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what is concentration?

We are interested in bounding random fluctuations of functions of
many independent random variables.

X1, . . . ,Xn are independent random variables taking values in
some set X . Let f : X n → R and

Z = f(X1, . . . ,Xn) .

How large are “typical” deviations of Z from EZ?
In particular, we seek upper bounds for

P{Z > EZ + t} and P{Z < EZ− t}

for t > 0.
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various approaches

- martingales (Yurinskii, 1974; Milman and Schechtman, 1986;
Shamir and Spencer, 1987; McDiarmid, 1989,1998);

- information theoretic and transportation methods (Alhswede,
Gács, and Körner, 1976; Marton 1986, 1996, 1997; Dembo 1997);

- Talagrand’s induction method, 1996;

- logarithmic Sobolev inequalities (Ledoux 1996, Massart 1998,
Boucheron, Lugosi, Massart 1999, 2001).





markov’s inequality
If Z ≥ 0, then

P{Z > t} ≤
EZ

t
.

This implies Chebyshev’s inequality: if Z has a finite variance
Var(Z) = E(Z− EZ)2, then

P{|Z− EZ| > t} = P{(Z− EZ)2 > t2} ≤
Var(Z)

t2
.

Andrey Markov (1856–1922)
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sums of independent random variables
Let X1, . . . ,Xn be independent real-valued and let Z =

∑n
i=1 Xi.

By independence, Var(Z) =
∑n

i=1 Var(Xi). If they are identically
distributed, Var(Z) = nVar(X1), so

P

{∣∣∣∣∣
n∑

i=1

Xi − nEX1

∣∣∣∣∣ > t

}
≤

nVar(X1)

t2
.

Equivalently,

P

{∣∣∣∣∣
n∑

i=1

Xi − nEX1

∣∣∣∣∣ > t
√

n

}
≤

Var(X1)

t2
.

Typical deviations are at most of the order
√

n.

Pafnuty Chebyshev (1821–1894)
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chernoff bounds

By the central limit theorem,

lim
n→∞

P

{
n∑

i=1

Xi − nEX1 > t
√

n

}
= 1−Ψ(t/

√
Var(X1))

≤ e−t2/(2Var(X1))

so we expect an exponential decrease in t2/Var(X1).

Trick: use Markov’s inequality in a more clever way: if λ > 0,

P{Z− EZ > t} = P
{

eλ(Z−EZ) > eλt
}
≤

Eeλ(Z−EZ)

eλt

Now derive bounds for the moment generating function Eeλ(Z−EZ)

and optimize λ.
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chernoff bounds

If Z =
∑n

i=1 Xi is a sum of independent random variables,

EeλZ = E
n∏

i=1

eλXi =
n∏

i=1

EeλXi

by independence. Now it suffices to find bounds for EeλXi .

Serguei Bernstein (1880-1968) Herman Chernoff (1923–)
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hoeffding’s inequality

If X1, . . . ,Xn ∈ [0, 1], then

Eeλ(Xi−EXi) ≤ eλ
2/8 .

We obtain

P

{∣∣∣∣∣1n
n∑

i=1

Xi − E

[
1

n

n∑
i=1

Xi

]∣∣∣∣∣ > t

}
≤ 2e−2nt2

Wassily Hoeffding (1914–1991)
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bernstein’s inequality

Hoeffding’s inequality is distribution free. It does not take variance
information into account.
Bernstein’s inequality is an often useful variant:
Let X1, . . . ,Xn be independent such that Xi ≤ 1. Let
v =

∑n
i=1 E

[
X2

i

]
. Then

P

{
n∑

i=1

(Xi − EXi) ≥ t

}
≤ exp

(
−

t2

2(v + t/3)

)
.



a maximal inequality

Suppose Y1, . . . ,YN are sub-Gaussian in the sense that

EeλYi ≤ eλ
2σ2/2 .

Then
E max

i=1,...,N
Yi ≤ σ

√
2 log N .

Proof:

eλE maxi=1,...,N Yi ≤ Eeλmaxi=1,...,N Yi ≤
N∑

i=1

EeλYi ≤ Neλ
2σ2/2

Take logarithms, and optimize in λ.



a maximal inequality

Suppose Y1, . . . ,YN are sub-Gaussian in the sense that

EeλYi ≤ eλ
2σ2/2 .

Then
E max

i=1,...,N
Yi ≤ σ

√
2 log N .

Proof:

eλE maxi=1,...,N Yi ≤ Eeλmaxi=1,...,N Yi ≤
N∑

i=1

EeλYi ≤ Neλ
2σ2/2

Take logarithms, and optimize in λ.



an application

Let A1, . . . ,AN ⊂ X and let X1, . . . ,Xn be i.i.d. random points
in X . Let

P(A) = P{X1 ∈ A} and Pn(A) =
1

n

n∑
i=1

1Xi∈A

By Hoeffding’s inequality, for each A,

Eeλ(P(A)−Pn(A))= Ee(λ/n)
∑n

i=1(P(A)−1Xi∈A)

=
n∏

i=1

Ee(λ/n)(P(A)−1Xi∈A) ≤ eλ
2/(8n) .

By the maximal inequality,

E max
j=1,...,N

(P(Aj)− Pn(Aj)) ≤
√

log N

2n
.



martingale representation

X1, . . . ,Xn are independent random variables taking values in
some set X . Let f : X n → R and

Z = f(X1, . . . ,Xn) .

Denote Ei[·] = E[·|X1, . . . ,Xi]. Thus, E0Z = EZ and EnZ = Z.

Writing

∆i = EiZ− Ei−1Z ,

we have

Z− EZ =
n∑

i=1

∆i

This is the Doob martingale
representation of Z. Joseph Leo Doob (1910–2004)
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martingale representation: the variance

Var (Z) = E

( n∑
i=1

∆i

)2
 =

n∑
i=1

E
[
∆2

i

]
+ 2

∑
j>i

E∆i∆j .

Now if j > i, Ei∆j = 0, so

Ei∆j∆i = ∆iEi∆j = 0 ,

We obtain

Var (Z) = E

( n∑
i=1

∆i

)2
 =

n∑
i=1

E
[
∆2

i

]
.

From this, using independence, it is easy derive the Efron-Stein
inequality.
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efron-stein inequality (1981)

Let X1, . . . ,Xn be independent random variables taking values in
X . Let f : X n → R and Z = f(X1, . . . ,Xn).
Then

Var(Z) ≤ E
n∑

i=1

(Z− E(i)Z)2 = E
n∑

i=1

Var(i)(Z) .

where E(i)Z is expectation with respect to the i-th variable Xi only.

We obtain more useful forms by using that

Var(X) =
1

2
E(X− X′)2 and Var(X) ≤ E(X− a)2

for any constant a.
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efron-stein inequality (1981)

If X′1, . . . ,X′n are independent copies of X1, . . . ,Xn, and

Z′i = f(X1, . . . ,Xi−1,X′i ,Xi+1, . . . ,Xn),

then

Var(Z) ≤
1

2
E

[
n∑

i=1

(Z− Z′i )
2

]
Z is concentrated if it doesn’t depend too much on any of its
variables.

If Z =
∑n

i=1 Xi then we have an equality. Sums are the “least
concentrated” of all functions!
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efron-stein inequality (1981)

If for some arbitrary functions fi

Zi = fi(X1, . . . ,Xi−1,Xi+1, . . . ,Xn) ,

then

Var(Z) ≤ E

[
n∑

i=1

(Z− Zi)
2

]



efron, stein, and steele

Bradley Efron Charles Stein Mike Steele



example: kernel density estimation
Let X1, . . . ,Xn be i.i.d. real samples drawn according to some
density φ. The kernel density estimate is

φn(x) =
1

nh

n∑
i=1

K

(
x− Xi

h

)
,

where h > 0, and K is a nonnegative “kernel”
∫

K = 1. The L1

error is

Z = f(X1, . . . ,Xn) =

∫
|φ(x)− φn(x)|dx .

It is easy to see that

|f(x1, . . . , xn)− f(x1, . . . , x′i , . . . , xn)|

≤
1

nh

∫ ∣∣∣∣K(x− xi

h

)
− K

(
x− x′i

h

)∣∣∣∣ dx ≤
2

n
,

so we get Var(Z) ≤
2

n
.
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example: uniform deviations

Let A be a collection of subsets of X , and let X1, . . . ,Xn be n
random points in X drawn i.i.d.
Let

P(A) = P{X1 ∈ A} and Pn(A) =
1

n

n∑
i=1

1Xi∈A

If Z = supA∈A |P(A)− Pn(A)|,

Var(Z) ≤
1

2n

regardless of the distribution and the richness of A.
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bounding the expectation

Let P′n(A) = 1
n

∑n
i=1 1X′i∈A and let E′ denote expectation only

with respect to X′1, . . . ,X′n.

E sup
A∈A
|Pn(A)− P(A)|= E sup

A∈A
|E′[Pn(A)− P′n(A)]|

≤ E sup
A∈A
|Pn(A)− P′n(A)|=

1

n
E sup

A∈A

∣∣∣∣∣
n∑

i=1

(1Xi∈A − 1X′i∈A)

∣∣∣∣∣

Second symmetrization: if ε1, . . . , εn are independent
Rademacher variables, then

=
1

n
E sup

A∈A

∣∣∣∣∣
n∑

i=1

εi(1Xi∈A − 1X′i∈A)

∣∣∣∣∣≤ 2

n
E sup

A∈A

∣∣∣∣∣
n∑

i=1

εi1Xi∈A

∣∣∣∣∣
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conditional rademacher average

If

Rn = Eε sup
A∈A

∣∣∣∣∣
n∑

i=1

εi1Xi∈A

∣∣∣∣∣
then

E sup
A∈A
|Pn(A)− P(A)| ≤

2

n
ERn .

Rn is a data-dependent quantity!
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concentration of conditional rademacher average

Define

R(i)
n = Eε sup

A∈A

∣∣∣∣∣∣
∑
j6=i

εj1Xj∈A

∣∣∣∣∣∣
One can show easily that

0 ≤ Rn − R(i)
n ≤ 1 and

n∑
i=1

(Rn − R(i)
n ) ≤ Rn .

By the Efron-Stein inequality,

Var(Rn) ≤ E
n∑

i=1

(Rn − R(i)
n )2 ≤ ERn .

Standard deviation is at most
√
ERn!

Such functions are called self-bounding.
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bounding the conditional rademacher average

If S(Xn
1,A) is the number of different sets of form

{X1, . . . ,Xn} ∩ A : A ∈ A

then Rn is the maximum of S(Xn
1,A) sub-Gaussian random

variables. By the maximal inequality,

1

2
Rn ≤

√
log S(Xn

1,A)

2n
.

In particular,

E sup
A∈A
|Pn(A)− P(A)| ≤ 2E

√
log S(Xn

1,A)

2n
.
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random VC dimension

Let V = V(xn
1,A) be the size of the largest subset of

{x1, . . . , xn} shattered by A.
By Sauer’s lemma,

log S(Xn
1,A) ≤ V(Xn

1,A) log(n + 1) .

V is also self-bounding:

n∑
i=1

(V − V(i))2 ≤ V

so by Efron-Stein,
Var(V) ≤ EV
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vapnik and chervonenkis

Vladimir Vapnik Alexey Chervonenkis



beyond the variance

X1, . . . ,Xn are independent random variables taking values in
some set X . Let f : X n → R and Z = f(X1, . . . ,Xn). Recall the
Doob martingale representation:

Z− EZ =
n∑

i=1

∆i where ∆i = EiZ− Ei−1Z ,

with Ei[·] = E[·|X1, . . . ,Xi].

To get exponential inequalities, we bound the moment generating
function Eeλ(Z−EZ).



azuma’s inequality

Suppose that the martingale differences are bounded: |∆i| ≤ ci.
Then

Eeλ(Z−EZ)= Eeλ(
∑n

i=1 ∆i) = EEne
λ
(∑n−1

i=1 ∆i

)
+λ∆n

= Ee
λ
(∑n−1

i=1 ∆i

)
Eneλ∆n

≤ Ee
λ
(∑n−1

i=1 ∆i

)
eλ

2c2
n/2 (by Hoeffding)

· · ·

≤ eλ
2(
∑n

i=1 c2
i )/2 .

This is the Azuma-Hoeffding inequality for sums of bounded
martingale differences.



bounded differences inequality
If Z = f(X1, . . . ,Xn) and f is such that

|f(x1, . . . , xn)− f(x1, . . . , x′i , . . . , xn)| ≤ ci

then the martingale differences are bounded.

Bounded differences inequality: if X1, . . . ,Xn are independent,
then

P{|Z− EZ| > t} ≤ 2e−2t2/
∑n

i=1 c2
i .

McDiarmid’s inequality.

Colin McDiarmid
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P{|Z− EZ| > t} ≤ 2e−2t2/
∑n

i=1 c2
i .
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hoeffding in a hilbert space
Let X1, . . . ,Xn be independent zero-mean random variables in a
separable Hilbert space such that ‖Xi‖ ≤ c/2 and denote
v = nc2/4. Then, for all t ≥

√
v,

P

{∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥ > t

}
≤ e−(t−

√
v)2/(2v) .

Proof: By the triangle inequality,
∥∥∑n

i=1 Xi

∥∥ has the bounded
differences property with constants c, so

P

{∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥ > t

}
= P

{∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥− E

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥ > t− E

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
}

≤ exp

(
−
(
t− E

∥∥∑n
i=1 Xi

∥∥)2

2v

)
.

Also,

E

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥ ≤
√√√√E

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
2

=

√√√√ n∑
i=1

E ‖Xi‖2 ≤
√

v .
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bounded differences inequality

Easy to use.

Distribution free.

Often close to optimal (e.g., L1 error of kernel density estimate).

Does not exploit “variance information.”

Often too rigid.

Other methods are necessary.



shannon entropy

If X,Y are random variables taking
values in a set of size N,

H(X) = −
∑

x

p(x) log p(x)

H(X|Y)= H(X,Y)− H(Y)

= −
∑
x,y

p(x, y) log p(x|y)

H(X) ≤ log N and H(X|Y) ≤ H(X)

Claude Shannon
(1916–2001)



han’s inequality

Te Sun Han

If X = (X1, . . . ,Xn) and
X(i) = (X1, . . . ,Xi−1,Xi+1, . . . ,Xn), then

n∑
i=1

(
H(X)− H(X(i))

)
≤ H(X)

Proof:

H(X)= H(X(i)) + H(Xi|X(i))

≤ H(X(i)) + H(Xi|X1, . . . ,Xi−1)

Since
∑n

i=1 H(Xi|X1, . . . ,Xi−1) = H(X), summing
the inequality, we get

(n− 1)H(X) ≤
n∑

i=1

H(X(i)) .



edge isoperimetric inequality on the hypercube

Let A ⊂ {−1, 1}n. Let E(A) be the collection of pairs x, x′ ∈ A
such that dH(x, x′) = 1. Then

|E(A)| ≤
|A|
2
× log2 |A| .

Proof: Let X = (X1, . . . ,Xn) be uniformly distributed over A.
Then p(x) = 1x∈A/|A|.
Clearly, H(X) = log |A|. Also,

H(X)− H(X(i)) = H(Xi|X(i)) = −
∑
x∈A

p(x) log p(xi|x(i)) .

For x ∈ A,

p(xi|x(i)) =

{
1/2 if x(i) ∈ A
1 otherwise

where x(i) = (x1, . . . , xi−1,−xi, xi+1, . . . , xn).



H(X)− H(X(i)) =
log 2

|A|
∑
x∈A

1x,x(i)∈A

and therefore

n∑
i=1

(
H(X)− H(X(i))

)
=

log 2

|A|
∑
x∈A

n∑
i=1

1x,x(i)∈A =
|E(A)|
|A|

2 log 2 .

Thus, by Han’s inequality,

|E(A)|
|A|

2 log 2 =
n∑

i=1

(
H(X)− H(X(i))

)
≤ H(X) = log |A| .



This is equivalent to the edge isoperimetric inequality on the
hypercube: if

∂E(A) =
{

(x, x′) : x ∈ A, x′ ∈ Ac, dH(x, x′) = 1
}
.

is the edge boundary of A, then

|∂E(A)| ≥ log2

2n

|A|
× |A|

Equality is achieved for sub-cubes.



VC entropy is self-bounding

Let A is a class of subsets of X and x = (x1, . . . , xn) ∈ X n.
Recall that S(x,A) is the number of different sets of form

{x1, . . . , xn} ∩ A : A ∈ A

Let fn(x) = log2 S(x,A) be the VC entropy.
Then 0 ≤ fn(x)− fn−1(x1, . . . , xi−1, xi+1 . . . , xn) ≤ 1 and

n∑
i=1

(fn(x)− fn−1(x1, . . . , xi−1, xi+1 . . . , xn)) ≤ fn(x) .

Proof: Put the uniform distribution on the class of sets
{x1, . . . , xn} ∩ A and use Han’s inequality.

Corollary: if X1, . . . ,Xn are independent, then

Var(log2 S(X,A)) ≤ E log2 S(X,A) .
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subadditivity of entropy

The entropy of a random variable Z ≥ 0 is

Ent(Z) = EΦ(Z)− Φ(EZ)

where Φ(x) = x log x. By Jensen’s inequality, Ent(Z) ≥ 0.

Han’s inequality implies the following sub-additivity property.
Let X1, . . . ,Xn be independent and let Z = f(X1, . . . ,Xn),
where f ≥ 0.
Denote

Ent(i)(Z) = E(i)Φ(Z)− Φ(E(i)Z)

Then

Ent(Z) ≤ E
n∑

i=1

Ent(i)(Z) .
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a logarithmic sobolev inequality on the hypercube

Let X = (X1, . . . ,Xn) be uniformly distributed over {−1, 1}n. If
f : {−1, 1}n → R and Z = f(X),

Ent(Z2) ≤
1

2
E

n∑
i=1

(Z− Z′i )
2

The proof uses subadditivity of the entropy and calculus for the
case n = 1.

Implies Efron-Stein.



herbst’s argument: exponential concentration

If f : {−1, 1}n → R, the log-Sobolev inequality may be used with

g(x) = eλf(x)/2 where λ ∈ R .

If F(λ) = EeλZ is the moment generating function of Z = f(X),

Ent(g(X)2)= λE
[
ZeλZ

]
− E

[
eλZ
]

log E
[
ZeλZ

]
= λF′(λ)− F(λ) log F(λ) .

Differential inequalities are obtained for F(λ).



herbst’s argument

As an example, suppose f is such that
∑n

i=1(Z− Z′i )
2
+ ≤ v. Then

by the log-Sobolev inequality,

λF′(λ)− F(λ) log F(λ) ≤
vλ2

4
F(λ)

If G(λ) = log F(λ), this becomes(
G(λ)

λ

)′
≤

v

4
.

This can be integrated: G(λ) ≤ λEZ + λv/4, so

F(λ) ≤ eλEZ−λ2v/4

This implies

P{Z > EZ + t} ≤ e−t2/v

Stronger than the bounded differences inequality!
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gaussian log-sobolev inequality

Let X = (X1, . . . ,Xn) be a vector of i.i.d. standard normal If
f : Rn → R and Z = f(X),

Ent(Z2) ≤ 2E
[
‖∇f(X)‖2

]
(Gross, 1975).

Proof sketch: By the subadditivity of entropy, it suffices to prove it
for n = 1.
Approximate Z = f(X) by

f

(
1
√

m

m∑
i=1

εi

)

where the εi are i.i.d. Rademacher random variables.
Use the log-Sobolev inequality of the hypercube and the central
limit theorem.
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gaussian concentration inequality

Herbst’t argument may now be repeated:
Suppose f is Lipschitz: for all x, y ∈ Rn,

|f(x)− f(y)| ≤ L‖x− y‖ .

Then, for all t > 0,

P {f(X)− Ef(X) ≥ t} ≤ e−t2/(2L2) .

(Tsirelson, Ibragimov, and Sudakov, 1976).



an application: supremum of a gaussian process
Let (Xt)t∈T be an almost surely continuous centered Gaussian
process. Let Z = supt∈T Xt. If

σ2 = sup
t∈T

(
E
[
X2

t

])
,

then
P {|Z− EZ| ≥ u} ≤ 2e−u2/(2σ2)

Proof: We may assume T = {1, ..., n}. Let Γ be the covariance
matrix of X = (X1, . . . ,Xn). Let A = Γ1/2. If Y is a standard
normal vector, then

f(Y) = max
i=1,...,n

(AY)i
distr.

= max
i=1,...,n

Xi

By Cauchy-Schwarz,

|(Au)i − (Av)i|=

∣∣∣∣∣∣
∑

j

Ai,j (uj − vj)

∣∣∣∣∣∣ ≤
∑

j

A2
i,j

1/2

‖u− v‖

≤ σ‖u− v‖
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beyond bernoulli and gaussian: the entropy method

For general distributions, logarithmic Sobolev inequalities are not
available.

Solution: modified logarithmic Sobolev inequalities.
Suppose X1, . . . ,Xn are independent. Let Z = f(X1, . . . ,Xn)
and Zi = fi(X(i)) = fi(X1, . . . ,Xi−1,Xi+1, . . . ,Xn).

Let φ(x) = ex − x− 1. Then for all λ ∈ R,

λE
[
ZeλZ

]
− E

[
eλZ
]

log E
[
eλZ
]

≤
n∑

i=1

E
[
eλZφ (−λ(Z− Zi))

]
.

Michel Ledoux



the entropy method

Define Zi = infx′i
f(X1, . . . , x′i , . . . ,Xn) and suppose

n∑
i=1

(Z− Zi)
2 ≤ v .

Then for all t > 0,

P {Z− EZ > t} ≤ e−t2/(2v) .

This implies the bounded differences inequality and much more.
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example: the largest eigenvalue of a symmetric matrix
Let A = (Xi,j)n×n be symmetric, the Xi,j independent (i ≤ j) with
|Xi,j| ≤ 1. Let

Z = λ1 = sup
u:‖u‖=1

uTAu .

and suppose v is such that Z = vTAv.
A′i,j is obtained by replacing Xi,j by x′i,j. Then

(Z− Zi,j)+≤
(

vTAv − vTA′i,jv
)
1Z>Zi,j

=
(

vT(A− A′i,j)v
)
1Z>Zi,j ≤ 2

(
vivj(Xi,j − X′i,j)

)
+

≤ 4|vivj| .

Therefore,

∑
1≤i≤j≤n

(Z− Z′i,j)
2
+ ≤

∑
1≤i≤j≤n

16|vivj|2 ≤ 16

(
n∑

i=1

v2
i

)2

= 16 .



example: convex lipschitz functions

Let f : [0, 1]n → R be a convex function. Let
Zi = infx′i

f(X1, . . . , x′i , . . . ,Xn) and let X′i be the value of x′i for
which the minimum is achieved. Then, writing

X
(i)

= (X1, . . . ,Xi−1,X′i ,Xi+1, . . . ,Xn),

n∑
i=1

(Z− Zi)
2=

n∑
i=1

(f(X)− f(X
(i)

)2

≤
n∑

i=1

(
∂f

∂xi
(X)

)2

(Xi − X′i )
2

(by convexity)

≤
n∑

i=1

(
∂f

∂xi
(X)

)2

= ‖∇f(X)‖2 ≤ L2 .



convex lipschitz functions

If f : [0, 1]n → R is a convex Lipschitz function and X1, . . . ,Xn

are independent taking values in [0, 1], Z = f(X1, . . . ,Xn)
satisfies

P{Z > EZ + t} ≤ e−t2/(2L2) .

A similar lower tail bound also holds.
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self-bounding functions

Suppose Z satisfies

0 ≤ Z− Zi ≤ 1 and
n∑

i=1

(Z− Zi) ≤ Z .

Recall that Var(Z) ≤ EZ. We have much more:

P{Z > EZ + t} ≤ e−t2/(2EZ+2t/3)

and
P{Z < EZ− t} ≤ e−t2/(2EZ)

Rademacher averages, random VC dimension, random VC entropy,
longest increasing subsequence in a random permutation, are all
examples of self bounding functions.

Configuration functions.
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exponential efron-stein inequality
Define

V+ =
n∑

i=1

E′
[
(Z− Z′i )

2
+

]
and

V− =
n∑

i=1

E′
[
(Z− Z′i )

2
−

]
.

By Efron-Stein,

Var(Z) ≤ EV+ and Var(Z) ≤ EV− .

The following exponential versions hold for all λ, θ > 0 with
λθ < 1:

log Eeλ(Z−EZ) ≤
λθ

1− λθ
log EeλV+/θ .

If also Z′i − Z ≤ 1 for every i, fhen for all λ ∈ (0, 1/2),

log Eeλ(Z−EZ) ≤
2λ

1− 2λ
log EeλV− .
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weakly self-bounding functions

f : X n → [0,∞) is weakly (a, b)-self-bounding if there exist
fi : X n−1 → [0,∞) such that for all x ∈ X n,

n∑
i=1

(
f(x)− fi(x(i))

)2
≤ af(x) + b .

Then

P {Z ≥ EZ + t} ≤ exp

(
−

t2

2 (aEZ + b + at/2)

)
.

If, in addition, f(x)− fi(x(i)) ≤ 1, then for 0 < t ≤ EZ,

P {Z ≤ EZ− t} ≤ exp

(
−

t2

2 (aEZ + b + c−t)

)
.

where c = (3a− 1)/6.
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the isoperimetric view

Let X = (X1, . . . ,Xn) have independent
components, taking values in X n. Let
A ⊂ X n.
The Hamming distance of X to A is

d(X,A) = min
y∈A

d(X, y) = min
y∈A

n∑
i=1

1Xi 6=yi .

Michel Talagrand

P

{
d(X,A) ≥ t +

√
n

2
log

1

P[A]

}
≤ e−2t2/n .

Concentration of measure!
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the isoperimetric view

Proof: By the bounded differences inequality,

P{Ed(X,A)− d(X,A) ≥ t} ≤ e−2t2/n.

Taking t = Ed(X,A), we get

Ed(X,A) ≤

√
n

2
log

1

P{A}
.

By the bounded differences inequality again,

P

{
d(X,A) ≥ t +

√
n

2
log
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talagrand’s convex distance

The weighted Hamming distance is

dα(x,A) = inf
y∈A

dα(x, y) = inf
y∈A

∑
i:xi 6=yi

|αi|

where α = (α1, . . . , αn). The same argument as before gives

P

{
dα(X,A) ≥ t +

√
‖α‖2

2
log

1

P{A}

}
≤ e−2t2/‖α‖2

,

This implies

sup
α:‖α‖=1

min (P{A}, P {dα(X,A) ≥ t}) ≤ e−t2/2 .



convex distance inequality

convex distance:

dT(x,A) = sup
α∈[0,∞)n:‖α‖=1

dα(x,A) .

Talagrand’s convex distance inequality:

P{A}P {dT(X,A) ≥ t} ≤ e−t2/4 .

Follows from the fact that dT(X,A)2 is (4, 0) weakly self
bounding (by a saddle point representation of dT).

Talagrand’s original proof was different.
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convex lipschitz functions
For A ⊂ [0, 1]n and x ∈ [0, 1]n, define

D(x,A) = inf
y∈A
‖x− y‖ .

If A is convex, then

D(x,A) ≤ dT(x,A) .

Proof:

D(x,A)= inf
ν∈M(A)

‖x− EνY‖ (since A is convex)

≤ inf
ν∈M(A)

√√√√ n∑
j=1

(
Eν1xj 6=Yj

)2
(since xj,Yj ∈ [0, 1])

= inf
ν∈M(A)

sup
α:‖α‖≤1

n∑
j=1

αjEν1xj 6=Yj (by Cauchy-Schwarz)

= dT(x,A) (by minimax theorem) .
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John von Neumann (1903–1957)



Sergei Lvovich Sobolev
(1908–1989)



convex lipschitz functions
Let X = (X1, . . . ,Xn) have independent components taking
values in [0, 1]. Let f : [0, 1]n → R be quasi-convex such that
|f(x)− f(y)| ≤ ‖x− y‖. Then

P{f(X) > Mf(X) + t} ≤ 2e−t2/4

and
P{f(X) < Mf(X)− t} ≤ 2e−t2/4 .

Proof: Let As = {x : f(x) ≤ s} ⊂ [0, 1]n. As is convex. Since f
is Lipschitz,

f(x) ≤ s + D(x,As) ≤ s + dT(x,As) ,

By the convex distance inequality,

P{f(X) ≥ s + t}P{f(X) ≤ s} ≤ e−t2/4 .

Take s = Mf(X) for the upper tail and s = Mf(X)− t for the
lower tail.
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empirical processes

Let T be a countable index set.
For i = 1, . . . , n, let Xi = (Xi,s)s∈T be vectors of real-valued
random variables. Assume that X1, . . . ,Xn are independent.

The empirical process is
∑n

i=1 Xi,s, s ∈ T .

We study concentration of the supremum:

Z = sup
s∈T

n∑
i=1

Xi,s .



empirical processes–the variance

We may use Efron-Stein: let

Zi = sup
s∈T

∑
j:j6=i

Xj,s

and ŝ ∈ T be such that Z =
∑n

i=1 Xi,̂s. Then

(Z− Zi)+ ≤ (Xi,̂s)+ ≤ sup
s∈T
|Xi,s|

so

Var(Z) ≤ E
n∑

i=1

(Z− Zi)
2 ≤ E

n∑
i=1

sup
s∈T

X2
i,s .



empirical processes–the variance
A more clever use of Efron-Stein: suppose EXi,s = 0.

Let Z′i = sups∈T

(∑
j 6=i Xj,s + X′i,s

)
. Note that

(
Z− Z′i

)2

+
≤
(

Xi,̂s − X′i,̂s

)2
.

By Efron-Stein,

Var(Z) ≤ E
n∑

i=1

(
Z− Z′i

)2

+

≤ E
n∑

i=1

E′
[(

Xi,̂s − X′i,̂s

)2
]

≤ E
n∑

i=1

(
X2

i,̂s + E′
[
X′2i,̂s

])

≤ E sup
s∈T

n∑
i=1

X2
i,s + sup

s∈T

n∑
i=1

EX2
i,s .



weak and strong variance

We have proved that

Var(Z) ≤ V and Var(Z) ≤ Σ2 + σ2

where

V =
n∑

i=1

E sup
s∈T

X2
i,s strong variance

Σ2 = E sup
s∈T

n∑
i=1

X2
i,s weak variance

σ2 = sup
s∈T

n∑
i=1

EX2
i,s wimpy variance

σ2 ≤ Σ2 ≤ V .
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weak and strong variance

If EXi,s = 0 and |Xi,s| ≤ 1, we also have, by symmetrization and
contraction arguments,

Σ2 ≤ 8EZ + σ2

and therefore
Var(Z) ≤ 8EZ + 2σ2 .

If the Xi are also identicaly distributed, then

Var(Z) ≤ 2EZ + σ2 .
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empirical processes–exponential inequalities

A Bernstein type inequality. “Talagrand’s inequality”.

Assume EXi,s = 0, and |Xi,s| ≤ 1. For t ≥ 0,

P {Z ≥ EZ + t} ≤ exp

(
−

t2

2 (2(Σ2 + σ2) + t)

)
.
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proof.

For each i = 1, . . . , n, let Z′i = sups∈T (X′i,s +
∑

j 6=i Xj,s).
We already proved that

n∑
i=1

E′(Z− Z′i )
2
+ ≤ sup

s∈T

n∑
i=1

X2
i,s + σ2 def .

= W + σ2 .

By the exponential Efron-Stein inequality, for λ ∈ [0, 1),

log Eeλ(Z−EZ) ≤
λ

1− λ
log Eeλ(W+σ2) .

W is a self-bounding function, so

log EeλW ≤ Σ2
(

eλ − 1
)
.

Putting things together implies the inequality.
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bousquet’s inequality

A Bennett type inequality with the right constant.
Assume X1, . . . ,Xn are i.i.d. with EXi,s = 0 and Xi,s ≤ 1.
For all t ≥ 0,

P {Z ≥ EZ + t} ≤ e−vh(t/v) .

where v = 2EZ + σ2 and h(u) = (1 + u) log(1 + u)− u.
In particular,

P {Z ≥ EZ + t} ≤ exp

(
−

t2

2(v + t/3)

)
.



φ entropies

For a convex function φ on [0,∞), the φ-entropy of Z ≥ 0 is

Hφ (Z) = E [φ (Z)]− φ (E [Z]) .

Hφ is subadditive:

Hφ (Z) ≤
n∑

i=1

E
[
E
[
φ (Z) | X(i)

]
− φ

(
E
[
Z | X(i)

])]
if (and only if) φ is twice differentiable on (0,∞), and either φ is
affine strictly positive and 1/φ′′ is concave.

φ(x) = x2 corresponds to Efron-Stein.

x log x is subadditivity of entropy.

We may consider φ(x) = xp for p ∈ (1, 2].
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generalized efron-stein

Define
Z′i = f(X1, . . . ,Xi−1,X′i ,Xi+1, . . . ,Xn) ,

V+ =
n∑

i=1

(Z− Z′i )
2
+ .

For q ≥ 2 and q/2 ≤ α ≤ q− 1,

E
[
(Z− EZ)q

+

]
≤ E

[
(Z− EZ)α+

]q/α
+ α (q− α) E

[
V+ (Z− EZ)q−2

+

]
,

and similarly for E
[
(Z− EZ)q

−
]
.
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moment inequalities

We may solve the recursions, for q ≥ 2.

If V+ ≤ c for some constant c ≥ 0, then for all integers q ≥ 2,(
E
[
(Z− EZ)q

+

])1/q ≤
√

Kqc ,

where K = 1/
(
e−
√

e
)
< 0.935.

More generally,

(
E
[
(Z− EZ)q

+

])1/q ≤ 1.6
√

q
(
E
[
V+q/2

])1/q
.
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sums: khinchine’s inequality

Let X1, . . . ,Xn be independent Rademacher variables and
Z =

∑n
i=1 aiXi. For any integer q ≥ 2,

(
E
[
Zq

+

])1/q ≤
√

2Kq

√√√√ n∑
i=1

a2
i

Proof:

V+ =
n∑

i=1

E
[
(ai(Xi − X′i ))2

+ | Xi

]
= 2

n∑
i=1

a2
i 1aiXi>0 ≤ 2

n∑
i=1

a2
i ,
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Aleksandr Khinchin
(1894–1959)



sums: rosenthal’s inequality

Let X1, . . . ,Xn be independent real-valued random variables with
EXi = 0. Define

Z =
n∑

i=1

Xi , σ2 =
n∑

i=1

EX2
i , Y = max

i=1,...,n
|Xi| .

Then for any integer q ≥ 2,(
E
[
Zq

+

])1/q ≤ σ
√

10q + 3q
(
E
[
Yq

+

])1/q
.



influences

If A ⊂ {−1, 1}n and X = (X1, . . . ,Xn) is uniform, the influence
of the i-th variable is

Ii(A) = P
{
1X∈A 6= 1X(i)∈A

}
where X(i) = (X1, . . . ,Xi−1, 1− Xi,Xi+1, . . . ,Xn).

The total influence is

I(A) =
n∑

i=1

Ii(A) .

Note that
I(A) = 2−(n−1)|∂E(A)| .
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influences: examples

dictatorship: A = {x : x1 = 1}. I(A) = 1.

parity: A = {x :
∑

i 1xi=1 is even}. I(A) = n.

majority: A = {x :
∑

i xi > 0}. I(A) ≈
√

2n/π.

by Efron-Stein, P(A)(1− P(A)) ≤
I(A)

4

so dictatorship has smallest total influence (if P(A) = 1/2).



improved efron-stein on the hypercube

Recall that for any f : {−1, 1}n → R under the uniform
distribution,

Ent(f2) ≤ 2E(f)

where Ent(f2) = E
[
f2 log(f2)

]
− E

[
f2
]

log E
[
f2
]

and

E(f) =
1

4
E

[
n∑

i=1

(
f(X)− f(X

(i)
)
)2
]

This implies, for any non-negative f : {−1, 1}n → [0,∞),

E
[
f2
]

log
E
[
f2
]

E [f]2
≤ 2E(f) .



improved efron-stein on the hypercube
Recall the Doob-martingale representation f(X)− Ef =

∑n
i=1 ∆i.

One easily sees that

E(f) =
n∑

i=1

E(∆i) .

But then, by the previous lemma,

E(f) ≥
n∑

j=1

E(|∆j|) ≥
1

2

n∑
j=1

E
[
∆2

j

]
log

E
[
∆2

j

]
(E|∆j|)2

= −
1

2
Var(f)

n∑
j=1

E
[
∆2

j

]
Var(f)

log
(E|∆j|)2

E
[
∆2

j

]
≥ −

1

2
Var(f) log

∑n
j=1 (E|∆j|)2

Var(f)



improved efron-stein on the hypercube

We obtained that for any f : {−1, 1}n → R,

Var(f) log
Var(f)∑n

j=1 (E|∆j|)2
≤ 2E(f) .

(Falik and Samorodnitsky, 2007; Rossignol, 2006).

“Slightly” better than Efron-Stein.

Use this for f(x) = 1x∈A for A ⊂ {−1, 1}n:

P(A)(1− P(A)) log
4P(A)(1− P(A))∑

i Ii(A)2
≤

I(A)

4
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kahn, kalai, linial

Corollary: (Kahn, Kalai, Linial, 1988).

max
i

Ii(A) ≥
P(A)(1− P(A)) log n

n

If the influences are equal,

I(A) ≥ P(A)(1− P(A)) log n

Another corollary: (Friedgut, 1998).
If I(A) ≤ c, A (basically) depends on a bounded number of
variables. A is a “junta.”



threshold phenomena

Let A ⊂ {−1, 1}n be a monotone set and let X = (X1, . . . ,Xn)
be such that

P{Xi = 1} = p P{Xi = −1} = 1− p

Pp(A) =
∑
x∈A

p‖x‖(1− p)n−‖x‖

is an increasing function of p ∈ [0, 1].

Let pa be such that Ppa(A) = a.

Critical value = p1/2

Threshold width: p1−ε − pε



two (extreme) examples

dictatorship

0 0.08 0.16 0.24 0.32 0.4 0.48 0.56 0.64 0.72 0.8 0.88 0.96

0.25

0.5

0.75

1

threshold width = 1− 2ε

majority (with n = 101)

0 0.08 0.16 0.24 0.32 0.4 0.48 0.56 0.64 0.72 0.8 0.88 0.96

0.25

0.5

0.75

1

≤
√

log(1/ε)/(2n)

In what cases do we have a quick transition?



russo’s lemma

If A is monotone,
dPp(A)

dp
= I(p)(A)

The Kahn, Kalai, Linial result, generalized for p 6= 1/2, implies
that
if A is such that I

(p)
1 = I

(p)
2 = · · · = I

(p)
n , then

p1−ε − pε = O

(
log 1

ε

log n

)

On the other hand, if p3/4 − p1/4 ≥ c then A is (basically) a
junta.
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