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For A ⊆ [−1, 1]n define Rademacher averages of A as

R(A) = Eε sup
a∈A

1

n

n∑
t=1

εtat

where ε1, . . . , εn are i.i.d. ±1 Rademacher random variables.

Exercise 1 Prove that for any r1, . . . , rn ∈ [0, 1],

E sup
a∈A

n∑
t=1

εtrtat ≤ E sup
a∈A

n∑
t=1

εtat

Exercise 2 Define Gaussian averages of A as

G(A) = E sup
a∈A

1

n

n∑
t=1

γtat

where γ1, . . . , γn are independent N(0, 1). Show that

cR(A) ≤ G(A) ≤ C
√

log(n)R(A)

and find explicit constants c, C.

Exercise 3 Let φ : R→ R be L-Lipschitz. Prove that

E sup
a∈A

n∑
t=1

εtφ(at) ≤ LE sup
a∈A

n∑
t=1

εtat

Hint: condition on all but one εt, write out the two possibilities for εt, and combine the suprema. Make sure
the argument does not leave any absolute values.

Exercise 4 Prove that for a finite collection A ⊂ Rn and any c > 0,

Emax
a∈A

{
n∑
t=1

εtat − ca2
t

}
≤ C log |A|

Does C depend on the magnitude of vectors in A?
Hint: write out the moment-generating function and use (e−x + ex)/2 ≤ ex2/2.
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Exercise 5 We argued in the lecture that for a finite collection A ⊂ [−1, 1]n,

Emax
a∈A

n∑
t=1

εtat ≤ r
√

2 logN, r = max
a∈A
‖a‖2

Now suppose B is a set of predictable processes with respect to {Ft = σ(ε1, . . . , εt)}nt=0. That is, each b ∈ B
is a sequence b1, . . . , bn where each bt is Ft−1-measurable. Prove that

Emax
b∈B

n∑
t=1

εtbt ≤ r
√

2 logN, r = max
ε∈{±1}n

max
b∈B

√√√√ n∑
t=1

b2
t .

where ε = (ε1, . . . , εn). Hint: Consider the moment generating function and peel off one term at a time, from
n backwards to t = 1.

Exercise 6 Let W be a random variable with values in A. Prove that for a measurable function Ψ :
A× B → R,

EW sup
b∈B

Ψ(W, b) = sup
γ

EWΨ(W,γ(W ))

where the supremum ranges over all functions γ : A → B. (Assume compactness or boundedness if needed
to make the argument rigorous).

Exercise 7 Let ε1:n , (ε1, ε2, . . . , εn) be n i.i.d. Rademacher random variables. Use the previous exercise
to conclude that for Ψ : Xn × {±1}n → R,

sup
x1∈X

Eε1 . . . sup
xn∈X

EεnΨ(x1:n, ε1:n) = sup
x1,...,xn

Eε1:nΨ(x1,x2(ε1) . . . ,xn(ε1:n−1), ε1:n)

where the last supremum is taken over functions xt : {±1}t−1 → X .

Exercise 8 Let Q be the set of distributions on some set A and P the set of distributions on B. Under
very general conditions on `,A,B,

min
q∈Q

max
b∈B

Ea∼q`(a, b) = max
p∈P

min
a∈A

Eb∼p`(a, b). (1)

This is known as the minimax theorem. Note that the inner max/min can be taken at a pure strategy (delta
distribution) because a linear function achieves its max/min at a corner of the probability simplex.

Prove the following: if `(a, b) is convex in a and A is a convex set, then the outer minimization

min
q∈Q

max
b∈B

Ea∼q`(a, b) = min
a∈A

max
b∈B

`(a, b)

is achieved at a pure strategy. We will use this result to restrict our attention to deterministic strategies.

Exercise 9 Let W be a random variable, and suppose that for any realization of W ,

inf
a∈A

sup
b∈B
{`(a, b) + Ψt(b,W )} ≤ Ψt−1(W )

Prove that
inf

q∈∆(A)
sup
b∈B
{Ea∼q`(a, b) + EWΨt(b,W )} ≤ EWΨt−1(W )

by exhibiting a strategy for the infimum. This statement will be useful for defining computationally-efficient
random playout methods in Lecture #3.
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Exercise 10 Consider the following online prediction problem, taking place over rounds t = 1, . . . , n.
On each round, we make a prediction ŷt ∈ [0, 1], observe an outcome yt ∈ {0, 1}, and suffer the loss of
`(ŷt, yt) = yt + ŷt − 2ŷt · yt. Take a potential function Φ : {±1}n → R with two properties: first, it is stable
with respect to flip of any coordinate:

|Φ(. . . ,−1, . . .)− Φ(. . . ,+1, . . .)| ≤ 1.

Second, EΦ(b1, . . . , bn) ≥ n/2 where bi’s are i.i.d. Bernoulli with bias 1/2. Show that

min
ŷt

max
yt

{
`(ŷt, yt) + Ebt+1:nΦ(y1, . . . , yt, bt+1, . . . , bn)

}
≤ Ebt:nΦ(y1, . . . , yt−1, bt, . . . , bn) +

1

2

Conclude that there is a prediction strategy that guarantees

n∑
t=1

`(ŷt, yt) ≤ Φ(y1, . . . , yn) (2)

for any sequence y1, . . . , yn of binary outcomes. Conversely, argue that if there is a function Φ that satisfies
(2) for all sequences, then it must hold that EΦ ≥ n/2.

Exercise 11 Write the loss function in the previous exercise as expected indicator loss under the random-
ized strategy with bias ŷt. Use the previous exercise to argue that there must exist a randomized algorithm
that predicts an arbitrary sequence of bits with the following strong guarantee:

the expected average number of mistakes (per n rounds) is at most the minimum of proportion of 1’s
and proportion of 0’s in the sequence, up to a O(1/

√
n) additive factor.

That is, if the sequence, say, has 40% of 0’s, then the method will only err roughly 40% of the time, even
though the locations of 0’s. The method is adaptive: it does not need to know any prior information about
the sequence. This result might seem surprising, given that the sequence is not governed by any stochastic
process that we can describe. (origin of this problem: T. Cover, 1960’s)
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