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The aim of the lectures is to survey the progress that has been made in Learning Theory over the
last 15 years, mainly in the understanding of the way prediction bounds relate to the geometry of the
underlying class.
 
In the lectures I hope to cover three main topics:

1)  Aspects  of  the  classical  approach  to  prediction  bounds,  in  which  both  class  and  target  are
assumed to be uniformly bounded in L∞. This assumption allows one to analyze prediction problems
using standard methods from Empirical Processes Theory, like contraction and concentration.  

We will focus on a geometric viewpoint, highlighting the idea of comparing empirical and actual
structures, and relating the error rate to the structure of certain random sets naturally associated with
the problem.  

2) The quadratic empirical process: 
Analyzing the quadratic empirical process is an essential component in many natural problems,
including prediction problems involving the squared loss. 
Unfortunately, since powers (in this case, the square) of functions extenuate their peaky part, it is
much harder to deal with the quadratic empirical process than with the standard empirical process. 
I  will  explain why it  is  still  possible to obtain a sharp estimate on this  process even when the
underlying class is unbounded. This requires accurate information on the fine structure of the same
random sets mentioned in 1). 
As applications, I will present sharp estimates on the singular values of random matrices and on
Gelfand widths of convex bodies in various situations. I will also establish  minimax bounds on the
error rate for prediction problems involving subgaussian classes, (e.g. for compressed sensing and
phase recovery problems).

3) All the methods that will be surveyed in 1) and 2) are based on various aspects of concentration -
relatively straightforward in the bounded case, and considerably harder for unbounded classes.  
However,  by  concentration  results  one  means  a  two-sided  estimate  and  I  will  show  that  the
difficulty  in  obtaining  concentration  is  due  to  the  'upper-tail',  while  the  'lower-tail'  is  almost
universally true in some sense. Moreover, I will show that only this 'lower-tail' is truly needed for
obtaining  prediction bounds,  resulting  in  a  rather  general  theory of  learning in  situation where
concentration is simply not possible. 


