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I. INTRODUCTION – NONPARAMETRIC

STATISTICAL MODELS



→ Random Sample. Consider variables

X,X1, . . . , Xn, i.i.d. X ∼ P
where P is a probability measure on a subset
of Rd. Often we assume P has a probability
density function f : Rd → [0,∞).

→The empirical measure is Pn = 1
n

∑n
i=1 δXi

and for g ∈ L2(P ) we know from the CLT

(Pn − P )(g) =
1

n

n∑
i=1

(g(Xi)− Eg(X))

≈ N
(

0,
‖g − Eg‖2,P

n

)
.



→ Gaussian Regression. Consider observing
a signal f ∈ L2([0,1]) in white noise,

dX(n)(t) = f(t)dt+
σ
√
n
dW (t),

where σ/
√
n, σ > 0 is the signal to noise ratio,

dW a standard white noise.

→ dW arises from the isonormal Gaussian
process on L2, i.e., the (cylindrical) Gaussian
probability measure N on L2 with marginal
laws ∫ 1

0
gdW ∼ N(0, ‖g‖22), g ∈ L2.



→ The equivalent of the empirical measure

Pn is simply the observed trajectory X(n),

which has marginal distribution

X(n)(g) =
∫ 1

0
gdX(n) ∼ N

(
〈g, f〉,

‖g‖22
n

)
, g ∈ L2.

→ Equivalently, if we test against all g = ek
from an orthonormal basis {ek : k ∈ Z} of L2

we observe a vector

Xk = 〈f, ek〉+
1
√
n
gk, gk ∼ N(0, σ2), k ∈ Z

in infinite sequence space.



→ Closely related to this model is standard
fixed design nonparametric regression

Yi = f(xi) + εi, i = 1, . . . , n, εi ∼ N(0, σ2).

→ The white noise model is in fact asymp-
totically equivalent to many ’reasonable’ non-
parametric statistical models, in a similar way
as a simple Gaussian shift experiment is asymp-
totically equivalent to standard parametric
’locally asymptotically normal’ models.

→ The probabilistic structure of the white
noise model is an idealised nonparametric
Gaussian ’limit experiment’.



→ Inverse Problems. Instead of observing a

sample X1, . . . , Xn ∼ P directly, we observe

data corrupted with noise εi independent of

X, formally

Yi = Xi + εi, i = 1, . . . , n,

where εi ∼ ϕ, ϕ a known p.m.

→ Since the probability distribution of Yi is

PY = P ∗ ϕ,

and the goal is to estimate P , this problem

is often called the deconvolution problem.



→ The empirical measure PYn = 1
n

∑n
i=1 δYi

of the observations does now not have the
’right’ centering P , but rather PY .

→ Deconvolution is a toy model for general
’operator’ inverse problems

Yk = κk · 〈f, ek〉 (+gk/
√
n),

where the ek are the SVD-eigenfunctions of
some compact operator K on L2, with eigen-
values κk.

→ In the presence of additive Gaussian noise
we see a nonparametric regression model,
but with κk corrupting the signal 〈f, ek〉.



→ Lévy Processes. We observe n discrete
realisations

Lk∆, k = 1, . . . n,

of a Lévy process

{Lt : t ≥ 0}

at (equally spaced) time intervals of length
∆ > 0 (precise definitions later).

→ The goal is to estimate the Lévy measure
ν that describes the jump part of the pro-
cess. Here a natural analogue of the ’empir-
ical measure’ is not immediately available.



→ In all the above situations we would like

to make inference upon P, f, ν from the ob-

servations. Often P is indexed by a parame-

ter/function f , in some parameter space Σ,

here typically infinite-dimensional.

→ As Σ is infinite-dimensional, the choice

of ’distance’, ’loss’, or ’metric’ d on Σ can

make a crucial difference. Let us illustrate

this with a simple example.



→ Distribution Function Estimation.

Σ = {F : R→ [0,1], F (−∞) = 0, F (∞) = 1,

F increasing, right-continuous.}

then the natural estimator for an unknown

distribution function F is

Fn(t) =
∫
R

1(−∞,t]dPn =
1

n

n∑
i=1

1{Xi ≤ t}, t ∈ R.



→ Density Estimation. The space

Σ =
{
f : R→ [0,∞),

∫
R
f(x)dx = 1

}
then {

Pf : f ∈ Σ
}

is the natural nonparametric model for den-
sity estimation on R. A typical estimator is
the kernel density estimator

f̂n(x, h) =
1

nh

n∑
i=1

K

(
x−Xi
h

)
, h > 0,

where K is a nonnegative kernel that inte-
grates to one, and h > 0 is a bandwidth.



→ In both cases we are in some sense esti-

mating P , but with different loss functions.

→ For cumulative distribution functions, uni-

formly in F ∈ Σ

√
n‖Fn − F‖∞ →d ‖GF‖∞.

→ In density estimation, for Cs, s > 0, any

Hölder ball, the minimax risk is

inf
f̃n

sup
f∈Cs∩Σ

Ef‖f̃n−f‖∞ ' (n/ logn)
− s

(2s+1) >>
1
√
n
.



Let us divide all statistical problems into 2

zones:

→ (i) (Σ, d) admits
√
n-consistent estimators

(”statistically finite-dimensional models”)

→ (ii) (Σ, d) does NOT admit
√
n-consistent

estimators

→ Problem (i) involves interesting probabilis-

tic problems. The statistical interpretation

of the results often proceeds along the lines

of the classical parametric theory.



→ Problem (ii) is statistically more involved:
the rate of estimation typically depends on
specific geometric/analytic properties of Σ.
’Adaptation’ problems arise (pandora’s box).

→ In (i) statistical inference (tests/confidence
sets) can often be made via asymptotic the-
ory/bootstrap etc. without serious difficulty

→ In (ii) honest statistical inference is a highly
nontrivial problem. In particular the transi-
tion from a good estimator to a good confi-
dence set/test is nonobvious and fundamen-
tally different from the 1/

√
n-situation.



→ In these lectures we do something that
looks at first (and perhaps also afterwards!)
unconventional. We take the common non-
parametric estimators designed for problems
of type ii), such as kernel or series estima-
tors, and study them in loss functions from
the world i). The main results are:

→ A) We show that there exist
√
n-problems

where naive empirical measures cannot be
used, but where world ii)-estimators are op-
timal. Thus we add to the list of ’nice’

√
n-

problems, particularly in the field of statisti-
cal inverse problems.



→ B) We show that typically the standard

nonparametric estimators are optimal in ’both

worlds’ i) and ii) simultaneously, a fact some-

times coined the ’plug-in property’ (Bickel

and Ritov, 2003) of these estimators. When

used carefully this allows to construct valid

inference procedures in the difficult world ii)

from ideas inspired by i).

→ [C) The phenomenon in B) extends to

’adaptive’ estimators to a large extent. See

Giné & N (2009ab) if time here does not

permit.]



OUTLINE

→ Gaussian White Noise Model

→ Sampling model/smoothed empirical pro-

cesses.

→ Application to inverse problems/inference

for Lévy processes.

→ Theory for likelihood based inference pro-

cedures (Bayesian/ MLE etc.), and perhaps

to adaptation.



II. 1/
√
n-Problems in Gaussian White Noise



→ We return to observing, for f ∈ L2,

dX(n)(t) = f(t)dt+
σ
√
n
dW (t).

As before, for any g ∈ L2 we have

X(n)(g)−〈f, g〉 =
∫ 1

0
gdX(n)−〈g, f〉 =

σ
√
n

∫ 1

0
gdW.

→ So if our aim was to estimate the linear

functional f 7→ 〈f, g〉 then

Ef |X(n)(g)−〈f, g〉| = Ef

∣∣∣∣∣ σ√n
∫
gdW

∣∣∣∣∣ ≤ σ‖g‖2√
n
.



→ Hence any such linear functional can be

estimated at rate 1/
√
n simply by the plug-in

estimator X(n)(g). Note that this includes

any continuous linear functional on L2 (by

the Riesz-representation theorem).

→ One can show that this estimator is in fact

(Cramer-Rao) efficient for the usual nonpara-

metric models for f , such as Sobolev/Hölder

balls of functions.



→ It is of interest to make such results uni-
form in g ∈ G bounded in L2. Define

`∞(G) =

{
H : G → R, ‖H‖G ≡ sup

g∈G
|H(g)| <∞

}
.

The statistical parameter space embeds

Σ ⊂ `∞(G)

via the action, for f ∈ Σ,

g 7→
∫ 1

0
fg ∈ `∞(G), ‖f‖G ≤ ‖f‖2 sup

g∈G
‖g‖2 <∞.

→ In other words, we endow Σ with the met-
ric coming from the norm ‖ · ‖G.



→ We can then estimate f again by X(n),
now in ‖ · ‖G-loss, and as before we have, for
f ∈ L2

‖X(n)−f‖G =

∥∥∥∥∥f − f +
σ
√
n
W

∥∥∥∥∥
G

=
σ
√
n

sup
g∈G

∣∣∣∣∣
∫ 1

0
gdW

∣∣∣∣∣ .
→ We thus are in world i) if the last supre-
mum is a.s. finite. We say by definition that
G is pregaussian if it is the case.

→ Clearly taking G equal to a ball of L2 is
too optimistic: Taking

G = {ek : k ∈ Z},



where the ek’s are orthonormal basis func-

tions of L2, we see that, for Xk i.i.d.N(0,1),

sup
k∈Z

∣∣∣∣∣
∫ 1

0
ekdW

∣∣∣∣∣ = sup
k∈Z

Xk =∞ a.s.

→ This should be no surprise, since ‖f‖G '
‖f‖2 if G is a ball in L2, and the minimax

rates in L2 are slower than 1/
√
n in general.

→ A very useful sufficient condition to check

finiteness of suprema of Gaussian processes

is via the Dudley integral.



→ Let N(ε,G, ‖ · ‖2) be the minimal number
of balls of radius ε needed to cover G.

Theorem 1 (Dudley) If∫ ∞
0

√
logN(ε,G, ‖ · ‖2)dε <∞

then

E sup
g∈G

∣∣∣∣∣
∫ 1

0
gdW

∣∣∣∣∣ <∞,
in particular for every δ > 0, some c > 0,

E sup
g∈G,‖g‖2≤δ

∣∣∣∣∣
∫ 1

0
gdW

∣∣∣∣∣ .
∫ cδ

0

√
logN(ε,G, ‖ · ‖2)dε.



→ For {eik· : k ∈ Z} the trigonometric basis

and s > 0, consider a Sobolev ball over [0,1]

G(s,B) =

g ∈ L2 :
∑
k∈Z

(1 + k2)s|〈g, ek〉|2 ≤ B2

 ,
which for s ∈ N contains, for some B′,{

g ∈ L2 : ‖g‖2 + ‖Dsg‖2 ≤ B′
}
.

Then for some 0 < A <∞,

logN(ε,G(s,B), ‖ · ‖2) .
(
AB

ε

)1/s
, ε > 0

so Dudley’s theorem applies if s > 1/2.



→ The boundary occurs at s = 1/2: Define

Gδ =

g :
∑
k∈Z

(1 + k2)1/2 log(e+ k)2δ|〈g, ek〉|2 ≤ B2

 .
Then one may show that Gδ is pregaussian if
δ > 1/2 and not otherwise.

→ These assertions can be proved directly
(without Dudley’s theorem), using the the-
ory of Hilbert-Schmidt embeddings and some
basic Gaussian process theory.

→ Note that such Sobolev balls contain balls
of s-Hölderian functions on [0,1], s > 1/2.



→ An interesting non-Hilbertian example: a
ball Bs, s < 1, in the Besov space over [0,1]

Bs1∞ =

{
f ∈ L1 : sup

h>0

∫
Ah

|f(x+ h)− f(x)|
hs

dx ≤ B
}
,

where Ah = {x : x + h ∈ [0,1]}. For s = 1
the space is defined via second differences.

→ These spaces contain all indicator func-
tions of intervals,

{1[0,t] : t ∈ [0,1]} ⊂ Bs ∀s ≤ 1,

but also much less regular functions, such
as ’fractional derivatives’ of such indicator
functions.



→ For s > 1/2 one shows (Birman & Solomyak)

logN(ε,Bs, ‖ · ‖2) .
(
A

ε

)1/s
, ε > 0,

so that this class is still pregaussian. [This

result is not trivial, related to sharp estimates

of `2 entropy of `1-balls, combined with non-

linear approximation theory.]

→ Again this could be refined to cover the

limiting case s = 1/2, with a logarithmic

correction, replacing
√
h by

√
h(log(1/h))δ,

δ > 1, in the Hölder type condition above.



→ Returning to the statistical setting, for G
such a pregaussian Sobolev/Besov ball

‖X(n) − f‖G = sup
g∈G

∣∣∣∣∫ g(x)(dX(n)(x)− f(x)dx)
∣∣∣∣

= sup
g∈G

∣∣∣∣∫ gdW

∣∣∣∣ = Op(1/
√
n)

so that the rate of estimation in these set-
tings is 1/

√
n, in the metric ‖ · ‖G.

→ We have, for example, a white noise ver-
sion of Donsker’s theorem in C([0,1])

√
n

(
X(n)(1[0,t])−

∫ t
0
f

)
=
∫ t

0
dW.



→ Given that we assume f ∈ L2 one may

wonder whether X(n) isn’t too crude an es-

timate. Note X(n) /∈ L2 as

‖W‖2 = sup
g∈L2−ball

∣∣∣∣∫ g(x)dW (x)
∣∣∣∣ =∞ a.s.

→ If we want to estimate f in L2-loss, a more

natural estimator of f is for instance

f̂n,H =
∑
|k|≤H

〈ek, X(n)〉ek, H ∈ N,

a simple orthogonal series estimator, trun-

cated at the H-th frequency, so that f̂ ∈ L2.



→ One sees immediately, from the Parseval
isometry of L2 with `2 that

Ef‖f̂H,n − f‖22 = E
1

n

∑
|k|≤H

|〈W, ek〉|2 +
∑
|k|>H

|〈f, ek〉|2

≤
σ2H

n
+H−2t‖f‖2

W t
2

where ‖ · ‖W t
2

is the t-Sobolev norm, t ≥ 0.

Thus if we choose H ∼ n1/(2t+1) we obtain
the rate

‖f̂H,n − f‖2 = OP
(
n−t/(2t+1)

)
,

which is minimax optimal for estimating f in
a t-Sobolev ball.



→ How does f̂H,n perform in the ’nice’ loss

function ‖ · ‖G? Let us consider first the sim-

plest case where G = Gs is itself a s-Sobolev

ball, s > 1/2. Then for g ∈ G fixed, let us

study the distance

‖f̂H,n −X(n)‖G
instead of the distance of f̂H,n to f . Formally

πH(X(n)) = f̂H,n so

f̂H,n −X(n) = (πH − id)(X(n))

where πH is the L2-projector onto the span

of {ek : |k| ≤ H}.



We thus have, by standard mean square ar-
guments,∣∣∣∣∫ (f̂H,n −X(n))g

∣∣∣∣ =
∣∣∣∣∫ (πH − id)(X(n))g

∣∣∣∣ ≤
∑
|k|>H

|〈f, ek〉||〈ek, g〉|+
1
√
n

∣∣∣∣∣∣∣
∫  ∑

|k|>H
〈g, ek〉ek

 dW
∣∣∣∣∣∣∣

Using the Cauchy Schwarz inequality, the
first term is bounded, uniformly in Gs, by a
constant multiple of

‖f‖W t
2
H−s−t = O

(
n
−t−s
2t+1

)
= o(n−1/2),

for the above choice of Hn. For the second



term we have, for some sequence δn → 0,

noting supg∈Gs ‖g − πH(g)‖2 → 0 as H →∞,

1
√
n
E sup
g∈Gs

∣∣∣∣∣∣∣
∫ ∑
|k|>H

〈g, ek〉ekdW

∣∣∣∣∣∣∣
≤

1
√
n
E sup
g∈Gs,‖g‖2≤δn

∣∣∣∣∫ gdW

∣∣∣∣
.

1
√
n

∫ δn
0

(1/ε)1/2sdε

= o

(
1
√
n

)
by Dudley’s theorem and since s > 1/2.



→ We can thus conclude that such f̂H,n is
asymptotically linear in X(n),

‖f̂H,n −X(n)‖G = oP (1/
√
n)

and thus in particular

‖f̂H,n − f‖G = OP (1/
√
n)

in fact
√
n(f̂H,n − f)→d W in `∞(G)

where W is the standard white noise.

→ Precisely the same arguments go through
for the ’sharp’ 1/2-δ-Sobolev ball G.



→ Note that any bandwidth H such that

H → ∞, H−s−t = o(1/
√
n) is satisfied is ad-

missible. In particular t = 0, H ' n would

always work.

→ When t is known, most interesting is still

f̂H,n with H ∼ n1/(2t+1) where, from the

above,

‖f̂H,n − f‖2 = OP
(
n−t/(2t+1)

)
and, simultaneously,

√
n(f̂H,n − f)→d W ∼ N in `∞(G).



One may then use the weak asymptotics to

construct a set

Cn = {f : ‖f̂H,n − f‖G ≤ zα/
√
n}

where zα are the α quantiles of the distribu-

tion of ‖W‖G. If we intersect this set with a

W t
2-ball of radius

‖f̂H,n‖W t
2
(1 + cn), cn →∞,

to define a confidence set Cn one can show

Pf(f ∈ Cn)→ 1− α

as n→∞ whenever f ∈W t
2 (honestly).



→ Moreover, the diameter of this confidence
set can be shown to be of order

|C|22 = OP
(
n−2t/(2t+1) logn

)
uniformly in balls of W t

2.

→ The proof of this is not difficult, using in-
terpolation arguments. We postpone a proof
to the last lecture, where we shall use this in
the setting of exact asymptotics of nonpara-
metric posterior distributions

→ Similar constructions give us confidence
sets that contract in ‖ · ‖∞-diameter, using
the Besov-ball theory (plus duality arguments)



→ This gives an alternative to ’classical’ meth-

ods for nonparametric confidence sets, based

on the exact normal asymptotics of

‖f̂H,n − Ef̂H,n‖22 − E‖f̂H,n − Ef̂H,n‖
2
2

or the exact Gumbel asymptotics of

‖f̂H,n − Ef̂H,n‖∞ − E‖f̂H,n − Ef̂H,n‖∞

and ’undersmoothing’, i.e., ignoring the bias

‖Ef̂H,n − f‖,

which incurs a similar logn-penalty in the

rate of |C|.



→ The classical asymptotics perhaps give
geometrically more intuitive confidence sets,
but effectively completely ignore the bias,
whereas the above confidence sets really are
built for the full parameter. The proofs show
that the underlying ideas are similar, but the
above asymptotics are drawn from a differ-
ent probabilistic approach.

→ The new approach is particularly inter-
esting in situations where frequentist meth-
ods are difficult to deal with mathematically:
e.g., adaptive estimators, nonparametric MLEs
and Bayes methods (see last lecture).



III. Smoothed Empirical Processes

→ We now leave the idealised world of the
Gaussian white noise model. Consider i.i.d.
X1, . . . , Xn drawn from law P .

→ The obvious estimator of P is the em-
pirical measure Pn = 1

n

∑
i δXi. For any g ∈

L2(P ) we have from the CLT
√
n(Pn − P )(g)→d N(0, ‖g − Pg‖22,P )

so that Png estimates the linear functional
Pg at rate 1/

√
n. This estimator is efficient

for usual nonparametric models.



→ As before it is interesting to ask in which
sense this is uniform in g ∈ G.

→ By definition a class G of functions is
called P -Donsker iff

√
n(Pn − P )→d GP in `∞(G)

where GP is the P -Brownian bridge process
indexed by G. [..measurability issues → next
spring school...]

→ For this to be true a fortiori GP needs to
be pregaussian, particularly that

sup
g∈G
|GP (g)| <∞ a.s. ⇒ GP ∈ `∞(G).



→ As in Dudley’s theorem, a sufficient con-

dition for GP to be pregaussian is that∫ ∞
0

√
logN(ε,G, ‖ · ‖2,P )dε <∞,

where the covering now is wrt the L2(P )-

norm (the intrinsic covariance metric of GP .)

→ How does the P -Donsker property of G
relate to the P -pregaussian property??



→ Well-known sufficient (but not necessary)
conditions for the Donsker-property are uni-
form entropy conditions

sup
Q

∫ ∞
0

√
logN(ε,G, L2(Q))dε <∞

and bracketing metric entropy conditions∫ ∞
0

√
logN[](ε,G, L

2(P ))dε <∞.

Examples: s-Hölder/Sobolev balls on [0,1]d, s >
d/2. Indicators of classes of sets in Rd of dif-
ferentiable boundaries, VC-classes, ...etc.



→ A deep result of Giné and Zinn (1992,

AoP) is that any uniform in P pregaussian

class G is Donsker (uniformly in P ). They

actually prove an equivalence between these

two (uniform) properties.

→Balls in Sobolev space W s
2 over Rd are P -

Donsker for any P iff s > d/2, and the same

is true for the pregaussian property.

→ However, for specific P , there might be

quite a substantial gap between the P pre-

gaussian and the P -Donsker property.



→ For instance for P with a bounded density

p, a ball in Bs1∞ with s ≤ 1 is P -pregaussian

(in view of the entropy estimate above), but

it is not P-Donsker.

→ Why? On R, such a ball contains all

translates of Gamma-densities of parameter

α < 1, so in particular functions that are un-

bounded at any point x. The Xi’s thus a.s.

take values where some g is unbounded.



→ Since G is bounded in L1(P ) we conclude

‖Pn − P‖G ≥ ‖Pn‖G − ‖P‖G
≥ ‖Pn‖G − ‖p‖∞ sup

g∈G
‖g‖1

=∞ a.s.

→ A closely related example we shall study
later on is the action of a deconvolution op-
erator on indicators of intervals, i.e., for ϕ

the characteristic function of a probability
density

{F−1[1/ϕ] ∗ 1(−∞,t] : t ∈ R}.



→ Intuitively speaking, for a class G to be
compact (have finite entropy) in L2, one
may well consider all translates of a fixed un-
bounded function that decays nicely at ±∞
and is L1-Hölder.

→ On the other hand, for the discrete em-
pirical measure to be well behaved one needs
some kind of pointwise control of g ∈ G, as
otherwise ‖Pn‖G = ∞ a.s. despite ‖P‖G be-
ing well-defined. This is, in a certain sense,
a pecularity of the fact that we restrict our-
selves to Pn as the estimator of our choice,
which consists of Dirac point masses.



→ When assuming that P has a bounded
density, restricting to discrete Pn is unnatu-
ral, and we may need to consider a smoothed
version of Pn instead.

→ To mind comes the convolution with

Kh(x) =
1

hd
K

(
x

h

)
, K ∈ L1(Rd),

∫
K = 1,

to smear out the singularities of the δXi’s.

→ We define the smoothed empirical mea-
sure Pn ∗Kh as

dPn ∗Kh(x) =
1

nhd

n∑
i=1

K

(
x−Xi
h

)
dx, x ∈ Rd.



→We immediately notice that this smoothed
empirical measure simply equals the prob-
ability measure that has probability density
equal to the kernel density estimator with
kernel K and bandwidth h.

→ Other smoothed empirical measures come
to mind, such as projections of Pn on or-
thonormal bases, particularly wavelets. The
theory there is similar so we restrict to con-
volution kernels.

→ When do we have
√
n(Pn ∗Kh − P )→d GP in `∞(G)?



→We now have at least two reasons to study
such problems:

→ A) To obtain Donsker-type theorems in
the case where G is P -pregaussian but not
P -Donsker.

→ B) To construct nonparametric confidence
sets using the ’plug-in property’ ideas laid
out above in the Gaussian white noise model.

→ We shall be mostly interested in the non-
Donsker case, but let’s start simple, with G
a uniformly bounded P -Donsker class.



→ If G is P -Donsker then, since

Pn ∗Kh − P = Pn ∗Kh − Pn + Pn − P

it again pays off to study Pn ∗Kh − Pn first.

For g ∈ G we have, from Fubini,

(Pn∗Kh−Pn)g = (Pn−P )(Kh∗g−g)+(P∗Kh−P )g.

→ In most situations

sup
g∈G
‖Kh ∗ g − g‖2,P → 0,

so that the finite-dimensional distributions of

the first process converge to zero.



→ If G is translation-invariant, i.e., g ∈ G ⇒
g(· − y) ∈ G, then the class

∪h>0{g ∗Kh : g ∈ G}
is contained in a suitable closure of the sym-
metric convex hull of G, and thus is itself
P -Donsker. As a consequence

{Kh ∗ g − g : g ∈ G}
is also contained in a fixed Donsker class.

√
n

times the first process indexed by g is thus
asymptotically equicontinuous, from which
we conclude

sup
g∈G
|(Pn − P )(Kh ∗ g − g)| = oP (1/

√
n).



→ The second, ’bias’, term is nonrandom,

and rewriting it, using Fubini, we have

(P ∗Kh−P )g =
∫
R
K(u)[p ∗ g(−uh)− p ∗ g(0)]

so that the combined smoothness of p, g can

(and should) be used.

→ If p ∈ C1(R), g ∈ BV (R), then

D2(p ∗ g) = Dp ∗Dg ∈ C(R)

by distributing one derivative on each con-

volution product.



→ By induction, if p ∈ Ct, g ∈ BV s, the bias

term is, by standard Taylor expansions, of

order ht+s which for the t-optimal choice of

h and s > 1/2 is

O(n−(t+s)/(2t+1)) = o(n−1/2).

In the multidimensional case one needs the

constraint s > d/2 for this bound.

→ For example, if p ∈ Ct and g = 1(−∞,t] ∈
BV , then this term is of order ht+1 = o(1/

√
n),

which corresponds to the case where one is

estimating the distribution function of F .



→ In the Sobolev case one proves easily that

p ∈W t
2, g ∈W

s
2 ⇒ p ∗ g ∈ Cs+t

since

‖Ds+t(p ∗ g)‖∞ ≤
∫
|u|t|p̂(u)||u|s|ĝ(u)|du

≤
√∫
|u|2t|p̂(u)|2du

∫
|u|2s|ĝ(u)|2du

≤ ‖p‖W t
2
‖g‖W s

2
.

→ The above Fourier-proof generalises to
general Besov spaces, using Fourier-multipliers.
See Lemma 12 in Giné and N(08).



→ Thus in these situations

‖P ∗Kh − Pn‖G = oP (1/
√
n)

and by the above decompositions

√
n(Pn ∗Kh − P )→d GP in `∞(G),

and, for suitable choice of h and f ∈W t
2, also

‖f̂n − f‖2 = OP (n−t/(2t+1))

if f̂n is the density of Pn ∗Kh.

→ This includes Sobolev-, Hölder and bounded

variation balls when they are P -Donsker.



→ In particular, if FKn is the cumulative dis-

tribution function of Pn ∗Kh, then

√
n(FKn (h)− F )→ GP

for all bandwidths hn . n1/(2t+1). Note that

hn very small is no problem in the case where

G is P -Donsker, as Pn ∗ Kh then only gets

closer to Pn.

→ Translation invariance can be dispensed

with but is often natural and provides effi-

cient proofs. To summarise:



Proposition 1 Let Pn ∗ Kh be the random
p.m. from kernel K with bandwidth h = hn →
0. Let G be a translation invariant uniformly
bounded P -Donsker class on Rd such that

sup
g∈G
‖Kh ∗ g − g‖2,P → 0,

sup
g∈G

∣∣∣∣∫ K(u)[p ∗ g(−uh)− p ∗ g(0)]
∣∣∣∣ = o(n−1/2)

Then

‖Pn ∗Kh − Pn‖G = oP (/1
√
n)

and in particular
√
n(Pn ∗Kh − P )→d GP in `∞(G).



→ Application to Estimating Self-Convolutions:
For Gs an s-Sobolev ball, and P with un-
known density f ∈W s

2, the mapping

h 7→ h ∗ f

from `∞(Gs) to C(R) is continuous since

‖h ∗ f‖∞ = sup
x
|
∫
h(x− y)f(y)dy|

≤
∑
k

|〈h, ek〉||〈f, ek〉|

=
∑
k

(1 + k2)s/2

(1 + k2)s/2
|〈h, ek〉||〈f, ek〉|

≤ ‖h‖G‖f‖W s
2
.



→ Using the decomposition

f ∗ f − g ∗ g = 2(f − g) ∗ g + (f − g) ∗ (f − g)

we conclude that, for f̂n the ordinary kernel
density estimator of f ∈W s

2, s > 1/2,

f̂n ∗ f̂n − f ∗ f = 2(f̂n − f) ∗ f +O(‖f̂n − f‖22)

= 2(f̂n − f) ∗ f + o(1/
√
n)

so
√
n times the above converges in law in

the space C(R) by the continuos mapping
theorem, to a generalised Brownian bridge.

→ Note that Pn ∗ Pn does not estimate f ∗ f
consistently, as it is a.s. a discrete measure.



→ In other words, the law of the sum

X +X ′ ∼ f ∗ f

of two independent copies X,X ′ ∼ f can be

estimated efficiently at
√
n-rate in sup-norm

loss even when the rate for f itself is only

of order ‖f̂n − f‖2 = OP (n−1/4−ε) only, and

when Pn cannot be used.

→ Other applications include confidence sets

(as discussed above), or estimation of other

integral functionals, such as f 7→
∫
f2.



→ Using Talagrand’s inequality one can prove
tight concentration inequalities for

‖Pn ∗Kh − Pn‖G,

which combined with concentration inequal-
ities for ‖Pn − P‖G (again Talagrand) then
gives inequalities for

‖Pn ∗Kh − P‖G
(by the triangle inequality), see Giné and N
(08). For instance one can prove a Dvoretzky-
Kiefer-Wolfowitz inequality for cdfs

√
n‖FKn − F‖∞.



→ In some sense
√
n‖Pn ∗Kh − Pn‖G is small

nonasymptotically for ’nice’ P -Donsker G.

→ For pregaussian classes G that are NOT

P -Donsker, such as the balls in Bs1∞ men-

tioned above, the situation changes.

→ In this case we don’t want Pn ∗Kh close

to Pn, and have to restrict the speed of con-

vergence to zero of hn.

→ Moreover, the non-Donsker case will re-

quire deeper techniques.



IV. SMOOTHED EMPIRICAL PROCESSES

INDEXED BY NON-DONSKER CLASSES



→We now wish to develop a theory for smoothed
empirical processes

g 7→
√
n(Pn ∗Kh − P )g, g ∈ G,

where we only assume that G is P -pregaussian,
but not necessarily P -Donsker.

→ We are interested in finding conditions
such that

√
n(Pn ∗Kh − P )→d GP in `∞(G).

Fundamentally it is at first not clear whether
this is possible without assuming G to be P -
Donsker.



→ From a ’limit experiment’ point of view

we observe that the Gaussian shift limit ex-

periment in `∞(G) is well defined, but the

empirical measure does not give a valid ap-

proximation.

→ We can still hope to find efficient estima-

tors, however.



→ By Fubini (and for symmetric kernels) it is

quite clear that studying
√
n(Pn ∗Kh−P ) on

G is nothing else than studying the standard

empirical process
√
n(Pn − P ) on the classes

G̃n = {g ∗Kh : g ∈ G}.

→ While for h→ 0 the class G̃n is effectively

G, for fixed h the class G̃n is potentially much

more regular than G. Sharp control of the

increments of
√
n(Pn − P ) on G̃n combined

with control of the envelopes of that class

allows to outperform non-smooth processes.



→ Recall that to prove that a random pro-
cess Zn in `∞(G) to converge weakly to some
tight random element Z ∈ `∞(G) if(f)

a) (Zn(g1), . . . , Zn(gk))→d (Z(g1), . . . , Z(gk))
for every finite set {g1, . . . , gk} ⊂ G and that

b) Zn is uniformly tight in `∞(G) ⇐⇒ asymp-
totic equicontinuity of Zn ⇐⇒ Zn concen-
trates in a compact subset of `∞(G))

→ Define increment classes

G′δ = {f − g : f, g ∈ G, ‖f − g‖2,P ≤ δ}.



Theorem 2 (Giné & N 08, PTRF) Let G
be any P -pregaussian class of functions on
Rd and let Kh be a sequence of convolution
kernels (h = hn → 0) defined on Rd. Assume
that G ⊆ L1(|Kh|) ∀h > 0 and, in addition,

1. For each n, the class

G̃n := {g ∗Kh : g ∈ G}
has finite envelopes Mn ≥ supg∈G̃n ‖g‖∞;

2. supg∈G′δ
E(g∗Kh(X))2 ≤ 4δ2 for every δ >

0 and n large enough;



3. for i.i.d. Rademacher variables (εi)i, in-

dependent of the Xi’s, we have∥∥∥∥∥∥ 1
√
n

n∑
i=1

εig(Xi)

∥∥∥∥∥∥
(G̃n)′

1/n1/4

→ 0

as n→∞ in outer probability;

4. ∪n≥1G̃n is in the L2(P )-closure of supn ‖K‖1-

times the symmetric convex hull of some

fixed P -pregaussian class of functions F̄.



5. For all 0 < η < 1, the L2(P )-metric en-
tropy of G̃n satisfies

H(G̃n, L2(P ), η) ≤ λn(η)/η2

for some λn(η) such that λn(η)→ 0 and
λn(η)/η2 → ∞ as η → 0, uniformly in n,
and the bounds Mn of part (a) satisfy

Mn ≤
(

5
√
λn(1/n1/4)

)−1
.

Then the random processes

{
√
n(Pn − P ) ∗Kh(g) : g ∈ G}

are uniformly tight in the Banach space `∞(G).



→ This result uses fairly deep (but classi-
cal) machinery from Giné and Zinn (1984),
adapted to the current situation.

→One randomises in the asymptotic equicon-
tinuity condition with Rademachers, and uses
Gaussian comparison inequalities for such pro-
cesses. One idea is that a common dominat-
ing Gaussian process can be defined on⋃

h>0

{g ∗Kh : g ∈ G},

since the latter class is contained in the L2(P )-
closure of the symmetric convex hull of G.



→ The bias has been ignored – it is dealt

with as in the Donsker case.

→ As an application, one can show (with

some work!) that the conditions of this the-

orem can be verified for balls in the spaces

Bs1∞ when 1/2 < s ≤ 1, thus giving con-

crete examples for non-Donsker classes for

which the smoothed empirical CLT holds.

(See Giné & N (2008) for details).



V. Efficient Inference for Inverse Problems I

– Deconvolution

→ A toy problem where the main ideas can

be laid out is deconvolution

Yi = Xi + εi, i = 1, . . . , n

where X ∼ P with density f , ε has law fε

with F[fε] ≡ ϕ 6= 0, so

Y ∼ PY = f ∗ fε.



We use a kernel approximation and Plancherel

Kh ∗ f(x) =
∫
Kh(x− y)f(y)dy

=
1

2π

∫
̂Kh(· − y)f̂(u)du

=
1

2π

∫
̂Kh(· − y)

P̂Y (u)

ϕ(u)
du

= K̄
ϕ
h ∗ P

Y (x)

where, for F−1 the inverse Fourier transform,

K̄
ϕ
h ≡ F

−1
[

1

ϕ(−·)

]
∗Kh.

Assume supp (K̂) is compact in what follows.



→ The last expression can be estimated un-

biasedly by the deconvolution estimator

1

n

n∑
i=1

K̄
ϕ
h (Xi − x),

and if we want to estimate the cumulative

distribution function F of P then the natural

estimate becomes

Fϕn (t) =
1

n

∫
1(−∞,t](x)

n∑
i=1

K̄
ϕ
h (Xi − x)dx

=
∫

1(−∞,t] ∗ F
−1

[
1

ϕ(−·)

]
(x)dKh ∗ Pn(x)



→ Conclude that

Fϕn (t)− F (t) =
∫
gtd(Kh ∗ Pn − P ), t ∈ R

where, formally

gt ∈ G =

{
1(−∞,t] ∗ F

−1
[

1

ϕ(−·)

]
(x) : t ∈ R

}
so that we are studying a smoothed empirical

process on this class of functions.

→ Now in particular

‖Fϕn − F‖∞ = sup
g∈G
|Pn ∗Kh(g)− P (g)|.



→ So proving a Donsker-type theorem for
the distribution functions

√
n(Fϕn − F )→d Gϕ in `∞(R)

is equivalent to proving a uniform central
limit theorem for the smoothed process

√
n(Pn ∗Kh − P )→ G in `∞(G)

on the class of functions

G =

{
1(−∞,t] ∗ F

−1
[

1

ϕ(−·)

]
: t ∈ R

}
where F−1[1/ϕ(−·)] is the deconvolution op-
erator.



→ To deal with these terms one proceeds
as in the Lévy setting presented below, with
some simplifications. The main message is
that

√
n(Fϕn − F )→d Gϕ in `∞(R)

as n → ∞, where the limiting covariance is
the usual P -Brownian bridge with

1(−∞,t] replaced by 1(−∞,t] ∗ F
−1

[
1

ϕ(−·)

]
.

→ This covariance is the semiparametric Cramér-
Rao lower bound for this inverse estimation
problem.



→ See Söhl & Trabs, EJS, 2012, for the

deconvolution theory. They consider even

more general classes of functionals, not re-

stricted to indicator functions. That
√
n-

rates can be obtained pointwise was noted in

Dattner, Goldenshluger and Iouditski (2011,

AoS), by completely different means.

→ We now turn to the more complicated

Lévy inference case (which was actually treated

first).



VI. Efficient Inference for Inverse Problems
II – Lévy Processes

→ A Lévy process L = {Lt : t ≥ 0} is a
stochastic process satisfying L0 = 0 a.s. and:
(L1) For any t0 < t1 < · · · < tn the incre-
ments

Lt0, Lt1 − Lt0, Lt2 − Lt1, . . . , Ltn − Ltn−1

are independent.
(L2) For every t ≥ 0 the distribution of Ls+t−
Ls is independent of s
(L3) Lt is stochastically continuous (and cad-
lag with prob. one)



→ Lévy processes can be completely char-

acterised (Lévy-Khintchine formula): Infor-

mally any Lévy process can be decomposed

into independent components

Lt = σBt + γt+Nt

where :

→ σ > 0, γ ∈ R are parameters,

→ Bt is a Brownian motion, and

→ Nt is a pure jump process.



→More formally the celebrated Lévy-Khintchine
theorem says that the Fourier transform of
Lt equals

φ̂t(u) = etψ(u)

with characteristic exponent

ψ(u) = −
σ2u2

2
+ iγu+

∫
[eiux − 1− iux]ν(dx)

and where ν is a Borel measure on R s.t.∫
(|x|2 ∧ 1)ν(dx) <∞, ν({0}) = 0.

→ ν is called the Lévy measure of (Lt)t≥0.



→ The parameter σ2 > 0 governs the vari-
ance of the Brownian component, and γ ∈ R
is the drift of the process.

→ The Lévy measure ν summarises all the in-
formation about the distribution of the jump
process part (intensity/rate/size of the jumps
occuring).

→ We call (σ, γ, ν) the Lévy triplet.

→ ’Extreme’ Examples: a Poisson process
(0,0, cδ1) with c > 0 its intensity, or a stan-
dard Brownian motion (1,0,0).



→ Another example is the compound Pois-

son process (0,0, cµ) obtained from i.i.d. sums

St =
Nt∑
i=1

Xi, Xi ∼i.i.d. µ,

with Nt an independent Poisson process with

intensity c.

→ ’Decompounding problem’: Estimate µ

from observing St. For example: Customers

arrive according to a Poisson process Nt with

-) random claims worth Xi, Xi ∼iid µ each.

-) The total claims then equal St.



→ A more involved example: The family of
Gamma processes with parameters α, λ has
Lévy measure

ν(dx) = αx−1e−λx1(0,∞)(x)dx

which is not a finite measure, but it inte-
grates |x| at zero. This includes the expo-
nential distributions with parameter a when
λ = 1.

→ The Gamma process is an example of a
subordinator process: jumps are always pos-
itive (or negative), the parameters α, λ con-
trol the rate of jump arrivals and jump size.



→ To consider positive and negative jumps
simultaneously, introduce the class of self-
decomposable processes with Lévy measures

ν(dx) =
k(x)

|x|
1R\{0}(x)dx

for k unimodal with a jump at the origin, see,
e.g., Sato (1999) for more details.

→ The family of all possible Lévy measures
forms a rich nonparametric (that is, infinite-
dimensional) class of jump distributions.

→ Can we reconstruct the jump distribution
ν from a sampled trajectory of Lt??



Statistical Inference for Lévy Processes

→ Consider observing a discrete realisation

Xk∆, k = 1, . . . , n,

of the trajectory of a Lévy process at equally

spaced points (times)

tk = k∆, k ∈ N,

where ∆ > 0.

→ ∆ is the sampling frequency.



→ If ∆ → 0 we speak of a high frequency
regime. As ∆→ 0 we are ’zooming in’ to see
the fine details of Lt in a given time interval,
say [0,1].

→ If ∆ > 0 is a small but fixed constant we
speak of a low frequency regime, and ob-
serve at times {tk}nk=1. As n → ∞ the time
horizon increases and we see a large sample
of increments of Lt.

→ Both asymptotics can be combined by
thinking of ∆ = ∆n → 0 such that n∆n →
∞.



→ Our goal is to estimate the jump distri-
bution (Lévy measure) ν from n observed
increments X1, . . . , Xn of the process. More
precisely, we focus on estimating the (gen-
eralised) distribution function

N(t) =
∫ t
−∞

ν(dx), t < 0,

and

N(t) =
∫ ∞
t

ν(dx), t > 0,

of the Lévy measure.

→ Note that N(0) is not defined in general.



High Frequency Regimes

→ As soon as ∆n → 0, we notice that, for in-
stance for ν with locally-Lipschitz Lévy den-
sity one can show∣∣∣∣ 1

∆
P (X∆ ≤ t)−N(t)

∣∣∣∣ = O(∆)

as ∆→ 0.

→ The first quantity in the last display can
be estimated unbiasedly, for X∆

1 , . . . , X∆
n fre-

quency – ∆ i.i.d. Lévy increments, by

Ñ(t) =
1

n∆

n∑
k=1

1(−∞,t](X
∆
k )



→ By the above small-time asymptotics we

also have the bound 1/∆n for the variances

of Ñ , so that, for any t < 0,∣∣∣Ñ(t)−N(t)
∣∣∣ = OP ((∆n)−1/2 + ∆).

→ For ∆ = o(n−1/3) we get the pointwise

rate ∣∣∣Ñ(t)−N(t)
∣∣∣ = O(1/

√
∆n), t < 0,

under only a Lipschitz assumption on the

Lévy density.



→ This result can be made uniform in t as

well (classical arguments).

→ In particular the sampling frequency needs

to converge to zero fast enough, and ∆ fixed

cannot be handled.

→ Can we find more robust procedures for

∆n not going to zero fast enough? Can we

even handle ∆ fixed, where intuitively the

rate of convergence should be
√
n∆ '

√
n?



Low Frequency Asymptotics

→ In the low frequency regime the observed

increments

Xk = Ltk − Ltk−1

are independent and identically distributed

random variables from a fixed infinitely divis-

ible distribution P , with characteristic func-

tion

E[exp(iuXt1)] = E[exp(iuL∆)] = φ(u).



→ Small jumps cannot be distinguished from

Brownian motion from a fixed sample, ∆

fixed!

→ If a Gaussian component is present in

(Lt)t≥0, the minimax rates of estimation in

a discrete observation scheme are only log-

arithmic in n in any reasonable loss function

on Lévy measures.

→ We thus remove the Gaussian component

and restrict to studying inference on pure-

jump Lévy processes only.



A Donsker Theorem for Lévy Measures

→ In fact it will be seen to be necessary to

restrict to Lévy processes of finite variation.

The Lévy-Khintchine formula then simplifies

φ(u) = E[exp(iuL∆)] = e∆ψ(u)

where

logφ(u)

∆
= ψ(u) = iγu+

∫
R\{0}

(eiux−1) ν(dx)

→ Differentiating this identity will identify ν

in the Fourier domain.



→ If ν has a finite moment:

1

i∆

φ′(u)

φ(u)
= γ +

∫
eiuxxν(dx)

= γ + F[xν](u).

so inverting the Fourier transform, and dis-
carding the drift, the distribution function
N(t) =

∫ t
−∞ dν(x) of ν formally equals

N(t) =
∫ t
−∞

x−1F−1
[

1

i∆

φ′

φ

]
(x) dx.

→ In fact since N(0) =∞ in general we need
to restrict to t < 0 in the above derivation.



→ Symmetrically we thus wish to estimate

N(t) =
∫ t
−∞

ν(dx), t < 0

N(t) =
∫ ∞
t

ν(dx), t > 0.

→ Write

Pn =
1

n

n∑
k=1

δXk, φn(u) = FPn(u) =
1

n

n∑
i=1

e−iXku

for the empirical measure and empirical char-

acteristic function, respectively.



Plugging in the empirical c.f. into the iden-
tification equation we obtain a natural esti-
mator

N̂n(t) :=
∫
R
gt(x)F−1

[
1

i∆

φ′n
φn
FKh

]
(x) dx

where K is a band-limited kernel function of
polynomial decay,

Kh(x) := h−1K(x/h), supp[FK] ⊂ [−1,1],

h > 0 a bandwidth to be chosen and where

gt(x) :=

x−11(−∞,t](x), t < 0,

x−11[t,∞)(x), t > 0,
.



Condition 1 We require for some ε > 0:

1.
∫

max(|x|, |x|2+ε) ν(dx) <∞;

2. xν has a bounded Lebesgue density and

|F[xν](u)| . (1 + |u|)−1;

3. (1 + |u|)−1+εφ−1(u) ∈ L2(R).



Proposition 2 Condition 1 is satisfied for
any Lévy process which is an independent
sum of processes of the following types:

1) a compound Poisson process whenever
the jump law has a density ν such that xν is
of bounded variation,

2) a Gamma process with parameters α ∈
(0,1/(2∆)) and λ > 0,

3) a pure-jump self-decomposable process
with k function satisfying k(0−) + k(0+) <
1/(2∆),



→ The parameter constraints in 2) and 3)

can be shown to be necessary for n−1/2 rates.

→ Any polynomial decay of |φ(u)| at ±∞ be-

comes admissible if ∆ is chosen small enough

(more below).



→ For ζ > 0, let

`∞ζ = `∞((−∞,−ζ] ∪ [ζ,∞))

be the Banach space of bounded real-valued

functions on

(−∞,−ζ] ∪ [ζ,∞)

equipped with the supremum norm.

→ Convergence in law in this space, denoted

by →L, is defined as in Dudley (1999).



Theorem 3 (N and Reiß, JFA, 2012) . Grant

Assumption 1, and let

hn ∼ n−1/2(logn)−ρ

for some ρ > 1. Then, as n→∞,

√
n(N̂n −N)→L Gϕ in `∞ζ ,

where Gϕ is a centered Gaussian Borel ran-

dom variable in `∞ζ with covariance Σt,s given

by ∆−2 times∫
R

(
F−1

[
1

φ(−·)

]
∗[xgs]

)(
F−1

[
1

φ(−·)

]
∗[xgt]

)
dP.



→ For s, t < 0 the above covariance is just∫
R

(
F−1

[
1

φ(−·)

]
∗1(−∞,t]

)(
F−1

[
1

φ(−·)

]
∗1(−∞,s]

)
dP

→ This is intuitively appealing when com-
pared to the classical Donsker theorem, where
the uncentered covariance is∫

R
1(−∞,t]1(−∞,s]dP.

The inverse problem induces the presence
of a pseudo-differential operator acting on
the standard covariance of the P -Brownian
bridge.



→ The limiting variable can be viewed as
the image of the standard P -Brownian bridge
under the operator F−1

[
1

φ(−·)

]
∗ [·].

→ For statistical applications: The covari-
ance can easily be estimated by plugging in
estimates for φ, P , so that Theorem 1 can
readily be used for inference.

→ One can show that this covariance is the
Cramér-Rao lower bound in this estimation
problem. This is slightly more involved than
in the deconvolution case in Söhl and Trabs
(2012).



About the Proof:

→ After suitable approximation steps (bias,
linearisation, drift) one reduces the problem
to a smoothed empirical process indexed by
the class (t < 0 for simplicity)

Gφ :=

{
F−1

[
1

φ(−·)

]
∗ 1(−∞,t] : t ≤ −ζ

}
.

→ We apply the general smoothed empirical
process theorem from above, and need to
first show that Fφ is P -pregaussian, and then
verify the conditions of the Theorem.



→ For pregaussianity, note that P is NOT

bounded at 0 in general. If

F−1
[

1

φ(−·)

]
∗ 1(−∞,t]

is supported away from zero, this should not

pose a problem, and one should be able to

proceed as in the Besov case.

→ To establish this support property, one

needs to establish pseudolocality of the de-

convolution operator, meaning that after its

application, the singularity at t remains at t.



→ Some careful analysis of the Lévy struc-

ture shows that indeed

F−1
[

1

φ(−·)

]
∗ 1(−∞,t]

is a function in a Besov space B
1/2+ε
1∞ (R)

with a singularity only at t.

→ Pseudolocality of the ’deconvolution’ op-

erator follows from probabilistic properties of

the Lévy process only, using Fourier analyti-

cal techniques.



→ Consider as a representative example the
Gamma process case with parameters (α,1), α <
1 such that φ(u) = (1− iu)−α. Then

F−1
[

1

ϕ(−·)

]
∗ (·) = F−1 [(1 + iu)α] ∗ (·)

= F−1
[
(1 + iu)α−1(1 + iu)

]
∗ (·)

= F−1
[
(1 + iu)α−1

]
∗ (Id−D)(·)

= γ1−α,1 ∗ (Id−D)(·)

So the action of this operator on 1(−∞,t] is

F−1
[

1

ϕ(−·)

]
∗1(−∞,t] = γ1−α∗1(−∞,t]−γ1−α(·−t)



→ It remains to check the conditions of The-

orem 2 for the pregaussian class

Gφ :=

{
F−1

[
1

φ(−·)

]
∗ 1(−∞,t] : t ≤ −ζ

}
.

→ For this we to split 1(−∞,t](x), t < 0, into

1(−∞,t] = gct+gst , where gct ∈W1
2 , g

s
t ∈ L1∩BV,

e.g., by taking

gst = 1(−∞,t]e
x−t,

and concentrate on the critical part gst .



∥∥∥∥∥Kh ∗ F−1
[

1

φ(−·)

]
∗ gst

∥∥∥∥∥
BV

. h−αn , some α <
1

2
,

which follows from F−1 [1/φ(−·)]∗gst ∈ B
1/2+ε
1∞ ,

interpolation, and regularity of the kernel K.
This controls the envelopes ‖ · ‖∞ . ‖ · ‖BV
and implies that{

F−1
[

1

φ(−·)

]
∗ gst : t ≤ −ζ

}
consists, after rewriting, of translates of a
fixed BV -function, hence is a VC-class of
functions with polynomial covering numbers.



→ We can thus use bracketing or uniform
metric entropy bounds to show that the n−1/4-
increments of the Rademacher process con-
verge to zero if h−αn . n1/4. The envelope
conditions also follows with

Mn ' h−αn .

→ Of the remaining conditions, in Theorem
2, only the last one trading of the enveolopes
with covering numbers of Kh∗Gϕ, is difficult.

→ For this, a sharp polynomial estimate on
the L2(P)-covering numbers of Gφ is the key.



→ For Gamma processes, direct arguments
can be given. In the general Lévy setting,
the tool is the following Fourier multiplier
inequality: For f ∈ L2 supported away from
the origin,

‖F−1[φ−1(−u)] ∗ f‖2,P .

‖(1+|u|)1−εFf(u)‖
L2+4/ε(R)+

( ∫
f(y)2

1 + y2
dy

)1/2
,

under the condition

(1 + |u|)−1+εφ−1(u) ∈ L2(R)

from Theorem 3.



→ How does ’our’ estimator perform when

∆→ 0 with n?

→ We can (?) prove that the alternative

estimator N̂ , designed for the low frequency

case, also works when ∆n → 0 (arbitrarily

slowly), with pointwise rate
√
n∆, and under

the only assumption of at most polynomial

decay of φ. [Uniformity probably also..]

→ The asymptotic covariance then changes

to the standard Brownian bridge with N(t)

replacing F (t).



→ Interesting Extensions:

→ What happens with estimation of N(t)
when t→ 0?

→What happens for ∆n → 0 very fast in the
presence of a Gaussian component?

→ Abstract limit theorems: instead of cdf
N(t) =

∫ t
−∞ dν of ν, we can consider

ν(g) =
∫
gdν; f ∈ G

for abstract classes G.



VII. Weak Limit Theory and Confidence Sets

for Likelihood Based Procedures



Nonparametric Maximum Likelihood Estima-
tion (MLE)

→ Consider data X1, . . . , Xn from law P0 with
density p0 on [0,1].

→ The likelihood and log-likelihood for prob-
ability densities p are

Ln(p) =
n∏
i=1

p(Xi), `n(p) =
n∑
i=1

log p(Xi).

→ One needs to regularise the model for p
to define a nonparametric MLE.



→ Suppose P0 has a probability density p0

contained in a Sobolev ball

P = P(t, ζ, B) =

{
p ≥ ζ > 0,

∫ 1

0
p = 1, ‖p‖W t

2
≤ B

}

→ A nonparametric maximum likelihood es-

timator can be defined as the function p̂n

satisfying

`n(p̂n) = sup
p∈P

`n(p),

which can be shown to exist as a (random)

element in P.



→ This is the dual problem to a penalised

MLE, where one maximises over the whole

Sobolev space with a penalty λ‖p‖W t
2
, λ a

fixed penalisation parameter.

→ The probability density p̂n gives rise to a

random probability measure P̂n, and we want

to study, as before
√
n(P̂n − P0) in the space `∞(G).

→ We shall consider G equal to a s-Sobolev

ball, s > 1/2, so a P -Donsker class. It thus

makes sense to compare P̂n to Pn = 1
n

∑n
i=1 δXi.



Theorem 4 (N 2007, PTRF.) Let p0 be
an internal point of P, and let Gs be a ball
in W s

2, s > 1/2. We have

‖p̂n − p0‖2 = OP (n−t/(2t+1))

and

‖P̂n − Pn‖Gs = oP (n−1/2)

so in particular
√
n(P̂n − P0)→d GP in `∞(G).

→ The same result holds for G ≡ G1/2,δ, the

’sharp’ 1/2-Sobolev ball with logδ-correction.



→ From this theorem it is natural to con-

struct a confidence set

Cn =

{
p ∈ Pt : ‖P − P̂n‖G ≤

zα√
n

}
with zα suitable quantiles of ‖GP‖G.

→ From the above limit theorem and since

p0 ∈ P we have immediately

P0(p0 ∈ Cn) = P0

(
‖P0 − P̂n‖Gs ≤

zα√
n

)
→ 1−α

as n→∞.



→ We now show that this confidence set

is optimal in the sense that its L2-diameter

satisfies

|Cn|2 = OP
(
n−t/(2t+1) logδ/2 n

)
.

To see this, take arbitrary f, g ∈ Cn, h = f−g,

‖h‖22 =
∑
k∈Z
|〈h, ek〉|2

where ek is some orthonormal basis of L2([0,1])

that also generates the Sobolev spaces.



→ Since Cn ⊂ P we know that the high fre-

quencies will be constrained by the Sobolev-

condition, for Hn ∼ n1/(2t+1),

∑
|k|>H

|〈h, ek〉|2 =
∑
|k|>H

(1 + k2)t

(1 + k2)t
|〈h, ek〉|2

≤ ‖h‖W t
2
H−2t

= OP
(
n−2t/(2t+1)

)
.



→ For the low frequencies we can use an

interpolation argument, as follows:∑
|k|≤H

|〈h, ek〉|2

=
∑
|k|≤H

(1 + k2)1/2

(1 + k2)1/2

log(e+ k)δ

log(e+ k)δ
|〈h, ek〉|2

. H logδH
∑
|k|≤H

(1 + k2)−1/2

log(e+ k)δ
|〈h, ek〉|2

. ‖h‖2GsH logδH .
H

n
logδ n

= OP
(
n−2t/(2t+1) logδ n

)



→ Heuristically these confidence sets can be

thought of as including those coefficients

|〈p− p̂n, ek〉| ≤ min(k−tB, zα/
√
n),

so that the bias-variance tradeoff can be seen

without the usual undersmoothing problem.

→ In some sense one constructs the confi-

dence sets from the simultaneous asymptotic

distribution of many fixed linear functionals,

and intersects this with the smoothness con-

straint.



Nonparametric Bayes Procedures

→We now consider Bayesian procedures from
a nonparametric point of view. For simplicity
we shall consider the white noise model

dX(n) = f(t)dt+
1
√
n
dW (t)

which we interpret, as in the first lecture, as
a tight Gaussian shift experiment

X(n) = f +
1
√
n
W

in `∞(G), where again G is the critical Sobolev
ball (s = 1/2, δ > 1).



→ We consider a prior Π for f ∈ L2, that is

we assume that X(n) has law f conditional

on f being drawn from Π. The posterior

distribution is

Πn ∼ Π(·|X(n)) = Π(·|X(n)),

a random probability measure in L2 ⊂ `∞(G).

→ A level 1−α credible region of the poste-

rior is any set Cn such that

Π(Cn|X(n)) = 1− α.



→ A frequentist question, related to Aad’s
question of ’uncertainty quantification’, is
whether such credible regions are frequentist
confidence sets, that is, if we assume X(n) is
actually generated by a fixed f0, whether

Pf0
(f0 ∈ Cn)→ 1− α.

→ In finite-dimensional parametric models
this is usually true, in view of the Bernstein-
von Mises (BvM) theorem: as n → ∞, the
posterior is close to a normal distribution
centered at an efficient estimator

‖Πn −N(θ̂n, I
−1(θ0)/n)‖TV →

Pnθ0 0



→ A nonparametric version of the BvM the-
orem is a delicate subject, see the negative
results Freedmann (1999), in particular it
cannot happen in L2-spaces. Likewise, the
connection between credible sets and confi-
dence sets is not obvious in these situations,
see Cox (1993). Semiparametric BvMs exist,
however, see Castillo (2012) for instance.

→ We show now that it can be obtained in
the larger space `∞(G), and that this can be
used to show that some posterior credible re-
gions are indeed exact frequentist confidence
sets asymptotically.



→ If we define the pushforward

τ : θ 7→
√
n(θ − θ̂n)

then the parametric BvM is the same as say-
ing

‖Πn ◦ τ−1 −N(0, I−1(θ0))‖TV →
Pnθ0 0,

so in other words the posterior asymptoti-
cally looks, on 1/

√
n-neighborhoods of θ̂, like

a normal distribution with inverse Fisher in-
formation covariance.

→ As soon as we have 1/
√
n-rates in a sta-

tistical model such a result can at least be
formulated.



→ The analogue of N(0, I−1(θ0)) in the infinite-
dimensional Gaussian shift experiment

X(n) = f +
1
√
n
W

is the law N of W. Thus an analogue of the
Bernstein-von Mises theorem in this model
for, τ : f 7→

√
n(f − X(n)) (noting that X(n)

is efficient), would be to ask, for the shifted
posterior, that

‖Π(·|X(n)) ◦ τ−1 −N‖TV →
Pf0 0

as n→∞ where ‖ · ‖TV is the total variation
of finite signed measures on `∞(G).



→ This is a too strong requirement in gen-

eral. In the conjugate situation where the

prior is also Gaussian one can show that such

a strong result only holds true if effectively

Π ≺� N

are absolutely continuous, which means that

the typical nonparametric priors are ruled out.

→ The problem comes from the fact that we

insist on the total variation distance, so that

Π(·|X(n)) has to be absolutely continuous to

the limiting distribution N .



→ Instead, we could weaken total variation

convergence to weak convergence. Indeed,

let β be a (e.g., the bounded Lipschitz) met-

ric for weak convergence of p.m.’s in `∞(G).

Definition 1 We then say by definition that

Πn satisfies a weak Bernstein von Mises phe-

nomenon in `∞(G) if

β(Π(·|X(n)) ◦ τ−1,N )→Pf0 0

as n→∞.



→ Unlike in total variation convergence one

does not have uniformity in all Borel sets B

in

|Π(·|X(n)) ◦ τ−1(B)−N (B)| →Pnf0 0

as n→∞.

→ One does have uniformity in all sets that

have a uniformly smooth boundary for the

probability measure N . This includes in par-

ticular all norm balls

{B(0, t) : 0 < t ≤M} in `∞(G).



→ Consider priors of the form

Π = ⊗lkπlk
defined on the coordinates of the orthonor-

mal basis {ψlk} of L2([0,1]), where πlk are

probability distributions with Lebesgue den-

sity ϕlk on the real line.

→ Further assume, for some fixed density ϕ

ϕlk(·) =
1

σl
ϕ

(
·
σl

)
∀k ∈ Zl, with σl > 0.



→ To model γ-smooth functions in a wavelet
basis, take σl = 2−l(γ+1/2) and glk ∼iid ϕ,

Gγ =
∞∑
l=J0

2l−1∑
k=0

2−l(γ+1/2)glkψlk, γ > 0.

→ We also allow for standard expansions

Gγ =
∑
k∈Z

(1 + k2)γ/2gkek, γ > 0,

where {ek} is a basis of L2.

→ Denote by θ0,lk = 〈f0, ψlk〉 the ’true coef-
ficients’ on the basis.



Condition 2 Suppose that there exists a fi-

nite constant M > 0 s.t.

(P1) sup
l,k

|θ0,lk|
σl

≤M.

Suppose also that ϕ is bounded and s.t. there

exists τ > M and 0 < cϕ with

(P2) ϕ(x) ≥ cϕ ∀x ∈ (−τ, τ),
∫
R
x2ϕ(x)dx <∞.

→ For the wavelet prior above this requires

|θ0,lk| ≤M2−l(γ+1/2) ∀k, l ⇐⇒ f0 ∈ Cγ.



Theorem 5 (Castillo and N, 12.) Any prod-

uct prior Π and f0 satisfying Condition 2

satisfy the weak Bernstein-von Mises phe-

nomenon in `∞(G) for G a critical 1/2-Sobolev

ball, i.e.,

β(Π(·|X(n)) ◦ τ−1,N )→Pf0 0.

Moreover the posterior mean f̄n is efficient

in `∞(G) in the sense that

‖f̄n − X(n)‖G = oP (1/
√
n).



→ The proof is not obvious. It uses some

duality theory for Sobolev spaces, a BvM for

finite-dimensional projections with control of

all terms simultaneously in all dimensions,

and a contraction result

Π
(
f : ‖f − f0‖G > L/

√
n|X(n)

)
→Pnf0 0,

which can be refined to imply uniform tight-

ness of the posterior measures. This is based

on a sharp analysis of the posterior distribu-

tion in each coordinate, with dimension-free

constants.



Bayesian Credible Sets

→ A natural 1 − α credible set is then ob-
tained by solving for Rn = Rn(α,X(n)) such
that

Cn =
{
f : ‖f − f̄n‖G ≤ Rn/

√
n
}

= 1− α,
corresponding to the smallest ball centered
at the posterior mean such that the posterior
charges it with probability 1− α.

→ As above, this credible set should be fur-
ther intersected with the support of the pos-
terior, using its regularity properties.



→ Consider first the special case of a uniform
wavelet prior Π on L2 arising from the law of
the random wavelet series

Uγ,M =
∞∑
l=J0

2l−1∑
k=0

2−l(γ+1/2)ulkψlk(·), γ > 0,

where the ulk are i.i.d. uniform on [−M,M ].

→ Such priors model functions that lie in a
fixed Hölder ball of radius M , with poste-
riors Π(·|X(n)) contracting about f0 at the
L2-minimax rate n−γ/(2γ+1) within log fac-
tors if ‖f0‖γ,∞ ≤ M . These posteriors have
the plug-in property.



→ In this situation it is natural to intersect
the credible set Cn with the Hölderian sup-
port of the prior (or posterior),

C′n =
{
f : ‖f‖γ,∞ ≤M, ‖f − f̄n‖G ≤ Rn/

√
n
}

Obviously Πn(C′n) = 1− α.

Corollary 1 We have

Pnf0
(f0 ∈ C′n)→ 1− α

as n → ∞ and the L2-diameter |C′n|2 of C′n
satisfies, for some κ > 0,

|C′n|2 = OP (n−γ/(2γ+1)(logn)κ).



→ We consider next the situation of a gen-
eral series prior Π modeling γ-regular func-
tions, including the important case of Gaus-
sian priors. Let, as above

Gγ =
∞∑
l=J0

2l−1∑
k=0

2−l(γ+1/2)glkψlk(·), γ > 0,

where glk ∼iid ϕ. Define

C̃′n =
{
f : ‖f‖γ,2 ≤Mn, ‖f − f̄n‖H ≤ Rn/

√
n
}
,

where Mn →∞, Mn = O(logn). This paral-
lels the frequentist practice of ’undersmooth-
ing’, and can be shown to work.



→ Alternatively, we intersect with a logarith-
mically weakened Sobolev ball:

C′′n = {f : ‖f‖γ,2,1 ≤Mn+4δ, ‖f̄n−f‖G ≤ Rn/
√
n},

where Mn is defined as follows: For any n
and δn = (logn)−1/4, let Mn equal

inf
{
M > 0 : Πn(f : |‖f‖γ,2,1 −M | ≤ δ) ≥ 1− δn

}
, .

Corollary 2 We have

Pnf0
(f0 ∈ C′′n)→ 1−α, Πn(C′′n) = 1−α+oP (1)

as n → ∞ and the L2-diameter |C′′n|2 of C′′n
satisfies, for some κ > 0,

|C′′n|2 = OP (n−γ/(2γ+1)(logn)κ).



→ The proofs require the weak Bernstein-
von Mises theorem only, by exploiting the
uniformity classes for weak convergence to-
wards N in `∞(G), and the strong contrac-
tion results in L2 for these priors.

→ The abstract framework allows for simi-
lar BvM results for semiparametric examples,
such as all linear functions

f 7→
∫
fg, g ∈W s

2,

including for instance all moment function-
als, but also covers smooth nonlinear func-
tionals such as

∫
f2.



→ The above credible sets are the intersec-

tion of two Sobolev-type ellipsoids, so do not

perhaps reflect precisely the L2-geometry of

a confidence ball or even of a confidence

band. No other exact coverage results seem

to be known at the moment (!?).

→One can also give results in sampling mod-

els, but here the situation is substantially

more difficult (Castillo & N13, to come..).

→ Adaptation...? currently open



CONCLUSION

→ Smoothed empirical processes are at least

useful for two purposes:

a) To provide a large enough space in which

the exact probabilistic treatment of nonpara-

metric procedures is tractable, so that one

can obtain exact confidence sets for these

procedures. Combined with interpolation ar-

guments this can give optimal procedures in

the more common Lp-type loss functions of

nonparametrics.



b) To prove efficient semiparametric results

for nonparametric estimators in inverse prob-

lems where the plug in based on the empirical

measure cannot be used.

→ The techniques are at the intersection of

statistics, probability and functional analysis.
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