

pt(i)(¯̀
t(i)− ¯̀

t(i , i)) ,

and

It((it , `t(it)), i∗) =
∑
i ,j

pt(i)pt(j)Ent(Lt(`t(i)|i∗ = j)‖Lt(`t(i)))

Now using Cauchy-Schwarz the instantaneous regret is bounded by√
n
∑
i

pt(i)2(¯̀
t(i)− ¯̀

t(i , i))2 ≤
√
n
∑
i ,j

pt(i)pt(j)(¯̀
t(i)− ¯̀

t(i , j))2 .

Pinsker’s inequality gives (using ‖`t‖∞ ≤ 1):

(¯̀
t(i)− ¯̀

t(i , j))2 ≤ Ent(Lt(`t(i)|i∗ = j)‖Lt(`t(i))) ,

Thus one obtains

Et〈pt − δi∗ , `t〉 ≤
√

n It((it , `t(it)), i∗) .

The Russo-Van Roy analysis
Let ¯̀

t(i) = Et`t(i) and ¯̀
t(i , j) = Et(`t(i)|i∗ = j). Then

Et〈pt − δi∗ , `t〉 =
∑
i

pt(i)(¯̀
t(i)− ¯̀

t(i , i)) ,

and

It((it , `t(it)), i∗) =
∑
i ,j

pt(i)pt(j)Ent(Lt(`t(i)|i∗ = j)‖Lt(`t(i)))

Now using Cauchy-Schwarz the instantaneous regret is bounded by√
n
∑
i

pt(i)2(¯̀
t(i)− ¯̀

t(i , i))2 ≤
√
n
∑
i ,j

pt(i)pt(j)(¯̀
t(i)− ¯̀

t(i , j))2 .

Pinsker’s inequality gives (using ‖`t‖∞ ≤ 1):

(¯̀
t(i)− ¯̀

t(i , j))2 ≤ Ent(Lt(`t(i)|i∗ = j)‖Lt(`t(i))) ,

Thus one obtains

Et〈pt − δi∗ , `t〉 ≤
√
n It((it , `t(it)), i∗) .

Lecture 2:
Mirror descent and online decision making

Sébastien Bubeck
Machine Learning and Optimization group, MSR AI

Stability as an algorithmic guiding principle

Recall that we are looking for a rule to select pt ∈ ∆n based on
`1, . . . , `t−1 ∈ [−1, 1]n, such that we can control the regret with
respect to any comparator q ∈ ∆n:

T∑
t=1

〈`t , pt − q〉 .

In the game-theoretic approach we saw that the movement of the
algorithm,

∑T
t=1 ‖pt − pt+1‖1, was the key quantity to control. In

fact the same is true in general up to an additional “1-lookahead”
term:

T∑
t=1

〈`t , pt − q〉 ≤
T∑
t=1

〈`t , pt+1 − q〉+
T∑
t=1

‖pt − pt+1‖1 .

In other words pt+1 (which can depend on `t) is trading off being
“good” for `t , while at the same time remaining close to pt .

Stability as an algorithmic guiding principle

Recall that we are looking for a rule to select pt ∈ ∆n based on
`1, . . . , `t−1 ∈ [−1, 1]n, such that we can control the regret with
respect to any comparator q ∈ ∆n:

T∑
t=1

〈`t , pt − q〉 .

In the game-theoretic approach we saw that the movement of the
algorithm,

∑T
t=1 ‖pt − pt+1‖1, was the key quantity to control.

In
fact the same is true in general up to an additional “1-lookahead”
term:

T∑
t=1

〈`t , pt − q〉 ≤
T∑
t=1

〈`t , pt+1 − q〉+
T∑
t=1

‖pt − pt+1‖1 .

In other words pt+1 (which can depend on `t) is trading off being
“good” for `t , while at the same time remaining close to pt .

Stability as an algorithmic guiding principle

Recall that we are looking for a rule to select pt ∈ ∆n based on
`1, . . . , `t−1 ∈ [−1, 1]n, such that we can control the regret with
respect to any comparator q ∈ ∆n:

T∑
t=1

〈`t , pt − q〉 .

In the game-theoretic approach we saw that the movement of the
algorithm,

∑T
t=1 ‖pt − pt+1‖1, was the key quantity to control. In

fact the same is true in general up to an additional “1-lookahead”
term:

T∑
t=1

〈`t , pt − q〉 ≤
T∑
t=1

〈`t , pt+1 − q〉+
T∑
t=1

‖pt − pt+1‖1 .

In other words pt+1 (which can depend on `t) is trading off being
“good” for `t , while at the same time remaining close to pt .

Stability as an algorithmic guiding principle

Recall that we are looking for a rule to select pt ∈ ∆n based on
`1, . . . , `t−1 ∈ [−1, 1]n, such that we can control the regret with
respect to any comparator q ∈ ∆n:

T∑
t=1

〈`t , pt − q〉 .

In the game-theoretic approach we saw that the movement of the
algorithm,

∑T
t=1 ‖pt − pt+1‖1, was the key quantity to control. In

fact the same is true in general up to an additional “1-lookahead”
term:

T∑
t=1

〈`t , pt − q〉 ≤
T∑
t=1

〈`t , pt+1 − q〉+
T∑
t=1

‖pt − pt+1‖1 .

In other words pt+1 (which can depend on `t) is trading off being
“good” for `t , while at the same time remaining close to pt .

Metrical task systems [Borodin, Linial, Saks 1982]
This view of the problem is closely related to the following setting
in online algorithms:

I At each time step t the algorithm maintains a state it ∈ [n].

I Upon the observation of a loss function `t : [n]→ R+ the
algorithm can update the state to it+1.

I The associated cost is composed of a service cost `t(it+1) and
a movement cost d(it , it+1) (d is some underlying metric on
[n]).

I Typically interested in competitive ratio rather than regret.

Connection: If it is played at random from pt , and consequent
samplings are appropriately coupled, then the term we want to
bound

T∑
t=1

〈`t , pt+1 − q〉+
T∑
t=1

‖pt − pt+1‖1 ,

exactly corresponds to the sum of expected service cost and
expected movement when the metric is trivial (i.e., d ≡ 1).

Metrical task systems [Borodin, Linial, Saks 1982]
This view of the problem is closely related to the following setting
in online algorithms:

I At each time step t the algorithm maintains a state it ∈ [n].

I Upon the observation of a loss function `t : [n]→ R+ the
algorithm can update the state to it+1.

I The associated cost is composed of a service cost `t(it+1) and
a movement cost d(it , it+1) (d is some underlying metric on
[n]).

I Typically interested in competitive ratio rather than regret.

Connection: If it is played at random from pt , and consequent
samplings are appropriately coupled, then the term we want to
bound

T∑
t=1

〈`t , pt+1 − q〉+
T∑
t=1

‖pt − pt+1‖1 ,

exactly corresponds to the sum of expected service cost and
expected movement when the metric is trivial (i.e., d ≡ 1).

Metrical task systems [Borodin, Linial, Saks 1982]
This view of the problem is closely related to the following setting
in online algorithms:

I At each time step t the algorithm maintains a state it ∈ [n].

I Upon the observation of a loss function `t : [n]→ R+ the
algorithm can update the state to it+1.

I The associated cost is composed of a service cost `t(it+1) and
a movement cost d(it , it+1) (d is some underlying metric on
[n]).

I Typically interested in competitive ratio rather than regret.

Connection: If it is played at random from pt , and consequent
samplings are appropriately coupled, then the term we want to
bound

T∑
t=1

〈`t , pt+1 − q〉+
T∑
t=1

‖pt − pt+1‖1 ,

exactly corresponds to the sum of expected service cost and
expected movement when the metric is trivial (i.e., d ≡ 1).

Metrical task systems [Borodin, Linial, Saks 1982]
This view of the problem is closely related to the following setting
in online algorithms:

I At each time step t the algorithm maintains a state it ∈ [n].

I Upon the observation of a loss function `t : [n]→ R+ the
algorithm can update the state to it+1.

I The associated cost is composed of a service cost `t(it+1) and
a movement cost d(it , it+1) (d is some underlying metric on
[n]).

I Typically interested in competitive ratio rather than regret.

Connection: If it is played at random from pt , and consequent
samplings are appropriately coupled, then the term we want to
bound

T∑
t=1

〈`t , pt+1 − q〉+
T∑
t=1

‖pt − pt+1‖1 ,

exactly corresponds to the sum of expected service cost and
expected movement when the metric is trivial (i.e., d ≡ 1).

Metrical task systems [Borodin, Linial, Saks 1982]
This view of the problem is closely related to the following setting
in online algorithms:

I At each time step t the algorithm maintains a state it ∈ [n].

I Upon the observation of a loss function `t : [n]→ R+ the
algorithm can update the state to it+1.

I The associated cost is composed of a service cost `t(it+1) and
a movement cost d(it , it+1) (d is some underlying metric on
[n]).

I Typically interested in competitive ratio rather than regret.

Connection: If it is played at random from pt , and consequent
samplings are appropriately coupled, then the term we want to
bound

T∑
t=1

〈`t , pt+1 − q〉+
T∑
t=1

‖pt − pt+1‖1 ,

exactly corresponds to the sum of expected service cost and
expected movement when the metric is trivial (i.e., d ≡ 1).

Metrical task systems [Borodin, Linial, Saks 1982]
This view of the problem is closely related to the following setting
in online algorithms:

I At each time step t the algorithm maintains a state it ∈ [n].

I Upon the observation of a loss function `t : [n]→ R+ the
algorithm can update the state to it+1.

I The associated cost is composed of a service cost `t(it+1) and
a movement cost d(it , it+1) (d is some underlying metric on
[n]).

I Typically interested in competitive ratio rather than regret.

Connection: If it is played at random from pt , and consequent
samplings are appropriately coupled, then the term we want to
bound

T∑
t=1

〈`t , pt+1 − q〉+
T∑
t=1

‖pt − pt+1‖1 ,

exactly corresponds to the sum of expected service cost and
expected movement when the metric is trivial (i.e., d ≡ 1).

Gradient descent/regularization approach

A natural algorithm to consider is gradient descent:

xt+1 = xt − η`t ,

which can equivalently be viewed as

xt+1 = argmin
x∈Rn

〈x , `t〉+
1

2η
‖x − xt‖2

2 .

This clearly does not seem adapted to our situation where we
want to measure movement with respect to the `1-norm.

Side comment: another equivalent definition is as follows, say with
x1 = 0,

xt+1 = argmin
x∈Rn

〈x ,
∑
s≤t

`s〉+
1

2η
‖x‖2

2 .

This view is called “Follow The Regularized Leader” (FTRL)

Gradient descent/regularization approach

A natural algorithm to consider is gradient descent:

xt+1 = xt − η`t ,

which can equivalently be viewed as

xt+1 = argmin
x∈Rn

〈x , `t〉+
1

2η
‖x − xt‖2

2 .

This clearly does not seem adapted to our situation where we
want to measure movement with respect to the `1-norm.

Side comment: another equivalent definition is as follows, say with
x1 = 0,

xt+1 = argmin
x∈Rn

〈x ,
∑
s≤t

`s〉+
1

2η
‖x‖2

2 .

This view is called “Follow The Regularized Leader” (FTRL)

Gradient descent/regularization approach

A natural algorithm to consider is gradient descent:

xt+1 = xt − η`t ,

which can equivalently be viewed as

xt+1 = argmin
x∈Rn

〈x , `t〉+
1

2η
‖x − xt‖2

2 .

This clearly does not seem adapted to our situation where we
want to measure movement with respect to the `1-norm.

Side comment: another equivalent definition is as follows, say with
x1 = 0,

xt+1 = argmin
x∈Rn

〈x ,
∑
s≤t

`s〉+
1

2η
‖x‖2

2 .

This view is called “Follow The Regularized Leader” (FTRL)

Gradient descent/regularization approach

A natural algorithm to consider is gradient descent:

xt+1 = xt − η`t ,

which can equivalently be viewed as

xt+1 = argmin
x∈Rn

〈x , `t〉+
1

2η
‖x − xt‖2

2 .

This clearly does not seem adapted to our situation where we
want to measure movement with respect to the `1-norm.

Side comment: another equivalent definition is as follows, say with
x1 = 0,

xt+1 = argmin
x∈Rn

〈x ,
∑
s≤t

`s〉+
1

2η
‖x‖2

2 .

This view is called “Follow The Regularized Leader” (FTRL)

Mirror Descent (Nemirovski and Yudin 87)

Mirror map/regularizer: convex function Φ : D ⊃ K → R.
Bregman divergence: DΦ(x ; y) = Φ(x)− Φ(y)−∇Φ(y) · (x − y).
Note that ∇xDΦ(x ; y) = ∇Φ(x)−∇Φ(y).

D
D∗

K

xt

xt+1

DΦ-projection

∇Φ(xt)

∇Φ(xt)− η`t

gradient
step

∇Φ

∇Φ∗

Mirror Descent (Nemirovski and Yudin 87)

Mirror map/regularizer: convex function Φ : D ⊃ K → R.
Bregman divergence: DΦ(x ; y) = Φ(x)− Φ(y)−∇Φ(y) · (x − y).
Note that ∇xDΦ(x ; y) = ∇Φ(x)−∇Φ(y).

D
D∗

K

xt

xt+1

DΦ-projection

∇Φ(xt)

∇Φ(xt)− η`t

gradient
step

∇Φ

∇Φ∗

Mirror Descent (Nemirovski and Yudin 87)

Mirror map/regularizer: convex function Φ : D ⊃ K → R.
Bregman divergence: DΦ(x ; y) = Φ(x)− Φ(y)−∇Φ(y) · (x − y).
Note that ∇xDΦ(x ; y) = ∇Φ(x)−∇Φ(y).

D
D∗

K

xt

xt+1

DΦ-projection

∇Φ(xt)

∇Φ(xt)− η`t

gradient
step

∇Φ

∇Φ∗

Continuous-time mirror descent
Assume now a continuous time setting where the losses are
revealed incrementally and the algorithm can respond
instantaneously: the service cost is now

∫
t∈R+

`(t) · x(t)dt and the

movement cost is
∫
t∈R+

‖x ′(t)‖1dt.

Denote NK (x) = {θ : θ · (y − x)〉 ≤ 0, ∀y ∈ K} and recall that

x∗ ∈ argmin
x∈K

f (x)⇔ −∇f (x∗) ∈ NK (x∗)

x(t + ε) = argmin
x∈K

DΦ(x ,∇Φ∗(∇Φ(x(t))− εη`(t)))

⇔ ∇Φ(x(t + ε))−∇Φ(x(t)) + εη`(t) ∈ −NK (x(t + ε))

⇔ ∇2Φ(x(t))x ′(t) ∈ −η`(t)− NK (x(t))

Theorem (BCLLM17)

The above differential inclusion admits a (unique) solution
x : R+ → X provided that K is a compact convex set, Φ is
strongly convex, and ∇2Φ and ` are Lipschitz.

Continuous-time mirror descent
Assume now a continuous time setting where the losses are
revealed incrementally and the algorithm can respond
instantaneously: the service cost is now

∫
t∈R+

`(t) · x(t)dt and the

movement cost is
∫
t∈R+

‖x ′(t)‖1dt.

Denote NK (x) = {θ : θ · (y − x)〉 ≤ 0, ∀y ∈ K} and recall that

x∗ ∈ argmin
x∈K

f (x)⇔ −∇f (x∗) ∈ NK (x∗)

x(t + ε) = argmin
x∈K

DΦ(x ,∇Φ∗(∇Φ(x(t))− εη`(t)))

⇔ ∇Φ(x(t + ε))−∇Φ(x(t)) + εη`(t) ∈ −NK (x(t + ε))

⇔ ∇2Φ(x(t))x ′(t) ∈ −η`(t)− NK (x(t))

Theorem (BCLLM17)

The above differential inclusion admits a (unique) solution
x : R+ → X provided that K is a compact convex set, Φ is
strongly convex, and ∇2Φ and ` are Lipschitz.

Continuous-time mirror descent
Assume now a continuous time setting where the losses are
revealed incrementally and the algorithm can respond
instantaneously: the service cost is now

∫
t∈R+

`(t) · x(t)dt and the

movement cost is
∫
t∈R+

‖x ′(t)‖1dt.

Denote NK (x) = {θ : θ · (y − x)〉 ≤ 0, ∀y ∈ K} and recall that

x∗ ∈ argmin
x∈K

f (x)⇔ −∇f (x∗) ∈ NK (x∗)

x(t + ε) = argmin
x∈K

DΦ(x ,∇Φ∗(∇Φ(x(t))− εη`(t)))

⇔ ∇Φ(x(t + ε))−∇Φ(x(t)) + εη`(t) ∈ −NK (x(t + ε))

⇔ ∇2Φ(x(t))x ′(t) ∈ −η`(t)− NK (x(t))

Theorem (BCLLM17)

The above differential inclusion admits a (unique) solution
x : R+ → X provided that K is a compact convex set, Φ is
strongly convex, and ∇2Φ and ` are Lipschitz.

Continuous-time mirror descent
Assume now a continuous time setting where the losses are
revealed incrementally and the algorithm can respond
instantaneously: the service cost is now

∫
t∈R+

`(t) · x(t)dt and the

movement cost is
∫
t∈R+

‖x ′(t)‖1dt.

Denote NK (x) = {θ : θ · (y − x)〉 ≤ 0, ∀y ∈ K} and recall that

x∗ ∈ argmin
x∈K

f (x)⇔ −∇f (x∗) ∈ NK (x∗)

x(t + ε) = argmin
x∈K

DΦ(x ,∇Φ∗(∇Φ(x(t))− εη`(t)))

⇔ ∇Φ(x(t + ε))−∇Φ(x(t)) + εη`(t) ∈ −NK (x(t + ε))

⇔ ∇2Φ(x(t))x ′(t) ∈ −η`(t)− NK (x(t))

Theorem (BCLLM17)

The above differential inclusion admits a (unique) solution
x : R+ → X provided that K is a compact convex set, Φ is
strongly convex, and ∇2Φ and ` are Lipschitz.

Continuous-time mirror descent
Assume now a continuous time setting where the losses are
revealed incrementally and the algorithm can respond
instantaneously: the service cost is now

∫
t∈R+

`(t) · x(t)dt and the

movement cost is
∫
t∈R+

‖x ′(t)‖1dt.

Denote NK (x) = {θ : θ · (y − x)〉 ≤ 0, ∀y ∈ K} and recall that

x∗ ∈ argmin
x∈K

f (x)⇔ −∇f (x∗) ∈ NK (x∗)

x(t + ε) = argmin
x∈K

DΦ(x ,∇Φ∗(∇Φ(x(t))− εη`(t)))

⇔ ∇Φ(x(t + ε))−∇Φ(x(t)) + εη`(t) ∈ −NK (x(t + ε))

⇔ ∇2Φ(x(t))x ′(t) ∈ −η`(t)− NK (x(t))

Theorem (BCLLM17)

The above differential inclusion admits a (unique) solution
x : R+ → X provided that K is a compact convex set, Φ is
strongly convex, and ∇2Φ and ` are Lipschitz.

The basic calculation
∇2Φ(x(t))x ′(t) = −η`(t)− λ(t), λ(t) ∈ NK (x(t))

Recall DΦ(y ; x) = Φ(y)− Φ(x)−∇Φ(x) · (y − x),

∂tDΦ(y ; x(t)) = −∇2Φ(x(t))x ′(t) · (y − x(t))

= (η`(t) + λ(t)) · (y − x(t))

≤ η`(t) · (y − x(t))

Lemma
The mirror descent path (x(t))t≥0 satisfies for any comparator
point y , ∫

`(t) · (x(t)− y)dt ≤ DΦ(y ; x(0))

η
.

Thus to control the regret it only remains to bound the movement
cost

∫
t∈R+

‖x ′(t)‖1dt (recall that this continuous time setting is

only valid for the 1-lookahead setting, i.e., MTS).

The basic calculation
∇2Φ(x(t))x ′(t) = −η`(t)− λ(t), λ(t) ∈ NK (x(t))

Recall DΦ(y ; x) = Φ(y)− Φ(x)−∇Φ(x) · (y − x),

∂tDΦ(y ; x(t)) = −∇2Φ(x(t))x ′(t) · (y − x(t))

= (η`(t) + λ(t)) · (y − x(t))

≤ η`(t) · (y − x(t))

Lemma
The mirror descent path (x(t))t≥0 satisfies for any comparator
point y , ∫

`(t) · (x(t)− y)dt ≤ DΦ(y ; x(0))

η
.

Thus to control the regret it only remains to bound the movement
cost

∫
t∈R+

‖x ′(t)‖1dt (recall that this continuous time setting is

only valid for the 1-lookahead setting, i.e., MTS).

The basic calculation
∇2Φ(x(t))x ′(t) = −η`(t)− λ(t), λ(t) ∈ NK (x(t))

Recall DΦ(y ; x) = Φ(y)− Φ(x)−∇Φ(x) · (y − x),

∂tDΦ(y ; x(t)) = −∇2Φ(x(t))x ′(t) · (y − x(t))

= (η`(t) + λ(t)) · (y − x(t))

≤ η`(t) · (y − x(t))

Lemma
The mirror descent path (x(t))t≥0 satisfies for any comparator
point y , ∫

`(t) · (x(t)− y)dt ≤ DΦ(y ; x(0))

η
.

Thus to control the regret it only remains to bound the movement
cost

∫
t∈R+

‖x ′(t)‖1dt (recall that this continuous time setting is

only valid for the 1-lookahead setting, i.e., MTS).

The basic calculation
∇2Φ(x(t))x ′(t) = −η`(t)− λ(t), λ(t) ∈ NK (x(t))

Recall DΦ(y ; x) = Φ(y)− Φ(x)−∇Φ(x) · (y − x),

∂tDΦ(y ; x(t)) = −∇2Φ(x(t))x ′(t) · (y − x(t))

= (η`(t) + λ(t)) · (y − x(t))

≤ η`(t) · (y − x(t))

Lemma
The mirror descent path (x(t))t≥0 satisfies for any comparator
point y , ∫

`(t) · (x(t)− y)dt ≤ DΦ(y ; x(0))

η
.

Thus to control the regret it only remains to bound the movement
cost

∫
t∈R+

‖x ′(t)‖1dt (recall that this continuous time setting is

only valid for the 1-lookahead setting, i.e., MTS).

The basic calculation
∇2Φ(x(t))x ′(t) = −η`(t)− λ(t), λ(t) ∈ NK (x(t))

Recall DΦ(y ; x) = Φ(y)− Φ(x)−∇Φ(x) · (y − x),

∂tDΦ(y ; x(t)) = −∇2Φ(x(t))x ′(t) · (y − x(t))

= (η`(t) + λ(t)) · (y − x(t))

≤ η`(t) · (y − x(t))

Lemma
The mirror descent path (x(t))t≥0 satisfies for any comparator
point y , ∫

`(t) · (x(t)− y)dt ≤ DΦ(y ; x(0))

η
.

Thus to control the regret it only remains to bound the movement
cost

∫
t∈R+

‖x ′(t)‖1dt (recall that this continuous time setting is

only valid for the 1-lookahead setting, i.e., MTS).

Controlling the movement and how the entropy arises

How to control ‖x ′(t)‖1 = ‖(∇2Φ(x(t)))−1(η`(t) + λ(t))‖1? A
particularly pleasant inequality would be to relate this to say
η`(t) · x(t), in which case one would get a final regret bound of
the form (up to a multiplicative factor 1/(1− η)):

DΦ(y ; x(0))

η
+ ηL∗ .

Ignore for a moment the Lagrange multiplier λ(t) and assume that
Φ(x) =

∑n
i=1 ϕ(xi). We want to relate

∑n
i=1 `i (t)/ϕ′′(xi (t)) to∑n

i=1 `i (t)xi (t). Making them equal gives Φ(x) =
∑

i xi log xi with
corresponding dynamics:

x ′i (t) = −ηxi (t)(`i (t) + µ(t)) .

In particular ‖x ′(t)‖1 ≤ 2η`(t) · x(t).
We note that this algorithm is exactly a continuous time version of
the MW studied at the beginning of the first lecture.

Controlling the movement and how the entropy arises

How to control ‖x ′(t)‖1 = ‖(∇2Φ(x(t)))−1(η`(t) + λ(t))‖1? A
particularly pleasant inequality would be to relate this to say
η`(t) · x(t), in which case one would get a final regret bound of
the form (up to a multiplicative factor 1/(1− η)):

DΦ(y ; x(0))

η
+ ηL∗ .

Ignore for a moment the Lagrange multiplier λ(t) and assume that
Φ(x) =

∑n
i=1 ϕ(xi). We want to relate

∑n
i=1 `i (t)/ϕ′′(xi (t)) to∑n

i=1 `i (t)xi (t).

Making them equal gives Φ(x) =
∑

i xi log xi with
corresponding dynamics:

x ′i (t) = −ηxi (t)(`i (t) + µ(t)) .

In particular ‖x ′(t)‖1 ≤ 2η`(t) · x(t).
We note that this algorithm is exactly a continuous time version of
the MW studied at the beginning of the first lecture.

Controlling the movement and how the entropy arises

How to control ‖x ′(t)‖1 = ‖(∇2Φ(x(t)))−1(η`(t) + λ(t))‖1? A
particularly pleasant inequality would be to relate this to say
η`(t) · x(t), in which case one would get a final regret bound of
the form (up to a multiplicative factor 1/(1− η)):

DΦ(y ; x(0))

η
+ ηL∗ .

Ignore for a moment the Lagrange multiplier λ(t) and assume that
Φ(x) =

∑n
i=1 ϕ(xi). We want to relate

∑n
i=1 `i (t)/ϕ′′(xi (t)) to∑n

i=1 `i (t)xi (t). Making them equal gives Φ(x) =
∑

i xi log xi with
corresponding dynamics:

x ′i (t) = −ηxi (t)(`i (t) + µ(t)) .

In particular ‖x ′(t)‖1 ≤ 2η`(t) · x(t).

We note that this algorithm is exactly a continuous time version of
the MW studied at the beginning of the first lecture.

Controlling the movement and how the entropy arises

How to control ‖x ′(t)‖1 = ‖(∇2Φ(x(t)))−1(η`(t) + λ(t))‖1? A
particularly pleasant inequality would be to relate this to say
η`(t) · x(t), in which case one would get a final regret bound of
the form (up to a multiplicative factor 1/(1− η)):

DΦ(y ; x(0))

η
+ ηL∗ .

Ignore for a moment the Lagrange multiplier λ(t) and assume that
Φ(x) =

∑n
i=1 ϕ(xi). We want to relate

∑n
i=1 `i (t)/ϕ′′(xi (t)) to∑n

i=1 `i (t)xi (t). Making them equal gives Φ(x) =
∑

i xi log xi with
corresponding dynamics:

x ′i (t) = −ηxi (t)(`i (t) + µ(t)) .

In particular ‖x ′(t)‖1 ≤ 2η`(t) · x(t).
We note that this algorithm is exactly a continuous time version of
the MW studied at the beginning of the first lecture.

The more classical discrete-time algorithm and analysis
Ignoring the Lagrangian and assuming `′(t) = 0 one has

∂2
tDΦ(y ; x(t)) = ∇2Φ(x(t))[x ′(t), x ′(t)] = η2(∇2Φ(x(t)))−1[`(t), `(t)] .

Thus provided that the Hessian of Φ is well-conditioned on the
scale of a mirror step, one expects a discrete time analysis to give
a regret bound of the form (with the notation
‖h‖x =

√
∇2Φ(x)[h, h])

DΦ(y ; x1)

η
+ η

T∑
t=1

‖`t‖2
xt ,∗ .

Theorem
The above is valid with a factor 2/c on the second term, provided
that the following implication holds true for any yt ∈ Rn,

∇Φ(yt) ∈ [∇Φ(xt),∇Φ(xt)− η`t]⇒ ∇2Φ(yt) � c∇2Φ(xt) .

For FTRL one instead needs this for any yt ∈ [xt , xt+1].

The more classical discrete-time algorithm and analysis
Ignoring the Lagrangian and assuming `′(t) = 0 one has

∂2
tDΦ(y ; x(t)) = ∇2Φ(x(t))[x ′(t), x ′(t)] = η2(∇2Φ(x(t)))−1[`(t), `(t)] .

Thus provided that the Hessian of Φ is well-conditioned on the
scale of a mirror step, one expects a discrete time analysis to give
a regret bound of the form (with the notation
‖h‖x =

√
∇2Φ(x)[h, h])

DΦ(y ; x1)

η
+ η

T∑
t=1

‖`t‖2
xt ,∗ .

Theorem
The above is valid with a factor 2/c on the second term, provided
that the following implication holds true for any yt ∈ Rn,

∇Φ(yt) ∈ [∇Φ(xt),∇Φ(xt)− η`t]⇒ ∇2Φ(yt) � c∇2Φ(xt) .

For FTRL one instead needs this for any yt ∈ [xt , xt+1].

The more classical discrete-time algorithm and analysis
Ignoring the Lagrangian and assuming `′(t) = 0 one has

∂2
tDΦ(y ; x(t)) = ∇2Φ(x(t))[x ′(t), x ′(t)] = η2(∇2Φ(x(t)))−1[`(t), `(t)] .

Thus provided that the Hessian of Φ is well-conditioned on the
scale of a mirror step, one expects a discrete time analysis to give
a regret bound of the form (with the notation
‖h‖x =

√
∇2Φ(x)[h, h])

DΦ(y ; x1)

η
+ η

T∑
t=1

‖`t‖2
xt ,∗ .

Theorem
The above is valid with a factor 2/c on the second term, provided
that the following implication holds true for any yt ∈ Rn,

∇Φ(yt) ∈ [∇Φ(xt),∇Φ(xt)− η`t]⇒ ∇2Φ(yt) � c∇2Φ(xt) .

For FTRL one instead needs this for any yt ∈ [xt , xt+1].

MW is mirror descent with the negentropy

Let Φ(x) =
∑n

i=1(xi log xi − xi) and K = ∆n. One has
∇Φ(x) = log(xi) and thus the update step in the dual looks like:

∇Φ(yt) = ∇Φ(xt)− η`t ⇔ yi ,t = xi ,t exp(−η`t(i)) .

Furthermore the projection step to K amounts simply to a
renormalization. Indeed ∇xDΦ(x , y) =

∑n
i=1 log(xi/yi) and thus

p = argmin
x∈∆n

DΦ(x , y)⇔ ∃µ ∈ R : log(pi/yi) = µ, ∀i ∈ [n] .

The analysis considers the potential DΦ(i∗, pt) = − log(pt(i
∗)),

which in fact exactly corresponds to what we did in the second
slide of the first lecture.
Note also that the well-conditioning comes for free when `t(i) ≥ 0,
and in general one just needs ‖η`t‖∞ to be O(1).

MW is mirror descent with the negentropy

Let Φ(x) =
∑n

i=1(xi log xi − xi) and K = ∆n. One has
∇Φ(x) = log(xi) and thus the update step in the dual looks like:

∇Φ(yt) = ∇Φ(xt)− η`t ⇔ yi ,t = xi ,t exp(−η`t(i)) .

Furthermore the projection step to K amounts simply to a
renormalization. Indeed ∇xDΦ(x , y) =

∑n
i=1 log(xi/yi) and thus

p = argmin
x∈∆n

DΦ(x , y)⇔ ∃µ ∈ R : log(pi/yi) = µ, ∀i ∈ [n] .

The analysis considers the potential DΦ(i∗, pt) = − log(pt(i
∗)),

which in fact exactly corresponds to what we did in the second
slide of the first lecture.
Note also that the well-conditioning comes for free when `t(i) ≥ 0,
and in general one just needs ‖η`t‖∞ to be O(1).

MW is mirror descent with the negentropy

Let Φ(x) =
∑n

i=1(xi log xi − xi) and K = ∆n. One has
∇Φ(x) = log(xi) and thus the update step in the dual looks like:

∇Φ(yt) = ∇Φ(xt)− η`t ⇔ yi ,t = xi ,t exp(−η`t(i)) .

Furthermore the projection step to K amounts simply to a
renormalization. Indeed ∇xDΦ(x , y) =

∑n
i=1 log(xi/yi) and thus

p = argmin
x∈∆n

DΦ(x , y)⇔ ∃µ ∈ R : log(pi/yi) = µ, ∀i ∈ [n] .

The analysis considers the potential DΦ(i∗, pt) = − log(pt(i
∗)),

which in fact exactly corresponds to what we did in the second
slide of the first lecture.

Note also that the well-conditioning comes for free when `t(i) ≥ 0,
and in general one just needs ‖η`t‖∞ to be O(1).

MW is mirror descent with the negentropy

Let Φ(x) =
∑n

i=1(xi log xi − xi) and K = ∆n. One has
∇Φ(x) = log(xi) and thus the update step in the dual looks like:

∇Φ(yt) = ∇Φ(xt)− η`t ⇔ yi ,t = xi ,t exp(−η`t(i)) .

Furthermore the projection step to K amounts simply to a
renormalization. Indeed ∇xDΦ(x , y) =

∑n
i=1 log(xi/yi) and thus

p = argmin
x∈∆n

DΦ(x , y)⇔ ∃µ ∈ R : log(pi/yi) = µ, ∀i ∈ [n] .

The analysis considers the potential DΦ(i∗, pt) = − log(pt(i
∗)),

which in fact exactly corresponds to what we did in the second
slide of the first lecture.
Note also that the well-conditioning comes for free when `t(i) ≥ 0,
and in general one just needs ‖η`t‖∞ to be O(1).

Propensity score for the bandit game
Key idea: replace `t by ˜̀t such that Eit∼pt

˜̀
t = `t . The propensity

score normalized estimator is defined by:

˜̀
t(i) =

`t(it)

pt(i)
1{i = it} .

The Exp3 strategy corresponds to doing MW with those
estimators. Its regret is upper bounded by,

E
T∑
t=1

〈pt − q, `t〉 = E
T∑
t=1

〈pt − q, ˜̀t〉 ≤ log(n)

η
+ ηE

∑
t

‖˜̀t‖2
pt ,∗ ,

where ‖h‖2
p,∗ =

∑n
i=1 p(i)h(i)2. Amazingly the variance term is

automatically controlled:

Eit∼pt

n∑
i=1

pt(i)˜̀t(i)2 ≤ Eit∼pt

n∑
i=1

1{i = it}
pt(it)

= n.

Thus with η =
√
n log(n)/T one gets RT ≤ 2

√
Tn log(n).

Propensity score for the bandit game
Key idea: replace `t by ˜̀t such that Eit∼pt

˜̀
t = `t . The propensity

score normalized estimator is defined by:

˜̀
t(i) =

`t(it)

pt(i)
1{i = it} .

The Exp3 strategy corresponds to doing MW with those
estimators. Its regret is upper bounded by,

E
T∑
t=1

〈pt − q, `t〉 = E
T∑
t=1

〈pt − q, ˜̀t〉 ≤ log(n)

η
+ ηE

∑
t

‖˜̀t‖2
pt ,∗ ,

where ‖h‖2
p,∗ =

∑n
i=1 p(i)h(i)2.

Amazingly the variance term is
automatically controlled:

Eit∼pt

n∑
i=1

pt(i)˜̀t(i)2 ≤ Eit∼pt

n∑
i=1

1{i = it}
pt(it)

= n.

Thus with η =
√
n log(n)/T one gets RT ≤ 2

√
Tn log(n).

Propensity score for the bandit game
Key idea: replace `t by ˜̀t such that Eit∼pt

˜̀
t = `t . The propensity

score normalized estimator is defined by:

˜̀
t(i) =

`t(it)

pt(i)
1{i = it} .

The Exp3 strategy corresponds to doing MW with those
estimators. Its regret is upper bounded by,

E
T∑
t=1

〈pt − q, `t〉 = E
T∑
t=1

〈pt − q, ˜̀t〉 ≤ log(n)

η
+ ηE

∑
t

‖˜̀t‖2
pt ,∗ ,

where ‖h‖2
p,∗ =

∑n
i=1 p(i)h(i)2. Amazingly the variance term is

automatically controlled:

Eit∼pt

n∑
i=1

pt(i)˜̀t(i)2 ≤ Eit∼pt

n∑
i=1

1{i = it}
pt(it)

= n.

Thus with η =
√

n log(n)/T one gets RT ≤ 2
√
Tn log(n).

Propensity score for the bandit game
Key idea: replace `t by ˜̀t such that Eit∼pt

˜̀
t = `t . The propensity

score normalized estimator is defined by:

˜̀
t(i) =

`t(it)

pt(i)
1{i = it} .

The Exp3 strategy corresponds to doing MW with those
estimators. Its regret is upper bounded by,

E
T∑
t=1

〈pt − q, `t〉 = E
T∑
t=1

〈pt − q, ˜̀t〉 ≤ log(n)

η
+ ηE

∑
t

‖˜̀t‖2
pt ,∗ ,

where ‖h‖2
p,∗ =

∑n
i=1 p(i)h(i)2. Amazingly the variance term is

automatically controlled:

Eit∼pt

n∑
i=1

pt(i)˜̀t(i)2 ≤ Eit∼pt

n∑
i=1

1{i = it}
pt(it)

= n.

Thus with η =
√

n log(n)/T one gets RT ≤ 2
√
Tn log(n).

Simple extensions

I Removing the extraneous
√

log(n)

I Contextual bandit

I Bandit with side information

I Different scaling per actions

More subtle refinements

I Sparse bandit

I Variance bounds

I First order bounds

I Best of both worlds

I Impossibility of
√
T with switching cost

I Impossibility of oracle models

I Knapsack bandits

Lecture 3:
Online combinatorial optimization, bandit linear

optimization, and self-concordant barriers

Sébastien Bubeck
Machine Learning and Optimization group, MSR AI

Online combinatorial optimization

Parameters: action set A ⊂ {a ∈ {0, 1}n : ‖a‖1 = m}, number of
rounds T .

Protocol: For each round t ∈ [T], player chooses at ∈ A and
simultaneously adversary chooses a loss function `t ∈ [0, 1]n. Loss
suffered is `t · at .
Feedback model: In the full information game the player observes
the complete loss function `t . In the bandit game the player only
observes her own loss `t · at . In the semi-bandit game one observes
at � `t .

Performance measure: The regret is the difference between the
player’s accumulated loss and the minimum loss she could have
obtained had she known all the adversary’s choices:

RT := E
T∑
t=1

`t · at −min
a∈A

E
T∑
t=1

`t · a .

Online combinatorial optimization

Parameters: action set A ⊂ {a ∈ {0, 1}n : ‖a‖1 = m}, number of
rounds T .
Protocol: For each round t ∈ [T], player chooses at ∈ A and
simultaneously adversary chooses a loss function `t ∈ [0, 1]n. Loss
suffered is `t · at .

Feedback model: In the full information game the player observes
the complete loss function `t . In the bandit game the player only
observes her own loss `t · at . In the semi-bandit game one observes
at � `t .

Performance measure: The regret is the difference between the
player’s accumulated loss and the minimum loss she could have
obtained had she known all the adversary’s choices:

RT := E
T∑
t=1

`t · at −min
a∈A

E
T∑
t=1

`t · a .

Online combinatorial optimization

Parameters: action set A ⊂ {a ∈ {0, 1}n : ‖a‖1 = m}, number of
rounds T .
Protocol: For each round t ∈ [T], player chooses at ∈ A and
simultaneously adversary chooses a loss function `t ∈ [0, 1]n. Loss
suffered is `t · at .
Feedback model: In the full information game the player observes
the complete loss function `t . In the bandit game the player only
observes her own loss `t · at . In the semi-bandit game one observes
at � `t .

Performance measure: The regret is the difference between the
player’s accumulated loss and the minimum loss she could have
obtained had she known all the adversary’s choices:

RT := E
T∑
t=1

`t · at −min
a∈A

E
T∑
t=1

`t · a .

Online combinatorial optimization

Parameters: action set A ⊂ {a ∈ {0, 1}n : ‖a‖1 = m}, number of
rounds T .
Protocol: For each round t ∈ [T], player chooses at ∈ A and
simultaneously adversary chooses a loss function `t ∈ [0, 1]n. Loss
suffered is `t · at .
Feedback model: In the full information game the player observes
the complete loss function `t . In the bandit game the player only
observes her own loss `t · at . In the semi-bandit game one observes
at � `t .

Performance measure: The regret is the difference between the
player’s accumulated loss and the minimum loss she could have
obtained had she known all the adversary’s choices:

RT := E
T∑
t=1

`t · at −min
a∈A

E
T∑
t=1

`t · a .

Example: path planning

Example: path planning

Adversary

Player

Example: path planning

Adversary

Player

Example: path planning

Adversary

Player

Example: path planning

Adversary

Player

`2 `6 `n−1

`1

`4

`5

`9

`n−2

`n`3

`8

`7

Example: path planning

Adversary

Player

`2 `6 `n−1

`1

`4

`5

`9

`n−2

`n`3

`8

`7

loss suffered: `2 + `7 + . . .+ `n

Example: path planning

Adversary

Player

`2 `6 `n−1

`1

`4

`5

`9

`n−2

`n`3

`8

`7

loss suffered: `2 + `7 + . . .+ `n

Feedback:


Full Info: `1, `2, . . . , `n

Example: path planning

Adversary

Player

`2 `6 `n−1

`1

`4

`5

`9

`n−2

`n`3

`8

`7

loss suffered: `2 + `7 + . . .+ `n

Feedback:


Full Info: `1, `2, . . . , `n
Semi-Bandit: `2, `7, . . . , `n

Bandit: `2 + `7 + . . .+ `n

Example: path planning

Adversary

Player

`2 `6 `n−1

`1

`4

`5

`9

`n−2

`n`3

`8

`7

loss suffered: `2 + `7 + . . .+ `n

Feedback:


Full Info: `1, `2, . . . , `n
Semi-Bandit: `2, `7, . . . , `n
Bandit: `2 + `7 + . . .+ `n

Mirror descent and MW are now different!

Playing MW on A and accounting for the scale of the losses and
the size of the action set one gets a
O(m

√
m log(n/m)T) = Õ(m3/2

√
T)-regret.

However playing mirror descent with the negentropy regularizer on
the set conv(A) gives a better bound! Indeed the variance term is
controlled by m, while one can easily check that the radius term is
controlled by m log(n/m), and thus one obtains a Õ(m

√
T)-regret.

This was first noticed in [Koolen, Warmuth, Kivinen 2010], and
both phenomenon were shown to be “inherent” in [Audibert, B.,
Lugosi 2011] (in the sense that there is a lower bound of
Ω(m3/2

√
T) for MW with any learning rate, and that Ω(m

√
T) is

a lower bound for all algorithms).

Mirror descent and MW are now different!

Playing MW on A and accounting for the scale of the losses and
the size of the action set one gets a
O(m

√
m log(n/m)T) = Õ(m3/2

√
T)-regret.

However playing mirror descent with the negentropy regularizer on
the set conv(A) gives a better bound! Indeed the variance term is
controlled by m, while one can easily check that the radius term is
controlled by m log(n/m), and thus one obtains a Õ(m

√
T)-regret.

This was first noticed in [Koolen, Warmuth, Kivinen 2010], and
both phenomenon were shown to be “inherent” in [Audibert, B.,
Lugosi 2011] (in the sense that there is a lower bound of
Ω(m3/2

√
T) for MW with any learning rate, and that Ω(m

√
T) is

a lower bound for all algorithms).

Mirror descent and MW are now different!

Playing MW on A and accounting for the scale of the losses and
the size of the action set one gets a
O(m

√
m log(n/m)T) = Õ(m3/2

√
T)-regret.

However playing mirror descent with the negentropy regularizer on
the set conv(A) gives a better bound! Indeed the variance term is
controlled by m, while one can easily check that the radius term is
controlled by m log(n/m), and thus one obtains a Õ(m

√
T)-regret.

This was first noticed in [Koolen, Warmuth, Kivinen 2010], and
both phenomenon were shown to be “inherent” in [Audibert, B.,
Lugosi 2011] (in the sense that there is a lower bound of
Ω(m3/2

√
T) for MW with any learning rate, and that Ω(m

√
T) is

a lower bound for all algorithms).

Semi-bandit [Audibert, B., Lugosi 2011, 2014]

Denote vt = Etat ∈ conv(A). A natural unbiased estimator in this
context is given by: ˜̀

t(i) =
`t(i)at(i)

vt(i)
.

It is an easy exercise to show that the variance term for this
estimator is ≤ n, which leads to an overall regret of Õ(

√
nmT).

Notice that the gap between full information and semi-bandit is√
n/m, which makes sense (and is optimal).

Semi-bandit [Audibert, B., Lugosi 2011, 2014]

Denote vt = Etat ∈ conv(A). A natural unbiased estimator in this
context is given by: ˜̀

t(i) =
`t(i)at(i)

vt(i)
.

It is an easy exercise to show that the variance term for this
estimator is ≤ n, which leads to an overall regret of Õ(

√
nmT).

Notice that the gap between full information and semi-bandit is√
n/m, which makes sense (and is optimal).

A tentative bandit estimator [Dani, Hayes, Kakade 2008]
DHK08 proposed the following (beautiful) unbiased estimator with
bandit information:˜̀

t = Σ−1
t ata

>
t `t where Σt = Ea∼pt (aa

>).

Amazingly, the variance in MW is automatically controlled:

E(Ea∼pt (
˜̀>
t a)2) = E˜̀>t Σt

˜̀
t ≤ m2Ea>t Σ−1

t at = m2ETr(Σ−1
t atat) = m2n .

This suggests a regret in Õ(m
√
nmT), which is in fact optimal

([Koren et al 2017]). Note that this extra factor m suggests that
for bandit it is enough to consider the normalization `t · at ≤ 1,
and we focus now on this case.

However there is one small issue: this estimator can take negative
values, and thus the “well-conditionning” property of the entropic
regularizer is not automatically verified! Resolving this issue will
take us in the territory of self-concordant barriers. But first, can
we gain some confidence that the claimed bound
O(
√

n log(|A|)T) is correct?

A tentative bandit estimator [Dani, Hayes, Kakade 2008]
DHK08 proposed the following (beautiful) unbiased estimator with
bandit information:˜̀

t = Σ−1
t ata

>
t `t where Σt = Ea∼pt (aa

>).

Amazingly, the variance in MW is automatically controlled:

E(Ea∼pt (
˜̀>
t a)2) = E˜̀>t Σt

˜̀
t ≤ m2Ea>t Σ−1

t at = m2ETr(Σ−1
t atat) = m2n .

This suggests a regret in Õ(m
√
nmT), which is in fact optimal

([Koren et al 2017]). Note that this extra factor m suggests that
for bandit it is enough to consider the normalization `t · at ≤ 1,
and we focus now on this case.

However there is one small issue: this estimator can take negative
values, and thus the “well-conditionning” property of the entropic
regularizer is not automatically verified! Resolving this issue will
take us in the territory of self-concordant barriers. But first, can
we gain some confidence that the claimed bound
O(
√

n log(|A|)T) is correct?

A tentative bandit estimator [Dani, Hayes, Kakade 2008]
DHK08 proposed the following (beautiful) unbiased estimator with
bandit information:˜̀

t = Σ−1
t ata

>
t `t where Σt = Ea∼pt (aa

>).

Amazingly, the variance in MW is automatically controlled:

E(Ea∼pt (
˜̀>
t a)2) = E˜̀>t Σt

˜̀
t ≤ m2Ea>t Σ−1

t at = m2ETr(Σ−1
t atat) = m2n .

This suggests a regret in Õ(m
√
nmT), which is in fact optimal

([Koren et al 2017]). Note that this extra factor m suggests that
for bandit it is enough to consider the normalization `t · at ≤ 1,
and we focus now on this case.

However there is one small issue: this estimator can take negative
values, and thus the “well-conditionning” property of the entropic
regularizer is not automatically verified! Resolving this issue will
take us in the territory of self-concordant barriers. But first, can
we gain some confidence that the claimed bound
O(
√
n log(|A|)T) is correct?

Back to the information theoretic argument
Assume A = {a1, . . . , a|A|}. Recall from Lecture 1 that Thompson
Sampling satisfies∑

i

pt(i)(¯̀
t(i)− ¯̀

t(i , i)) ≤
√

C
∑
i ,j

pt(i)pt(j)(¯̀
t(i , j)− ¯̀

t(i))2

⇒ RT ≤
√
C T log(|A|)/2,

where ¯̀
t(i) = Et`t(i) and ¯̀

t(i , j) = Et(`t(i)|i∗ = j).

Writing ¯̀
t(i) = a>i

¯̀
t , ¯̀

t(i , j) = a>i
¯̀j
t , and

(Mi ,j) =
(√

pt(i)pt(j)a
>
i (¯̀

t − ¯̀j
t)
)

we want to show that

Tr(M) ≤
√
C‖M‖F .

Using the eigenvalue formula for the trace and the Frobenius norm
one can see that Tr(M)2 ≤ rank(M)‖M‖2

F . Moreover the rank of
M is at most n since M = UV> where U,V ∈ R|A|×n (the i th row
of U is

√
pt(i)ai and for V it is

√
pt(i)(¯̀

t − ¯̀i
t)).

Back to the information theoretic argument
Assume A = {a1, . . . , a|A|}. Recall from Lecture 1 that Thompson
Sampling satisfies∑

i

pt(i)(¯̀
t(i)− ¯̀

t(i , i)) ≤
√

C
∑
i ,j

pt(i)pt(j)(¯̀
t(i , j)− ¯̀

t(i))2

⇒ RT ≤
√
C T log(|A|)/2,

where ¯̀
t(i) = Et`t(i) and ¯̀

t(i , j) = Et(`t(i)|i∗ = j).

Writing ¯̀
t(i) = a>i

¯̀
t , ¯̀

t(i , j) = a>i
¯̀j
t , and

(Mi ,j) =
(√

pt(i)pt(j)a
>
i (¯̀

t − ¯̀j
t)
)

we want to show that

Tr(M) ≤
√
C‖M‖F .

Using the eigenvalue formula for the trace and the Frobenius norm
one can see that Tr(M)2 ≤ rank(M)‖M‖2

F . Moreover the rank of
M is at most n since M = UV> where U,V ∈ R|A|×n (the i th row
of U is

√
pt(i)ai and for V it is

√
pt(i)(¯̀

t − ¯̀i
t)).

Back to the information theoretic argument
Assume A = {a1, . . . , a|A|}. Recall from Lecture 1 that Thompson
Sampling satisfies∑

i

pt(i)(¯̀
t(i)− ¯̀

t(i , i)) ≤
√

C
∑
i ,j

pt(i)pt(j)(¯̀
t(i , j)− ¯̀

t(i))2

⇒ RT ≤
√
C T log(|A|)/2,

where ¯̀
t(i) = Et`t(i) and ¯̀

t(i , j) = Et(`t(i)|i∗ = j).

Writing ¯̀
t(i) = a>i

¯̀
t , ¯̀

t(i , j) = a>i
¯̀j
t , and

(Mi ,j) =
(√

pt(i)pt(j)a
>
i (¯̀

t − ¯̀j
t)
)

we want to show that

Tr(M) ≤
√
C‖M‖F .

Using the eigenvalue formula for the trace and the Frobenius norm
one can see that Tr(M)2 ≤ rank(M)‖M‖2

F .

Moreover the rank of
M is at most n since M = UV> where U,V ∈ R|A|×n (the i th row
of U is

√
pt(i)ai and for V it is

√
pt(i)(¯̀

t − ¯̀i
t)).

Back to the information theoretic argument
Assume A = {a1, . . . , a|A|}. Recall from Lecture 1 that Thompson
Sampling satisfies∑

i

pt(i)(¯̀
t(i)− ¯̀

t(i , i)) ≤
√

C
∑
i ,j

pt(i)pt(j)(¯̀
t(i , j)− ¯̀

t(i))2

⇒ RT ≤
√
C T log(|A|)/2,

where ¯̀
t(i) = Et`t(i) and ¯̀

t(i , j) = Et(`t(i)|i∗ = j).

Writing ¯̀
t(i) = a>i

¯̀
t , ¯̀

t(i , j) = a>i
¯̀j
t , and

(Mi ,j) =
(√

pt(i)pt(j)a
>
i (¯̀

t − ¯̀j
t)
)

we want to show that

Tr(M) ≤
√
C‖M‖F .

Using the eigenvalue formula for the trace and the Frobenius norm
one can see that Tr(M)2 ≤ rank(M)‖M‖2

F . Moreover the rank of
M is at most n since M = UV> where U,V ∈ R|A|×n (the i th row
of U is

√
pt(i)ai and for V it is

√
pt(i)(¯̀

t − ¯̀i
t)).

Bandit linear optimization
We now come back to the general online linear optimization
setting: the player plays in a convex body K ⊂ Rn and the
adversary plays in K ◦ = {` : |` · x | ≤ 1, ∀x ∈ K}. An important
point we have ignored so far but which matters for bandit feedback
is the sampling scheme: this is a map p : K → ∆(K) such that if
MD recommends x ∈ K then one plays at random from p(x).

Observe that the MD-variance term for ˜̀t = Σ−1
t (at − xt)a

>
t `t is:

E[(‖˜̀t‖∗xt)2] ≤ E[(‖Σ−1
t (at − xt)‖∗xt)

2]

= E(at − xt)
>Σ−1

t ∇2Φ(xt)
−1Σ−1

t (at − xt)

= E Tr(∇2Φ(xt)
−1Σ−1

t) ,

where the last equality follows from using cyclic invariance of the
trace and E[(at − xt)(at − xt)

>|xt] = Σ(xt).
Notice that Σ−1

t has to explode when xt tends to an extremal
point of K , and thus in turns ∇2Φ(xt) would also have to explode
to hope to compensate in the variance. This makes the
well-conditionning problem more acute.

Bandit linear optimization
We now come back to the general online linear optimization
setting: the player plays in a convex body K ⊂ Rn and the
adversary plays in K ◦ = {` : |` · x | ≤ 1, ∀x ∈ K}. An important
point we have ignored so far but which matters for bandit feedback
is the sampling scheme: this is a map p : K → ∆(K) such that if
MD recommends x ∈ K then one plays at random from p(x).
Observe that the MD-variance term for ˜̀t = Σ−1

t (at − xt)a
>
t `t is:

E[(‖˜̀t‖∗xt)2] ≤ E[(‖Σ−1
t (at − xt)‖∗xt)

2]

= E(at − xt)
>Σ−1

t ∇2Φ(xt)
−1Σ−1

t (at − xt)

= E Tr(∇2Φ(xt)
−1Σ−1

t) ,

where the last equality follows from using cyclic invariance of the
trace and E[(at − xt)(at − xt)

>|xt] = Σ(xt).

Notice that Σ−1
t has to explode when xt tends to an extremal

point of K , and thus in turns ∇2Φ(xt) would also have to explode
to hope to compensate in the variance. This makes the
well-conditionning problem more acute.

Bandit linear optimization
We now come back to the general online linear optimization
setting: the player plays in a convex body K ⊂ Rn and the
adversary plays in K ◦ = {` : |` · x | ≤ 1, ∀x ∈ K}. An important
point we have ignored so far but which matters for bandit feedback
is the sampling scheme: this is a map p : K → ∆(K) such that if
MD recommends x ∈ K then one plays at random from p(x).
Observe that the MD-variance term for ˜̀t = Σ−1

t (at − xt)a
>
t `t is:

E[(‖˜̀t‖∗xt)2] ≤ E[(‖Σ−1
t (at − xt)‖∗xt)

2]

= E(at − xt)
>Σ−1

t ∇2Φ(xt)
−1Σ−1

t (at − xt)

= E Tr(∇2Φ(xt)
−1Σ−1

t) ,

where the last equality follows from using cyclic invariance of the
trace and E[(at − xt)(at − xt)

>|xt] = Σ(xt).
Notice that Σ−1

t has to explode when xt tends to an extremal
point of K , and thus in turns ∇2Φ(xt) would also have to explode
to hope to compensate in the variance. This makes the
well-conditionning problem more acute.

A small detour: Interior Point Methods
Barrier method: given Φ : int(K)→ R such that Φ(x)→ +∞ as
x → ∂K ,

x(t) = argmin
x∈Rn

tc · x + Φ(x), t ≥ 0

Interior point method: From x(t) to x(t ′), t ′ > t, via Newton’s
method (Karmakar 1984). Smoothness of barrier’s Hessian is
critical, Nesterov and Nemirovski introduced the notion of a
self-concordant function:

∇3Φ(x)[h, h, h] ≤ 2(∇2Φ(x)[h, h])3/2. (1)

To control the rate at which t can be increased, one needs ν-self
concordance:

∇Φ(x)[h] ≤
√
ν · ∇2Φ(x)[h, h]. (2)

Theorem (Nesterov and Nemirovski 1989)

∃ a O(n)-s.c.b. For K = [−1, 1]n any ν-s.c.b. satisfies ν ≥ n.

A small detour: Interior Point Methods
Barrier method: given Φ : int(K)→ R such that Φ(x)→ +∞ as
x → ∂K ,

x(t) = argmin
x∈Rn

tc · x + Φ(x), t ≥ 0

Interior point method: From x(t) to x(t ′), t ′ > t, via Newton’s
method (Karmakar 1984).

Smoothness of barrier’s Hessian is
critical, Nesterov and Nemirovski introduced the notion of a
self-concordant function:

∇3Φ(x)[h, h, h] ≤ 2(∇2Φ(x)[h, h])3/2. (1)

To control the rate at which t can be increased, one needs ν-self
concordance:

∇Φ(x)[h] ≤
√
ν · ∇2Φ(x)[h, h]. (2)

Theorem (Nesterov and Nemirovski 1989)

∃ a O(n)-s.c.b. For K = [−1, 1]n any ν-s.c.b. satisfies ν ≥ n.

A small detour: Interior Point Methods
Barrier method: given Φ : int(K)→ R such that Φ(x)→ +∞ as
x → ∂K ,

x(t) = argmin
x∈Rn

tc · x + Φ(x), t ≥ 0

Interior point method: From x(t) to x(t ′), t ′ > t, via Newton’s
method (Karmakar 1984). Smoothness of barrier’s Hessian is
critical, Nesterov and Nemirovski introduced the notion of a
self-concordant function:

∇3Φ(x)[h, h, h] ≤ 2(∇2Φ(x)[h, h])3/2. (1)

To control the rate at which t can be increased, one needs ν-self
concordance:

∇Φ(x)[h] ≤
√
ν · ∇2Φ(x)[h, h]. (2)

Theorem (Nesterov and Nemirovski 1989)

∃ a O(n)-s.c.b. For K = [−1, 1]n any ν-s.c.b. satisfies ν ≥ n.

A small detour: Interior Point Methods
Barrier method: given Φ : int(K)→ R such that Φ(x)→ +∞ as
x → ∂K ,

x(t) = argmin
x∈Rn

tc · x + Φ(x), t ≥ 0

Interior point method: From x(t) to x(t ′), t ′ > t, via Newton’s
method (Karmakar 1984). Smoothness of barrier’s Hessian is
critical, Nesterov and Nemirovski introduced the notion of a
self-concordant function:

∇3Φ(x)[h, h, h] ≤ 2(∇2Φ(x)[h, h])3/2. (1)

To control the rate at which t can be increased, one needs ν-self
concordance:

∇Φ(x)[h] ≤
√
ν · ∇2Φ(x)[h, h]. (2)

Theorem (Nesterov and Nemirovski 1989)

∃ a O(n)-s.c.b. For K = [−1, 1]n any ν-s.c.b. satisfies ν ≥ n.

A small detour: Interior Point Methods
Barrier method: given Φ : int(K)→ R such that Φ(x)→ +∞ as
x → ∂K ,

x(t) = argmin
x∈Rn

tc · x + Φ(x), t ≥ 0

Interior point method: From x(t) to x(t ′), t ′ > t, via Newton’s
method (Karmakar 1984). Smoothness of barrier’s Hessian is
critical, Nesterov and Nemirovski introduced the notion of a
self-concordant function:

∇3Φ(x)[h, h, h] ≤ 2(∇2Φ(x)[h, h])3/2. (1)

To control the rate at which t can be increased, one needs ν-self
concordance:

∇Φ(x)[h] ≤
√
ν · ∇2Φ(x)[h, h]. (2)

Theorem (Nesterov and Nemirovski 1989)

∃ a O(n)-s.c.b. For K = [−1, 1]n any ν-s.c.b. satisfies ν ≥ n.

A small detour: Interior Point Methods
Barrier method: given Φ : int(K)→ R such that Φ(x)→ +∞ as
x → ∂K ,

x(t) = argmin
x∈Rn

tc · x + Φ(x), t ≥ 0

Interior point method: From x(t) to x(t ′), t ′ > t, via Newton’s
method (Karmakar 1984). Smoothness of barrier’s Hessian is
critical, Nesterov and Nemirovski introduced the notion of a
self-concordant function:

∇3Φ(x)[h, h, h] ≤ 2(∇2Φ(x)[h, h])3/2. (1)

To control the rate at which t can be increased, one needs ν-self
concordance:

∇Φ(x)[h] ≤
√
ν · ∇2Φ(x)[h, h]. (2)

Theorem (Nesterov and Nemirovski 1989)

∃ a O(n)-s.c.b. For K = [−1, 1]n any ν-s.c.b. satisfies ν ≥ n.

A small detour: Interior Point Methods
Barrier method: given Φ : int(K)→ R such that Φ(x)→ +∞ as
x → ∂K ,

x(t) = argmin
x∈Rn

tc · x + Φ(x), t ≥ 0

Interior point method: From x(t) to x(t ′), t ′ > t, via Newton’s
method (Karmakar 1984). Smoothness of barrier’s Hessian is
critical, Nesterov and Nemirovski introduced the notion of a
self-concordant function:

∇3Φ(x)[h, h, h] ≤ 2(∇2Φ(x)[h, h])3/2. (1)

To control the rate at which t can be increased, one needs ν-self
concordance:

∇Φ(x)[h] ≤
√
ν · ∇2Φ(x)[h, h]. (2)

Theorem (Nesterov and Nemirovski 1989)

∃ a O(n)-s.c.b. For K = [−1, 1]n any ν-s.c.b. satisfies ν ≥ n.

Basic properties of self-concordant barriers

Theorem

1. If Φ is ν-self-concordant then for any x , y ∈ int(K),

Φ(y)− Φ(x) ≤ ν log

(
1

1− πx(y)

)
,

where πx(y) is the Minkowski gauge, i.e.,
πx(y) = inf{t > 0 : x + 1

t (y − x) ∈ K}.
2. Φ is self-concordant if and only if Φ∗ is self-concordant.

3. If Φ is self-concordant then for any x ∈ int(K) and h such
that ‖h‖x < 1 and x + h ∈ int(K),

DΦ(x + h, x) ≤ ‖h‖2
x

1− ‖h‖x
.

4. If Φ is a self-concordant barrier then for any x ∈ int(K),
{x + h : ‖h‖x ≤ 1} ⊂ K .

Abernethy-Hazan-Rakhlin sampling scheme

Given a point x ∈ int(K) let p(x) be uniform on the boundary of
the Dikin ellipsoid {x + h : ‖h‖x ≤ 1} (this is valid by property 4).

Another description of p is as follows: let U be uniform on the
n − 1 dimensional sphere {u ∈ Rn : |u| = 1} and
X = x +∇2Φ(x)−1/2U, then X has law p(x). In particular with
this description we readily see that Σ(x) = 1

n∇
2Φ(x)−1 (since

E UU> = 1
n In).

We can now bound (almost surely) the dual local norm of the loss
estimator as follows (we write at = xt +∇2Φ(x)−1/2ut)

‖˜̀t‖∗xt ≤ ‖Σ(xt)
−1(at − xt)‖∗xt = n‖∇2Φ(xt)

1/2ut‖∗xt = n|ut | = n.

In particular we get the well-conditioning as soon as η ≤ 1/n (by
property 3), and the regret bound is of the form (using property 1)
ν log(T)/η + n2η, that is Õ(n

√
νT).

Abernethy-Hazan-Rakhlin sampling scheme

Given a point x ∈ int(K) let p(x) be uniform on the boundary of
the Dikin ellipsoid {x + h : ‖h‖x ≤ 1} (this is valid by property 4).
Another description of p is as follows: let U be uniform on the
n − 1 dimensional sphere {u ∈ Rn : |u| = 1} and
X = x +∇2Φ(x)−1/2U, then X has law p(x). In particular with
this description we readily see that Σ(x) = 1

n∇
2Φ(x)−1 (since

E UU> = 1
n In).

We can now bound (almost surely) the dual local norm of the loss
estimator as follows (we write at = xt +∇2Φ(x)−1/2ut)

‖˜̀t‖∗xt ≤ ‖Σ(xt)
−1(at − xt)‖∗xt = n‖∇2Φ(xt)

1/2ut‖∗xt = n|ut | = n.

In particular we get the well-conditioning as soon as η ≤ 1/n (by
property 3), and the regret bound is of the form (using property 1)
ν log(T)/η + n2η, that is Õ(n

√
νT).

Abernethy-Hazan-Rakhlin sampling scheme

Given a point x ∈ int(K) let p(x) be uniform on the boundary of
the Dikin ellipsoid {x + h : ‖h‖x ≤ 1} (this is valid by property 4).
Another description of p is as follows: let U be uniform on the
n − 1 dimensional sphere {u ∈ Rn : |u| = 1} and
X = x +∇2Φ(x)−1/2U, then X has law p(x). In particular with
this description we readily see that Σ(x) = 1

n∇
2Φ(x)−1 (since

E UU> = 1
n In).

We can now bound (almost surely) the dual local norm of the loss
estimator as follows (we write at = xt +∇2Φ(x)−1/2ut)

‖˜̀t‖∗xt ≤ ‖Σ(xt)
−1(at − xt)‖∗xt = n‖∇2Φ(xt)

1/2ut‖∗xt = n|ut | = n.

In particular we get the well-conditioning as soon as η ≤ 1/n (by
property 3), and the regret bound is of the form (using property 1)
ν log(T)/η + n2η, that is Õ(n

√
νT).

Abernethy-Hazan-Rakhlin sampling scheme

Given a point x ∈ int(K) let p(x) be uniform on the boundary of
the Dikin ellipsoid {x + h : ‖h‖x ≤ 1} (this is valid by property 4).
Another description of p is as follows: let U be uniform on the
n − 1 dimensional sphere {u ∈ Rn : |u| = 1} and
X = x +∇2Φ(x)−1/2U, then X has law p(x). In particular with
this description we readily see that Σ(x) = 1

n∇
2Φ(x)−1 (since

E UU> = 1
n In).

We can now bound (almost surely) the dual local norm of the loss
estimator as follows (we write at = xt +∇2Φ(x)−1/2ut)

‖˜̀t‖∗xt ≤ ‖Σ(xt)
−1(at − xt)‖∗xt = n‖∇2Φ(xt)

1/2ut‖∗xt = n|ut | = n.

In particular we get the well-conditioning as soon as η ≤ 1/n (by
property 3), and the regret bound is of the form (using property 1)
ν log(T)/η + n2η, that is Õ(n

√
νT).

The entropic barrier
Canonical exponential family on K : {pθ, θ ∈ Rn} where

dpθ
dx

=
1

Z (θ)
exp(〈θ, x〉)1{x ∈ K}.

For x ∈ int(K) let θ(x) be such that EX∼pθ(x)
X = x .

Theorem (B. and Eldan 2015)

e : x 7→ −H(pθ(x)) is a (1 + o(1))n-s.c.b.

Moreover it gives a regret for BLO in Õ(n
√
T).

Proof.
(i)

self-concordance is invariant by Fenchel duality

(ii)

∇k
e
∗(x) = EX∼pθ(x)

(X − EX)⊗k for k ∈ {1, 2, 3}.

(iii)

X log-concave

⇒ E(X − EX)⊗3[h, h, h] ≤ 2
(
E(X − EX)⊗2[h, h]

)3/2

(iv)

Brunn-Minkowski ⇒ “sub-CLT” for pθ ⇒ ν-s.c (bit more
involved than (i)-(ii)-(iii))

The entropic barrier
Canonical exponential family on K : {pθ, θ ∈ Rn} where

dpθ
dx

=
1

Z (θ)
exp(〈θ, x〉)1{x ∈ K}.

For x ∈ int(K) let θ(x) be such that EX∼pθ(x)
X = x .

Theorem (B. and Eldan 2015)

e : x 7→ −H(pθ(x)) is a (1 + o(1))n-s.c.b.

Moreover it gives a regret for BLO in Õ(n
√
T).

Proof.
(i)

self-concordance is invariant by Fenchel duality

(ii)

∇k
e
∗(x) = EX∼pθ(x)

(X − EX)⊗k for k ∈ {1, 2, 3}.

(iii)

X log-concave

⇒ E(X − EX)⊗3[h, h, h] ≤ 2
(
E(X − EX)⊗2[h, h]

)3/2

(iv)

Brunn-Minkowski ⇒ “sub-CLT” for pθ ⇒ ν-s.c (bit more
involved than (i)-(ii)-(iii))

The entropic barrier
Canonical exponential family on K : {pθ, θ ∈ Rn} where

dpθ
dx

=
1

Z (θ)
exp(〈θ, x〉)1{x ∈ K}.

For x ∈ int(K) let θ(x) be such that EX∼pθ(x)
X = x .

Theorem (B. and Eldan 2015)

e : x 7→ −H(pθ(x)) is a (1 + o(1))n-s.c.b.

Moreover it gives a regret for BLO in Õ(n
√
T).

Proof.
(i)

self-concordance is invariant by Fenchel duality

(ii)

∇k
e
∗(x) = EX∼pθ(x)

(X − EX)⊗k for k ∈ {1, 2, 3}.

(iii)

X log-concave

⇒ E(X − EX)⊗3[h, h, h] ≤ 2
(
E(X − EX)⊗2[h, h]

)3/2

(iv)

Brunn-Minkowski ⇒ “sub-CLT” for pθ ⇒ ν-s.c (bit more
involved than (i)-(ii)-(iii))

The entropic barrier
Canonical exponential family on K : {pθ, θ ∈ Rn} where

dpθ
dx

=
1

Z (θ)
exp(〈θ, x〉)1{x ∈ K}.

For x ∈ int(K) let θ(x) be such that EX∼pθ(x)
X = x .

Theorem (B. and Eldan 2015)

e : x 7→ −H(pθ(x)) is a (1 + o(1))n-s.c.b.

Moreover it gives a regret for BLO in Õ(n
√
T).

Proof.
(i)

self-concordance is invariant by Fenchel duality

(ii)

∇k
e
∗(x) = EX∼pθ(x)

(X − EX)⊗k for k ∈ {1, 2, 3}.

(iii)

X log-concave

⇒ E(X − EX)⊗3[h, h, h] ≤ 2
(
E(X − EX)⊗2[h, h]

)3/2

(iv)

Brunn-Minkowski ⇒ “sub-CLT” for pθ ⇒ ν-s.c (bit more
involved than (i)-(ii)-(iii))

The entropic barrier
Canonical exponential family on K : {pθ, θ ∈ Rn} where

dpθ
dx

=
1

Z (θ)
exp(〈θ, x〉)1{x ∈ K}.

For x ∈ int(K) let θ(x) be such that EX∼pθ(x)
X = x .

Theorem (B. and Eldan 2015)

e : x 7→ −H(pθ(x)) is a (1 + o(1))n-s.c.b.

Moreover it gives a regret for BLO in Õ(n
√
T).

Proof.
(i) self-concordance is invariant by Fenchel duality
(ii)

∇k
e
∗(x) = EX∼pθ(x)

(X − EX)⊗k for k ∈ {1, 2, 3}.

(iii)

X log-concave

⇒ E(X − EX)⊗3[h, h, h] ≤ 2
(
E(X − EX)⊗2[h, h]

)3/2

(iv)

Brunn-Minkowski ⇒ “sub-CLT” for pθ ⇒ ν-s.c (bit more
involved than (i)-(ii)-(iii))

The entropic barrier
Canonical exponential family on K : {pθ, θ ∈ Rn} where

dpθ
dx

=
1

Z (θ)
exp(〈θ, x〉)1{x ∈ K}.

For x ∈ int(K) let θ(x) be such that EX∼pθ(x)
X = x .

Theorem (B. and Eldan 2015)

e : x 7→ −H(pθ(x)) is a (1 + o(1))n-s.c.b.

Moreover it gives a regret for BLO in Õ(n
√
T).

Proof.
(i) self-concordance is invariant by Fenchel duality
(ii) ∇k

e
∗(x) = EX∼pθ(x)

(X − EX)⊗k for k ∈ {1, 2, 3}.
(iii)

X log-concave

⇒ E(X − EX)⊗3[h, h, h] ≤ 2
(
E(X − EX)⊗2[h, h]

)3/2

(iv)

Brunn-Minkowski ⇒ “sub-CLT” for pθ ⇒ ν-s.c (bit more
involved than (i)-(ii)-(iii))

The entropic barrier
Canonical exponential family on K : {pθ, θ ∈ Rn} where

dpθ
dx

=
1

Z (θ)
exp(〈θ, x〉)1{x ∈ K}.

For x ∈ int(K) let θ(x) be such that EX∼pθ(x)
X = x .

Theorem (B. and Eldan 2015)

e : x 7→ −H(pθ(x)) is a (1 + o(1))n-s.c.b.

Moreover it gives a regret for BLO in Õ(n
√
T).

Proof.
(i) self-concordance is invariant by Fenchel duality
(ii) ∇k

e
∗(x) = EX∼pθ(x)

(X − EX)⊗k for k ∈ {1, 2, 3}.
(iii) X log-concave

⇒ E(X − EX)⊗3[h, h, h] ≤ 2
(
E(X − EX)⊗2[h, h]

)3/2

(iv)

Brunn-Minkowski ⇒ “sub-CLT” for pθ ⇒ ν-s.c (bit more
involved than (i)-(ii)-(iii))

The entropic barrier
Canonical exponential family on K : {pθ, θ ∈ Rn} where

dpθ
dx

=
1

Z (θ)
exp(〈θ, x〉)1{x ∈ K}.

For x ∈ int(K) let θ(x) be such that EX∼pθ(x)
X = x .

Theorem (B. and Eldan 2015)

e : x 7→ −H(pθ(x)) is a (1 + o(1))n-s.c.b.

Moreover it gives a regret for BLO in Õ(n
√
T).

Proof.
(i) self-concordance is invariant by Fenchel duality
(ii) ∇k

e
∗(x) = EX∼pθ(x)

(X − EX)⊗k for k ∈ {1, 2, 3}.
(iii) X log-concave

⇒ E(X − EX)⊗3[h, h, h] ≤ 2
(
E(X − EX)⊗2[h, h]

)3/2

(iv) Brunn-Minkowski ⇒ “sub-CLT” for pθ ⇒ ν-s.c (bit more
involved than (i)-(ii)-(iii))

(iv) in a nutshell

∇e(x)[h] ≤
√
ν · ∇2

e(x)[h, h]

⇔ [∇2
e(x)]−1[∇e(x),∇e(x)] ≤ ν

⇔ Cov(pθ)[θ, θ] ≤ ν

⇔ Var(Y) ≤ ν

|θ|2
where Y = 〈X , θ/|θ|〉,X ∼ pθ

Let u be the log-density of Y and v the log-marginal of the
uniform measure on K in the direction θ/|θ|, that is
u(y) = v(y) + y |θ|+ cst.
By Brunn-Minkowski v ′′ ≤ − 1

n (v ′)2 and so

u′′ ≤ −1

n
(u′ − |θ|)2,

which implies for any y close enough to the maximum y0 of u,

u(y) ≤ −|y − y0|2

2n/|θ|2
+ cst.

(iv) in a nutshell

∇e(x)[h] ≤
√
ν · ∇2

e(x)[h, h]

⇔ [∇2
e(x)]−1[∇e(x),∇e(x)] ≤ ν

⇔ Cov(pθ)[θ, θ] ≤ ν

⇔ Var(Y) ≤ ν

|θ|2
where Y = 〈X , θ/|θ|〉,X ∼ pθ

Let u be the log-density of Y and v the log-marginal of the
uniform measure on K in the direction θ/|θ|, that is
u(y) = v(y) + y |θ|+ cst.

By Brunn-Minkowski v ′′ ≤ − 1
n (v ′)2 and so

u′′ ≤ −1

n
(u′ − |θ|)2,

which implies for any y close enough to the maximum y0 of u,

u(y) ≤ −|y − y0|2

2n/|θ|2
+ cst.

(iv) in a nutshell

∇e(x)[h] ≤
√
ν · ∇2

e(x)[h, h]

⇔ [∇2
e(x)]−1[∇e(x),∇e(x)] ≤ ν

⇔ Cov(pθ)[θ, θ] ≤ ν

⇔ Var(Y) ≤ ν

|θ|2
where Y = 〈X , θ/|θ|〉,X ∼ pθ

Let u be the log-density of Y and v the log-marginal of the
uniform measure on K in the direction θ/|θ|, that is
u(y) = v(y) + y |θ|+ cst.
By Brunn-Minkowski v ′′ ≤ − 1

n (v ′)2

and so

u′′ ≤ −1

n
(u′ − |θ|)2,

which implies for any y close enough to the maximum y0 of u,

u(y) ≤ −|y − y0|2

2n/|θ|2
+ cst.

(iv) in a nutshell

∇e(x)[h] ≤
√
ν · ∇2

e(x)[h, h]

⇔ [∇2
e(x)]−1[∇e(x),∇e(x)] ≤ ν

⇔ Cov(pθ)[θ, θ] ≤ ν

⇔ Var(Y) ≤ ν

|θ|2
where Y = 〈X , θ/|θ|〉,X ∼ pθ

Let u be the log-density of Y and v the log-marginal of the
uniform measure on K in the direction θ/|θ|, that is
u(y) = v(y) + y |θ|+ cst.
By Brunn-Minkowski v ′′ ≤ − 1

n (v ′)2 and so

u′′ ≤ −1

n
(u′ − |θ|)2,

which implies for any y close enough to the maximum y0 of u,

u(y) ≤ −|y − y0|2

2n/|θ|2
+ cst.

(iv) in a nutshell

∇e(x)[h] ≤
√
ν · ∇2

e(x)[h, h]

⇔ [∇2
e(x)]−1[∇e(x),∇e(x)] ≤ ν

⇔ Cov(pθ)[θ, θ] ≤ ν

⇔ Var(Y) ≤ ν

|θ|2
where Y = 〈X , θ/|θ|〉,X ∼ pθ

Let u be the log-density of Y and v the log-marginal of the
uniform measure on K in the direction θ/|θ|, that is
u(y) = v(y) + y |θ|+ cst.
By Brunn-Minkowski v ′′ ≤ − 1

n (v ′)2 and so

u′′ ≤ −1

n
(u′ − |θ|)2,

which implies for any y close enough to the maximum y0 of u,

u(y) ≤ −|y − y0|2

2n/|θ|2
+ cst.

Beyond BLO: Bandit Convex Optimization [Flaxman,
Kalai, McMahan 2004; Kleinberg 2004]

We now assume that the adversary plays a Lipschitz convex
function `t : K → [0, 1].

It turns out that we might as well assume that the adversary plays
the linear function ∇`t(xt) in the sense that:

`t(xt)− `t(x) ≤ ∇`t(xt) · (xt − x) .

In particular online convex optimization with full information
simply reduces to online linear optimization.

However with bandit feedback the scenario becomes different:
given access to a value of the function, can we give an unbiased
estimator with low variance of the gradient?

Beyond BLO: Bandit Convex Optimization [Flaxman,
Kalai, McMahan 2004; Kleinberg 2004]

We now assume that the adversary plays a Lipschitz convex
function `t : K → [0, 1].

It turns out that we might as well assume that the adversary plays
the linear function ∇`t(xt) in the sense that:

`t(xt)− `t(x) ≤ ∇`t(xt) · (xt − x) .

In particular online convex optimization with full information
simply reduces to online linear optimization.

However with bandit feedback the scenario becomes different:
given access to a value of the function, can we give an unbiased
estimator with low variance of the gradient?

Beyond BLO: Bandit Convex Optimization [Flaxman,
Kalai, McMahan 2004; Kleinberg 2004]

We now assume that the adversary plays a Lipschitz convex
function `t : K → [0, 1].

It turns out that we might as well assume that the adversary plays
the linear function ∇`t(xt) in the sense that:

`t(xt)− `t(x) ≤ ∇`t(xt) · (xt − x) .

In particular online convex optimization with full information
simply reduces to online linear optimization.

However with bandit feedback the scenario becomes different:
given access to a value of the function, can we give an unbiased
estimator with low variance of the gradient?

BCO via small perturbations

Say that given `t(at) with at ∼ pt(xt) we obtain g̃t such that
Et g̃t = ∇`t(xt), then we have:

E
T∑
t=1

(`t(at)− `t(x)) ≤ E
T∑
t=1

(`t(xt)− `t(x) + ‖at − xt‖)

≤ E
T∑
t=1

(∇`t(xt) · (xt − x) + ‖at − xt‖)

≤ E
T∑
t=1

(g̃t · (xt − x) + ‖at − xt‖) .

Using mirror descent on g̃t we are left with controlling E‖g̃t‖2.

Question: how to get a gradient estimate at a point x with a value
function estimate at a small perturbation of x? Answer:
divergence theorem!

BCO via small perturbations

Say that given `t(at) with at ∼ pt(xt) we obtain g̃t such that
Et g̃t = ∇`t(xt), then we have:

E
T∑
t=1

(`t(at)− `t(x)) ≤ E
T∑
t=1

(`t(xt)− `t(x) + ‖at − xt‖)

≤ E
T∑
t=1

(∇`t(xt) · (xt − x) + ‖at − xt‖)

≤ E
T∑
t=1

(g̃t · (xt − x) + ‖at − xt‖) .

Using mirror descent on g̃t we are left with controlling E‖g̃t‖2.

Question: how to get a gradient estimate at a point x with a value
function estimate at a small perturbation of x? Answer:
divergence theorem!

BCO via small perturbations

Say that given `t(at) with at ∼ pt(xt) we obtain g̃t such that
Et g̃t = ∇`t(xt), then we have:

E
T∑
t=1

(`t(at)− `t(x)) ≤ E
T∑
t=1

(`t(xt)− `t(x) + ‖at − xt‖)

≤ E
T∑
t=1

(∇`t(xt) · (xt − x) + ‖at − xt‖)

≤ E
T∑
t=1

(g̃t · (xt − x) + ‖at − xt‖) .

Using mirror descent on g̃t we are left with controlling E‖g̃t‖2.

Question: how to get a gradient estimate at a point x with a value
function estimate at a small perturbation of x? Answer:
divergence theorem!

One-point gradient estimator

Lemma
Let f : Rn → R be a differentiable function, B the unit ball in Rn,
and σ the normalized Haar measure on the sphere ∂B. Then one
has

∇
∫
B
f (u)du = n

∫
∂B

f (u)u dσ(u) .

In particular define ¯̀
t(x) = `t(x + εu) where u is uniform in B.

Then one has ∇¯̀
t(x) = n

εE `t(x + εv)v with v = u/‖u‖.

Playing at = xt + εvt and setting g̃t = n
ε `t(at)vt one obtains a

regret in

O

(
εT + ηT

n2

ε2
+

1

η

)
.

Optimizing the parameters yields a regret in O(n1/2T 3/4).

One-point gradient estimator

Lemma
Let f : Rn → R be a differentiable function, B the unit ball in Rn,
and σ the normalized Haar measure on the sphere ∂B. Then one
has

∇
∫
B
f (u)du = n

∫
∂B

f (u)u dσ(u) .

In particular define ¯̀
t(x) = `t(x + εu) where u is uniform in B.

Then one has ∇¯̀
t(x) = n

εE `t(x + εv)v with v = u/‖u‖.

Playing at = xt + εvt and setting g̃t = n
ε `t(at)vt one obtains a

regret in

O

(
εT + ηT

n2

ε2
+

1

η

)
.

Optimizing the parameters yields a regret in O(n1/2T 3/4).

One-point gradient estimator

Lemma
Let f : Rn → R be a differentiable function, B the unit ball in Rn,
and σ the normalized Haar measure on the sphere ∂B. Then one
has

∇
∫
B
f (u)du = n

∫
∂B

f (u)u dσ(u) .

In particular define ¯̀
t(x) = `t(x + εu) where u is uniform in B.

Then one has ∇¯̀
t(x) = n

εE `t(x + εv)v with v = u/‖u‖.

Playing at = xt + εvt and setting g̃t = n
ε `t(at)vt one obtains a

regret in

O

(
εT + ηT

n2

ε2
+

1

η

)
.

Optimizing the parameters yields a regret in O(n1/2T 3/4).

One-point gradient estimator

Lemma
Let f : Rn → R be a differentiable function, B the unit ball in Rn,
and σ the normalized Haar measure on the sphere ∂B. Then one
has

∇
∫
B
f (u)du = n

∫
∂B

f (u)u dσ(u) .

In particular define ¯̀
t(x) = `t(x + εu) where u is uniform in B.

Then one has ∇¯̀
t(x) = n

εE `t(x + εv)v with v = u/‖u‖.

Playing at = xt + εvt and setting g̃t = n
ε `t(at)vt one obtains a

regret in

O

(
εT + ηT

n2

ε2
+

1

η

)
.

Optimizing the parameters yields a regret in O(n1/2T 3/4).

The quest for
√
T -BCO

For a decade the T 3/4 remained the state of the art, despite many
attempts by the community. Some partial progress on the way was
obtained by making further assumptions (smoothness, strong
convexity, dimension 1). The first proof that

√
T is achievable was

via the information theoretic argument and the following geometric
theorem:

Theorem (B. and Eldan 2015)

Let f : K → [0,+∞) be convex and 1-Lipschitz, and ε > 0. There
exists a probability measure µ on K such that the following holds
true. For every α ∈ K and for every convex and 1-Lipschitz
function g : K → R satisfying g(α) < −ε, one has

µ
({

x ∈ K : |f (x)− g(x)| > Õ
(ε

n7.5

)})
> Õ

(
1

n3

)
.

Later Hazan and Li provided an algorithm with regret in
exp(poly(n))

√
T . In the final lecture we will discuss the efficient

algorithm by B., Eldan and Lee which obtains Õ(n9.5
√
T) regret.

The quest for
√
T -BCO

For a decade the T 3/4 remained the state of the art, despite many
attempts by the community. Some partial progress on the way was
obtained by making further assumptions (smoothness, strong
convexity, dimension 1). The first proof that

√
T is achievable was

via the information theoretic argument and the following geometric
theorem:

Theorem (B. and Eldan 2015)

Let f : K → [0,+∞) be convex and 1-Lipschitz, and ε > 0. There
exists a probability measure µ on K such that the following holds
true. For every α ∈ K and for every convex and 1-Lipschitz
function g : K → R satisfying g(α) < −ε, one has

µ
({

x ∈ K : |f (x)− g(x)| > Õ
(ε

n7.5

)})
> Õ

(
1

n3

)
.

Later Hazan and Li provided an algorithm with regret in
exp(poly(n))

√
T . In the final lecture we will discuss the efficient

algorithm by B., Eldan and Lee which obtains Õ(n9.5
√
T) regret.

The quest for
√
T -BCO

For a decade the T 3/4 remained the state of the art, despite many
attempts by the community. Some partial progress on the way was
obtained by making further assumptions (smoothness, strong
convexity, dimension 1). The first proof that

√
T is achievable was

via the information theoretic argument and the following geometric
theorem:

Theorem (B. and Eldan 2015)

Let f : K → [0,+∞) be convex and 1-Lipschitz, and ε > 0. There
exists a probability measure µ on K such that the following holds
true. For every α ∈ K and for every convex and 1-Lipschitz
function g : K → R satisfying g(α) < −ε, one has

µ
({

x ∈ K : |f (x)− g(x)| > Õ
(ε

n7.5

)})
> Õ

(
1

n3

)
.

Later Hazan and Li provided an algorithm with regret in
exp(poly(n))

√
T . In the final lecture we will discuss the efficient

algorithm by B., Eldan and Lee which obtains Õ(n9.5
√
T) regret.

Lecture 4:
Kernel-based methods for

bandit convex optimization

Sébastien Bubeck
Machine Learning and Optimization group, MSR AI

Kernel-based methods

Notation: 〈f , g〉 :=
∫
x∈Rn f (x)g(x)dx . The expected regret with

respect to point x can be written as
∑T

t=1〈pt − δx , `t〉.

Kernel: K : K ×K → R+ which we view as a linear operator over
measures via Kq(x) =

∫
K (x , y)q(y)dy . The adjoint K ∗ acts on

functions: K ∗f (y) =
∫
f (x)K (x , y)dx (since 〈Kq, f 〉 = 〈q,K ∗f 〉).

q

K (x , ·)x

Kernel-based methods

Notation: 〈f , g〉 :=
∫
x∈Rn f (x)g(x)dx . The expected regret with

respect to point x can be written as
∑T

t=1〈pt − δx , `t〉.

Kernel: K : K ×K → R+ which we view as a linear operator over
measures via Kq(x) =

∫
K (x , y)q(y)dy . The adjoint K ∗ acts on

functions: K ∗f (y) =
∫
f (x)K (x , y)dx (since 〈Kq, f 〉 = 〈q,K ∗f 〉).

q

K (x , ·)x

Kernel-based methods

Notation: 〈f , g〉 :=
∫
x∈Rn f (x)g(x)dx . The expected regret with

respect to point x can be written as
∑T

t=1〈pt − δx , `t〉.

Kernel: K : K ×K → R+ which we view as a linear operator over
measures via Kq(x) =

∫
K (x , y)q(y)dy . The adjoint K ∗ acts on

functions: K ∗f (y) =
∫
f (x)K (x , y)dx (since 〈Kq, f 〉 = 〈q,K ∗f 〉).

q

K (x , ·)x

Kernel-based methods
Notation: 〈f , g〉 :=

∫
x∈Rn f (x)g(x)dx . The expected regret with

respect to point x can be written as
∑T

t=1〈pt − δx , `t〉.

Kernel: K : K ×K → R+ which we view as a linear operator over
measures via Kq(x) =

∫
K (x , y)q(y)dy . The adjoint K ∗ acts on

functions: K ∗f (y) =
∫
f (x)K (x , y)dx (since 〈Kq, f 〉 = 〈q,K ∗f 〉).

Key point: canonical estimator of K ∗f based on bandit feedback
on f :

Ex∼q
f (x)K (x , ·)

q(x)
= K ∗f

Kernelized regret? Say pt is full info strat with ˜̀t = `t(xt)Kt(xt ,·)
qt(xt)

and xt ∼ qt . Then we can hope to control the regret with terms
〈pt − δx ,K ∗t `t〉 = 〈Kt(pt − δx), `t〉 while we want to control
〈qt − δx , `t〉. Seems reasonable to take qt := Ktpt and then we
want: 〈Ktpt − δx , `t〉 . 〈Kt(pt − δx), `t〉

Kernel-based methods
Notation: 〈f , g〉 :=

∫
x∈Rn f (x)g(x)dx . The expected regret with

respect to point x can be written as
∑T

t=1〈pt − δx , `t〉.

Kernel: K : K ×K → R+ which we view as a linear operator over
measures via Kq(x) =

∫
K (x , y)q(y)dy . The adjoint K ∗ acts on

functions: K ∗f (y) =
∫
f (x)K (x , y)dx (since 〈Kq, f 〉 = 〈q,K ∗f 〉).

Key point: canonical estimator of K ∗f based on bandit feedback
on f :

Ex∼q
f (x)K (x , ·)

q(x)
= K ∗f

Kernelized regret? Say pt is full info strat with ˜̀t = `t(xt)Kt(xt ,·)
qt(xt)

and xt ∼ qt .

Then we can hope to control the regret with terms
〈pt − δx ,K ∗t `t〉 = 〈Kt(pt − δx), `t〉 while we want to control
〈qt − δx , `t〉. Seems reasonable to take qt := Ktpt and then we
want: 〈Ktpt − δx , `t〉 . 〈Kt(pt − δx), `t〉

Kernel-based methods
Notation: 〈f , g〉 :=

∫
x∈Rn f (x)g(x)dx . The expected regret with

respect to point x can be written as
∑T

t=1〈pt − δx , `t〉.

Kernel: K : K ×K → R+ which we view as a linear operator over
measures via Kq(x) =

∫
K (x , y)q(y)dy . The adjoint K ∗ acts on

functions: K ∗f (y) =
∫
f (x)K (x , y)dx (since 〈Kq, f 〉 = 〈q,K ∗f 〉).

Key point: canonical estimator of K ∗f based on bandit feedback
on f :

Ex∼q
f (x)K (x , ·)

q(x)
= K ∗f

Kernelized regret? Say pt is full info strat with ˜̀t = `t(xt)Kt(xt ,·)
qt(xt)

and xt ∼ qt . Then we can hope to control the regret with terms
〈pt − δx ,K ∗t `t〉 = 〈Kt(pt − δx), `t〉 while we want to control
〈qt − δx , `t〉.

Seems reasonable to take qt := Ktpt and then we
want: 〈Ktpt − δx , `t〉 . 〈Kt(pt − δx), `t〉

Kernel-based methods
Notation: 〈f , g〉 :=

∫
x∈Rn f (x)g(x)dx . The expected regret with

respect to point x can be written as
∑T

t=1〈pt − δx , `t〉.

Kernel: K : K ×K → R+ which we view as a linear operator over
measures via Kq(x) =

∫
K (x , y)q(y)dy . The adjoint K ∗ acts on

functions: K ∗f (y) =
∫
f (x)K (x , y)dx (since 〈Kq, f 〉 = 〈q,K ∗f 〉).

Key point: canonical estimator of K ∗f based on bandit feedback
on f :

Ex∼q
f (x)K (x , ·)

q(x)
= K ∗f

Kernelized regret? Say pt is full info strat with ˜̀t = `t(xt)Kt(xt ,·)
qt(xt)

and xt ∼ qt . Then we can hope to control the regret with terms
〈pt − δx ,K ∗t `t〉 = 〈Kt(pt − δx), `t〉 while we want to control
〈qt − δx , `t〉. Seems reasonable to take qt := Ktpt and then we
want: 〈Ktpt − δx , `t〉 . 〈Kt(pt − δx), `t〉

A good kernel for convex losses
〈Ktpt − δx , `t〉 . 〈Kt(pt − δx), `t〉

Thus for a given p we want a kernel K such that ∀x and f convex
one has (for some λ ∈ (0, 1))

〈Kp−δx , f 〉 ≤
1

λ
〈K (p−δx), f 〉 ⇔ K ∗f (x) ≤ (1−λ)〈Kp, f 〉+λf (x)

Natural kernel: Kδx is the distribution of (1− λ)Z + λx for some
random variable Z to be defined. Indeed in this case one has

K ∗f (x) = Ef ((1− λ)Z + λx) ≤ (1− λ)Ef (Z) + λf (x)

Thus we would like Z to be equal to Kp, that is Z satisfies the
following distributional identity, where X ∼ p,

Z
D
= (1− λ)Z + λX

A good kernel for convex losses
〈Ktpt − δx , `t〉 . 〈Kt(pt − δx), `t〉

Thus for a given p we want a kernel K such that ∀x and f convex
one has (for some λ ∈ (0, 1))

〈Kp−δx , f 〉 ≤
1

λ
〈K (p−δx), f 〉 ⇔ K ∗f (x) ≤ (1−λ)〈Kp, f 〉+λf (x)

Natural kernel: Kδx is the distribution of (1− λ)Z + λx for some
random variable Z to be defined. Indeed in this case one has

K ∗f (x) = Ef ((1− λ)Z + λx) ≤ (1− λ)Ef (Z) + λf (x)

Thus we would like Z to be equal to Kp, that is Z satisfies the
following distributional identity, where X ∼ p,

Z
D
= (1− λ)Z + λX

A good kernel for convex losses
〈Ktpt − δx , `t〉 . 〈Kt(pt − δx), `t〉

Thus for a given p we want a kernel K such that ∀x and f convex
one has (for some λ ∈ (0, 1))

〈Kp−δx , f 〉 ≤
1

λ
〈K (p−δx), f 〉 ⇔ K ∗f (x) ≤ (1−λ)〈Kp, f 〉+λf (x)

Natural kernel: Kδx is the distribution of (1− λ)Z + λx for some
random variable Z to be defined. Indeed in this case one has

K ∗f (x) = Ef ((1− λ)Z + λx) ≤ (1− λ)Ef (Z) + λf (x)

Thus we would like Z to be equal to Kp, that is Z satisfies the
following distributional identity, where X ∼ p,

Z
D
= (1− λ)Z + λX

A good kernel for convex losses
〈Ktpt − δx , `t〉 . 〈Kt(pt − δx), `t〉

Thus for a given p we want a kernel K such that ∀x and f convex
one has (for some λ ∈ (0, 1))

〈Kp−δx , f 〉 ≤
1

λ
〈K (p−δx), f 〉 ⇔ K ∗f (x) ≤ (1−λ)〈Kp, f 〉+λf (x)

Natural kernel: Kδx is the distribution of (1− λ)Z + λx for some
random variable Z to be defined. Indeed in this case one has

K ∗f (x) = Ef ((1− λ)Z + λx) ≤ (1− λ)Ef (Z) + λf (x)

Thus we would like Z to be equal to Kp, that is Z satisfies the
following distributional identity, where X ∼ p,

Z
D
= (1− λ)Z + λX

Generalized Bernoulli convolutions

Z
D
= (1− λ)Z + λX

We say that Z is the core of p. It satisfies Z =
∑+∞

k=0 λ(1− λ)kXk

with (Xk) i.i.d. sequence from p. We need to understand the
“smoothness” of Z (which will translate in smoothness of the
corresponding kernel).

Consider the core νλ of a random sign (this is a distinguished
object introduced in the 1930’s known as a Bernoulli convolution):

I Wintner 1935: νλ is either absolutely continuous or singular
w.r.t. Lebesgue. For λ ∈ (1/2, 1) is it singular, and for
λ = 1/2 it is a.c.

I Erdős 1939: ∃∞ of singular λ ∈ (0, 1/2).

I Erdős 1940, Solomyak 1996: a.e. λ ∈ (0, 1/2) is a.c.

I For any k ∈ N, ∃λk ≈ 1/k s.t. νλk has a C k density.

Generalized Bernoulli convolutions

Z
D
= (1− λ)Z + λX

We say that Z is the core of p. It satisfies Z =
∑+∞

k=0 λ(1− λ)kXk

with (Xk) i.i.d. sequence from p. We need to understand the
“smoothness” of Z (which will translate in smoothness of the
corresponding kernel).

Consider the core νλ of a random sign (this is a distinguished
object introduced in the 1930’s known as a Bernoulli convolution):

I Wintner 1935: νλ is either absolutely continuous or singular
w.r.t. Lebesgue. For λ ∈ (1/2, 1) is it singular, and for
λ = 1/2 it is a.c.

I Erdős 1939: ∃∞ of singular λ ∈ (0, 1/2).

I Erdős 1940, Solomyak 1996: a.e. λ ∈ (0, 1/2) is a.c.

I For any k ∈ N, ∃λk ≈ 1/k s.t. νλk has a C k density.

Generalized Bernoulli convolutions

Z
D
= (1− λ)Z + λX

We say that Z is the core of p. It satisfies Z =
∑+∞

k=0 λ(1− λ)kXk

with (Xk) i.i.d. sequence from p. We need to understand the
“smoothness” of Z (which will translate in smoothness of the
corresponding kernel).

Consider the core νλ of a random sign (this is a distinguished
object introduced in the 1930’s known as a Bernoulli convolution):

I Wintner 1935: νλ is either absolutely continuous or singular
w.r.t. Lebesgue. For λ ∈ (1/2, 1) is it singular, and for
λ = 1/2 it is a.c.

I Erdős 1939: ∃∞ of singular λ ∈ (0, 1/2).

I Erdős 1940, Solomyak 1996: a.e. λ ∈ (0, 1/2) is a.c.

I For any k ∈ N, ∃λk ≈ 1/k s.t. νλk has a C k density.

Generalized Bernoulli convolutions

Z
D
= (1− λ)Z + λX

We say that Z is the core of p. It satisfies Z =
∑+∞

k=0 λ(1− λ)kXk

with (Xk) i.i.d. sequence from p. We need to understand the
“smoothness” of Z (which will translate in smoothness of the
corresponding kernel).

Consider the core νλ of a random sign (this is a distinguished
object introduced in the 1930’s known as a Bernoulli convolution):

I Wintner 1935: νλ is either absolutely continuous or singular
w.r.t. Lebesgue. For λ ∈ (1/2, 1) is it singular, and for
λ = 1/2 it is a.c.

I Erdős 1939: ∃∞ of singular λ ∈ (0, 1/2).

I Erdős 1940, Solomyak 1996: a.e. λ ∈ (0, 1/2) is a.c.

I For any k ∈ N, ∃λk ≈ 1/k s.t. νλk has a C k density.

Generalized Bernoulli convolutions

Z
D
= (1− λ)Z + λX

We say that Z is the core of p. It satisfies Z =
∑+∞

k=0 λ(1− λ)kXk

with (Xk) i.i.d. sequence from p. We need to understand the
“smoothness” of Z (which will translate in smoothness of the
corresponding kernel).

Consider the core νλ of a random sign (this is a distinguished
object introduced in the 1930’s known as a Bernoulli convolution):

I Wintner 1935: νλ is either absolutely continuous or singular
w.r.t. Lebesgue. For λ ∈ (1/2, 1) is it singular, and for
λ = 1/2 it is a.c.

I Erdős 1939: ∃∞ of singular λ ∈ (0, 1/2).

I Erdős 1940, Solomyak 1996: a.e. λ ∈ (0, 1/2) is a.c.

I For any k ∈ N, ∃λk ≈ 1/k s.t. νλk has a C k density.

Generalized Bernoulli convolutions

Z
D
= (1− λ)Z + λX

We say that Z is the core of p. It satisfies Z =
∑+∞

k=0 λ(1− λ)kXk

with (Xk) i.i.d. sequence from p. We need to understand the
“smoothness” of Z (which will translate in smoothness of the
corresponding kernel).

Consider the core νλ of a random sign (this is a distinguished
object introduced in the 1930’s known as a Bernoulli convolution):

I Wintner 1935: νλ is either absolutely continuous or singular
w.r.t. Lebesgue. For λ ∈ (1/2, 1) is it singular, and for
λ = 1/2 it is a.c.

I Erdős 1939: ∃∞ of singular λ ∈ (0, 1/2).

I Erdős 1940, Solomyak 1996: a.e. λ ∈ (0, 1/2) is a.c.

I For any k ∈ N, ∃λk ≈ 1/k s.t. νλk has a C k density.

Generalized Bernoulli convolutions

Z
D
= (1− λ)Z + λX

We say that Z is the core of p. It satisfies Z =
∑+∞

k=0 λ(1− λ)kXk

with (Xk) i.i.d. sequence from p. We need to understand the
“smoothness” of Z (which will translate in smoothness of the
corresponding kernel).

Consider the core νλ of a random sign (this is a distinguished
object introduced in the 1930’s known as a Bernoulli convolution):

I Wintner 1935: νλ is either absolutely continuous or singular
w.r.t. Lebesgue. For λ ∈ (1/2, 1) is it singular, and for
λ = 1/2 it is a.c.

I Erdős 1939: ∃∞ of singular λ ∈ (0, 1/2).

I Erdős 1940, Solomyak 1996: a.e. λ ∈ (0, 1/2) is a.c.

I For any k ∈ N, ∃λk ≈ 1/k s.t. νλk has a C k density.

What is left to do?
Summarizing the discussion so far, let us play from Ktpt , where Kt

is the kernel described above (i.e., it “mixes in” the core of pt) and
pt is the continuous exponential weights strategy on the estimated
losses ˜̀s = `s(xs) Ks(xs ,·)

Ksps(xs) (that is dpt(x)/dx is proportional to

exp(−η
∑

s<t
˜̀
s(x))).

Using the classical analysis of continuous exponential weights
together with the previous slides we get for any q,

E
T∑
t=1

〈Ktpt − q, `t〉 ≤
1

λ
E

T∑
t=1

〈Kt(pt − q), `t〉

=
1

λ
E

T∑
t=1

(〈pt − q, ˜̀t〉)
≤ 1

λ
E

(
Ent(q‖p1)

η
+
η

2

T∑
t=1

〈pt ,
(
Kt(xt , ·)
Ktpt(xt)

)2

〉

)
.

What is left to do?
Summarizing the discussion so far, let us play from Ktpt , where Kt

is the kernel described above (i.e., it “mixes in” the core of pt) and
pt is the continuous exponential weights strategy on the estimated
losses ˜̀s = `s(xs) Ks(xs ,·)

Ksps(xs) (that is dpt(x)/dx is proportional to

exp(−η
∑

s<t
˜̀
s(x))).

Using the classical analysis of continuous exponential weights
together with the previous slides we get for any q,

E
T∑
t=1

〈Ktpt − q, `t〉 ≤
1

λ
E

T∑
t=1

〈Kt(pt − q), `t〉

=
1

λ
E

T∑
t=1

(〈pt − q, ˜̀t〉)
≤ 1

λ
E

(
Ent(q‖p1)

η
+
η

2

T∑
t=1

〈pt ,
(
Kt(xt , ·)
Ktpt(xt)

)2

〉

)
.

Variance calculation

All that remains to be done is to control the variance term
Ex∼Kp〈p, ˜̀2〉 where ˜̀(y) = K(x ,y)

Kp(x) = K(x ,y)∫
K(x ,y ′)p(y ′)dy

. More precisely

if this quantity is O(1) then we obtain a regret of Õ
(

1
λ

√
nT
)

.

It is sufficient to control from above K (x , y)/K (x , y ′) for all y , y ′

in the support of p and all x in the support of Kp (in fact it is
sufficient to have it with probability at least 1− 1/T 10 w.r.t.
x ∼ Kp).
Observe also that, with c denoting the core of p, one always has

K (x , y) = Kδy (x) = cst× c
(
x−λy
1−λ

)
. Thus we want to bound

w.h.p w.r.t. x ∼ Kp,

sup
y ,y ′∈supp(p)

c

(
x − λy
1− λ

)/
c

(
x − λy ′

1− λ

)
.

Variance calculation

All that remains to be done is to control the variance term
Ex∼Kp〈p, ˜̀2〉 where ˜̀(y) = K(x ,y)

Kp(x) = K(x ,y)∫
K(x ,y ′)p(y ′)dy

. More precisely

if this quantity is O(1) then we obtain a regret of Õ
(

1
λ

√
nT
)

.

It is sufficient to control from above K (x , y)/K (x , y ′) for all y , y ′

in the support of p and all x in the support of Kp (in fact it is
sufficient to have it with probability at least 1− 1/T 10 w.r.t.
x ∼ Kp).

Observe also that, with c denoting the core of p, one always has

K (x , y) = Kδy (x) = cst× c
(
x−λy
1−λ

)
. Thus we want to bound

w.h.p w.r.t. x ∼ Kp,

sup
y ,y ′∈supp(p)

c

(
x − λy
1− λ

)/
c

(
x − λy ′

1− λ

)
.

Variance calculation

All that remains to be done is to control the variance term
Ex∼Kp〈p, ˜̀2〉 where ˜̀(y) = K(x ,y)

Kp(x) = K(x ,y)∫
K(x ,y ′)p(y ′)dy

. More precisely

if this quantity is O(1) then we obtain a regret of Õ
(

1
λ

√
nT
)

.

It is sufficient to control from above K (x , y)/K (x , y ′) for all y , y ′

in the support of p and all x in the support of Kp (in fact it is
sufficient to have it with probability at least 1− 1/T 10 w.r.t.
x ∼ Kp).
Observe also that, with c denoting the core of p, one always has

K (x , y) = Kδy (x) = cst× c
(
x−λy
1−λ

)
. Thus we want to bound

w.h.p w.r.t. x ∼ Kp,

sup
y ,y ′∈supp(p)

c

(
x − λy
1− λ

)/
c

(
x − λy ′

1− λ

)
.

Variance calculation heuristic
Control w.h.p w.r.t. x ∼ Kp,

sup
y ,y ′∈supp(p)

c

(
x − λy
1− λ

)/
c

(
x − λy ′

1− λ

)
.

Let us assume

1. p = N (0, In) (its core is c = N (0, λ
2−λ In)).

2. supp(p) ⊂ {y : |y | ≤ R = Õ(
√
n)}

Thus our quantity of interest is

exp

(
2− λ

2λ

(∣∣∣∣x − λy ′1− λ

∣∣∣∣2 − ∣∣∣∣x − λy1− λ

∣∣∣∣2
))

≤ exp

(
1

(1− λ)2
(4R|x |+ 2λR2)

)
.

Finally note that w.h.p. one has |x | . λR +
√
λn log(T), and

thus with λ = Õ(1/n2) we have a constant variance.

Variance calculation heuristic
Control w.h.p w.r.t. x ∼ Kp,

sup
y ,y ′∈supp(p)

c

(
x − λy
1− λ

)/
c

(
x − λy ′

1− λ

)
.

Let us assume

1. p = N (0, In) (its core is c = N (0, λ
2−λ In)).

2. supp(p) ⊂ {y : |y | ≤ R = Õ(
√
n)}

Thus our quantity of interest is

exp

(
2− λ

2λ

(∣∣∣∣x − λy ′1− λ

∣∣∣∣2 − ∣∣∣∣x − λy1− λ

∣∣∣∣2
))

≤ exp

(
1

(1− λ)2
(4R|x |+ 2λR2)

)
.

Finally note that w.h.p. one has |x | . λR +
√
λn log(T), and

thus with λ = Õ(1/n2) we have a constant variance.

Variance calculation heuristic
Control w.h.p w.r.t. x ∼ Kp,

sup
y ,y ′∈supp(p)

c

(
x − λy
1− λ

)/
c

(
x − λy ′

1− λ

)
.

Let us assume

1. p = N (0, In) (its core is c = N (0, λ
2−λ In)).

2. supp(p) ⊂ {y : |y | ≤ R = Õ(
√
n)}

Thus our quantity of interest is

exp

(
2− λ

2λ

(∣∣∣∣x − λy ′1− λ

∣∣∣∣2 − ∣∣∣∣x − λy1− λ

∣∣∣∣2
))

≤ exp

(
1

(1− λ)2
(4R|x |+ 2λR2)

)
.

Finally note that w.h.p. one has |x | . λR +
√
λn log(T), and

thus with λ = Õ(1/n2) we have a constant variance.

Variance calculation heuristic
Control w.h.p w.r.t. x ∼ Kp,

sup
y ,y ′∈supp(p)

c

(
x − λy
1− λ

)/
c

(
x − λy ′

1− λ

)
.

Let us assume

1. p = N (0, In) (its core is c = N (0, λ
2−λ In)).

2. supp(p) ⊂ {y : |y | ≤ R = Õ(
√
n)}

Thus our quantity of interest is

exp

(
2− λ

2λ

(∣∣∣∣x − λy ′1− λ

∣∣∣∣2 − ∣∣∣∣x − λy1− λ

∣∣∣∣2
))

≤ exp

(
1

(1− λ)2
(4R|x |+ 2λR2)

)
.

Finally note that w.h.p. one has |x | . λR +
√
λn log(T), and

thus with λ = Õ(1/n2) we have a constant variance.

A reduction to the Gaussian case

We reduce to the Gaussian situation by observing that taking Z (in
the definition of the kernel) to be the core of a measure convexly
dominated by p is sufficient (instead of taking it to be directly the
core of p), and furthermore one has:

Lemma
Any isotropic log-concave measure p approximately convexly
dominates a centered Gaussian with covariance Õ(1

n)In.

Proof.
We show that p dominates any q supported on a small ball of cst
radius. Pick a test function f , w.l.o.g. its minimum is 0 at 0 and
the maximum on the ball is 1. By convexity f is above a linear
function (maxed with 0) of constant slope. By light tails of
log-concave, 〈p, f 〉 is then at least a constant.

What about assumption 2?

A reduction to the Gaussian case

We reduce to the Gaussian situation by observing that taking Z (in
the definition of the kernel) to be the core of a measure convexly
dominated by p is sufficient (instead of taking it to be directly the
core of p), and furthermore one has:

Lemma
Any isotropic log-concave measure p approximately convexly
dominates a centered Gaussian with covariance Õ(1

n)In.

Proof.
We show that p dominates any q supported on a small ball of cst
radius. Pick a test function f , w.l.o.g. its minimum is 0 at 0 and
the maximum on the ball is 1. By convexity f is above a linear
function (maxed with 0) of constant slope. By light tails of
log-concave, 〈p, f 〉 is then at least a constant.

What about assumption 2?

A reduction to the Gaussian case

We reduce to the Gaussian situation by observing that taking Z (in
the definition of the kernel) to be the core of a measure convexly
dominated by p is sufficient (instead of taking it to be directly the
core of p), and furthermore one has:

Lemma
Any isotropic log-concave measure p approximately convexly
dominates a centered Gaussian with covariance Õ(1

n)In.

Proof.
We show that p dominates any q supported on a small ball of cst
radius. Pick a test function f , w.l.o.g. its minimum is 0 at 0 and
the maximum on the ball is 1. By convexity f is above a linear
function (maxed with 0) of constant slope. By light tails of
log-concave, 〈p, f 〉 is then at least a constant.

What about assumption 2?

A reduction to the Gaussian case

We reduce to the Gaussian situation by observing that taking Z (in
the definition of the kernel) to be the core of a measure convexly
dominated by p is sufficient (instead of taking it to be directly the
core of p), and furthermore one has:

Lemma
Any isotropic log-concave measure p approximately convexly
dominates a centered Gaussian with covariance Õ(1

n)In.

Proof.
We show that p dominates any q supported on a small ball of cst
radius. Pick a test function f , w.l.o.g. its minimum is 0 at 0 and
the maximum on the ball is 1. By convexity f is above a linear
function (maxed with 0) of constant slope. By light tails of
log-concave, 〈p, f 〉 is then at least a constant.

What about assumption 2?

Restart and increasing learning rate

Unfortunately assumption 2 brings out a serious difficulty: it forces
the algorithm to focus on smaller and smaller region of space.
What if the adversary makes us focus on a region only to move the
optimum far outside of it at a later time?

Idea: if the estimated optimum is too close to the boundary of the
focus region then we restart the algorithm (similar idea appeared in
Hazan and Li 2016).

To be proved: negative regret at restart times (indeed the
adversary must “pay” for making us focus and then move out the
optimum). Technically this negative regret can come from a large
relative entropy at some previous time.

Challenge: avoid the telescopic sum of entropies. For this we use a
last idea: every time the focus region changes scale we also
increase the learning rate.

Restart and increasing learning rate

Unfortunately assumption 2 brings out a serious difficulty: it forces
the algorithm to focus on smaller and smaller region of space.
What if the adversary makes us focus on a region only to move the
optimum far outside of it at a later time?

Idea: if the estimated optimum is too close to the boundary of the
focus region then we restart the algorithm (similar idea appeared in
Hazan and Li 2016).

To be proved: negative regret at restart times (indeed the
adversary must “pay” for making us focus and then move out the
optimum). Technically this negative regret can come from a large
relative entropy at some previous time.

Challenge: avoid the telescopic sum of entropies. For this we use a
last idea: every time the focus region changes scale we also
increase the learning rate.

Restart and increasing learning rate

Unfortunately assumption 2 brings out a serious difficulty: it forces
the algorithm to focus on smaller and smaller region of space.
What if the adversary makes us focus on a region only to move the
optimum far outside of it at a later time?

Idea: if the estimated optimum is too close to the boundary of the
focus region then we restart the algorithm (similar idea appeared in
Hazan and Li 2016).

To be proved: negative regret at restart times (indeed the
adversary must “pay” for making us focus and then move out the
optimum). Technically this negative regret can come from a large
relative entropy at some previous time.

Challenge: avoid the telescopic sum of entropies. For this we use a
last idea: every time the focus region changes scale we also
increase the learning rate.

Restart and increasing learning rate

Unfortunately assumption 2 brings out a serious difficulty: it forces
the algorithm to focus on smaller and smaller region of space.
What if the adversary makes us focus on a region only to move the
optimum far outside of it at a later time?

Idea: if the estimated optimum is too close to the boundary of the
focus region then we restart the algorithm (similar idea appeared in
Hazan and Li 2016).

To be proved: negative regret at restart times (indeed the
adversary must “pay” for making us focus and then move out the
optimum). Technically this negative regret can come from a large
relative entropy at some previous time.

Challenge: avoid the telescopic sum of entropies. For this we use a
last idea: every time the focus region changes scale we also
increase the learning rate.

Summary of the algorithm
I Compute the Gaussian Nt “inside” pt , its associated core N ′t

(when Nt is isotropic: N ′t =
√

λ
2−λNt), and the corresponding

kernel: Ktδy = (1− λ)N ′t + λy (i.e.

Kt(x , y) = N ′t(
x−λy
1−λ) ∝ exp(− n

λ‖x − λy‖
2
pt)).

I Sample Xt ∼ pt and play xt = (1− λ)N ′t + λXt ∼ Ktpt .
I Update the exponential weights distribution:

pt+1(y) ∝ pt(y) exp(−ηt ˜̀t(y))

where

˜̀
t(y) =

`t(xt)

Ktpt(xt)
Kt(xt , y) ∝ exp(−nλ‖y − xt/λ‖2

pt)

(note that ‖xt/λ‖ ≈ 1/
√
λ and the standard deviation of the

above Gaussian is ≈ 1/
√
nλ).

I Restart business: check if adversary is potentially moving out
of focus region (if so restart the algorithm), check if updating
the focus region would change the problem’s scale (if so make
the update and increase the learning rate multiplicatively by
(1 + 1

Õ(poly(n))
)).

Summary of the algorithm
I Compute the Gaussian Nt “inside” pt , its associated core N ′t

(when Nt is isotropic: N ′t =
√

λ
2−λNt), and the corresponding

kernel: Ktδy = (1− λ)N ′t + λy (i.e.

Kt(x , y) = N ′t(
x−λy
1−λ) ∝ exp(− n

λ‖x − λy‖
2
pt)).

I Sample Xt ∼ pt and play xt = (1− λ)N ′t + λXt ∼ Ktpt .

I Update the exponential weights distribution:
pt+1(y) ∝ pt(y) exp(−ηt ˜̀t(y))

where

˜̀
t(y) =

`t(xt)

Ktpt(xt)
Kt(xt , y) ∝ exp(−nλ‖y − xt/λ‖2

pt)

(note that ‖xt/λ‖ ≈ 1/
√
λ and the standard deviation of the

above Gaussian is ≈ 1/
√
nλ).

I Restart business: check if adversary is potentially moving out
of focus region (if so restart the algorithm), check if updating
the focus region would change the problem’s scale (if so make
the update and increase the learning rate multiplicatively by
(1 + 1

Õ(poly(n))
)).

Summary of the algorithm
I Compute the Gaussian Nt “inside” pt , its associated core N ′t

(when Nt is isotropic: N ′t =
√

λ
2−λNt), and the corresponding

kernel: Ktδy = (1− λ)N ′t + λy (i.e.

Kt(x , y) = N ′t(
x−λy
1−λ) ∝ exp(− n

λ‖x − λy‖
2
pt)).

I Sample Xt ∼ pt and play xt = (1− λ)N ′t + λXt ∼ Ktpt .
I Update the exponential weights distribution:

pt+1(y) ∝ pt(y) exp(−ηt ˜̀t(y))

where

˜̀
t(y) =

`t(xt)

Ktpt(xt)
Kt(xt , y) ∝ exp(−nλ‖y − xt/λ‖2

pt)

(note that ‖xt/λ‖ ≈ 1/
√
λ and the standard deviation of the

above Gaussian is ≈ 1/
√
nλ).

I Restart business: check if adversary is potentially moving out
of focus region (if so restart the algorithm), check if updating
the focus region would change the problem’s scale (if so make
the update and increase the learning rate multiplicatively by
(1 + 1

Õ(poly(n))
)).

Summary of the algorithm
I Compute the Gaussian Nt “inside” pt , its associated core N ′t

(when Nt is isotropic: N ′t =
√

λ
2−λNt), and the corresponding

kernel: Ktδy = (1− λ)N ′t + λy (i.e.

Kt(x , y) = N ′t(
x−λy
1−λ) ∝ exp(− n

λ‖x − λy‖
2
pt)).

I Sample Xt ∼ pt and play xt = (1− λ)N ′t + λXt ∼ Ktpt .
I Update the exponential weights distribution:

pt+1(y) ∝ pt(y) exp(−ηt ˜̀t(y)) where

˜̀
t(y) =

`t(xt)

Ktpt(xt)
Kt(xt , y) ∝ exp(−nλ‖y − xt/λ‖2

pt)

(note that ‖xt/λ‖ ≈ 1/
√
λ and the standard deviation of the

above Gaussian is ≈ 1/
√
nλ).

I Restart business: check if adversary is potentially moving out
of focus region (if so restart the algorithm), check if updating
the focus region would change the problem’s scale (if so make
the update and increase the learning rate multiplicatively by
(1 + 1

Õ(poly(n))
)).

Summary of the algorithm
I Compute the Gaussian Nt “inside” pt , its associated core N ′t

(when Nt is isotropic: N ′t =
√

λ
2−λNt), and the corresponding

kernel: Ktδy = (1− λ)N ′t + λy (i.e.

Kt(x , y) = N ′t(
x−λy
1−λ) ∝ exp(− n

λ‖x − λy‖
2
pt)).

I Sample Xt ∼ pt and play xt = (1− λ)N ′t + λXt ∼ Ktpt .
I Update the exponential weights distribution:

pt+1(y) ∝ pt(y) exp(−ηt ˜̀t(y)) where

˜̀
t(y) =

`t(xt)

Ktpt(xt)
Kt(xt , y) ∝ exp(−nλ‖y − xt/λ‖2

pt)

(note that ‖xt/λ‖ ≈ 1/
√
λ and the standard deviation of the

above Gaussian is ≈ 1/
√
nλ).

I Restart business: check if adversary is potentially moving out
of focus region (if so restart the algorithm), check if updating
the focus region would change the problem’s scale (if so make
the update and increase the learning rate multiplicatively by
(1 + 1

Õ(poly(n))
)).

Summary of the algorithm
I Compute the Gaussian Nt “inside” pt , its associated core N ′t

(when Nt is isotropic: N ′t =
√

λ
2−λNt), and the corresponding

kernel: Ktδy = (1− λ)N ′t + λy (i.e.

Kt(x , y) = N ′t(
x−λy
1−λ) ∝ exp(− n

λ‖x − λy‖
2
pt)).

I Sample Xt ∼ pt and play xt = (1− λ)N ′t + λXt ∼ Ktpt .
I Update the exponential weights distribution:

pt+1(y) ∝ pt(y) exp(−ηt ˜̀t(y)) where

˜̀
t(y) =

`t(xt)

Ktpt(xt)
Kt(xt , y) ∝ exp(−nλ‖y − xt/λ‖2

pt)

(note that ‖xt/λ‖ ≈ 1/
√
λ and the standard deviation of the

above Gaussian is ≈ 1/
√
nλ).

I Restart business: check if adversary is potentially moving out
of focus region (if so restart the algorithm), check if updating
the focus region would change the problem’s scale (if so make
the update and increase the learning rate multiplicatively by
(1 + 1

Õ(poly(n))
)).

