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Introduction



The Bayesian paradigm

• A parameter Θ is generated according to a prior distribution Π.
• Given Θ = θ the data X is generated according to a measure Pθ.

This gives a joint distribution of (X,Θ).

• Given observed data x the statistician computes the conditional
distribution of Θ given X = x, the posterior distribution:

Π(θ ∈ B|X).



The Bayesian paradigm

• A parameter Θ is generated according to a prior distribution Π.
• Given Θ = θ the data X is generated according to a measure Pθ.

This gives a joint distribution of (X,Θ).

• Given observed data x the statistician computes the conditional
distribution of Θ given X = x, the posterior distribution:

Π(θ ∈ B|X).

We assume whatever needed (e.g. Θ Polish and Π a probability
distribution on its Borel σ-field; Polish sample space) to make this well

defined.



Bayes’s rule

• A parameter Θ is generated according to a prior distribution Π.
• Given Θ = θ the data X is generated according to a measure Pθ.

This gives a joint distribution of (X,Θ).

• Given observed data x the statistician computes the conditional
distribution of Θ given X = x, the posterior distribution:

Π(θ ∈ B|X).

If Pθ is given by a density x 7→ pθ(x), then Bayes’s rule gives

Π(Θ ∈ B|X) =

∫

B pθ(X) dΠ(θ)
∫

Θ pθ(X) dΠ(θ)



Bayes’s rule

• A parameter Θ is generated according to a prior distribution Π.
• Given Θ = θ the data X is generated according to a measure Pθ.

This gives a joint distribution of (X,Θ).

• Given observed data x the statistician computes the conditional
distribution of Θ given X = x, the posterior distribution:

Π(θ ∈ B|X).

If Pθ is given by a density x 7→ pθ(x), then Bayes’s rule gives

dΠ(θ|X) ∝ pθ(X) dΠ(θ)

We assume whatever needed (e.g. jointly measurable likelihood) to make



Reverend Thomas

Thomas Bayes (1702–1761, 1763) followed this argument with Θ
possessing the uniform distribution and X given Θ = θ binomial (n, θ).

Using his famous rule he computed that the posterior distribution is then
Beta(X + 1, n−X + 1).

Pr(a ≤ Θ ≤ b) = b− a, 0 < a < b < 1,

Pr(X = x|Θ = θ) =

(

n

x

)

θx(1− θ)n−x, x = 0, 1, . . . , n,

Pr(a ≤ Θ ≤ b|X = x) =

∫ b

a
θx(1− θ)n−x dθ/B(x+ 1, n− x+ 1).



Reverend Thomas

Thomas Bayes (1702–1761, 1763) followed this argument with Θ
possessing the uniform distribution and X given Θ = θ binomial (n, θ).

Using his famous rule he computed that the posterior distribution is then
Beta(X + 1, n−X + 1).

Pr(a ≤ Θ ≤ b) = b− a, 0 < a < b < 1,

Pr(X = x|Θ = θ) =

(

n

x

)

θx(1− θ)n−x, x = 0, 1, . . . , n,

dΠ(θ|X) = θX(1− θ)n−X · 1.



Reverend Thomas

Thomas Bayes (1702–1761, 1763) followed this argument with Θ
possessing the uniform distribution and X given Θ = θ binomial (n, θ).

Using his famous rule he computed that the posterior distribution is then
Beta(X + 1, n−X + 1).
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Reverend Thomas

Thomas Bayes (1702–1761, 1763) followed this argument with Θ
possessing the uniform distribution and X given Θ = θ binomial (n, θ).

Using his famous rule he computed that the posterior distribution is then
Beta(X + 1, n−X + 1).



Parametric Bayes

Pierre-Simon Laplace (1749-1827) rediscovered Bayes’ argument and
applied it to general parametric models: models smoothly indexed by a
Euclidean parameter θ.

For instance, the linear regression model, where one observes
(x1, Yn), . . . , (xn, Yn) following

Yi = θ0 + θ1xi + ei,

for e1, . . . , en independent normal errors with zero mean.



Nonparametric Bayes

If the parameter θ is a function, then the prior is a probability distribution
on an function space. So is the posterior, given the data. Bayes’ formula
does not change:

dΠ(θ|X) ∝ pθ(X) dΠ(θ).

Prior and posterior can be visualized by plotting functions that are
simulated from these distributions.
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Nonparametric Bayes

If the parameter θ is a function, then the prior is a probability distribution
on an function space. So is the posterior, given the data. Bayes’ formula
does not change:

dΠ(θ|X) ∝ pθ(X) dΠ(θ).

Prior and posterior can be visualized by plotting functions that are
simulated from these distributions.
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Subjectivism

A philosophical Bayesian statistician views the prior distribution as an
expression of his personal beliefs on the state of the world, before
gathering the data.

After seeing the data he updates his beliefs into the posterior distribution.

Most scientists do not like dependence on subjective priors.

• One can opt for objective or noninformative priors.
• One can also mathematically study the role of the prior, and hope to

find that it is small.



Frequentist Bayesian

Assume that the data X is generated according to a given parameter θ0
and consider the posterior Π(θ ∈ ·|X) as a random measure on the
parameter set dependent on X.

We like Π(θ ∈ ·|X) to put “most” of its mass near θ0 for “most” X.
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Asymptotic setting: data Xn where the information increases as n→ ∞.
We like the posterior Πn(·|Xn) to contract to {θ0}, at a good rate.
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Desirable properties:

• Consistency + rate
• Adaptation
• Distributional approximations
• Uncertainty quantification



Frequentist Bayesian

Assume that the data X is generated according to a given parameter θ0
and consider the posterior Π(θ ∈ ·|X) as a random measure on the
parameter set dependent on X.

We like Π(θ ∈ ·|X) to put “most” of its mass near θ0 for “most” X.

Asymptotic setting: data Xn where the information increases as n→ ∞.
We like the posterior Πn(·|Xn) to contract to {θ0}, at a good rate.

Desirable properties:

• Consistency + rate
• Adaptation
• Distributional approximations
• Uncertainty quantification

We assume that Pθ0 ≪
∫

Pθ dΠ(θ) to make these questions well posed.



Parametric models

Suppose the data are a random sample X1, . . . , Xn from a density
x 7→ pθ(x) that is smoothly and identifiably parametrized by a vector
θ ∈ R

d (e.g. θ 7→ √
pθ continuously differentiable as map in L2(µ)).

Theorem (Laplace, Bernstein, von Mises, LeCam 1989). Under
Pnθ0-probability, for any prior with density that is positive around θ0,

∥

∥

∥
Π(·|X1, . . . , Xn)−Nd

(

θ̃n,
1

n
I−1
θ0

)

(·)
∥

∥

∥
→ 0.

Here θ̃n is any efficient estimator of θ.
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Parametric models

Suppose the data are a random sample X1, . . . , Xn from a density
x 7→ pθ(x) that is smoothly and identifiably parametrized by a vector
θ ∈ R

d (e.g. θ 7→ √
pθ continuously differentiable as map in L2(µ)).

Theorem (Laplace, Bernstein, von Mises, LeCam 1989). Under
Pnθ0-probability, for any prior with density that is positive around θ0,

∥

∥

∥
Π(·|X1, . . . , Xn)−Nd

(

θ̃n,
1

n
I−1
θ0

)

(·)
∥

∥

∥
→ 0.

Here θ̃n is any efficient estimator of θ.

In particular, the posterior distribution concentrates most of its mass on
balls of radius O(1/

√
n) around θ0, and a central set of posterior

probability 95 % is equivalent to the usual Wald confidence set.

The prior washes out completely.



Support

Definition. The support of a prior Π is the smallest closed set F with
Π(F ) = 1.

In nonparametrics we like priors with big (or even full) support, equal to a
infinite-dimensional set.

Full support means that every open set has positive (prior) probability.



Support

Definition. The support of a prior Π is the smallest closed set F with
Π(F ) = 1.

In nonparametrics we like priors with big (or even full) support, equal to a
infinite-dimensional set.

Full support means that every open set has positive (prior) probability.

Support depends on topology. It is well defined, e.g. if the parameter
space is Polish.



Dirichlet process



Random measures

• M: all probability measures on (Polish) sample space (X,X ).
• M : σ-field generated by all maps M 7→M(A), A ∈ X .

Lemma. M is also the Borel σ-field on M equipped with the weak
topology (“of convergence in distribution”).
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P : (Ω,U ,Pr) → M such that P (A) is a random variable for every A ∈ X .
(Equivalently, a Borel measurable map in M.)
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Random measures

• M: all probability measures on (Polish) sample space (X,X ).
• M : σ-field generated by all maps M 7→M(A), A ∈ X .

Lemma. M is also the Borel σ-field on M equipped with the weak
topology (“of convergence in distribution”).

Definition. A random probability measure on (X,X ) is a map
P : (Ω,U ,Pr) → M such that P (A) is a random variable for every A ∈ X .
(Equivalently, a Borel measurable map in M.)

The law of P is a prior on (M,M ).

Definition. The mean measure of P is the measure A 7→ EP (A).



Discrete random measures

• W1,W2, . . . nonnegative variables with
∑∞

i=1Wi = 1, independent of
• θ1, θ2, . . .

iid∼G, random variables with values in X.

P =
∞
∑

i=1

Wiδθi .
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Lemma. If (W1, . . . ,Wn) has (full) support the unit simplex for every n and
the law of θ1 has (full) support X, then P has full support M relative to the
weak topology.



Discrete random measures

• W1,W2, . . . nonnegative variables with
∑∞

i=1Wi = 1, independent of
• θ1, θ2, . . .

iid∼G, random variables with values in X.

P =
∞
∑

i=1
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Lemma. If (W1, . . . ,Wn) has (full) support the unit simplex for every n and
the law of θ1 has (full) support X, then P has full support M relative to the
weak topology.

Proof.

• Finitely discrete distributions are weakly dense in M.
• It suffices to show that P gives positive probability to any weak

neighbourhood of a distribution of the form P ∗ =
∑k

i=1w
∗
i δθ∗i .

•
{
∑

i>kWi < ǫ,maxi≤k |Wi −w∗
i | ∨ |θi − θ∗i | < ǫ

}

is open and hence has
positive probability.
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Stick breaking

Given i.i.d. Y1, Y2, . . . in [0, 1],

W1 = Y1,W2 = (1− Y1)Y2,W3 = (1− Y1)(1− Y2)Y3, . . .
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P(Y1 > 0) > 0, and has full support if Y1 has support [0, 1].
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l=1(1− Yl), and tends to zero a.s. iff
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l=1(1− EYl) → 0.

• (W1, . . . ,Wn) is a continuous function of (Y1, . . . , Yn) with full range, for
every k.



Stick breaking

Given i.i.d. Y1, Y2, . . . in [0, 1],

W1 = Y1,W2 = (1− Y1)Y2,W3 = (1− Y1)(1− Y2)Y3, . . .

Lemma. (W1,W2, . . .) is a random probability measure on N iff
P(Y1 > 0) > 0, and has full support if Y1 has support [0, 1].

Proof.

• The remaining length of the stick at stage j is
1−∑j

l=1Wl =
∏j
l=1(1− Yl), and tends to zero a.s. iff

∏j
l=1(1− EYl) → 0.

• (W1, . . . ,Wn) is a continuous function of (Y1, . . . , Yn) with full range, for
every k.

EXAMPLE OF PARTICULAR INTEREST: Y1, Y2, iid∼Be(1,M).



Random measures as stochastic processes

A random measure P induces the distributions on R
k of the random

vectors
(

P (A1), . . . , P (Ak)
)

, A1, . . . , Ak ∈ X .
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P (A):A ∈ X
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with these
distributions (e.g. by Kolmogorov’s consistency theorem).
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(ii). P (A1 ∪A1) = P (A1) + P (A2), a.s., for any disjoint A1, A2.



Random measures as stochastic processes

A random measure P induces the distributions on R
k of the random

vectors
(

P (A1), . . . , P (Ak)
)

, A1, . . . , Ak ∈ X .

Conversely suppose we want a measure with particular distributions, and
can construct a stochastic process

(

P (A):A ∈ X
)

with these
distributions (e.g. by Kolmogorov’s consistency theorem).

It will be true that

(i). P (∅) = 0, P (X ) = 1, a.s.
(ii). P (A1 ∪A1) = P (A1) + P (A2), a.s., for any disjoint A1, A2.

However, we do not automatically have that P is a random measure.

Theorem. If
(

P (A):A ∈ X
)

is a stochastic process that satisfies (i) and
(ii) and whose mean A 7→ EP (A) is a Borel measure on X, then there
exists a version of P that is a random measure on (X,X ).



Finite-dimensonal Dirichlet distribution

Definition. (X1, . . . , Xk) possesses a Dirichlet (k, α1, . . . , αk) distribution
for αi > 0 it has (Lebesgue) density on the unit simplex proportional to

x 7→ xα1−1
1 · · ·xαk−1

k .
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Finite-dimensonal Dirichlet distribution

Definition. (X1, . . . , Xk) possesses a Dirichlet (k, α1, . . . , αk) distribution
for αi > 0 it has (Lebesgue) density on the unit simplex proportional to

x 7→ xα1−1
1 · · ·xαk−1

k .

We extend to αi = 0 for one or more i on the understanding that Xi = 0.

EXAMPLES

• For k = 2 we have X1 ∼ Be(α1, α2) and X2 = 1−X1 ∼ Be(α2, α1).
• The Dir(k; 1, . . . , 1)-distribution is the uniform distribution on the

simplex.



Dirichlet distribution — properties

Proposition (Gamma representation). If Yi ind∼ Ga(αi, 1), then
(Y1/Y, . . . , Yk/Y ) ∼ Dir(k;α1, . . . , αk), and is independent of and
Y : =

∑k
i=1 Yi.

Proposition (Aggregation). If X ∼ Dir(k;α1, . . . , αk) and Zj =
∑

i∈Ij
Xi

for a given partition I1, . . . , Im of {1, . . . , k}, then

(i). (Z1, . . . , Zm) ∼ Dir(m;β1, . . . , βm), where βj =
∑

i∈Ij
αi.

(ii). (Xi/Zj : i ∈ Ij)
ind∼ Dir(#Ij ;αi, i ∈ Ij), for j = 1, . . . ,m.

(iii). (Z1, . . . , Zm) and (Xi/Zj : i ∈ Ij , j = 1, . . . ,m) are independent.

Conversely, if X is a random vector such that (i)–(iii) hold, for a given
partition I1, . . . , Im and Zj =

∑

i∈Ij
Xi, then X ∼ Dir(k;α1, . . . , αk).

Proposition. E(Xi) = αi/|α| and var(Xi) = αi(|α| − αi)/(|α|2(|α|+ 1)),
for |α| = ∑k

i=1 αi.

Proposition (Conjugacy). If p ∼ Dir(k;α) and N | p ∼ MN(n, k; p), then
p|N ∼ Dir(k;α+N).



Dirichlet process

Definition. A random measure P on (X,X ) is a Dirichlet process with
base measure α, if for every partition A1, . . . , Ak of X,

(

P (A1), . . . , P (Ak)
)

∼ Dir
(

k;α(A1), . . . , α(Ak)
)

.

We write P ∼ DP(α), |α|: = α(X) and ᾱ: = α/|α|.
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Dirichlet process

Definition. A random measure P on (X,X ) is a Dirichlet process with
base measure α, if for every partition A1, . . . , Ak of X,

(

P (A1), . . . , P (Ak)
)

∼ Dir
(

k;α(A1), . . . , α(Ak)
)

.

We write P ∼ DP(α), |α|: = α(X) and ᾱ: = α/|α|.

EP (A) = ᾱ(A), varP (A) =
ᾱ(A)ᾱ(Ac)

1 + |α| .
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Dirichlet process — existence

Theorem. For any Borel measure α the Dirichlet process exists as a
Borel measure on M.



Dirichlet process — existence

Theorem. For any Borel measure α the Dirichlet process exists as a
Borel measure on M.

Proof.

• An arbitrary collection of sets A1, . . . , Ak can be partitioned in 2k

atoms Bj = A∗
1 ∩A∗

2 ∩ · · · ∩A∗
k, where A∗ stands for A or Ac.

• The distribution of
(

P (Bj): j = 1, . . . , 2k
)

must be Dirichlet.
• Define the distribution of

(

P (A1), . . . , P (Ak)
)

corresponding to the fact
that each P (Ai) must be a sum of some set of P (Bj).

• Using properties of finite-dimensional Dirichlets, check that this is
consistent in the sense of Kolmogorov, so that a version of the
stochastic process

(

P (A):A ∈ X
)

exists.
• Apply the general theorem on existence of random measures.



Sethuraman representation

Theorem. If θ1, θ2, . . . iid∼ ᾱ and Y1, Y2, . . . iid∼Be(1,M) are independent
random variables and Wj = Yj

∏j−1
l=1 (1−Yl), then

∑∞
j=1Wjδθj ∼ DP(Mᾱ).



Sethuraman representation

Theorem. If θ1, θ2, . . . iid∼ ᾱ and Y1, Y2, . . . iid∼Be(1,M) are independent
random variables and Wj = Yj

∏j−1
l=1 (1−Yl), then

∑∞
j=1Wjδθj ∼ DP(Mᾱ).

Proof.

P : =W1δθ1+
∞
∑

j=2

Wjδθj = Y1δθ1+(1−Y1)P ′, P ′ =
∞
∑

j=2

(Yj

j−1
∏

l=2

(1−Yl))δθj .

Hence Q =
(

P (A1), . . . , P (Ak)
)

and N =
(

δθ1(A1), . . . , δθ1(Ak)
)

satisfy

Q =d Y N + (1− Y )Q.

Now

• For given Y ∼ Be(1,M) and independent θ ∼ G there is at most one
solution in distribution Q.

• A Dirichlet vector Q is a solution.

Second follows by properties of Dirichlet (not obvious!).
First: see next slide.



Sethuraman representation

Proof. (Continued)
Q =d Y N + (1− Y )Q.

Given i.i.d. copies (Yn, Nn) and given independent solutions Q and Q′:

Q0 = Q, Q′
0 = Q′,

Qn = YnNn + (1− Yn)Qn−1, Q′
n = YnNn + (1− Yn)Q

′
n−1.

Then Qn =d Q and Q′
n =d Q

′ for every n, and

‖Qn −Q′
n‖ = |1− Yn| ‖Qn−1 −Q′

n−1‖ =

n
∏

i=1

|1− Yi| ‖Q−Q′‖ → 0

Hence Q =d Q
′.



Tail-free processes

Let X = A0 ∪A1 = (A00 ∪A01) ∪ (A10 ∪A11) = · · · be nested partitions,
rich enough that they generates the Borel σ-field.

X

A0 A1

A00 A01 A10 A11

V0 V1

V00 V01 V10 V11



Tail-free processes

Let X = A0 ∪A1 = (A00 ∪A01) ∪ (A10 ∪A11) = · · · be nested partitions,
rich enough that they generates the Borel σ-field.

X

A0 A1

A00 A01 A10 A11

V0 V1

V00 V01 V10 V11

Splitting variables:

Vε0 = P (Aε0|Aε), and Vε1 = P (Aε1|Aε).

P (Aε1···εm) = Vε1Vε1ε2 · · ·Vε1···εm , ε = ε1 · · · εm ∈ {0, 1}m.



Tail-free processes (2)

P (Aε1···εm) = Vε1Vε1ε2 · · ·Vε1···εm , ε = ε1 · · · εm ∈ {0, 1}m. (1)

Theorem. Suppose

• Aε = ∪{Aεδ:Aεδcompact, Aεδ ⊂ Aε}
• (Vε: ε ∈ E∗) stochastic process with 0 ≤ Vε ≤ 1 and Vε0 + Vε1 = 1.
• There is a Borel measure with µ(Aε): = EVε1Vε1ε2 · · ·Vε1···εm .

Then there exists a random Borel measure P satisfying (1)



Tail-free processes (2)

P (Aε1···εm) = Vε1Vε1ε2 · · ·Vε1···εm , ε = ε1 · · · εm ∈ {0, 1}m. (1)

Theorem. Suppose

• Aε = ∪{Aεδ:Aεδcompact, Aεδ ⊂ Aε}
• (Vε: ε ∈ E∗) stochastic process with 0 ≤ Vε ≤ 1 and Vε0 + Vε1 = 1.
• There is a Borel measure with µ(Aε): = EVε1Vε1ε2 · · ·Vε1···εm .

Then there exists a random Borel measure P satisfying (1)

SPECIAL CASE: Polya tree prior : all Vε independent Beta variables.



Tail-free processes (3)

Vε0 = P (Aε0|Aε), and Vε1 = P (Aε1|Aε).

P (Aε1···εm) = Vε1Vε1ε2 · · ·Vε1···εm , ε = ε1 · · · εm ∈ {0, 1}m.



Tail-free processes (3)

Vε0 = P (Aε0|Aε), and Vε1 = P (Aε1|Aε).

P (Aε1···εm) = Vε1Vε1ε2 · · ·Vε1···εm , ε = ε1 · · · εm ∈ {0, 1}m.
Notation:
U ⊥ V means “U and V are independent”
U ⊥ V |Z means “U and V are conditionally independent given Z”.



Tail-free processes (3)

Vε0 = P (Aε0|Aε), and Vε1 = P (Aε1|Aε).

P (Aε1···εm) = Vε1Vε1ε2 · · ·Vε1···εm , ε = ε1 · · · εm ∈ {0, 1}m.
Notation:
U ⊥ V means “U and V are independent”
U ⊥ V |Z means “U and V are conditionally independent given Z”.

Definition (Tail-free). The random measure P is a tail-free process with
respect to the sequence of partitions if
{V0} ⊥ {V00, V10} ⊥ · · · ⊥ {Vε0: ε ∈ Em} ⊥ · · · .



Tail-free processes (3)

Vε0 = P (Aε0|Aε), and Vε1 = P (Aε1|Aε).

P (Aε1···εm) = Vε1Vε1ε2 · · ·Vε1···εm , ε = ε1 · · · εm ∈ {0, 1}m.
Notation:
U ⊥ V means “U and V are independent”
U ⊥ V |Z means “U and V are conditionally independent given Z”.

Definition (Tail-free). The random measure P is a tail-free process with
respect to the sequence of partitions if
{V0} ⊥ {V00, V10} ⊥ · · · ⊥ {Vε0: ε ∈ Em} ⊥ · · · .

Theorem. The DP(α) prior is tail free. All splitting variables Vε0 are
independent and Vε0 ∼ Be

(

α(Aε0), α(Aε1)
)

.

Proof. This follows from properties of the finite-dimensional Dirichlet.



Posterior distribution

For X1, . . . , Xn|P iid∼P define count variables:

Nε: = #{1 ≤ i ≤ n:Xi ∈ Aε}.
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For X1, . . . , Xn|P iid∼P define count variables:

Nε: = #{1 ≤ i ≤ n:Xi ∈ Aε}.

Theorem. If P is tail-free, then for every m and n the posterior distribution
of

(

P (Aε): ε ∈ Em
)

given X1, . . . , Xn depends only on (Nε: ε ∈ Em).



Posterior distribution

For X1, . . . , Xn|P iid∼P define count variables:

Nε: = #{1 ≤ i ≤ n:Xi ∈ Aε}.

Theorem. If P is tail-free, then for every m and n the posterior distribution
of

(

P (Aε): ε ∈ Em
)

given X1, . . . , Xn depends only on (Nε: ε ∈ Em).

Proof. We may generate the variables P,X1, . . . , Xn in four steps:

(a) Generate θ: =
(

P (Aε): ε ∈ Em
)

from its prior.
(b) Given θ generate N = (Nε: ε ∈ Em) multinomial (n, θ).
(c) Generate η: =

(

P (A|Aε):A ∈ X , ε ∈ Em
)

.
(d) Given (N, η) generate for every ε ∈ Em a random sample of size

Nε from P (·|Aε), independently across ε ∈ Em; let X1, . . . , Xn be
the n values in a random order.

Then η ⊥ θ and N ⊥ η| θ and X ⊥ θ| (N, η).
Thus θ ⊥ X|N .



Posterior distribution (continued)

Theorem. If P is tail-free, then the posterior P |X1, . . . , Xn is tail-free.



Posterior distribution (continued)

Theorem. If P is tail-free, then the posterior P |X1, . . . , Xn is tail-free.

Proof. Suffices to show, for every level:

(Vε0: ε ∈ Em) ⊥
(

P (Aε): ε ∈ Em
)

|X1, . . . , Xn.

In view of preceding theorem, suffices:

(Vε0: ε ∈ Em) ⊥
(

P (Aε): ε ∈ Em
)

| (Nεδ: ε ∈ Em, δ ∈ E).

The likelihood for (V, θ,N), where θε = P (Aε), takes the form
(

n

N

)

∏

ε∈Em,δ∈E

(θεVεδ)
Nεδ dΠ1(V ) dΠ2(θ).

This factorizes in parts involving (V,N) and involving (θ,N).
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P ∼ DP(α), X1, X2, . . . |P iid∼P.
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P ∼ DP(α), X1, X2, . . . |P iid∼P.

Theorem. P |X1, . . . , Xn ∼ DP(α+ nPn), for Pn = n−1
∑n

i=1 δXi
.



Conjugacy of Dirichlet process

P ∼ DP(α), X1, X2, . . . |P iid∼P.

Theorem. P |X1, . . . , Xn ∼ DP(α+ nPn), for Pn = n−1
∑n

i=1 δXi
.

Proof.
(

P (A1), . . . , P (Ak)
)

|X1, . . . , Xn ∼
(

P (A1), . . . , P (Ak)
)

|N.
Apply result for finite-dimensional Dirichlet.



Conjugacy of Dirichlet process

P ∼ DP(α), X1, X2, . . . |P iid∼P.

Theorem. P |X1, . . . , Xn ∼ DP(α+ nPn), for Pn = n−1
∑n

i=1 δXi
.

Proof.
(

P (A1), . . . , P (Ak)
)

|X1, . . . , Xn ∼
(

P (A1), . . . , P (Ak)
)

|N.
Apply result for finite-dimensional Dirichlet.

E
(

P (A)|X1, . . . , Xn

)

=
|α|

|α|+ n
ᾱ(A) +

n

|α|+ n
Pn(A),

var
(

P (A)|X1, . . . , Xn

)

=
P̃n(A)P̃n(A

c)

1 + |α|+ n
≤ 1

4(1 + |α|+ n)
.

Corollary. P (A)|X1, . . . , Xn →d δP0(A) as n→ ∞, a.s. [P∞
0 ].



Conjugacy of Dirichlet process

P ∼ DP(α), X1, X2, . . . |P iid∼P.

Theorem. P |X1, . . . , Xn ∼ DP(α+ nPn), for Pn = n−1
∑n

i=1 δXi
.

Proof.
(

P (A1), . . . , P (Ak)
)

|X1, . . . , Xn ∼
(

P (A1), . . . , P (Ak)
)

|N.
Apply result for finite-dimensional Dirichlet.

Corollary. P (A)|X1, . . . , Xn →d δP0(A) as n→ ∞, a.s. [P∞
0 ].

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0



Predictive distribution

P ∼ DP(α), X1, X2, . . . |P iid∼P.

Theorem.

Xi|X1, . . . , Xi−1 ∼























δX1 , with probability 1
|α|+i−1 ,

...
...

δXi−1 , with probability 1
|α|+i−1 ,

ᾱ, with probability |α|
|α|+i−1 .



Predictive distribution

P ∼ DP(α), X1, X2, . . . |P iid∼P.

Theorem.

Xi|X1, . . . , Xi−1 ∼























δX1 , with probability 1
|α|+i−1 ,

...
...

δXi−1 , with probability 1
|α|+i−1 ,

ᾱ, with probability |α|
|α|+i−1 .

Proof.

(i). Pr(X1 ∈ A) = EPr(X1 ∈ A|P ) = EP (A) = ᾱ(A).
(ii). Preceding step means: X1|P ∼ P and P −DP(α) imply X1 ∼ ᾱ.

Hence X2| (P,X1) ∼ P and P |X1 ∼ DP(α+ δX1) imply
X2|X1 ∼ (α+ δX1)/(|α|+ 1).

(iii). etc.



Dirichlet process mixtures

Given a probability density x 7→ ψ(x; θ) consider data

X1, . . . , Xn|F iid∼ pF (x): =

∫

ψ(x; θ) dF (θ).
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Given a probability density x 7→ ψ(x; θ) consider data

X1, . . . , Xn|F iid∼ pF (x): =

∫

ψ(x; θ) dF (θ).

For F ∼ DP(α), this gives Bayesian model:

X1, . . . , Xn| θ1, . . . , θn, F ind∼ ψ(·; θi), θ1, . . . , θn|F iid∼F, F ∼ DP(α).



Dirichlet process mixtures

Given a probability density x 7→ ψ(x; θ) consider data

X1, . . . , Xn|F iid∼ pF (x): =

∫

ψ(x; θ) dF (θ).

For F ∼ DP(α), this gives Bayesian model:

X1, . . . , Xn| θ1, . . . , θn, F ind∼ ψ(·; θi), θ1, . . . , θn|F iid∼F, F ∼ DP(α).

Lemma. For any θ 7→ ψ(θ) (e.g. ψ(x, ·)),

E
(

∫

ψ dF | θ1, . . . , θn, X1, . . . , Xn

)

=
1

|α|+ n

[

∫

ψ dα+

n
∑

j=1

ψ(θj)
]

.



Dirichlet process mixtures

Given a probability density x 7→ ψ(x; θ) consider data

X1, . . . , Xn|F iid∼ pF (x): =

∫

ψ(x; θ) dF (θ).

For F ∼ DP(α), this gives Bayesian model:

X1, . . . , Xn| θ1, . . . , θn, F ind∼ ψ(·; θi), θ1, . . . , θn|F iid∼F, F ∼ DP(α).

Lemma. For any θ 7→ ψ(θ) (e.g. ψ(x, ·)),

E
(

∫

ψ dF | θ1, . . . , θn, X1, . . . , Xn

)

=
1

|α|+ n

[

∫

ψ dα+

n
∑

j=1

ψ(θj)
]

.

Proof. F ⊥ X1, . . . , Xn| θ1, . . . , θn; F | θ1, . . . , θn ∼ DP(α+
∑n

i=1 δθi).



Dirichlet process mixtures

Given a probability density x 7→ ψ(x; θ) consider data

X1, . . . , Xn|F iid∼ pF (x): =

∫

ψ(x; θ) dF (θ).

For F ∼ DP(α), this gives Bayesian model:

X1, . . . , Xn| θ1, . . . , θn, F ind∼ ψ(·; θi), θ1, . . . , θn|F iid∼F, F ∼ DP(α).

Lemma. For any θ 7→ ψ(θ) (e.g. ψ(x, ·)),

E
(

∫

ψ dF | θ1, . . . , θn, X1, . . . , Xn

)

=
1

|α|+ n

[

∫

ψ dα+

n
∑

j=1

ψ(θj)
]

.

Proof. F ⊥ X1, . . . , Xn| θ1, . . . , θn; F | θ1, . . . , θn ∼ DP(α+
∑n

i=1 δθi).

Compute conditional expectation given X1, . . . , Xn by generating samples
θ1, . . . , θn from θ1, . . . , θn|X1, . . . , Xn, and averaging.



Gibbs sampler

Xi| θi, F ind∼ ψ(·; θi), θi|F iid∼F, F ∼ DP(α).

Theorem (Gibbs sampler).

θi| θ−iX1, . . . , Xn ∼
∑

j 6=i

qi,jδθj + qi,0Gb,i,

where (qi,j : j ∈ {0, 1, . . . , n} − {i}) is the probability vector satisfying

qi,j ∝
{

ψ(Xi; θj), j 6= i, j ≥ 1,
∫

ψ(Xi; θ) dα(θ), j = 0,

and Gb,i is the “baseline posterior measure” given by

dGb,i(θ|Xi) ∝ ψ(Xi; θ) dα(θ).



Gibbs sampler — proof

Proof.

E
(

1lA(Xi)1lB(θi)| θ−i, X−i

)

= E
(

E
(

1lA(Xi)1lB(θi)|F, θ−i, X−i

)

| θ−i, X−i

)

= E
(

∫ ∫

1lA(x)1lB(θ)ψ(x; θ) dµ(x)dF (θ)| θ−i
)

=
1

|α|+ n

∫ ∫

1lA(x)1lB(θ)ψ(x; θ) dµ(x) d
(

α+
∑

j 6=i

δθj

)

(θ).

By Bayes’s rule (applied conditionally given (θ−i, X−i))

Pr
(

θi ∈ B|Xi, θ−i, X−i

)

=

∫

B ψ(Xi; θ) d(α+
∑

j 6=i δθj )(θ)
∫

ψ(Xi; θ) d(α+
∑

j 6=i δθj )(θ)
.



Further properties

• The number of distinct values in (X1, . . . , Xn) is OP (log n).
• The pattern of equal values induces the same random partition of the

set {1, 2, . . . , n} as the Kingman coalescent.
• The Dirichlet distribution has full support relative to the weak topology.
• DP(α1) ⊥ DP(α2) as soon as αc1 6= αc2 or αd1 and αd1 have different

supports.
• In particular prior DP(α) and posterior DP(α+ nPn) are typically

orthogonal.
• The cdf of P ∼ DP (α) is a normalized Gamma process.
• The tails of P ∼ DP (α) are much thinner than the tails of α.
• The Dirichlet is the only prior that is tail-free relative to any partition.
• The splitting variables of a Polya tree can be defined so that the prior

is absolutely continuous.



Consistency and rates



Consistency

X(n) observation in sample space (X(n),X (n)) with distribution P (n)
θ .

θ belongs to metric space (Θ, d).

Definition. The posterior distribution is consistent at θ0 ∈ Θ if

Πn
(

θ: d(θ, θ0) > ǫ|X(n)
)

→ 0

in P (n)
θ0

-probability, as n→ ∞, for every ǫ > 0.



Point estimator

Proposition. If the posterior distribution is consistent at θ0 then θ̂n
defined as the center of a (nearly) smallest ball that contains posterior
mass at least 1/2 satisfies d(θ̂n, θ0) → 0 in P (n)

θ0
-probability.



Point estimator

Proposition. If the posterior distribution is consistent at θ0 then θ̂n
defined as the center of a (nearly) smallest ball that contains posterior
mass at least 1/2 satisfies d(θ̂n, θ0) → 0 in P (n)

θ0
-probability.

Proof. For B(θ, r) = {s ∈ Θ: d(s, θ) ≤ r} let

r̂n(θ) = inf{r: Πn
(

B(θ, r)|X(n)
)

≥ 1/2}.

Then r̂n(θ̂n) ≤ infθ r̂n(θ).

• Πn
(

B(θ0, ǫ)|X(n)
)

→ 1 in probability.
• r̂n(θ0) ≤ ǫ with probability tending to 1, whence r̂n(θ̂n) ≤ r̂n(θ0) ≤ ǫ.
• B(θ0, ǫ) and B

(

θ̂n, r̂n(θ̂n)
)

cannot be disjoint.
• d(θ0, θ̂n) ≤ ǫ+ r̂n(θ̂n) ≤ 2ǫ.



Point estimator

Proposition. If the posterior distribution is consistent at θ0 then θ̂n
defined as the center of a (nearly) smallest ball that contains posterior
mass at least 1/2 satisfies d(θ̂n, θ0) → 0 in P (n)

θ0
-probability.

Proof. For B(θ, r) = {s ∈ Θ: d(s, θ) ≤ r} let

r̂n(θ) = inf{r: Πn
(

B(θ, r)|X(n)
)

≥ 1/2}.

Then r̂n(θ̂n) ≤ infθ r̂n(θ).

• Πn
(

B(θ0, ǫ)|X(n)
)

→ 1 in probability.
• r̂n(θ0) ≤ ǫ with probability tending to 1, whence r̂n(θ̂n) ≤ r̂n(θ0) ≤ ǫ.
• B(θ0, ǫ) and B

(

θ̂n, r̂n(θ̂n)
)

cannot be disjoint.
• d(θ0, θ̂n) ≤ ǫ+ r̂n(θ̂n) ≤ 2ǫ.

Alternative: posterior mean
∫

θ dΠn(θ|X(n)).



Doob’s theorem

Theorem (Doob). Let (X,X , Pθ: θ ∈ Θ) be experiments with (X,X ) a
standard Borel space and Θ a Borel subset of a Polish space such that
θ 7→ Pθ(A) is Borel measurable for every A ∈ X and the map θ 7→ Pθ is
one-to-one. Then for any prior Π on the Borel sets of Θ the posterior
Πn(·|X1, . . . , Xn) in the model X1, . . . , Xn| θ iid∼ pθ and θ ∼ Π is consistent
at θ, for Π-almost every θ.



Kullback-Leibler property

Parameter p: ν-density on sample space (X,X ). True value p0.
Kullback-Leibler divergence:

K(p0; p) =

∫

p0 log(p0/p) dν, K(p0;P0) = inf
p∈P0

K(p0; p).
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Definition. p0 is said to possess the Kullback-Leibler property relative to
Π if Π

(

p:K(p0; p) < ǫ
)

> 0 for every ǫ > 0.



Kullback-Leibler property

Parameter p: ν-density on sample space (X,X ). True value p0.
Kullback-Leibler divergence:

K(p0; p) =

∫

p0 log(p0/p) dν, K(p0;P0) = inf
p∈P0

K(p0; p).

Definition. p0 is said to possess the Kullback-Leibler property relative to
Π if Π

(

p:K(p0; p) < ǫ
)

> 0 for every ǫ > 0.

EXAMPLES

• Polya tree prior with dyadic partition and splitting variables
Vε0 ∼ Be(a|ε|, a|ε|) for

∑

m a
−1
m <∞ and K(p0, λ) <∞.

• Dirichlet mixtures
∫

ψ(·, θ) dF (θ) with F ∼ DP(α), under some
regularity conditions.
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X1, . . . , Xn| p iid∼ p, p ∼ Π.



Schwartz’s theorem

Bayesian model:
X1, . . . , Xn| p iid∼ p, p ∼ Π.

Theorem. If p0 has KL-property, and for every neighbourhood U of p0
there exist tests φn such that

Pn0 φn → 0, sup
p∈Uc

Pn(1− φn) → 0,

then Πn(·|X1, . . . , Xn) is consistent at p0.



Schwartz’s theorem

Bayesian model:
X1, . . . , Xn| p iid∼ p, p ∼ Π.

Theorem. If p0 has KL-property, and for every neighbourhood U of p0
there exist tests φn such that

Pn0 φn → 0, sup
p∈Uc

Pn(1− φn) → 0,

then Πn(·|X1, . . . , Xn) is consistent at p0.

Proof. By grouping the observations and using Hoeffding’s inequality we
can find tests ψn with

Pn0 ψn ≤ e−Cn, sup
p∈Uc

Pn(1− ψn) ≤ e−Cn.

Then apply the theorem later on.



Weak consistency

Consider the topology induced on p by the weak topology on the
probability measures P .
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Theorem. The posterior distribution is consistent for the weak topology at
any p0 with the Kullback-Leibler property.



Weak consistency

Consider the topology induced on p by the weak topology on the
probability measures P .

Theorem. The posterior distribution is consistent for the weak topology at
any p0 with the Kullback-Leibler property.

Proof. Consistent tests always exist:

• Subbasis for the weak neighbourhoods are sets of the type
U =

{

p:Pψ < P0ψ + ǫ
}

, for ψ:X → [0, 1] continuous and ǫ > 0.
• Given a test for each neighbourhood the maximum of the tests works

for a finite intersection.
• Use Hoeffding’s inequality to bound the error probabilities of the test

φn = 1l
{ 1

n

n
∑

i=1

ψ(Xi) > P0ψ + ǫ/2
}

.



Extended Schwartz’s theorem

Bayesian model:
X1, . . . , Xn| p iid∼ p, p ∼ Π.

Theorem. If If p0 has KL-property and for every neighbourhood U of p0
there exist C > 0, sets Pn ⊂ P and tests φn such that

Π(P − Pn) < e−Cn, Pn0 φn ≤ e−Cn, sup
p∈Pn∩Uc

Pn(1− φn) ≤ e−Cn,

then the posterior distribution Πn(·|X1, . . . , Xn) is consistent at p0.



Extended Schwartz’s theorem

Bayesian model:
X1, . . . , Xn| p iid∼ p, p ∼ Π.

Theorem. If If p0 has KL-property and for every neighbourhood U of p0
there exist C > 0, sets Pn ⊂ P and tests φn such that

Π(P − Pn) < e−Cn, Pn0 φn ≤ e−Cn, sup
p∈Pn∩Uc

Pn(1− φn) ≤ e−Cn,

then the posterior distribution Πn(·|X1, . . . , Xn) is consistent at p0.

Proof.

Πn(Uc) =
∫

Uc

∏n
i=1(p/p0)(Xi) dΠ(p)

∫
∏n
i=1(p/p0)(Xi) dΠ(p)

.

Follow steps 1–4.



Extended Schwartz’s theorem — proof

Proof. continued.

• Step 1: for any ǫ > 0 eventually a.s. [P∞
0 ]:

∫ n
∏

i=1

p

p0
(Xi) dΠ(p) ≥ Π

(

p:K(p0; p) < ǫ)e−nǫ. (2)



Extended Schwartz’s theorem — proof

Proof. continued.

• Step 1: for any ǫ > 0 eventually a.s. [P∞
0 ]:

∫ n
∏

i=1

p

p0
(Xi) dΠ(p) ≥ Π

(

p:K(p0; p) < ǫ)e−nǫ. (2)

Proof: for Πǫ(·) = Π(· ∩ Pǫ)/Π(Pǫ), and Pǫ = {p:K(p0; p) < ǫ},

log

∫

Pǫ

n
∏

i=1

p

p0
(Xi) dΠ(p)− log Π(Pǫ)

= log

∫ n
∏

i=1

p

p0
(Xi) dΠǫ(p) ≥

∫

log

n
∏

i=1

p

p0
(Xi) dΠǫ(p),

=
n
∑

i=1

∫

log
p

p0
(Xi) dΠǫ(p) = −n

∫

K(p0; p) dΠǫ(p) + o(n), a.s.



Extended Schwartz’s theorem — proof (2)

Proof. continued.

• Step 2:

Πn(Uc|X1, . . . , Xn) ≤ φn + (1− φn)

∫

Uc

∏n
i=1(p/p0)(Xi) dΠ(p)

∫
∏n
i=1(p/p0)(Xi) dΠ(p)

≤ φn +Π
(

p:K(p0; p) < ǫ)enǫ(1− φn)

∫

Uc

n
∏

i=1

(p/p0)(Xi) dΠ(p)



Extended Schwartz’s theorem — proof (2)

Proof. continued.

• Step 2:

Πn(Uc|X1, . . . , Xn) ≤ φn + (1− φn)

∫

Uc

∏n
i=1(p/p0)(Xi) dΠ(p)

∫
∏n
i=1(p/p0)(Xi) dΠ(p)

≤ φn +Π
(

p:K(p0; p) < ǫ)enǫ(1− φn)

∫

Uc

n
∏

i=1

(p/p0)(Xi) dΠ(p)

• Step 3:

Pn0

(

(1− φn)

∫

Uc

n
∏

i=1

p

p0
(Xi) dΠ(p)

)

=

∫

Uc

Pn0

[

(1− φn)

n
∏

i=1

p

p0
(Xi)

]

dΠ(p)

≤
∫

Uc

Pn(1− φn) dΠ(p).



Extended Schwartz’s theorem — proof (2)

Proof. continued.

• Step 2:

Πn(Uc|X1, . . . , Xn) ≤ φn + (1− φn)

∫

Uc

∏n
i=1(p/p0)(Xi) dΠ(p)

∫
∏n
i=1(p/p0)(Xi) dΠ(p)

≤ φn +Π
(

p:K(p0; p) < ǫ)enǫ(1− φn)

∫

Uc

n
∏

i=1

(p/p0)(Xi) dΠ(p)

• Step 3:

Pn0

(

(1− φn)

∫

Uc

n
∏

i=1

p

p0
(Xi) dΠ(p)

)

=

∫

Uc

Pn0

[

(1− φn)

n
∏

i=1

p

p0
(Xi)

]

dΠ(p)

≤
∫

Uc

Pn(1− φn) dΠ(p).

• Step 4: Split Uc in Uc ∩ Pn and Uc ∩ Pc
n and use that

Pn(1− φn) ≤ e−Cn on first set, while Π(Uc ∩ Pc
n) ≤ e−Cn.



Strong consistency and entropy

Definition (Covering number). N(ǫ,P, d) is the minimal number of d-balls
of radius ǫ needed to cover P.

Theorem. The posterior distribution is consistent relative to the
L1-distance at every p0 with the KL-property if for every ǫ > 0 there exist a
partition P = Pn,1 ∪ Pn,2 (which may depend on ǫ) such that, for C > 0,

(i) Π(Pn,2) ≤ e−Cn.
(ii) logN

(

ǫ,Pn,1, ‖ · ‖1
)

≤ nǫ2/3.



Strong consistency and entropy

Definition (Covering number). N(ǫ,P, d) is the minimal number of d-balls
of radius ǫ needed to cover P.

Theorem. The posterior distribution is consistent relative to the
L1-distance at every p0 with the KL-property if for every ǫ > 0 there exist a
partition P = Pn,1 ∪ Pn,2 (which may depend on ǫ) such that, for C > 0,

(i) Π(Pn,2) ≤ e−Cn.
(ii) logN

(

ǫ,Pn,1, ‖ · ‖1
)

≤ nǫ2/3.

Proof.

• Entropy gives tests. See below.
• Apply Extended Schwartz’s theorem.
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Tests — the two Luciens

Lucien le Cam

Lucien Birgé



Tests — minimax theorem

minimax risk for testing P versus Q :

π(P,Q) = inf
φ

(

Pφ+ sup
Q∈Q

Q(1− φ)
)

.



Tests — minimax theorem

minimax risk for testing P versus Q :

π(P,Q) = inf
φ

(

Pφ+ sup
Q∈Q

Q(1− φ)
)

.

Hellinger affinity :

ρ1/2(p, q) =

∫ √
p
√
q dµ = 1− h2(p, q)/2,

for h2(p, q) =
∫ (√

p−√
q)2 dµ square Hellinger distance



Tests — minimax theorem

minimax risk for testing P versus Q :

π(P,Q) = inf
φ

(

Pφ+ sup
Q∈Q

Q(1− φ)
)

.

Hellinger affinity :

ρ1/2(p, q) =

∫ √
p
√
q dµ = 1− h2(p, q)/2,

for h2(p, q) =
∫ (√

p−√
q)2 dµ square Hellinger distance

Proposition. For dominated probability measures P and Q

π(P,Q) = 1− 1
2‖P − conv(Q)‖1 ≤ sup

Q∈conv(Q)
ρ1/2(p, q).



Tests — minimax risk

Proof.

•

π(P,Q) = inf
φ

sup
Q∈conv(Q)

(

Pφ+Q(1− φ)
)

= sup
Q∈conv(Q)

inf
φ

(

Pφ+Q(1− φ)
)

= sup
Q∈conv(Q)

(

P1l{p < q}+Q1l{p ≥ q}
)

= sup
Q∈conv(Q)

(

1− 1
2‖p− q‖1

)

.

•

P1l{p < q}+Q1l{p ≥ q} =

∫

p<q
p dµ+

∫

p≥q
q dµ ≤

∫ √
p
√
q dµ.



Tests — product measures

ρ1/2(p1 × p2, q1 × q2) = ρ1/2(p1, q1)ρ1/2(p2, q2).



Tests — product measures

ρ1/2(p1 × p2, q1 × q2) = ρ1/2(p1, q1)ρ1/2(p2, q2).

Lemma. For any probability measures Pi and Qi

ρ1/2
(

⊗iPi, conv(⊗iQi)
)

≤
∏

i

ρ1/2
(

Pi, conv(Qi)
)

.



Tests — product measures

ρ1/2(p1 × p2, q1 × q2) = ρ1/2(p1, q1)ρ1/2(p2, q2).

Lemma. For any probability measures Pi and Qi

ρ1/2
(

⊗iPi, conv(⊗iQi)
)

≤
∏

i

ρ1/2
(

Pi, conv(Qi)
)

.

Proof. Suffices to consider products of 2.
If q(x, y) =

∑

j κjq1j(x)q2j(y), then ρ1/2(p1 × p2, q) =

∫

p1(x)
1/2

(

∑

j

κjq1j(x)
)1/2[

∫

p2(y)
1/2

(

∑

j κjq1j(x)q2j(y)
∑

j κjq1j(x)

)1/2
dµ2(y)

]

dµ1(x).



Tests — product measures (2)

Corollary.

π(Pn,Qn) ≤ ρ1/2(P
n, conv(Qn)) ≤ ρ1/2(P, conv(Q))n.



Tests — product measures (2)

Corollary.

π(Pn,Qn) ≤ ρ1/2(P
n, conv(Qn)) ≤ ρ1/2(P, conv(Q))n.

Theorem. For any probability measure P and convex set of dominated
probability measures Q with h(p, q) > ǫ for every q ∈ Q and any n ∈ N,
there exists a test φ such that

Pnφ ≤ e−nǫ
2/2, sup

Q∈Q
Qn(1− φ) ≤ e−nǫ

2/2.



Tests — product measures (2)

Corollary.

π(Pn,Qn) ≤ ρ1/2(P
n, conv(Qn)) ≤ ρ1/2(P, conv(Q))n.

Theorem. For any probability measure P and convex set of dominated
probability measures Q with h(p, q) > ǫ for every q ∈ Q and any n ∈ N,
there exists a test φ such that

Pnφ ≤ e−nǫ
2/2, sup

Q∈Q
Qn(1− φ) ≤ e−nǫ

2/2.

Proof.

• ρ1/2(P,Q) = 1− 1
2h

2(P,Q) ≤ 1− ǫ2/2.

• π(Pn,Qn) ≤ (1− ǫ2/2)n ≤ e−nǫ
2/2.



Tests — nonconvex alternatives

Definition (Covering number). N(ǫ,Q, d) is the minimal number of d-balls
of radius ǫ needed to cover Q.

Proposition. Let d ≤ h be a metric whose balls are convex. If
N(ǫ/4,Q, d) ≤ N(ǫ) for every ǫ > ǫn > 0 and some nonincreasing function
N : (0,∞) → (0,∞), then for every ǫ > ǫn and n there exists a test φ such
that, for all j ∈ N,

Pnφ ≤ N(ǫ)
e−nǫ

2/2

1− e−nǫ2/8
, sup

Q∈Q:d(P,Q)>jǫ
Qn(1− φ) ≤ e−nǫ

2j2/8.



Tests — nonconvex alternatives

Proof.

• For j ∈ N, choose a maximal set of jǫ/2-separated points
Qj,1, . . . , Qj,Nj

in Qj : =
{

Q ∈ Q: jǫ < d(P,Q) < 2jǫ
}

.

(i). Nj ≤ N(jǫ/4,Qj , d).
(ii). The Nj balls Bj,l of radius jǫ/2 around the Qj,l cover Qj .

(iii). h(P,Bj,l) ≥ d(P,Bj,l) > jǫ/2 for every ball Bj,l.

• For every ball take a test φj,l of P versus Bj,l. Let φ be their
supremum.

Pnφ ≤
∞
∑

j=1

Nj
∑

l=1

e−nj
2ǫ2/8 ≤

∞
∑

j=1

N(jǫ/4,Qj , d)e
−nj2ǫ2/8 ≤ N(ǫ)

e−nǫ
2/8

1− e−nǫ2/8

and, for every j ∈ N,

sup
Q∈∪l>jQl

Qn(1− φ) ≤ sup
l>j

e−nl
2ǫ2/8 ≤ e−nj

2ǫ2/8.



Rate of contraction

Definition. The posterior distribution Πn(·|X(n)) contracts at rate ǫn → 0

at θ0 ∈ Θ if Πn
(

θ: d(θ, θ0) > Mnǫn|X(n)
)

→ 0 in P (n)
θ0

-probability, for every
Mn → ∞ as n→ ∞.



Rate of contraction

Definition. The posterior distribution Πn(·|X(n)) contracts at rate ǫn → 0

at θ0 ∈ Θ if Πn
(

θ: d(θ, θ0) > Mnǫn|X(n)
)

→ 0 in P (n)
θ0

-probability, for every
Mn → ∞ as n→ ∞.

Proposition (Point estimator). If the posterior distribution contracts at rate
ǫn at θ0, then θ̂n defined as the center of a (nearly) smallest ball that
contains posterior mass at least 1/2 satisfies d(θ̂n, θ0) = OP (ǫn) under
P

(n)
θ0

.



Basic contraction theorem

K(p0; p) = P0 log
p0
p
, V (p0; p) = P0

(

log
p0
p

)2
.

Theorem. Given d ≤ h whose balls are convex suppose that there exist
Pn ⊂ P and C > 0, such that,

(i) Πn
(

p:K(p0; p) < ǫ2n, V (p0; p) < ǫ2n
)

≥ e−Cnǫ
2
n ,

(ii) logN
(

ǫn,Pn, d
)

≤ nǫ2n.

(iii) Πn(Pc
n) ≤ e−(C+4)nǫ2n .

Then the posterior rate of convergence for d is ǫn ∨ n−1/2.



Basic contraction theorem — proof

Proof.

• There exist tests φn with

Pn0 φn ≤ enǫ
2
n

e−nM
2ǫ2n/8

1− e−nM2ǫ2n/8
, sup

p∈Pn:d(p,p0)>Mǫn

Pn(1−φn) ≤ e−nM
2ǫ2n/8.

• For An =
{∫

∏n
i=1(p/p0)(Xi) dΠn(p) ≥ e−(2+C)nǫ2n

}

Πn
(

p: d(p, p0) > Mǫn|X1, . . . , Xn

)

≤ φn + 1l{Acn}+ e(2+C)nǫ2n

∫

d(p,p0)>Mǫn

n
∏

i=1

p

p0
(Xi) dΠn(p)(1− φn).

• Pn0 (A
c
n) → 0. See further on.



Basic contraction theorem — proof continued

Proof. (Continued)

•

Pn0

∫

p∈Pn:d(p,p0)>Mǫn

n
∏

i=1

p

p0
(Xi) dΠn(p)

≤
∫

p∈Pn:d(p,p0)>Mǫn

Pn(1− φn) dΠn(p)

≤ e−nM
2ǫ2n/8

•
Pn0

∫

P−Pn

n
∏

i=1

p

p0
(Xi) dΠn(p) ≤ Πn(P − Pn).



Bounding the denominator

Lemma. For any probability measure Π on P, and positive constant ǫ,
with Pn0 -probability at least 1− (nǫ2)−1,

∫ n
∏

i=1

p

p0
(Xi) dΠ(p) ≥ Π

(

p:K(p0; p) < ǫ2, V (p0; p) < ǫ2
)

e−2nǫ2 .



Bounding the denominator

Lemma. For any probability measure Π on P, and positive constant ǫ,
with Pn0 -probability at least 1− (nǫ2)−1,

∫ n
∏

i=1

p

p0
(Xi) dΠ(p) ≥ Π

(

p:K(p0; p) < ǫ2, V (p0; p) < ǫ2
)

e−2nǫ2 .

Proof. B: =
{

p:K(p0; p) < ǫ2n, V (p0; p) < ǫ2n
}

.

log

∫ n
∏

i=1

p

p0
(Xi) dΠ(P ) ≥

n
∑

i=1

∫

log
p

p0
(Xi) dΠ(P ) =:Z.

EZ = −n
∫

K(p0; p) dΠ(p) > −nǫ2,

varZ ≤ nP0

(

∫

log
p0
p
dΠ(p)

)2
≤ nP0

∫

(

log
p0
p

)2
dΠ(p) ≤ nǫ2,

Apply Chebyshev’s inequality.



Interpretation

Consider a maximal set of points p1, . . . , pN in Pn with d(pi, pj) ≥ ǫn.

Maximality implies N ≥ N(ǫn,Pn, d) ≥ ec1nǫ
2
n , under the entropy bound.

The balls of radius ǫn/2 around the points are disjoint and hence the sum
of their prior masses will be less than 1.

If the prior mass were evenly distributed over these balls, then each would
have no more mass than e−c1nǫ

2
n .

This is of the same order as the prior mass bound.

This argument suggests that the conditions can only be satisfied for every
p0 in the model if the prior “distributes its mass uniformly, at discretization

level ǫn”.



General observations

Experiments (X(n),X (n), P
(n)
θ : θ ∈ Θn), with observations X(n), and true

parameters θn,0 ∈ Θn.

dn and en semi-metrics on Θn such that: there exist ξ,K > 0 such that for
every ǫ > 0 and every θn,1 ∈ Θn with dn(θ1, θn,0) > ǫ, there exists a test φn
such that

P
(n)
θn,0

φn ≤ e−Knǫ
2
, sup

θ∈Θn:en(θ,θn,1)<ξǫ
P

(n)
θ (1− φn)n ≤ e−Knǫ

2
.



General observations — rate of contraction

Bn,k(θn,0, ǫ) =
{

θ ∈ Θn:K(p
(n)
θn,0

; p
(n)
θ ) ≤ nǫ2, Vk,0(p

(n)
θn,0

; p
(n)
θ ) ≤ nk/2ǫk

}

.

Theorem. If for arbitrary Θn,1 ⊂ Θn and k > 1, nǫ2n ≥ 1, and every j ∈ N,

(i)
Πn

(

θ ∈ Θn,1: jǫn < dn(θ, θ0) ≤ 2jǫn
)

Πn
(

Bn,k(θ0, ǫn)
) ≤ eKnǫ

2
nj

2/2,

(ii) sup
ǫ>ǫn

logN
(

ξǫ, {θ ∈ Θn,1: dn(θ, θn,0) < 2ǫ}, en
)

≤ nǫ2n,

then Πn
(

θ ∈ Θn,1: dn(θ, θn,0) ≥Mnǫn|X(n)
)

→ 0, in P (n)
θn,0

-probability, for
every Mn → ∞.

Theorem. If for arbitrary Θn,2 ⊂ Θn, some k > 1,

(iii)
Πn(Θn,2)

Πn
(

Bn,k(θn,0, ǫn)
) = o

(

e−2nǫ2n
)

. (3)

then Πn(Θn,2|X(n)) → 0, in P (n)
θn,0

-probability if,



Gaussian process priors



Gaussian processes

Definition. A Gaussian process is a set of random variables (or vectors)
W = (Wt: t ∈ T ) such that (Wt1 , . . . ,Wtk) is multivariate normal, for every
t1, . . . , tk ∈ T .

The finite-dimensional distributions are determined by the mean function
and the covariance function

µ(t) = EWt, K(s, t) = EWsWt, s, t ∈ T.
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The finite-dimensional distributions are determined by the mean function
and the covariance function
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The law of a Gaussian process is a prior for a function.



Gaussian processes

Definition. A Gaussian process is a set of random variables (or vectors)
W = (Wt: t ∈ T ) such that (Wt1 , . . . ,Wtk) is multivariate normal, for every
t1, . . . , tk ∈ T .

The finite-dimensional distributions are determined by the mean function
and the covariance function

µ(t) = EWt, K(s, t) = EWsWt, s, t ∈ T.

The law of a Gaussian process is a prior for a function.

Gaussian process priors have been found useful, because

• they offer great variety
• they are easy (?) to understand through their covariance function
• they can be computationally attractive (e.g.

www.gaussianprocess.org)



Brownian density estimation

• X1, . . . , Xn i.i.d. from density p0 on [0, 1]
• (Wx:x ∈ [0, 1]) Brownian motion

As prior on p use:
x 7→ eWx

∫ 1
0 e

Wy dy



Brownian density estimation

Brownian motion t 7→Wt — Prior density t 7→ c exp(Wt)

0.0 0.2 0.4 0.6 0.8 1.0

−
2.

0
−

1.
0

0.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
0.

0
0.

4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
6

−
0.

2
0.

2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0



Brownian density estimation

• X1, . . . , Xn i.i.d. from density p0 on [0, 1]
• (Wx:x ∈ [0, 1]) Brownian motion

As prior on p use:
x 7→ eWx

∫ 1
0 e

Wy dy



Brownian density estimation

• X1, . . . , Xn i.i.d. from density p0 on [0, 1]
• (Wx:x ∈ [0, 1]) Brownian motion

As prior on p use:
x 7→ eWx

∫ 1
0 e

Wy dy

Theorem. If w0: = log p0 ∈ Cα[0, 1], then L2-rate is:
{

n−1/4, if α ≥ 1/2;

n−α/2, if α ≤ 1/2.



Brownian density estimation

• X1, . . . , Xn i.i.d. from density p0 on [0, 1]
• (Wx:x ∈ [0, 1]) Brownian motion

As prior on p use:
x 7→ eWx

∫ 1
0 e

Wy dy

Theorem. If w0: = log p0 ∈ Cα[0, 1], then L2-rate is:
{

n−1/4, if α ≥ 1/2;

n−α/2, if α ≤ 1/2.

• This is optimal if and only if α = 1/2.
• Rate does not improve if α increases from 1/2.
• Consistency for any α > 0.



Integrated Brownian density estimation

Integrated Brownian motion — Prior density
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Integrated Brownian motion: Riemann-Liouville process

α− 1/2 times integrated Brownian motion, released at 0

Wt =

∫ t

0
(t− s)α−1/2 dBs +

[α]+1
∑

k=0

Zkt
k

[B Brownian motion, α > 0, (Zk) iid N(0, 1), “fractional integral”]

Theorem. IBM gives appropriate model for α-smooth functions:
consistency if w0 ∈ Cβ [0, 1] for any β > 0, but the optimal n−β/(2β+1) if and
only if α = β.



Settings

Density estimation
X1, . . . , Xn iid in [0, 1],

pθ(x) =
eθ(x)

∫ 1

0
eθ(t) dt

.

• Distance on parameter: Hellinger on
pθ.

• Norm on W : uniform.

Classification
(X1, Y1), . . . , (Xn, Yn) iid in [0, 1]× {0, 1}

Pr
θ
(Y = 1|X = x) =

1

1 + e−θ(x)
.

• Distance on parameter: L2(G) on Prθ.
(G marginal of Xi.)

• Norm on W : L2(G).

Regression
Y1, . . . , Yn independent N(θ(xi), σ

2), for
fixed design points x1, . . . , xn.

• Distance on parameter: empirical
L2-distance on θ.

• Norm on W : empirical L2-distance.

Ergodic diffusions
(Xt: t ∈ [0, n]), ergodic, recurrent:

dXt = θ(Xt) dt+ σ(Xt) dBt.

• Distance on parameter: random
Hellinger hn (≈ ‖ · /σ‖µ0,2).

• Norm on W : L2(µ0).
(µ0 stationary measure.)



Other Gaussian processes

Brownian sheet

0 500 1000 1500 2000

0.0
0.2

0.4
0.6

0.8
1.0

alpha=0.8

0 500 1000 1500 2000

−1.
0

0.0
0.5

1.0
1.5

alpha=0.2

Fractional Brownian motion

θ(x) =
∑

i θiei(x), θi ∼indep N(0, λi)
Series prior



Stationary processes

A stationary Gaussian field (Wt: t ∈ R
d) is characterized through a

spectral measure µ, by

cov(Ws,Wt) =

∫

eiλ
T (s−t) dµ(λ).
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Stationary processes — radial basis

Stationary Gaussian field (Wt: t ∈ R
d) characterized through

cov(Ws,Wt) =

∫

eiλ
T (s−t) e−λ

2
dλ.
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Theorem. Let ŵ0 be the Fourier transform of the true parameter
w0: [0, 1]

d → R.

• If
∫

e‖λ‖|ŵ0(λ)|2 dλ <∞, then rate of contraction is near 1/
√
n.

• If |ŵ0(λ)| & (1 + ‖λ‖2)−β, then rate is power of 1/ log n.

Excellent if truth is supersmooth; disastrous otherwise.



Stretching or shrinking: “length scale”

Sample paths can be smoothed by stretching
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Stretching or shrinking: “length scale”

Sample paths can be smoothed by stretching
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and roughened by shrinking
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Rescaled Brownian motion

Wt = Bt/cn for B Brownian motion, and cn ∼ n(2α−1)/(2α+1)

• α < 1/2: cn → 0 (shrink)
• α ∈ (1/2, 1]: cn → ∞ (stretch)

Theorem. The prior Wt = Bt/cn gives optimal rate for w0 ∈ Cα[0, 1],
α ∈ (0, 1].
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• α < 1/2: cn → 0 (shrink)
• α ∈ (1/2, 1]: cn → ∞ (stretch)

Theorem. The prior Wt = Bt/cn gives optimal rate for w0 ∈ Cα[0, 1],
α ∈ (0, 1].

Surprising? (Brownian motion is self-similar!)



Rescaled Brownian motion

Wt = Bt/cn for B Brownian motion, and cn ∼ n(2α−1)/(2α+1)

• α < 1/2: cn → 0 (shrink)
• α ∈ (1/2, 1]: cn → ∞ (stretch)

Theorem. The prior Wt = Bt/cn gives optimal rate for w0 ∈ Cα[0, 1],
α ∈ (0, 1].

Surprising? (Brownian motion is self-similar!)

Appropriate rescaling of k times integrated Brownian motion gives optimal
prior for every α ∈ (0, k + 1].



Rescaled smooth stationary process

A Gaussian field with infinitely-smooth sample paths is obtained with

EGsGt = ψ(s− t),

∫

e‖λ‖ψ̂(λ) dλ <∞.
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Gaussian spectral
measure; “radial
basis”

Theorem. The prior Wt = Gt/cn for cn ∼ n−1/(2α+d) gives nearly optimal
rate for w0 ∈ Cα[0, 1], any α > 0.



Gaussian elements in a Banach space

Definition. A Gaussian random variable in a (separable) Banach space B

is a Borel measurable map W : (Ω,U ,Pr) → B such that b∗W is normally
distributed for every b∗ in the dual space B

∗.

Many Gaussian processes (Wt: t ∈ T ) can be viewed as a Gaussian
variable in a space of functions w:T → R

d.

EXAMPLES

• Brownian motion can be viewed as a map in C[0, 1], equipped with the
uniform norm ‖w‖ = supt∈[0,1] |w(t)|.



Gaussian elements in a Banach space

Definition. A Gaussian random variable in a (separable) Banach space B

is a Borel measurable map W : (Ω,U ,Pr) → B such that b∗W is normally
distributed for every b∗ in the dual space B

∗.

Many Gaussian processes (Wt: t ∈ T ) can be viewed as a Gaussian
variable in a space of functions w:T → R

d.

EXAMPLES

• Brownian motion can be viewed as a map in C[0, 1], equipped with the
uniform norm ‖w‖ = supt∈[0,1] |w(t)|.

• Brownian motion is also a map in L2[0, 1], or C1/4[0, 1], or some Besov
space.



RKHS — definition

W zero-mean Gaussian in Banach space (B, ‖ · ‖).
S:B∗ → B, Sb∗ = EWb∗(W ).

Definition. The reproducing kernel Hilbert space (H, ‖ · ‖H) of W is the
completion of SB∗ under

〈Sb∗1, Sb∗2〉H = Eb∗1(W )b∗2(W )

.



RKHS — definition (2)

W = (Wt: t ∈ T ) Gaussian process that can be seen as tight, Borel
measurable map in ℓ∞(T ) = {f :T → R: ‖f‖: = supt |f(t)| <∞}. with
covariance function K(s, t) = EWsWt.

Theorem. Then RKHS is completion of the set of functions

t 7→
∑

i

αiK(si, t)

relative to inner product
〈

∑

i

αiK(ri, ·),
∑

j

βjK(sj , ·)
〉

H

=
∑

i

∑

j

αiβjK(ri, tj).



RKHS — definition (2)’

W = (Wt: t ∈ T ) Gaussian process that can be seen as tight, Borel
measurable map in ℓ∞(T ) = {f :T → R: ‖f‖: = supt |f(t)| <∞}, with
covariance function K(s, t) = EWsWt.

Theorem. Then RKHS is completion of the set of functions

t 7→
∑

i

αiK(si, t)= E(
∑

i

αiWsi)Wt

relative to inner product
〈

∑

i

αiK(ri, ·),
∑

j

βjK(sj , ·)
〉

H

=
∑

i

∑

j

αiβjK(ri, tj)

i.e. all functions t 7→ hL(t): = ELWt, where L ∈ L2(W ), with inner product

〈hL1 , hL2〉H = EL1L2.



RKHS — definition (3)

Any Gaussian random element in a separable Banach space can be
represented (in many ways, e.g. spectral decomposition) as

W =
∞
∑

i=1

µiZiei
for

• µi ↓ 0
• Z1, Z2, . . . i.i.d. N(0, 1)
• ‖e1‖ = ‖e2‖ = · · · = 1



RKHS — definition (3)

Any Gaussian random element in a separable Banach space can be
represented (in many ways, e.g. spectral decomposition) as

W =
∞
∑

i=1

µiZiei
for

• µi ↓ 0
• Z1, Z2, . . . i.i.d. N(0, 1)
• ‖e1‖ = ‖e2‖ = · · · = 1

Theorem. The RKHS consists of all elements h: =
∑

i hiei with

‖h‖2H: =
∑

i

h2i
µ2i

<∞



EXAMPLE — Brownian motion

Theorem. The RKHS of k times IBM is
{

f : f (k+1) ∈ L2[0, 1], f(0) = · · · = f (k)(0) = 0
}

, ‖f‖H = ‖f (k+1)‖2.



EXAMPLE — Brownian motion

Theorem. The RKHS of k times IBM is
{

f : f (k+1) ∈ L2[0, 1], f(0) = · · · = f (k)(0) = 0
}

, ‖f‖H = ‖f (k+1)‖2.

Proof.

• For k = 0: EWsWt = s ∧ t =
∫ t
0 1l[0,s] dλ. The set of all linear

combinations
∑

i αi1l[0,si] is dense in L2[0, 1].
• For k > 0: use the general result that the RKHS is “equivariant” under

continous linear transformations, like integration.



EXAMPLE — Brownian motion

Theorem. The RKHS of k times IBM is
{

f : f (k+1) ∈ L2[0, 1], f(0) = · · · = f (k)(0) = 0
}

, ‖f‖H = ‖f (k+1)‖2.

Proof.

• For k = 0: EWsWt = s ∧ t =
∫ t
0 1l[0,s] dλ. The set of all linear

combinations
∑

i αi1l[0,si] is dense in L2[0, 1].
• For k > 0: use the general result that the RKHS is “equivariant” under

continous linear transformations, like integration.

Theorem. The RKHS of the sum of k times IBM and t 7→ ∑k
i=0 Zit

i is

{

f : f (k+1) ∈ L2[0, 1]
}

, ‖f‖2H = ‖f (k+1)‖22 +
k

∑

i=0

f (i)(0)2.



Example — stationary processes

A stationary Gaussian process is characterized through a spectral
measure µ, by

cov(Ws,Wt) =

∫

eiλ
T (s−t) dµ(λ).

Theorem. The RKHS of (Wt: t ∈ T ) is the set of real parts of the functions

t 7→
∫

eiλ
T tψ(λ) dµ(λ), ψ ∈ L2(µ),

with RKHS-norm
‖h‖H = inf{‖ψ‖2:hψ = h}.

If the interior of T is nonempty and
∫

e‖λ‖ µ(dλ) <∞, then ψ is unique
and ‖h‖H = ‖ψ‖2.

Proof.
EWsWt = 〈es, et〉2,µ, es(λ) = eiλ

T s.



Small ball probability

Definition. The small ball probability of a Gaussian random element W in
(B, ‖ · ‖) is Pr(‖W‖ < ǫ), and the small ball exponent is

φ0(ǫ) = − log Pr(‖W‖ < ǫ).



Small ball probability

Definition. The small ball probability of a Gaussian random element W in
(B, ‖ · ‖) is Pr(‖W‖ < ǫ), and the small ball exponent is

φ0(ǫ) = − log Pr(‖W‖ < ǫ).

EXAMPLES

• Brownian motion: φ0(ǫ) ≍ (1/ǫ)2.



Small ball probability

Definition. The small ball probability of a Gaussian random element W in
(B, ‖ · ‖) is Pr(‖W‖ < ǫ), and the small ball exponent is

φ0(ǫ) = − log Pr(‖W‖ < ǫ).

EXAMPLES

• Brownian motion: φ0(ǫ) ≍ (1/ǫ)2.
• α− 1/2 times integrated BM: φ0(ǫ) ≍ (1/ǫ)1/α.



Small ball probability

Definition. The small ball probability of a Gaussian random element W in
(B, ‖ · ‖) is Pr(‖W‖ < ǫ), and the small ball exponent is

φ0(ǫ) = − log Pr(‖W‖ < ǫ).

EXAMPLES

• Brownian motion: φ0(ǫ) ≍ (1/ǫ)2.
• α− 1/2 times integrated BM: φ0(ǫ) ≍ (1/ǫ)1/α.
• Radial basis: φ0(ǫ) .

(

log(1/ǫ)
)1+d.



Small ball probability

Definition. The small ball probability of a Gaussian random element W in
(B, ‖ · ‖) is Pr(‖W‖ < ǫ), and the small ball exponent is

φ0(ǫ) = − log Pr(‖W‖ < ǫ).

Small ball probabilities can be computed either by probabilistic
arguments, or analytically from the RKHS.

Theorem.
φ0(ǫ) ≍ logN

( ǫ
√

φ0(ǫ)
,H1, ‖ · ‖

)

EXAMPLE
RKHS of Brownian motion is Sobolev space of first order.
Unit ball has entropy 1/ǫ for uniform norm.

1

ǫ2
≍ logN

( ǫ
√

(1/ǫ)2
,H1, ‖ · ‖

)

.



Posterior contraction rates for Gaussian priors

Prior W is centered Gaussian map in Banach space (B, ‖ · ‖) with RKHS
(H, ‖ · ‖H) and small ball exponent

φ0(ǫ) = − log Π(‖W‖ < ǫ).

Theorem. If statistical distances on the model combine appropriately with
the norm ‖ · ‖ of B, then the posterior rate is ǫn if

φ0(ǫn) ≤ nǫn
2 AND inf

h∈H:‖h−w0‖<ǫn
‖h‖2H ≤ nǫn

2.



Posterior contraction rates for Gaussian priors

Prior W is centered Gaussian map in Banach space (B, ‖ · ‖) with RKHS
(H, ‖ · ‖H) and small ball exponent

φ0(ǫ) = − log Π(‖W‖ < ǫ).

Theorem. If statistical distances on the model combine appropriately with
the norm ‖ · ‖ of B, then the posterior rate is ǫn if

φ0(ǫn) ≤ nǫn
2 AND inf

h∈H:‖h−w0‖<ǫn
‖h‖2H ≤ nǫn

2.

• Both inequalities give lower bound on ǫn.
• The first depends on W and not on w0.
• If w0 ∈ H, then second inequality is satisfied for ǫn & 1/

√
n.



Density estimation

As prior on density p use pW for:

pw(x) =
ewx

∫ 1
0 e

wt dt
.



Density estimation

As prior on density p use pW for:

pw(x) =
ewx

∫ 1
0 e

wt dt
.

Lemma. ∀v, w
• h(pv, pw) ≤ ‖v − w‖∞ e‖v−w‖∞/2

• K(pv, pw) . ‖v − w‖2∞ e‖v−w‖∞(1 + ‖v − w‖∞)
• V (pv, pw) . ‖v − w‖2∞ e‖v−w‖∞(1 + ‖v − w‖∞)2



Settings

Density estimation
X1, . . . , Xn iid in [0, 1],

pθ(x) =
eθ(x)

∫ 1

0
eθ(t) dt

.

• Distance on parameter: Hellinger on
pθ.

• Norm on W : uniform.

Classification
(X1, Y1), . . . , (Xn, Yn) iid in [0, 1]× {0, 1}

Pr
θ
(Y = 1|X = x) =

1

1 + e−θ(x)
.

• Distance on parameter: L2(G) on Prθ.
(G marginal of Xi.)

• Norm on W : L2(G).

Regression
Y1, . . . , Yn independent N(θ(xi), σ

2), for
fixed design points x1, . . . , xn.

• Distance on parameter: empirical
L2-distance on θ.

• Norm on W : empirical L2-distance.

Ergodic diffusions
(Xt: t ∈ [0, n]), ergodic, recurrent:

dXt = θ(Xt) dt+ σ(Xt) dBt.

• Distance on parameter: random
Hellinger hn (≈ ‖ · /σ‖µ0,2).

• Norm on W : L2(µ0).
(µ0 stationary measure.)



Brownian Motion — rate calculation

• Small ball probability:

φ0(ǫ) ≍ (1/ǫ)2 ≤ nǫ2 implies ǫ ≥ n−1/4.

• Approximation: if w0 ∈ Cβ [0, 1], β ≤ 1,

inf
h∈H:‖h−w0‖∞<ǫ

‖h′‖22 . ǫ−(2−2β)/β

(Attained for h = w0 ∗ φσ with σ ≍ ǫ1/β .)

ǫ−(2−2β)/β ≤ nǫ2 implies ǫ ≥ n−β/2.

Contraction rate is the slowest of the two rates.



Example — radial basis stationary process

• Small ball pobabilility:

φ0(ǫ) ≍
(

log(1/ǫ)
)2 ≤ nǫ2 implies ǫ ≥ n−1/2(log n)2.

• Approximation: since δµ(λ) = e−λ
2
dλ:

w0(t) =

∫

eit
Tλŵ0(λ) dλ =

∫

eit
Tλŵ0(λ)e

λ2 dµ(λ).

If the red function is in L2(µ), then w0 ∈ H. Otherwise approximate it
by ψ(λ) = ŵ0(λ)e

λ21l{|λ| ≤M}. Optimize over M .

Contraction rate is the slowest of the two rates, typically the second.



Posterior contraction rates for Gaussian priors

Prior W centered Gaussian map in Banach space (B, ‖ · ‖) with RKHS
(H, ‖ · ‖H) and small ball exponent

φ0(ǫ) = − log Π(‖W‖ < ǫ).

Theorem. If statistical distances on the model combine appropriately with
the norm ‖ · ‖ of B, then the posterior rate is ǫn if

φ0(ǫn) ≤ nǫn
2 AND inf

h∈H:‖h−w0‖<ǫn
‖h‖2H ≤ nǫn

2.



Posterior contraction rates for Gaussian priors

Prior W centered Gaussian map in Banach space (B, ‖ · ‖) with RKHS
(H, ‖ · ‖H) and small ball exponent

φ0(ǫ) = − log Π(‖W‖ < ǫ).

Theorem. If statistical distances on the model combine appropriately with
the norm ‖ · ‖ of B, then the posterior rate is ǫn if

φ0(ǫn) ≤ nǫn
2 AND inf

h∈H:‖h−w0‖<ǫn
‖h‖2H ≤ nǫn

2.

Proof. Suffices: existence of Bn ⊂ B with

• logN
(

ǫn,Bn, ‖ · ‖
)

≤ nǫ2n complexity
• Πn(Bn) = 1− o(e−nǫ

2
n) remaining mass

• Πn
(

w: ‖w − w0‖ < ǫn
)

≥ e−nǫ
2
n prior mass



Posterior contraction rates for Gaussian priors

Prior W centered Gaussian map in Banach space (B, ‖ · ‖) with RKHS
(H, ‖ · ‖H) and small ball exponent

φ0(ǫ) = − log Π(‖W‖ < ǫ).

Theorem. If statistical distances on the model combine appropriately with
the norm ‖ · ‖ of B, then the posterior rate is ǫn if

φ0(ǫn) ≤ nǫn
2 AND inf

h∈H:‖h−w0‖<ǫn
‖h‖2H ≤ nǫn

2.

Proof. Suffices: existence of Bn ⊂ B with

• logN
(

ǫn,Bn, ‖ · ‖
)

≤ nǫ2n complexity
• Πn(Bn) = 1− o(e−nǫ

2
n) remaining mass

• Πn
(

w: ‖w − w0‖ < ǫn
)

≥ e−nǫ
2
n prior mass

Take Bn =MnH1 + ǫnB1 for appropriate Mn.



Prior mass — decentered small ball probability

W a centered Gaussian map in (B, ‖ · ‖) with RKHS (H, ‖ · ‖H) and small
ball exponent φ0(ǫ).

φw0(ǫ): = φ0(ǫ) +
1
2 inf
h∈H:‖h−w0‖<ǫ

‖h‖2H



Prior mass — decentered small ball probability

W a centered Gaussian map in (B, ‖ · ‖) with RKHS (H, ‖ · ‖H) and small
ball exponent φ0(ǫ).

φw0(ǫ): = φ0(ǫ) +
1
2 inf
h∈H:‖h−w0‖<ǫ

‖h‖2H

Theorem.
Pr(‖W − w0‖ < 2ǫ) ≥ e−φw0(ǫ)



Prior mass — decentered small ball probability — proof

Proof. (Sketch)

• For h ∈ H the distribution of W + h is absolute continuous relative to
that of W and

Pr
(

‖W − h‖ < ǫ
)

= Ee−Uh−
1
2‖h‖

2
H1l{‖W‖ < ǫ}.

The left side does not change if −h replaces h. Take average:

Pr
(

‖W − h‖ < ǫ
)

= E1
2(e

−Uh + eUh)e−
1
2‖h‖

2
H1l{‖W‖ < ǫ}

≥ e−
1
2‖h‖

2
H Pr(‖W‖ < ǫ).



Prior mass — decentered small ball probability — proof

Proof. (Sketch)

• For h ∈ H the distribution of W + h is absolute continuous relative to
that of W and

Pr
(

‖W − h‖ < ǫ
)

= Ee−Uh−
1
2‖h‖

2
H1l{‖W‖ < ǫ}.

The left side does not change if −h replaces h. Take average:

Pr
(

‖W − h‖ < ǫ
)

= E1
2(e

−Uh + eUh)e−
1
2‖h‖

2
H1l{‖W‖ < ǫ}

≥ e−
1
2‖h‖

2
H Pr(‖W‖ < ǫ).

• For general w0: if h ∈ H with ‖w0 − h‖ < ǫ, then ‖W − h‖ < ǫ implies
‖W − w0‖ < 2ǫ.



Complexity and remaining mass

Theorem. The closure of H in B is support of the Gaussian measure (and
hence posterior is inconsistent if ‖w0 −H‖ > 0).
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Theorem (Borell 75). For H1 and B1 the unit balls of RKHS and B,

Pr(W /∈MH1 + ǫB1) ≤ 1− Φ
(

Φ−1(e−φ0(ǫ)) +M
)



Complexity and remaining mass

Theorem. The closure of H in B is support of the Gaussian measure (and
hence posterior is inconsistent if ‖w0 −H‖ > 0).

Theorem (Borell 75). For H1 and B1 the unit balls of RKHS and B,

Pr(W /∈MH1 + ǫB1) ≤ 1− Φ
(

Φ−1(e−φ0(ǫ)) +M
)

Corollary. For M(W ) a median of ‖W‖ and σ2(W ) = sup‖b∗‖≤1 var b
∗W ,

Pr(W −M(W ) ≥ x) ≤ 1− Φ(x/σ(W )) ≤ e−
1
2x

2/σ2(W )



Adaptation

Every Gaussian prior is good for some regularity class, but may
be very bad for another.

This can be alleviated by adapting the prior to the data by

• hierarchical Bayes: putting a prior on the regularity, or on a scaling.
• empirical Bayes: using a regularity or scaling determined by maximum

likelihood on the marginal distribution of the data.

The first is known to work in some generality.
For the second there are some, but not many results.



Adaptation by random scaling — example

• Choose Ad from a Gamma distribution.
• Choose (Gt: t ∈ R

d
+) “radial basis” stationary Gaussian process.

• Set Wt ∼ GAt.

0 1 2 3 4 5

−4
−2

0
2

4

Theorem. • if w0 ∈ Cβ[0, 1]d, then the rate of contraction is nearly
n−β/(2β+d).

• if w0 is supersmooth, then the rate is nearly n−1/2.

Proof. Use the basic contraction theorem (and careful estimates).
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Dirichlet mixtures

pF,σ(x) =

∫

σ−1φ
(

(x− z)/σ
)

dF (z).

X1, . . . , Xn|F, σ iid∼ pF,σ, F ∼ DP(α) ⊥ σ ∼ π.



Dirichlet mixtures

pF,σ(x) =
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σ−1φ
(

(x− z)/σ
)

dF (z).

X1, . . . , Xn|F, σ iid∼ pF,σ, F ∼ DP(α) ⊥ σ ∼ π.

Two cases for the true density p0:

• Supersmooth: p0 = pF0,σ0 , for some F0, σ0 > 0.
Take prior for σ with continuous positive density on (a, b) ∋ σ0.



Dirichlet mixtures

pF,σ(x) =

∫

σ−1φ
(
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• Ordinary smooth: p0 has β derivatives.
Take 1/σ a priori Gamma distributed.



Dirichlet mixtures

pF,σ(x) =

∫

σ−1φ
(

(x− z)/σ
)

dF (z).

X1, . . . , Xn|F, σ iid∼ pF,σ, F ∼ DP(α) ⊥ σ ∼ π.

Two cases for the true density p0:

• Supersmooth: p0 = pF0,σ0 , for some F0, σ0 > 0.
Take prior for σ with continuous positive density on (a, b) ∋ σ0.

• Ordinary smooth: p0 has β derivatives.
Take 1/σ a priori Gamma distributed.

Compare to kernel density estimation

1

nσ

n
∑

i=1

φ
(x−Xi

σ

)

= pFn,σ(x).



Supersmooth truth

pF,σ(x) =

∫

σ−1φ
(

(x− z)/σ
)

dF (z).

X1, . . . , Xn|F, σ iid∼ pF,σ, F ∼ DP(α) ⊥ σ ∼ π.

Theorem. If p0 = pF0,σ0 , where

• F0 has compact support K,
• α has a positive density on an open set G ⊃ K,
• α(|z| > t) . e−C|t|δ for all t > 0, some C > 0, δ > 0,
• π has a continuous positive density on (a, b) ∋ σ0,

then for some M,κ > 0,

Pn0 Π

(

F, σ:h(pF,σ, p0) > M
(log n)κ√

n
|X1, . . . , Xn

)

→ 0.



Ordinary smooth truth

pF,σ(x) =

∫

σ−1φ
(

(x− z)/σ
)

dF (z).

X1, . . . , Xn|F, σ iid∼ pF,σ, F ∼ DP(α) ⊥ σ−1 ∼ Γ(s, t).



Ordinary smooth truth

pF,σ(x) =

∫

σ−1φ
(

(x− z)/σ
)

dF (z).

X1, . . . , Xn|F, σ iid∼ pF,σ, F ∼ DP(α) ⊥ σ−1 ∼ Γ(s, t).

Let “β-smooth” mean:
∣

∣p(β)(x)− p(β)
∣

∣ ≤ L(x)|y|β−β,

for L satisfying, for β′ > β,

P0

(p(β)

p0

)2β′/β
<∞, P0

( L

p0

)2β′/β
<∞, |p0(x)| . e−C|x|τ .



Ordinary smooth truth

pF,σ(x) =

∫

σ−1φ
(

(x− z)/σ
)

dF (z).

X1, . . . , Xn|F, σ iid∼ pF,σ, F ∼ DP(α) ⊥ σ−1 ∼ Γ(s, t).

Theorem. If p0 is β-smooth and

• α has a positive density on R,
• α(|z| > t) . e−C|t|δ for all t > 0, some C > 0, δ > 0,

then for some M,κ > 0,

Pn0 Π
(

F, σ:h(pF,σ, p0) > Mn−β/(2β+1)(log n)κ|X1, . . . , Xn

)

→ 0.

Adaptation to any smoothness with a Gaussian kernel.
Compare to kernel density estimation, which needs higher order kernels.

1

nσ

n
∑

i=1

φ
(x−Xi

σ

)

= pFn,σ(x).



Finite approximation

Lemma. For any probability measure F on the interval [0, 1] there exists a
discrete probability measure F ′ on with at most

N . log
1

ǫ

support points, such that

‖pF,1 − pF ′,1‖∞ . ǫ, ‖pF,1 − pF ′,1‖1 . ǫ
(

log
1

ǫ

)1/2
.

Proof.

• Match moments of F and F ′ up to order log(1/ǫ).
• Taylor expand the kernel z 7→ φ(x− z).



Prior mass

Lemma. Let zj ∈ Uj for partition R = ∪Nj=0Uj . Then for F ′ =
∑N

j=1 pjδzj
and any F ,

‖pF,σ − pF ′,σ‖1 .
1

σ
max

1≤j≤N
λ(Uj) +

N
∑

j=1

|F (Uj)− pj |.

By properties of finite-dimensional Dirichlet can bound prior probability
that right side is smaller than ǫ



Entropy

For b1 < b2, τ < 1/4 and a ≥ e let

Pa,τ =
{

pF,σ:F [−a, a] = 1, b1τ ≤ σ ≤ b2τ
}

.

Theorem. For 0 < ǫ < 1/2 and d the L1-norm or Hellinger distance

logN(ǫ,Pa,τ , d) ≤ Cb1,b2
a

τ

(

log
1

ǫ

)(

log
a

ǫτ

)

.

Proof.

• Partition [−a, a] into (1/σ) equal length intervals.
• On each interval approximate with discrete distribution with . log(1/ǫ)

support points.
• Use bounds on entropy in Euclidean space.



Approximation

Under some regularity conditions on p0, as σ → 0.

d(pP0,σ, p0) = d(φσ ∗ p0, p0) = O(σ2).

Hence an ǫ-ball around pP0,σ is contained in ǫ+ σ ball around p0, and prior
mass condition can be verified.
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This works, but only for smoothness up to 2.



Approximation

Under some regularity conditions on p0, as σ → 0.

d(pP0,σ, p0) = d(φσ ∗ p0, p0) = O(σ2).

Hence an ǫ-ball around pP0,σ is contained in ǫ+ σ ball around p0, and prior
mass condition can be verified.

This works, but only for smoothness up to 2.

For general result need to choose more clever approximations than pP0,σ.



All the rest



All the rest

• Adaptation
• Distributional approximation
• Survival analysis
• Credible sets
• Sparsity
• Inverse problems
• Structures



A few names names I should have mentioned..

• Dirichlet process: Ferguson, Lo, Antoniak, and many others.
• Consistency: Schwartz, Barron.
• Tests: Le Cam, Birgé.
• Frequentist Bayes: Ghosal, vdV.
• Gaussian variables in Banach spaces: Borell, Kuelbs, Li, Lifshitz.
• Gaussian process priors: van Zanten, vdV.
• Dirichlet mixtures: Ghosal, Kruijer, Rousseau, W. Shen, Tokdar, vdV.

Further reading:
Subhashis Ghosal, Aad van der Vaart:

Fundamentals of Nonparametric Bayesian Inference
Cambridge University Press, 2013(?)
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