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Introduction



The Bayesian paradigm

e A parameter O is generated according to a prior distribution II.
e Given © = ¢ the data X is generated according to a measure F.

This gives a joint distribution of (X, ©).

e Given observed data x the statistician computes the conditional
distribution of © given X = z, the posterior distribution:

II(6 € B| X).



The Bayesian paradigm

e A parameter O is generated according to a prior distribution II.
e Given © = ¢ the data X is generated according to a measure F.

This gives a joint distribution of (X, ©).

e Given observed data x the statistician computes the conditional
distribution of © given X = z, the posterior distribution:

II(6 € B| X).

We assume whatever needed (e.g. © Polish and II a probability
distribution on its Borel o-field; Polish sample space) to make this well
defined.



Bayes'’s rule

e A parameter O is generated according to a prior distribution II.
e Given © = ¢ the data X is generated according to a measure F.

This gives a joint distribution of (X, ©).

e Given observed data x the statistician computes the conditional
distribution of © given X = z, the posterior distribution:

II(6 € B| X).

If Py is given by a density x — py(x), then Bayes’s rule gives
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Bayes'’s rule

e A parameter O is generated according to a prior distribution II.
e Given © = ¢ the data X is generated according to a measure F.

This gives a joint distribution of (X, ©).

e Given observed data x the statistician computes the conditional
distribution of © given X = z, the posterior distribution:

II(6 € B| X).

If Py is given by a density x — py(x), then Bayes’s rule gives
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Reverend Thomas

Thomas Bayes (1702-1761, 1763) followed this argument with ©
possessing the uniform distribution and X given © = 6 binomial (n, 8).

Using his famous rule he computed that the posterior distribution is then
Beta(X +1,n — X +1).

Pr(a <© <b) =0b—a, 0<a<b<l,

)91’(1 o, z=0,1,...,n,

n

X
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b
Pr(a < © < b/ X = ) :/ 6°(1— 0)"*d0/B(z +1,n—z+ 1).
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n
T
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Reverend Thomas

Thomas Bayes (1702-1761, 1763) followed this argument with ©
possessing the uniform distribution and X given © = 6 binomial (n, 8).

Using his famous rule he computed that the posterior distribution is then
Beta(X +1,n — X +1).




Parametric Bayes

Pierre-Simon Laplace (1749-1827) rediscovered Bayes’ argument and
applied it to general parametric models: models smoothly indexed by a
Euclidean parameter 6.

For instance, the linear regression model, where one observes
(x1,Yn), ..., (zn, Y,) following

Yi =060 + 01z + e,

foreq,..., e, iIndependent normal errors with zero mean.



Nonparametric Bayes

If the parameter @ is a function, then the prior is a probability distribution
on an function space. So Is the posterior, given the data. Bayes’ formula
does not change:

dI1(6| X) o po(X) dIL(0).

Prior and posterior can be visualized by plotting functions that are
simulated from these distributions.
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Nonparametric Bayes

If the parameter @ is a function, then the prior is a probability distribution
on an function space. So Is the posterior, given the data. Bayes’ formula

does not change:
dI1(6| X) o po(X) dIL(0).

Prior and posterior can be visualized by plotting functions that are
simulated from these distributions.




Subjectivism

A philosophical Bayesian statistician views the prior distribution as an
expression of his personal beliefs on the state of the world, before
gathering the data.

After seeing the data he updates his beliefs into the posterior distribution.

Most scientists do not like dependence on subjective priors.

e One can opt for objective or noninformative priors.

e One can also mathematically study the role of the prior, and hope to
find that it is small.



Frequentist Bayesian

Assume that the data X is generated according to a given parameter 6

and consider the posterior I1(6 € -| X') as a random measure on the
parameter set dependent on X.

We like TI(0 € -| X) to put “most” of its mass near 6, for “most” X.
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Frequentist Bayesian

Assume that the data X is generated according to a given parameter 6
and consider the posterior II(# € -| X') as a random measure on the
parameter set dependent on X.

We like TI(0 € -| X) to put “most” of its mass near 6, for “most” X.

Asymptotic setting: data X" where the information increases as n — .
We like the posterior IT,,(-| X™) to contract to {6, }, at a good rate.

Desirable properties:

Consistency + rate
Adaptation
Distributional approximations

[
[
o
e Uncertainty quantification

We assume that Py, < [ Py dII(f) to make these questions well posed.



Parametric models

Suppose the data are a random sample X1, ..., X,, from a density
x — py(x) that is smoothly and identifiably parametrized by a vector
6 c R? (e.g. 0 — /Do continuously differentiable as map in La(u)).

Theorem (Laplace, Bernstein, von Mises, LeCam 1989). Under
By -probability, for any prior with density that is positive around 6,

[ X1, X0) = Na@a, - 13.1) ()| > 0.

0

Here 0, is any efficient estimator of 6.

n=100




Parametric models

Suppose the data are a random sample X1, ..., X,, from a density
x — py(x) that is smoothly and identifiably parametrized by a vector
6 c R? (e.g. 0 — /Do continuously differentiable as map in La(u)).

Theorem (Laplace, Bernstein, von Mises, LeCam 1989). Under
By -probability, for any prior with density that is positive around 6,

~ 1 B
[ X1, X0) = Na@a, - 13.1) ()| > 0.

0

Here 0, is any efficient estimator of 6.

In particular, the posterior distribution concentrates most of its mass on
balls of radius O(1/+/n) around 6y, and a central set of posterior
probability 95 % is equivalent to the usual Wald confidence set.

The prior washes out completely.



Definition. The support of a prior II is the smallest closed set F' with
[I(F) = 1.

In nonparametrics we like priors with big (or even full) support, equal to a
Infinite-dimensional set.

Full support means that every open set has positive (prior) probabillity.



Definition. The support of a prior II is the smallest closed set F' with
[I(F) = 1.

In nonparametrics we like priors with big (or even full) support, equal to a
Infinite-dimensional set.

Full support means that every open set has positive (prior) probabillity.

Support depends on topology. It is well defined, e.g. if the parameter
space is Polish.



Dirichlet process



Random measures

e M all probability measures on (Polish) sample space (X, 2).
e /' o-field generated by all maps M — M(A), Ae Z.

Lemma. ./ is also the Borel o-field on 9t equipped with the weak
topology (“of convergence in distribution”).
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Random measures

e M all probability measures on (Polish) sample space (X, 2).
e /' o-field generated by all maps M — M(A), Ae Z.

Lemma. ./ is also the Borel o-field on 9t equipped with the weak
topology (“of convergence in distribution”).

Definition. A random probability measure on (X, Z") is a map
P:(Q, % ,Pr) — 9 such that P(A) is a random variable for every A € 2.
(Equivalently, a Borel measurable map in 9t.)

The law of P is a prior on (9, .#).

Definition. The mean measure of P is the measure A — EP(A).



Discrete random measures

o W3, Wa,...nonnegative variables with > ", W; = 1, independent of
e 61,05, ..."9@Q, random variables with values in X.
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Stick breaking

Given i.i.d. Y7,Y5, ... In [O, 1],
Wi =Y, Wa=(1-Y1)Yo, W5 =(1-Y1)(1 -Yo)Y3,...

Lemma. (Wi, Whs,...)is arandom probability measure on N iff
P(Y; > 0) > 0, and has full support if Y; has support [0, 1].

Proof.

e The remaining length of the stick at stage j Is
1-> Wi =1]_;(1 -Y;), and tends to zero a.s. iff
{zl(l —EY;) = 0.
o (Wh,...,W,)is a continuous function of (Y1, ...,Y,) with full range, for
every k.

0
EXAMPLE OF PARTICULAR INTEREST: V1, Ya, " Be(1, M).
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Random measures as stochastic processes

A random measure P induces the distributions on R” of the random
vectors
(P(Al),,P(Ak)), Al,..., A e Z.

Conversely suppose we want a measure with particular distributions, and
can construct a stochastic process (P(A): A € 27) with these
distributions (e.g. by Kolmogorov’s consistency theorem).

It will be true that

(i). P0)=0,P(Z)=1,a.s.

(i). P(A1UA;) = P(A)) + P(A2), a.s., for any disjoint A;, As.
However, we do not automatically have that P is a random measure.
Theorem. If (P(A): Ae & ) IS a stochastic process that satisfies (i) and

(i) and whose mean A — EP(A) is a Borel measure on X, then there
exists a version of P that is a random measure on (X, Z").



Finite-dimensonal Dirichlet distribution

Definition. (Xy,..., Xj) possesses a Dirichlet (k, a1, ..., ax) distribution
for a; > 0 it has (Lebesgue) density on the unit simplex proportional to
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Finite-dimensonal Dirichlet distribution

Definition. (Xy,..., Xj) possesses a Dirichlet (k, a1, ..., ax) distribution
for a; > 0 it has (Lebesgue) density on the unit simplex proportional to

041—1 Oék;—l
XL l—>CE1 Ty -

We extend to «; = 0 for one or more 7 on the understanding that X; = 0.

EXAMPLES

e Fork=2we have X; ~ Be(aj,az) and Xo =1 — X ~ Be(ag, a1).
e The Dir(k;1,...,1)-distribution is the uniform distribution on the
simplex.



Dirichlet distribution — properties

Proposition (Gamma representation). If ¥; "% Ga(a;, 1), then
(Y1/Y,...,Y,/Y) ~ Dir(k; aq, . .., ax), and is independent of and
Y= Zf];:1 Yi.

Proposition (Aggregation). If X ~ Dir(k;ay,...,a) and Z; = Zigj X;
for a given partition Iy, ..., I, of {1,... k}, then
(I) (Zl, ceey Zm) ~ Dir(m; B1,... ,Bm), where Bj = Zielj 7
(ii). (Xi/Zj:i€ 1) Dir(#1;; 4,0 € I;), forj =1,...,m.
(). (Z1,...,4Zm) and (X;/Z;:0€ 1,5 =1,...,m) are independent.

Conversely, if X is a random vector such that (i)—(iii) hold, for a given
partition I;,...,1,, and Z,; = Zielj X;, then X ~ Dir(k; ay,...,ax).

Proposition. E(X;) = «;/|a| and var(X;) = a;(|a] — az)/(|a]*(|a] + 1)),
for |a| = Zle Q.

Proposition (Conjugacy). If p ~ Dir(k; «) and N|p ~ MN(n, k; p), then
p| N ~ Dir(k;a + N).



Dirichlet process

Definition. A random measure P on (X, Z") is a Dirichlet process with
base measure «, If for every partition A, ..., A; of X,

(P(A1),. .., P(Ag)) ~ Dir(k;a(A), ..., a(Ay)).

We write P ~ DP(«a), |a|:= a(X) and a: = a/|a/.
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base measure «, If for every partition A, ..., A; of X,
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We write P ~ DP(«), |a]: = a(X) and a: = o/|a].
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Dirichlet process

Definition. A random measure P on (X, Z") is a Dirichlet process with
base measure «, If for every partition A, ..., A; of X,

(P(A1),...,P(A)) ~ Dir(k; a(Ay), ..., a(Ag)).
We write P ~ DP(«), |a]: = a(X) and a: = o/|a].
&(A)@(AC).

1+ |«

EP(A) = a(A), var P(A) =

I
1

"
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Dirichlet process — existence

Theorem. For any Borel measure « the Dirichlet process exists as a
Borel measure on .



Dirichlet process — existence

Theorem. For any Borel measure « the Dirichlet process exists as a
Borel measure on .

Proof.

e An arbitrary collection of sets A4;, ..., A; can be partitioned in 2*
atoms B; = ATNASN---NAj, where A* stands for A or A°.

e The distribution of (P(B;):j = 1,...,2%) must be Dirichlet.

e Define the distribution of (P(Al), . ,P(Ak)) corresponding to the fact
that each P(A;) must be a sum of some set of P(B;).

e Using properties of finite-dimensional Dirichlets, check that this is
consistent in the sense of Kolmogorov, so that a version of the
stochastic process (P(A): A € Z7) exists.

e Apply the general theorem on existence of random measures.



Sethuraman representation

Theorem. If 61,0,,... 8 aand Y1, Ys, ... "9 Be(1, M) are independent
random variables and W; = Y; [[{_} (1 - Y}), then 322 | W;dy, ~ DP(Ma).



Sethuraman representation

Theorem. If 61,0,,... 8 aand Y1, Ys, ... "9 Be(1, M) are independent

random variables and W; = Y; [[{_} (1 - Y}), then 322 | W;dy, ~ DP(Ma).

Proof.
00 00 71—1
P:=Widg,+ Y W;dy, = Yidg, +(1-Y1)P', P => (V; | [(1-Y1))d,.
§=2 j=2  1=2

Hence Q = (P(A1),...,P(A4)) and N = (g, (A1), - .., 0, (4y)) satisfy

Q=gYN+(1-Y)Q.
Now
e ForgivenY ~ Be(1, M) and independent § ~ G there is at most one

solution in distribution Q).
e A Dirichlet vector () is a solution.

Second follows by properties of Dirichlet (not obvious!).
First: see next slide. []



Sethuraman representation

Proof. (Continued)
Q=aYN+(1-Y)Q.

Given i.i.d. copies (Y, N,,) and given independent solutions ) and Q":

Q=0Q, Q=0Q,
Qn — YnNn + (1 — Yn)Qn—la Q;z — YTLNTL + (1 T YN)Q;”L—l'

Then @, =4 Q and Q) =, Q' for every n, and
1Qn — @l =11 = Yol |Qn-1 — Qrall = [T - Vil lQ - Q| = O
1=1

Hence QQ =4 Q.



Tail-free processes

Let X = AgU A; = (Agg U Ag1) U (A9 U A11) = - - - be nested partitions,
rich enough that they generates the Borel o-field.
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Let X = AgU A; = (Agg U Ag1) U (A9 U A11) = - - - be nested partitions,
rich enough that they generates the Borel o-field.
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Veo = P(Aeo| Ae), and Vo1 = P(Ae1| Ae).

P(Ag e, )=V, Veey - Ve, e=¢€1---em € {0,1}™.



Tall-free processes (2)

P(Ag e, )=V, Veey - Ve, e=¢e1--em €{0,1}™. (1)
Theorem. Suppose

o A, =U{A.: Ascompact, A5 C A}
o (V.:e € &) stochastic processwith0 < V. <1and V. + V. = 1.
e There is a Borel measure with p(A:):=EV., Veieo - Veyoe, -

Then there exists a random Borel measure P satisfying (1)
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Theorem. Suppose

o A, =U{A.: Ascompact, A5 C A}
o (V.:e € &) stochastic processwith0 < V. <1and V. + V. = 1.
e There is a Borel measure with p(A:):=EV., Veieo - Veyoe, -

Then there exists a random Borel measure P satisfying (1)

SPECIAL CASE: Polya tree prior: all V. independent Beta variables.
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Tail-free processes (3)

Veo = P(Aeo| Ae), and Vo1 = P(Ae1| Ae).

P(Ag e, )=V, Veey - Ve, e=¢c1---em € {0,1}™.

Notation:
U LV means “U and V are independent”
U 1L V| Z means “U and V' are conditionally independent given Z”.

Definition (Tail-free). The random measure P is a tail-free process with
respect to the sequence of partitions if
{V()} 1 {VOO,V]_()} R {Vg():&‘ - gm} 1 -,

Theorem. The DP(«) prior is tail free. All splitting variables V_, are
independent and Vo ~ Be(a(Ax), a(A:1)).

Proof. This follows from properties of the finite-dimensional Dirichlet. [
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For X1,...,X,| P" P define count variables:

Ne=#{1<i<n: X; € A}
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Posterior distribution

For X1,...,X,| P" P define count variables:
Ne=#{1<i<n: X; € A}

Theorem. If P is tail-free, then for every m and n the posterior distribution
of (P(A:):e € E™) given X1,. .., X,, depends only on (N.:e € £™).

Proof. We may generate the variables P, X, ..., X,, In four steps:

(a) Generate §:= (P(A.):e € E™) from its prior.

(b) Given 0 generate N = (N.:e € £™) multinomial (n, 0).

(c) Generate n:= (P(A|A.): A€ Z,e € E™).

(d) Given (N, n) generate for every e € £™ a random sample of size
N from P(-| A;), independently across ¢ € £™; let X1,..., X, be
the n values in a random order.

Thenn L #and N L n|6and X L 0| (N,n).
Thus @ L X|N. ]



Posterior distribution (continued)

Theorem. If P is tail-free, then the posterior P| X1, ..., X,, is tail-free.



Posterior distribution (continued)

Theorem. If P is tail-free, then the posterior P| X1, ..., X,, is tail-free.

Proof. Suffices to show, for every level:
(Veore € E™) L (P(As):e € E™)| X1, ..., Xp.
In view of preceding theorem, suffices:
(Veo:e € E™) L (P(Ae):e € E™)|(Nesie € E™,6 € E).

The likelihood for (V, 6, N), where 6. = P(A.), takes the form

(;) TT (6:Ves)™es dIL (V) dILa (6).

ecEMYeE

This factorizes in parts involving (V, N) and involving (6, N). [



Conjugacy of Dirichlet process

P ~ DP(a), X1, Xo,...|PYP



Conjugacy of Dirichlet process

P ~ DP(a), X1, Xo,...|PYP

Theorem. P|Xj,..., X, ~DP(a+nP,),forP, =n"13" dx,.



Conjugacy of Dirichlet process

P ~ DP(a), X1, Xo,...|PYP

Theorem. P|Xj,..., X, ~DP(a+nP,),forP, =n"13" dx,.

Proof. (P(Al),...,P(Ak))\Xl,...,Xn ~ (P(Al),...,P(Ak))\N.
Apply result for finite-dimensional Dirichlet. []



Conjugacy of Dirichlet process

P ~ DP(a), X1, Xo,...|PYP

Theorem. P|Xj,..., X, ~DP(a+nP,),forP, =n"13" dx,.

Proof. (P(Ay),...,P(A))| X1, ..., Xn ~ (P(A1),...,P(Ap))| N.

Apply result for finite-dimensional Dirichlet. []
B(P(A4)| X1 ... X,) =~ a(ay+ " p,(a),
af +n af +n
P, (AP, (A° 1
var (P(A)| X1,...,Xy) = (A)Pr(A°) <

L+ |al+n — 41+ |a|+n)

Corollary. P(A)| X1,...,Xn —4 dpya) @S n — 0o, &.s. |FP5°].



Conjugacy of Dirichlet process

P ~ DP(a), X1, Xo,...|PYP

Theorem. P|Xj,..., X, ~DP(a+nP,),forP, =n"13" dx,.

Proof. (P(Ay),...,P(A))| X1, ..., Xn ~ (P(A1),...,P(Ap))| N.

Apply result for finite-dimensional Dirichlet. ]
Corollary. P(A)| X1,..., X —4 dpya) @S n — 00, a.s. [F5°].
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Predictive distribution

P ~ DP(a), X1, Xo,...|PYP
Theorem.
( dx,,  Wwith probability |a|437:—1>
Xi| X1, X ~4 | -
X 1~ S 6x, ., with probability |a|+1i_1,
_ : . o
| @ with probability i T




Predictive distribution

Theorem.

Proof.

().
(ii).

(iii).

P ~ DP(a), X1, Xo,...|PYP
( dx,,  Wwith probability |a|437:—1>
Xi| X1, X ~4 | -
X 1~ S 6x, ., with probability |a|+1i_1,
4 with probability .

Pr(X; € A)=EPr(X; € A|P) =EP(A) = a(A).

Preceding step means: X;| P ~ P and P — DP(«) imply X; ~ a.
Hence Xs| (P, X1) ~ P and P| X; ~ DP(a + dx,) imply

Xo| X1~ (a+0x,)/(Ja +1).

etc.



Dirichlet process mixtures

Given a probability density = — (x; #) consider data

Xl,...,Xn\Fifi\qu(x)::/w(az;ﬁ)dF(H).



Dirichlet process mixtures

Given a probability density = — v (x; 0) consider data

X, Xl Fpr(e)i= [ (ai6) dF(©),
For F ~ DP(«), this gives Bayesian model:

X1, X000, FY99(:6;),  61,...,0,|/FY9F,  F~DP(a).



Dirichlet process mixtures

Given a probability density = — v (x; 0) consider data

X, Xl Fpr(e)i= [ (ai6) dF(©),
For F ~ DP(«), this gives Bayesian model:
X1, X000, FY99(:6;),  61,...,0,|/FY9F,  F~DP(a).

Lemma. For any 0 — (0) (e.g. ¥(x, ")),

E(/¢deh”w@“Xhuwxg):k}inL/¢da+;;¢wp]



Dirichlet process mixtures

Given a probability density = — v (x; 0) consider data

X, Xl Fpr(e)i= [ (ai6) dF(©),
For F ~ DP(«), this gives Bayesian model:
X1, ., Xnl61,...,00, F99%(-:6;), f1,...,0,| F9F F ~ DP(a).

Lemma. For any 0 — (0) (e.g. ¥(x, ")),

E(/¢deh”w@“Xhuwxg):k}inL/¢da+;;¢wﬁ]

Proof. FF L Xy,...,X,|01,...,0,;, F|01,...,0, ~DP(a+> " 0,). O



Dirichlet process mixtures

Given a probability density = — v (x; 0) consider data

X, Xl Fpr(e)i= [ (ai6) dF(©),
For F ~ DP(«), this gives Bayesian model:
X1, ., Xnl61,...,00, F99%(-:6;), f1,...,0,| F9F F ~ DP(a).

Lemma. For any 0 — (0) (e.g. ¥(x, ")),

E(/¢deh”w@“Xhuwa):k}inL/¢da+;;¢wp]

Proof. FF L Xy,...,X,|01,...,0,;, F|01,...,0, ~DP(a+> " 0,). O

Compute conditional expectation given X1, ..., X,, by generating samples
01,...,0, fromé,..., 0, X1,...,X,, and averaging.



Gibbs sampler

X;|0;, F9(:0;), 6;|FYF  F~DP(a)
Theorem (Gibbs sampler).

0: 0—iX1,..., Xn ~ Y 60, + 5,0Ghy;
JFi

where (¢; ;:5 € {0,1,...,n} — {i}) is the probability vector satisfying

J¥(Xi;0)da(0), j =0,

and Gy ; Is the “baseline posterior measure” given by

v,J

Gy (0] X;) o ¥(X;:0) da(6).



Gibbs sampler — proof

Proof.
B(1L4 (X)) 15(6:)] 60—, X )
= B(E (1L (X:) 1(0:)| F, 05 X3)| 0, X ;)

“e(f [ 1

1 (x
- \a\+n//ﬂ”]13 (s 0) du(xy d(a+ 33y, ) (0)

J71

s (0)(; 0) du()dF (0)|0-;)

By Bayes’s rule (applied conditionally given (6_;, X_;))

Jp ¥l d(o+ 52 00;)(0)

Pr(f: € Bl X,0-i, i) = fw X, 9 (a+2#159 )(0)




Further properties

The number of distinct values in (X1,..., X,) is Op(logn).

The pattern of equal values induces the same random partition of the
set{1,2,...,n} as the Kingman coalescent.

The Dirichlet distribution has full support relative to the weak topology.
DP(a1) L DP(az2) as soon as of # a5 or o and of have different
supports.

In particular prior DP(«) and posterior DP(a + nlP,,) are typically
orthogonal.

The cdf of P ~ DP(«) is a normalized Gamma process.

The tails of P ~ DP(«) are much thinner than the tails of «.

The Dirichlet is the only prior that is tail-free relative to any partition.
The splitting variables of a Polya tree can be defined so that the prior
IS absolutely continuous.



Consistency and rates



X (™ observation in sample space (X, 2 () with distribution P.".
¢ belongs to metric space (0, d).

Definition. The posterior distribution is consistent at 6, € © If
I, (6: d(6, 60) > ¢| X(™) — 0

in Pe(:)-probability, as n — oo, for every € > 0.



Point estimator

Proposition. If the posterior distribution is consistent at 6, then 6,
defined as the center of a (nearly) smallest ball that contains posterior

mass at least 1/2 satisfies d(0,,,0y) — 0 in PQ(:)-probabiIity.



Point estimator

Proposition. If the posterior distribution is consistent at 6, then 6,
defined as the center of a (nearly) smallest ball that contains posterior

mass at least 1/2 satisfies d(0,,,0y) — 0 in PQ(:)-probabiIity.

Proof. For B(0,r) = {s € ©:d(s,0) < r} let
P (0) = inf{r:TL, (B(0, )| X™) > 1/2}.

Then 7,(0,,) < infg 7, (0).
o II,(B(fy,€)] X™) — 1 in probability.

e 7n(6p) < e with probability tending to 1, whence Pn(0n) < 7 (00) < €
o B(by,¢) and B(Gn,frn(@ )) cannot be disjoint.

o d(6y,0,) < e+ 7n(6,) < 2.



Point estimator

Proposition. If the posterior distribution is consistent at 6, then 6,
defined as the center of a (nearly) smallest ball that contains posterior

mass at least 1/2 satisfies d(0,,,0y) — 0 in PQ(:)-probabiIity.

Proof. For B(0,r) = {s € ©:d(s,0) < r} let
P (0) = inf{r:TL, (B(0, )| X™) > 1/2}.

Then 7,(0,,) < infg 7, (0).

o II,(B(fy,€)] X™) — 1 in probability.
e 7n(6p) < e with probability tending to 1, whence rn(én) < 7n(6y) <€
o B(by,¢) and B(Gn,frn(@ )) cannot be disjoint.

o d(6y,0,) < e+ 7n(6,) < 2.

Alternative: posterior mean [ 6 dI1,, (6] X ™).



Doob’s theorem

Theorem (Doob). Let (X, 2", Py: 0 € ©) be experiments with (X, Z") a
standard Borel space and © a Borel subset of a Polish space such that
0 — Py(A) is Borel measurable for every A € 2" and the map 6 — P is
one-to-one. Then for any prior II on the Borel sets of © the posterior
IT, (| X1,...,X,) inthe model X1,...,X,|0"py and § ~ II is consistent
at 6, for II-almost every 6.



Kullback-Leibler property

Parameter p: v-density on sample space (X, Z"). True value py.
Kullback-Leibler divergence:

K (po;p) = /po log(po/p) dv, K (po; Po) ZpiengOK(po;p)-



Kullback-Leibler property

Parameter p: v-density on sample space (X, Z"). True value py.
Kullback-Leibler divergence:

K (po;p) = /po log(po/p) dv, K (po; Po) ZpiengoK(po;p)-

Definition. pq Is said to possess the Kullback-Leibler property relative to
IT if IT(p: K (po; p) < €) > 0 for every e > 0.



Kullback-Leibler property

Parameter p: v-density on sample space (X, Z"). True value py.
Kullback-Leibler divergence:

K(po;p) = /po log(po/p)dv,  K(po;Po) ZpigngoK(po;p)-
Definition. pq Is said to possess the Kullback-Leibler property relative to
IT if IT(p: K (po; p) < €) > 0 for every e > 0.

EXAMPLES

e Polya tree prior with dyadic partition and splitting variables
Veo ~ Be(CL|€|, CL|€|) for Zm a;ﬂbl < oo and K(po, )\) < OQ.

o Dirichlet mixtures [ ¢(-,0)dF(0) with F' ~ DP(«), under some
regularity conditions.



Schwartz’'s theorem

Bayesian model: )
X1,..., Xn|p%p, p~IL



Schwartz’'s theorem

Bayesian model: )
X1,..., Xn|p%p, p~IL

Theorem. If py has KL-property, and for every neighbourhood ¢/ of pg
there exist tests ¢,, such that

Pi¢n =0,  sup P"(1—¢,) =0,
peEU®

then IT,,(-| X1, ..., X,,) is consistent at py.



Schwartz’'s theorem

Bayesian model: )
X1,..., Xn|p%p, p~IL

Theorem. If py has KL-property, and for every neighbourhood ¢/ of pg
there exist tests ¢,, such that

Pi¢n =0,  sup P"(1—¢,) =0,
peEU®

then IT,,(-| X1, ..., X,,) is consistent at py.

Proof. By grouping the observations and using Hoeffding’s inequality we
can find tests 1,, with

Py, < e ", sup P"(1 —by,) < e” O™,
peU®

Then apply the theorem later on. []



Weak consistency

Consider the topology induced on p by the weak topology on the
probability measures P.



Weak consistency

Consider the topology induced on p by the weak topology on the
probability measures P.

Theorem. The posterior distribution is consistent for the weak topology at
any po with the Kullback-Leibler property.



Weak consistency

Consider the topology induced on p by the weak topology on the
probability measures P.

Theorem. The posterior distribution is consistent for the weak topology at
any po with the Kullback-Leibler property.

Proof. Consistent tests always exist:

e Subbasis for the weak neighbourhoods are sets of the type
U = {p: P < Py + ¢}, for ¢: X — [0,1] continuous and e > 0.

e Given atest for each neighbourhood the maximum of the tests works
for a finite intersection.

e Use Hoeffding’'s inequality to bound the error probabilities of the test

Pn = ﬂ{% iw(Xi) > Py + 6/2}.
i—1



Extended Schwartz's theorem

Bayesian model: )
X1,..., Xn|p%p, p~IL

Theorem. If If py has KL-property and for every neighbourhood ¢/ of pg
there exist C' > 0, sets P,, C P and tests ¢,, such that

I[P —P,) < e_Cn, Py on < e_C", sup P"(1—¢,) < e_Cn,
PEPNUC

then the posterior distribution I, (-| X1, ..., X,) is consistent at py.



Extended Schwartz's theorem

Bayesian model:
X1,..., Xn|p%p, p~IL

Theorem. If If py has KL-property and for every neighbourhood ¢/ of pg
there exist C' > 0, sets P,, C P and tests ¢,, such that

(P —P,) <e ", Pl'¢, <e ", sup P™(1—¢,) <e ",
pEP,NUC
then the posterior distribution I, (-| X1, ..., X,) is consistent at py.
Proof.

c fL{C = 1 p/po)( )dH(p)
o U) = T (o) (5, i)

Follow steps 1-4. []




Extended Schwartz’s theorem — proof

Proof. continued.

e Step 1: for any € > 0 eventually a.s. [FP§°]:

/H (X;) dll(p) > H(p:K(po;p) < e)e " (2)



Extended Schwartz’s theorem — proof

Proof. continued.

e Step 1: for any € > 0 eventually a.s. [FP§°]:
/H (X;) dll(p) > H(p: K (po;p) < e)e” <. (2)
Proof: for Il.(-) = II(- N P.) /II(P.), and P. = {p: K(po; p) < €},

log/P dIl(p) — log IT(P)

ezl

zlog/HE(Xi /10 X;) dIlL(p),

— Z/log_ Ie(p) = —’n/K(po;p) dll.(p) + o(n), a.s.



Extended Schwartz’s theorem — proof (2)

Proof. continued.
o Step 2:

fu i—1(p/po)(X;) dII(p)
sz 1p/po)( i) dI1(p)

< on + 1 K pos) < (1~ 0n) | T[(o/0) 050 T

IL, (U | X1, ..., Xp) < ¢n + (1 — Pp)




Extended Schwartz’s theorem — proof (2)

Proof. continued.
o Step 2:

fu i—1(p/po)(X;) dII(p)

Hn(L{C‘ X1 ..... Xn) < ¢n (1 — an fH B p/pO)( ) ( )




Extended Schwartz’s theorem — proof (2)

Proof. continued.
o Step 2:

fuc i—1(p/po)(X:) dIl(p)
J I 1p/po)( i) dI1(p)

IL, (U | X1, ..., Xp) < ¢n + (1 — Pp)

< ¢y + U (p: K(po; p) < €)e "61—%/ Hp/po II(p)
o Step 3: '
(-0 | [T 26 an) - | mla-on [T 2 x0)] angp
c -1 Do c . Po

< [ Pr-on) ).

e Step 4: SplitU° inU° NP, and U° NP and use that
P™(1 — ¢,) < e~ ¢™ on first set, while IT(14¢ N PE) < e=©,



Strong consistency and entropy

Definition (Covering number). N (e, P, d) is the minimal number of d-balls
of radius ¢ needed to cover P.

Theorem. The posterior distribution is consistent relative to the
L+-distance at every pg with the KL-property if for every ¢ > 0 there exist a
partition P = P, 1 U Py, 2 (Which may depend on ¢) such that, for C > 0,

() I(Pn2) <e o
(i) log N (e, Pn1,|l-[l1) < ne?/3.



Strong consistency and entropy

Definition (Covering number). N (e, P, d) is the minimal number of d-balls
of radius ¢ needed to cover P.

Theorem. The posterior distribution is consistent relative to the
L+-distance at every pg with the KL-property if for every ¢ > 0 there exist a
partition P = P, 1 U Py, 2 (Which may depend on ¢) such that, for C > 0,

() I(Pn2) <e o
(i) log N (e, Pn1,|l-[l1) < ne?/3.

Proof.

e Entropy gives tests. See below.
e Apply Extended Schwartz’s theorem.
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Tests — the two Luciens

Lucien Birgé



Tests — minimax theorem

minimax risk for testing P versus Q :

w(P.Q) = inf(P¢ + s Q(1 - 0)).



Tests — minimax theorem

minimax risk for testing P versus Q :

(P, Q) = mf(Pgb + sup Q(1 — qb))
QeQ

Hellinger affinity :

ol / JBVadu =1 - K3(p,q)/2

for h*(p,q) = [ (/P — \/q)? du square Hellinger distance



Tests — minimax theorem

minimax risk for testing P versus Q :

(P, Q) = mf(Pgb + sup Q(1 — qb))
QeQ

Hellinger affinity :

ol / JBVadu =1 - K3(p,q)/2

for h*(p,q) = [ (/P — \/q)? du square Hellinger distance

Proposition. For dominated probability measures P and O

m(P,Q) =1—3||P —conv(Q)|i < sup p1/2(p,q).
Q€Econv(Q)



Tests — minimax risk

Proof.

(P, Q) = ilgf Qefolg(g) (Pgb + Q(1 — gb))

= Sup(Q) igf (Pgb + Q(1 — qb))

QEconv

= s (Plfp<q) +QU{p > q))
(Q)

QEconv

= sup (1—35llp—dl).
QEconv(Q)

P]l{p<q}+@]l{p2q}=/ pdu+/> quS/\/ﬁ\/@du-

p<q =



Tests — product measures

,01/2(Pl X P2, q1 X q2) = ,01/2(1?17611),01/2(192,%)-



Tests — product measures

P1/2(P1 X P2, q1 X q2) = ,01/2(191791),01/2(1?2,%)-

Lemma. For any probability measures P; and O;

P1/2 (®Z-PZ-, CODV(@@'Q?Z)) < H P1/2 (PZ-, ConV(Qi)).



Tests — product measures

P1/2(P1 X P2, q1 X q2) = ,01/2(191791),01/2(192,%)-

Lemma. For any probability measures P; and O;

P1/2 (@iPZ-, COHV(@@'Q?Z)) < H P1/2 (PZ-, Conv(Qi)).

Proof. Suffices to consider products of 2.
Ifq(z,y) = > kjq15(@)a2;(y), then pyja(p1 X p2,q) =

/P1($)1/2 (Z ’quu(ﬂf)) v [/ p2(y)1/2 (ngj'q;gjz];(y))1/2du2(y)} dpy ().

[]



Tests — product measures (2)

Corollary.

n(P", Q") < p1a(P", conv(Q™)) < py (P, conv(Q))"-



Tests — product measures (2)

Corollary.
m(P", Q") < py/a(P", conv(Q")) < pyja(P, conv(Q))".

Theorem. For any probability measure P and convex set of dominated
probability measures Q with h(p, q) > € for every ¢ € Q and any n € N,
there exists a test ¢ such that

Pn¢ < e—n62/27 Sup Qn(l o qb) < 6—%62/2.
QeQ



Tests — product measures (2)

Corollary.
m(P", Q") < py/a(P", conv(Q")) < pyja(P, conv(Q))".

Theorem. For any probability measure P and convex set of dominated
probability measures Q with h(p, q) > € for every ¢ € Q and any n € N,
there exists a test ¢ such that

Pn¢ < e—n62/27 Sup Qn(l o qb) < 6—%62/2.
QeQ

Proof.

o p12(P,Q)=1—35h*(P,Q)<1—¢/2
o m(P" QM) < (1—e/2)" <ene/2



Tests — nonconvex alternatives

Definition (Covering number). N (e, 9, d) is the minimal number of d-balls
of radius € needed to cover O.

Proposition. Let d < h be a metric whose balls are convex. If
N(e/4,9,d) < N(e) for every e > ¢, > 0 and some nonincreasing function
N:(0,00) — (0,00), then for every € > ¢, and n there exists a test ¢ such
that, for all j € N,

2
677,6/2

sup Q" (1 —¢) < e~ /8,

P"¢ < N(e) -yl
l—e Qe Q:d(P,Q)>je




Tests — nonconvex alternatives

Proof.

For j € N, choose a maximal set of je/2-separated points
Qj1,---,QjnN, IN Qj:= {Q € Q:je<d(P,Q) < 2j6}.
(iif). The N; balls B;; of radius je/2 around the @);; cover Q;.
(iif). h(P,Bj;) > d(P,B;;) > je/2 for every ball B, ;.
For every ball take a test ¢;; of P versus B;;. Let ¢ be their
supremum.

co IVj 00 —ne? /8
: . e
Pr¢ < e~ ¢/8 < NT N(je/d, Q; d)e ™€/ < Ni(e

and, for every j € N,

Sup Qn(l . gb) < sup e—nl2€2/8 < e—nj2€2/8.
QeU~; 9 [>j



Rate of contraction

Definition. The posterior distribution IT,,(-| X (™)) contracts at rate €, — 0
at 6y € © if I1,, (6: d(9, o) > Mye,| X)) — 0in B, -probability, for every
M, — oo as n — oo.



Rate of contraction

Definition. The posterior distribution IT,,(-| X (™)) contracts at rate €, — 0
at 6y € © if I1,, (6: d(9, o) > Mye,| X)) — 0in B, -probability, for every
M, — oo as n — oo.

Proposition (Point estimator). If the posterior distribution contracts at rate
e, at Oy, then 0,, defined as the center of a (nearly) smallest ball that
contains posterior mass at least 1/2 satisfies d(6,,,09) = Op(e,) under

I



Basic contraction theorem

2
K (po; p) = Py log % V (po; p) = Po(log %) .

Theorem. Given d < h whose balls are convex suppose that there exist
P, C Pand C > 0, such that,

(i) L (p: K (po; p) < €2,V (po; p) < €2) > e~ “"n,
(ii) log N (€n, Pn,d) < ne..
(i) I, (PC) < e~ (C+4nen,

Then the posterior rate of convergence for d is e, V n~1/2.



Basic contraction theorem — proof

Proof.

e There exist tests ¢,, with

o AS
. _ 2 e nM=<ez /8

n
I 0 on <€ | _ —nM2&/8’

sup P"(1—¢,) < e "M /8
PEPn:d(p,;po)>Mer

o For A, = { [ TI",(p/po)(X;) dIL, (p) > e~ (+CInei}

Hn(p: d(p,po) > Men| X1, ... ,Xn)

< b+ T{AC} 4 £@+ONE / TT £ (X:) dIL(p)(1 - 60).

d(pap0)>M€n i=1 Po

o PFJ(AS) — 0. See further on.



Basic contraction theorem — proof continued

Proof. (Continued)

mn - p
P / [~ (x0) diLa(p)
PEPn:d(p,po)>Mey, ;1 PO

< Pn<1 - ¢n) dHn<p)

‘/pepn:d(papO)>M€n
< e—TLMQE%/S

n

2 T2 (X:) dILy(p) < TLo(P — Py).
P—P, ;- Do



Bounding the denominator

Lemma. For any probability measure II on P, and positive constant e,
with Pl'-probability at least 1 — (ne?)~1,

/H (X3) dII(p) > TL(p: K (po; p) < €%,V (po; p) < €*)e 2"



Bounding the denominator

Lemma. For any probability measure II on P, and positive constant e,
with Pl'-probability at least 1 — (ne?)~1,

/H (X;) dll(p) > H(p:K(po;p) < €2, V(po;p) < 62)6_2n€2.

Proof. B:= {p: K(po; p) < €,V (po; p) < €5}

log/H ) dIL(P >Z/log— dII(P) =: Z.

EZ = —n / K (po; p) dlI(p) > —ne?,

2 y
var Z < nkb, (/ log Po dH(p)) < nPy /(log @> dll(p) < ne,
p

p
Apply Chebyshev’s inequality. []



Interpretation

Consider a maximal set of points py,...,pyx in P, with d(p;, p;) > €.
Maximality implies N > N(e,, Py, d) > eclnei, under the entropy bound.

The balls of radius ¢,, /2 around the points are disjoint and hence the sum
of their prior masses will be less than 1.

If the prior mass were evenly distributed over these balls, then each would
have no more mass than e=<17¢n,

This Is of the same order as the prior mass bound.
This argument suggests that the conditions can only be satisfied for every

po In the model if the prior “distributes its mass uniformly, at discretization
level ¢,,”.



General observations

Experiments (X, 2 (™ P{": 6 € ©,), with observations X (™, and true
parameters 6, € O,,.

d, and e,, semi-metrics on ©,, such that: there exist £, K > 0 such that for
every e > 0 and every 6, 1 € ©,, with d,,(01,0,0) > ¢, there exists a test ¢,
such that

Pg(n)ogbn < o lEme sup Pe(n)(l — Pp)n < 5B
" 0EOn:en (0,0n.1)<Ec



General observations — rate of contraction

By i(0n,0,€) = {9 €O, K (péZ?O; pé")) < e, Vk@(PéZ?o; pg”)) < nk/zek}.

Theorem. If for arbitrary ©,,; C ©,, and k£ > 1, ne2 > 1, and every j € N,

) In(0 € On:gen < dn(0,00) < 2jen) _ rcneye
Hn (Bn,k(e()a e’n))

(ii) sup log N(fe, {0 € ©,1:d,(0,0,,0) < 2€}, en) < ne?,

€E>€n

then I, (0 € ©,,.1:dp (0, 00) > Mpe,| X™) — 0, in Pe(:)o-probability, for
every M, — . |

Theorem. If for arbitrary ©,,» C 6,,, some k£ > 1,

Hn(@n,Q) . —2716,,21
(I”) Hn (Bn,k(en,()a En)) —° (6 ) | (3)

then T1,,(0,,.2| X (™) — 0, in Py"™ -probability if,



Gaussian process priors



Gaussian processes

Definition. A Gaussian process is a set of random variables (or vectors)
W = (Wy:t € T) such that (W, , ..., W, ) is multivariate normal, for every
t1,...,tr€T.

The finite-dimensional distributions are determined by the mean function
and the covariance function

u(t) = EW, K(s,t) = EW,;W,, s,teT.



Gaussian processes

Definition. A Gaussian process is a set of random variables (or vectors)
W = (Wy:t € T) such that (W, , ..., W, ) is multivariate normal, for every
t1,...,tr€T.

The finite-dimensional distributions are determined by the mean function
and the covariance function

u(t) = EW, K(s,t) = EW,;W,, s,teT.

The law of a Gaussian process is a prior for a function.



Gaussian processes

Definition. A Gaussian process is a set of random variables (or vectors)
W = (Wy:t € T) such that (W, , ..., W, ) is multivariate normal, for every
t1,...,tr€T.

The finite-dimensional distributions are determined by the mean function
and the covariance function

u(t) = EW, K(s,t) = EW W, s,tefT.

The law of a Gaussian process is a prior for a function.

Gaussian process priors have been found useful, because

e they offer great variety
e they are easy (?) to understand through their covariance function
e they can be computationally attractive (e.g.

WWW. gaussi anpr ocess. org)



Brownian density estimation

e Xi,...,X,lLd.from density pg on [0, 1]
e (W,:x € 10,1]) Brownian motion

As prior on p use: eWa

T
Jo €"vdy




Brownian density estimation

Brownian motion ¢ — W; — Prior density ¢ — cexp(W;)
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Brownian density estimation

e Xi,...,X,lLd.from density pg on [0, 1]
e (W,:x € 10,1]) Brownian motion

As prior on p use: eWa

T
Jo €"vdy




Brownian density estimation

e Xi,...,X,lLd.from density pg on [0, 1]
e (W,:x € 10,1]) Brownian motion

As prior on p use: eWe

T
Jo € dy

Theorem. If wy: = logpg € C'*[0, 1], then Ly-rate is:

n~t4 ifa>1/2;
n~?,  ifa<1/2.



Brownian density estimation

e Xi,...,X,iid.from density py on [0, 1]
e (W,:z €]0,1]) Brownian motion
As prior on p use: eWa

T
Jo € dy

Theorem. If wy: = logpg € C'*[0, 1], then Ly-rate is:

n~t4 ifa>1/2;
n~?,  ifa<1/2.

e Thisis optimal if and only if a« = 1/2.
e Rate does not improve if « increases from 1/2.
e Consistency for any a > 0.



Integrated Brownian density estimation

Integrated Brownian motion — Prior density
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Integrated Brownian motion: Riemann-Liouville process

a — 1/2 times integrated Brownian motion, released at O

[a]+1

t
W, :/ (t—s)*""2dBs+ Y Zyth
0 k=0

[B Brownian motion, a > 0, (Z) iid N(0, 1), “fractional integral”]

Theorem. IBM gives appropriate model for a-smooth functions:
consistency if wy € €80, 1] for any 8 > 0, but the optimal n~?/(25+1) if and
only if « = 6.



Settings

Density estimation
X1,..., X, liidin [0, 1],

L0()

- .
fo ef(t) dt

po(x) =

Classification
(X1,Y1),...,(Xy,Yy)lidin [0,1] x {0,1}

1
f;r(Y =1 X =)= =
Regression
Y1,...,Y, independent N (0(x;), o), for
fixed design points x1, ..., z,.

Ergodic diffusions
(X::t € [0,n]), ergodic, recurrent:

dXt = Q(Xt) dt -+ O'(Xt) dBt

Distance on parameter: Hellinger on

Do -
Norm on W: uniform.

Distance on parameter: L2 (G) on Pry.
(G marginal of X;.)
Norm on W: La(G).

Distance on parameter: empirical
Lo-distance on 6.
Norm on W: empirical Lo-distance.

Distance on parameter: random
Hellinger h,, (= || - /|| 1o.2)-
Norm on W: La(uo).

(1o Stationary measure.)



Other Gaussian processes

Brownian sheet

alpha=0.8

00 05 10 1500 02 04 06 08 10

-10

T T T T T
o 500 1000 1500 2000

Fractional Brownian motion

9(58) = Zz (97;61'(33), 0; ~indep N(07 )‘Z)
Series prior



Stationary processes

A stationary Gaussian field (W;: ¢ € R?) is characterized through a
spectral measure 1, by

cov(Wy, W) = / e (57D g (N).

Gaussian spectral

measure; “radial
" basis”
= Matérn  spectral

measure (3/2)




Stationary processes — radial basis

Stationary Gaussian field (W;:t € R?) characterized through

cov(We, W) = /eiAT(S_t) e ™ d.

T
a

Theorem. Let wy be the Fourier transform of the true parameter
wo: [0,1]% — R.

o If [elM|aig(N)|?dX < oo, then rate of contraction is near 1/,/n.
o If ig(N)| > (14 ||M|?)~7, then rate is power of 1/ logn.

Excellent if truth is supersmooth; disastrous otherwise.



Stretching or shrinking: “length scale”

Sample paths can be smoothed by stretching




Stretching or shrinking: “length scale”

Sample paths can be smoothed by stretching

o a =2 = <+ L=




Rescaled Brownian motion

W, = By, for B Brownian motion, and ¢,, ~ n(2a=1)/(Ze+1)

o «<1/2: ¢, — 0(shrink)
o «ac (1/2,1]: ¢, — oo (stretch)

Theorem. The prior Wy = B, ., gives optimal rate for wy € C*(0, 1],
a € (0,1].



Rescaled Brownian motion

W, = By, for B Brownian motion, and ¢,, ~ n(2a=1)/(Ze+1)

o «<1/2: ¢, — 0(shrink)
o «ac (1/2,1]: ¢, — oo (stretch)

Theorem. The prior Wy = B, ., gives optimal rate for wy € C*(0, 1],
a € (0,1].

Surprising? (Brownian motion is self-similar!)



Rescaled Brownian motion

W, = By, for B Brownian motion, and ¢,, ~ n(2a=1)/(Ze+1)

o «<1/2: ¢, — 0(shrink)
o «ac (1/2,1]: ¢, — oo (stretch)

Theorem. The prior Wy = B, ., gives optimal rate for wy € C*(0, 1],
a € (0,1].

Surprising? (Brownian motion is self-similar!)

Appropriate rescaling of k£ times integrated Brownian motion gives optimal
prior for every o € (0, k + 1].



Rescaled smooth stationary process

A Gaussian field with infinitely-smooth sample paths is obtained with

EG,G, = ¥(s — t), /ell/\”zﬂ(A) d\ < 0.

Gaussian spectral
measure; “radial
basis”

Theorem. The prior W; = Gy, for ¢, ~ n=1/(22%4) gives nearly optimal
rate for wy € C*|0,1], any o > 0.



Gaussian elements in a Banach space

Definition. A Gaussian random variable in a (separable) Banach space B
IS a Borel measurable map W: (2, Z, Pr) — B such that b*WW is normally
distributed for every b* in the dual space B*.

Many Gaussian processes (W;:t € T') can be viewed as a Gaussian
variable in a space of functions w: T — R?.

EXAMPLES

e Brownian motion can be viewed as a map in C|0, 1], equipped with the
uniform norm ||w|| = sup;¢o 1 [w(?)].



Gaussian elements in a Banach space

Definition. A Gaussian random variable in a (separable) Banach space B
IS a Borel measurable map W: (2, Z, Pr) — B such that b*WW is normally
distributed for every b* in the dual space B*.

Many Gaussian processes (W;:t € T') can be viewed as a Gaussian
variable in a space of functions w: T — R?.

EXAMPLES

e Brownian motion can be viewed as a map in C|0, 1], equipped with the
uniform norm ||w|| = sup;¢o 1 [w(?)].

e Brownian motion is also a map in L»[0, 1], or C1/4]0, 1], or some Besov
space.



RKHS — definition

W zero-mean Gaussian in Banach space (B, || - ||).
S:B* — B, Sb*=EWb(W).

Definition. The reproducing kernel Hilbert space (H, || - ||x) of W is the
completion of SB* under

(5b1, Sby)m = Eb7 (W)by (W)



RKHS — definition (2)

W = (W;:t € T)) Gaussian process that can be seen as tight, Borel
measurable map in (>°(T) = {f: T — R:||f||: = sup,; | f(t)]| < oco}. with
covariance function K (s,t) = EW W,.

Theorem. Then RKHS is completion of the set of functions
t— Z o; K sz,

relative to inner product

<Z%K(Tu‘ Zﬂg 8],°> ZZ%BJ (ri,t;



RKHS — definition (2)’

W = (W;:t € T)) Gaussian process that can be seen as tight, Borel
measurable map in (>°(T) = {f: T — R:||f||: = sup,; | f(t)]| < oo}, with
covariance function K (s,t) = EW W,.

Theorem. Then RKHS is completion of the set of functions

relative to inner product
<Z&¢K(Tz,' Zﬁg Sj,'> ZZ%BJ (ri,

l.e. all functions ¢t — hy(t):= ELW;, where L € Ly(W), with inner product

(hi,,hr,)m = EL1 Lo.



RKHS — definition (3)

Any Gaussian random element in a separable Banach space can be
represented (in many ways, e.g. spectral decomposition) as

W= i g Zr2s
for i=1

e ;0
® Zl,ZQ, ... LiLd. N(O, 1)
o lel=llefl=---=1



RKHS — definition (3)

Any Gaussian random element in a separable Banach space can be
represented (in many ways, e.g. spectral decomposition) as

W = iuiziei
i

for

e ;0

® Zl,ZQ, ... LiLd. N(O, 1)
o Jeull = lleall = -~ =1

Theorem. The RKHS consists of all elements h:= ) . h;e; with

2 h2
WFEDS u_; < 0

1 1



EXAMPLE — Brownian motion

Theorem. The RKHS of k times IBM is

[F 5D € Ly00,1], f(0) = --- = fB0) =0}, | fllm = |F*TV2.



EXAMPLE — Brownian motion

Theorem. The RKHS of k times IBM is

[F 5D € Ly00,1], f(0) = --- = fB0) =0}, | fllm = |F*TV2.

Proof.

For k = 0: EW,W; = s At = [ 1l 4 d\. The set of all linear
combinations ) ; a;llg ,,1 IS dense in Ly[0, 1].

For £ > 0: use the general result that the RKHS is “equivariant” under
continous linear transformations, like integration.

[]



EXAMPLE — Brownian motion

Theorem. The RKHS of k times IBM is

{F:f%T) € Lo00,1], £(0) = --- = fB@©) =0}, || fllm = IIF*V)2.

Proof.

o Fork=0:EW,W;=sAt= [ 1, d\ The set of all linear
combinations ) ; a;llg ,,1 IS dense in Ly[0, 1].

e For k£ > 0: use the general result that the RKHS is “equivariant” under
continous linear transformations, like integration.

[]

Theorem. The RKHS of the sum of k times IBM and ¢ — 2% Z;t! is

{£:f** e L0011}, |IfE = IF*D13 + Zf (0



Example — stationary processes

A stationary Gaussian process is characterized through a spectral
measure 1, by

cov(Ws, Wy) = /eD‘T(S_t) du ().

Theorem. The RKHS of (W;:t € T) is the set of real parts of the functions

tH/ A (), Y € Lo(p),

with RKHS-norm
|hllm = inf{||e]|2: hy = R}

If the interior of 7" is nonempty and [ el u(d)\) < oo, then + is unique
and [|hllm = |92

Proof. .
EWW; = (es, et)2,u, es(A\) = EC



Small ball probability

Definition. The small ball probability of a Gaussian random element W in
(B, || - |) is Pr(||W]| < €), and the small ball exponent is

¢o(€) = —log Pr([[W]| <e).



Small ball probability

Definition. The small ball probability of a Gaussian random element W in
(B, || - |) is Pr(||W]| < €), and the small ball exponent is

¢o(€) = —log Pr([[W]| <e).

MWWWW
EXAMPLES

e Brownian motion: ¢g(e) < (1/¢)?.




Small ball probability

Definition. The small ball probability of a Gaussian random element W in
(B, || - |) is Pr(||W]| < €), and the small ball exponent is

¢o(€) = —log Pr([[W]| <e).

EXAMPLES

e Brownian motion: ¢g(e) < (1/¢)?.
e o — 1/2times integrated BM: ¢g(€) = (1/€)/.




Small ball probability

Definition. The small ball probability of a Gaussian random element W in
(B, || - |) is Pr(||W]| < €), and the small ball exponent is

¢o(€) = —log Pr([[W]| <e).

EXAMPLES

e Brownian motion: ¢g(e) < (1/¢)?.
e o — 1/2times integrated BM: ¢g(€) = (1/€)/.
e Radial basis: ¢o(c) < (log(1/e))' ™.




Small ball probability

Definition. The small ball probability of a Gaussian random element W in
(B, || - |) is Pr(||W]| < €), and the small ball exponent is

¢o(€) = —log Pr([[W]| <e).

Small ball probabilities can be computed either by probabilistic
arguments, or analytically from the RKHS.

Theorem. )

o (€)

do(€) < log N (———, Hu, || - |
EXAMPLE

RKHS of Brownian motion is Sobolev space of first order.
Unit ball has entropy 1 /e for uniform norm.

1
—VIogN(

62

€

(1/€)?

7H17 H ) H)



Posterior contraction rates for Gaussian priors

Prior W is centered Gaussian map in Banach space (B, || - ||) with RKHS
(H, || - ||m) and small ball exponent

do(€) = —log II(||W]| < e).

Theorem. If statistical distances on the model combine appropriately with
the norm || - || of B, then the posterior rate is ¢, if

do(€n) < nep? AND inf 1A% < nep?.
heH:||h—wq||<en



Posterior contraction rates for Gaussian priors

Prior W is centered Gaussian map in Banach space (B, || - ||) with RKHS
(H, || - ||m) and small ball exponent

do(€) = —log II(||W]| < e).

Theorem. If statistical distances on the model combine appropriately with
the norm || - || of B, then the posterior rate is ¢, if

olen) < nen2 AND inf hl|% < nen2.
H
heH:||h—wq||<en

e Both inequalities give lower bound on ¢,.
e The first depends on W and not on wy.
e If wy € H, then second inequality is satisfied for ¢, = 1//n.



Density estimation

As prior on density p use pyy for:

P () = .
(@) fol eWt dt



Density estimation

As prior on density p use pyy for:

P () = .
(@) fol eWt dt

Lemma. Yv,w

o h(py,pw) < ||v — w||oo ellv®lloc/2
o K(pu,pw) S |lv—w||Z elv=wlleo (1 + Jlo — w]|oo)
o V(pupw) S llv— w2 elv=wllo (1 + || — wl|o0)?



Settings

Density estimation
X1,..., X, liidin [0, 1],

L0()

- .
fo ef(t) dt

po(x) =

Classification
(X1,Y1),...,(Xy,Yy)lidin [0,1] x {0,1}

1
f;r(Y =1 X =)= =
Regression
Y1,...,Y, independent N (0(x;), o), for
fixed design points x1, ..., z,.

Ergodic diffusions
(X::t € [0,n]), ergodic, recurrent:

dXt = Q(Xt) dt -+ O'(Xt) dBt

Distance on parameter: Hellinger on

Do -
Norm on W: uniform.

Distance on parameter: L2 (G) on Pry.
(G marginal of X;.)
Norm on W: La(G).

Distance on parameter: empirical
Lo-distance on 6.
Norm on W: empirical Lo-distance.

Distance on parameter: random
Hellinger h,, (= || - /|| 1o.2)-
Norm on W: La(uo).

(1o Stationary measure.)



Brownian Motion — rate calculation

e Small ball probability:

do(e) = (1/€)? < ne? implies e > n~1/4,

e Approximation: if wy € C”[0,1], 8 < 1,

mf W3S e @20
heH:||h—wo || oo <€ ™~

(Attained for h = wq * ¢, with o =< €!/8)

e 27288 < ne? implies e > n=?/2.

Contraction rate is the slowest of the two rates.



Example — radial basis stationary process

e Small ball pobabilility:

do(e) = (log(1/€))” < ne® implies € > n~/2(logn)?.

e Approximation: since du(\) = e d\:

wo(t) = / et Mig(\) dA = / et M (A)e du(N).

If the red function is in Ly(u), then wg € H. Otherwise approximate it
by (\) = wo(N)eX 1{|\| < M}. Optimize over M.

Contraction rate is the slowest of the two rates, typically the second.



Posterior contraction rates for Gaussian priors

Prior W centered Gaussian map in Banach space (B, || - ||) with RKHS
(H, || - ||m) and small ball exponent

do(€) = —log II(||W]| < e).

Theorem. If statistical distances on the model combine appropriately with
the norm || - || of B, then the posterior rate is ¢, if

do(€n) < nep? AND inf 1A% < nep?.
heH:||h—wq||<en



Posterior contraction rates for Gaussian priors

Prior W centered Gaussian map in Banach space (B, || - ||) with RKHS
(H, || - ||m) and small ball exponent

do(€) = —log II(||W]| < e).

Theorem. If statistical distances on the model combine appropriately with
the norm || - || of B, then the posterior rate is ¢, if

do(€n) < nep? AND inf 1A% < nep?.
heH:||h—wq||<en

Proof. Suffices: existence of B,, C B with

o logN(en,Bp,| - |) < nex complexity
o II,(B,) =1—o(e ") remaining mass

o IL,(w:|lw—wol <e€n) > e "en prior mass



Posterior contraction rates for Gaussian priors

Prior W centered Gaussian map in Banach space (B, || - ||) with RKHS
(H, || - ||m) and small ball exponent

do(€) = —log II(||W]| < e).

Theorem. If statistical distances on the model combine appropriately with
the norm || - || of B, then the posterior rate is ¢, if

do(€n) < nep? AND inf 1A% < nep?.
heH:||h—wq||<en

Proof. Suffices: existence of B,, C B with

o logN(en,Bp,| - |) < nex complexity
o II,(B,) =1—o(e ") remaining mass
o IL,(w:|lw—wol <e€n) > e "en prior mass

Take B,, = M, H; + ¢,B; for appropriate M,,. []



Prior mass — decentered small ball probability

W a centered Gaussian map in (B, || - ||) with RKHS (H, || - ||z) and small
ball exponent ¢g(e).

Suo(€):=o(e) + 5 inf |’

heH:||h—wp||<e



Prior mass — decentered small ball probability

W a centered Gaussian map in (B, || - ||) with RKHS (H, || - ||z) and small
ball exponent ¢g(e).

wo (€): = 2 inf hllf
Puo (€)= Po(€) + 2heH;||Zn_w0||<e” [lz

Theorem.
Pr(||W — wo|| < 2€) > e #wo(®)



Prior mass — decentered small ball probability — proof

Proof. (Sketch)

e For h € H the distribution of W 4+ h IS absolute continuous relative to
that of W and

1

Pr(|W — k|| < €) = Be Uh2lbllan{|w < ¢}.
The left side does not change if —h replaces h. Take average:

1
Pr(|W — b < ¢) = E:(e U + "Me 2IMlan{|w|| < €}

1
> e 2IME pr(|W | < o).



Prior mass — decentered small ball probability — proof

Proof. (Sketch)

e For h € H the distribution of W 4+ h IS absolute continuous relative to
that of W and

1
Pr(|W — k|| < €) = Be Uh2lbllan{|w < ¢}.

The left side does not change if —h replaces h. Take average:

1
Pr(|W — b < ¢) = E:(e U + "Me 2IMlan{|w|| < €}

1
> e 2IME pr(|W | < o).

For general wy: if h € H with ||wy — k|| < €, then ||IW — h|| < e implies
|W — wgl| < 2e.



Complexity and remaining mass

Theorem. The closure of H in B is support of the Gaussian measure (and
hence posterior is inconsistent if ||wy — H|| > 0).



Complexity and remaining mass

Theorem. The closure of H in B is support of the Gaussian measure (and
hence posterior is inconsistent if ||wy — H|| > 0).

Theorem (Borell 75). For H; and B, the unit balls of RKHS and B,

Pr(W ¢ MH; + eBy) <1 —&(® (e %) + M)



Complexity and remaining mass

Theorem. The closure of H in B is support of the Gaussian measure (and
hence posterior is inconsistent if ||wy — H|| > 0).

Theorem (Borell 75). For H; and B, the unit balls of RKHS and B,
Pr(W ¢ MH; + eBy) <1 —&(® (e %) + M)

Corollary. For M (W) a median of ||W | and o?(W) = Sup (<1 var b*w,

Pr(W —MW)>z)<1—®(x/c(W)) < e‘%x2/02(W)



Adaptation

Every Gaussian prior is good for some regularity class, but may
be very bad for another.

This can be alleviated by adapting the prior to the data by

e hierarchical Bayes: putting a prior on the regularity, or on a scaling.
e empirical Bayes: using a regularity or scaling determined by maximum
likelihood on the marginal distribution of the data.

The first is known to work in some generality.
For the second there are some, but not many results.




Adaptation by random scaling — example

e Choose A“ from a Gamma distribution.
e Choose (Gi:t € RY) “radial basis” stationary Gaussian process.
o Set Wt ~ GAt-

. A A
. W\/

Theorem. o if wy € CP[0,1]?, then the rate of contraction is nearly

o if wp is supersmooth, then the rate is nearly n—1/2.

Proof. Use the basic contraction theorem (and careful estimates). []
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Dirichlet mixtures

PFo(2) = / 14 ((w — 2)/0) dF (2).

X1,..., Xu| F,oYpr,, F ~DP(a) Lo ~m.
Two cases for the true density py:

e Supersmooth: pg = pr, ,, fOr some Fy, og > 0.

Take prior for o with continuous positive density on (a,b) > oy.
e Ordinary smooth: py has 5 derivatives.

Take 1/0 a priori Gamma distributed.

Compare to kernel density estimation

LS o7 5) et




Supersmooth truth

Pro(z) = / 14 ((w — 2)/0) dF (2).
X1,..., Xu| F,o¥pr,, F~DP(a) L o~m.

Theorem. If py = pr, +,,» Where

Fy has compact support K,

« has a positive density on an open set G D K,
a(z] > t) < e Ol forall t > 0, some C > 0,8 > 0,
7 has a continuous positive density on (a, b) > oy,

then for some M, k > 0,

n (log n)"
POH<F,0:h(pF,U,p0)>M \/ﬁ ’Xl,...,Xn — 0.
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Ordinary smooth truth

Pro(z) = / o1 ((x — 2)/0) dF (2).

X1,..,Xp|F,o¥pp,,  F~DP(a) L o '~T(st).

Let “6-smooth” mean:
P (@) - pP| < L@)lyl” 5,

for L satisfying, for 8’ > 3,

(8)\ 28'/8 L\28'/8 T
P(E=)" T <o, R(Z) T <00, Ipofw)| S ek,
Po Po



Ordinary smooth truth

Pro(z) = / o1 ((x — 2)/0) dF (2).
X1,..., Xu| F,oYpr,, F~DP(a) L o !~T(s,t).

Theorem. If py Is 5-smooth and

e « has a positive density on R,
o aflz] >t) <eClt forallt >0, some C > 0,6 > 0,

then for some M, k > 0,

P (F o1 h(PFospo) > Mn=B/CB+D (log n)F| X1, . .. ,Xn) )

Adaptation to any smoothness with a Gaussian kernel.
Compare to kernel density estimation, which needs higher order kernels.

LS o7 5) = eete)




Finite approximation

Lemma. For any probability measure F' on the interval [0, 1] there exists a
discrete probability measure F’ on with at most

1
N < log -
€

support points, such that

1\1/2
1 5 e(log —) .
€

Ipr1 —prllee S e Ipr1 — pria
Proof.

e Match moments of F' and £’ up to order log(1/e).
e Taylor expand the kernel z — ¢(x — 2).



Prior mass

Lemma. Let z; € U; for partition R = U;-V:OUJ'. Then for F' = Zj.vzlpjdzj
and any F,

lpro —prolli S = max MU;)+ > |[F(U;) - pjl.

By properties of finite-dimensional Dirichlet can bound prior probability
that right side is smaller than ¢



For b, < by, 7 < 1/4and a > e let
P = {pF,O-:F[—a, al=1, b7 <o < bQT}.

Theorem. For 0 < e < 1/2 and d the L;-norm or Hellinger distance

a

1
log N(€, Por,d) < Chy b, : (log ) (log —)

T € €T

Proof.
e Partition |—a,a] into (1/0) equal length intervals.
e On each interval approximate with discrete distribution with < log(1/¢)

support points.
e Use bounds on entropy in Euclidean space.



Approximation

Under some regularity conditions on py, as ¢ — 0.

d(ppy.o,P0) = d(¢s * Po,po) = O(?).

Hence an e-ball around pp, , IS contained in € + ¢ ball around py, and prior
mass condition can be verified.
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Approximation

Under some regularity conditions on py, as ¢ — 0.

d(ppy.o,P0) = d(¢s * Po,po) = O(?).

Hence an e-ball around pp, , IS contained in € + ¢ ball around py, and prior
mass condition can be verified.

This works, but only for smoothness up to 2.

For general result need to choose more clever approximations than pp, ..
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Adaptation

Distributional approximation
Survival analysis

Credible sets

Sparsity

Inverse problems
Structures



A few names names | should have mentioned..

Dirichlet process: Ferguson, Lo, Antoniak, and many others.
Consistency: Schwartz, Barron.

Tests: Le Cam, Birge.

Frequentist Bayes: Ghosal, vdV.

Gaussian variables in Banach spaces: Borell, Kuelbs, Li, Lifshitz.
Gaussian process priors: van Zanten, vdV.

Dirichlet mixtures: Ghosal, Kruijer, Rousseau, W. Shen, Tokdar, vdV.

Further reading:
Subhashis Ghosal, Aad van der Vaart:
Fundamentals of Nonparametric Bayesian Inference
Cambridge University Press, 2013(?)
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