Some exercices

1 On posterior concentration rates

1.1 Construction of L_{1} tests

Let f_{0} and f_{1} be probability densities on \mathbb{R} and $A=\left\{x \in \mathbb{R} ; f_{0}(x) \geq f_{1}(x)\right\}$ with respect to a measure μ.

1. Show that

$$
\left\|f_{0}-f_{1}\right\|_{1}=2 \int_{A}\left(f_{0}(x)-f_{1}(x)\right) d \mu(x)
$$

2. Let P_{0} be the distribution under f_{0} and P_{f} under f and $X^{n}=\left(X_{1}, \cdots, X_{n}\right)$ a n sample with \mathbb{P}_{n} the empirical distribution :

$$
\mathbb{P}_{n}(B)=n^{-1} \sum_{i=1}^{n} \mathbb{1}_{X_{i} \in B}
$$

Show, using Hoeffding inequality, that

$$
P_{0}^{n}\left(\left[\mathbb{P}_{n}-P_{0}\right](A) \geq \delta_{n}\right) \leq 2 e^{-2 n \delta_{n}^{2}}
$$

3. How can we choose δ_{n} so that

$$
\sup _{\left\|f-f_{1}\right\|_{1} \leq \zeta\left\|f_{0}-f_{1}\right\|_{1}} P_{f}^{n}\left(\left[\mathbb{P}_{n}-P_{0}\right](A)<\delta_{n}\right) \leq 2 e^{-n c\left\|f_{0}-f_{1}\right\|_{1}^{2}}
$$

for some $c>0$ and $\zeta<1$?
4. Let $\mathcal{F}_{n} \subset \mathcal{F}=\left\{f: \mathbb{R} \rightarrow \mathbb{R}^{+} ; \int_{\mathbb{R}} f(x) d \mu(x)=1\right\}$ such that

$$
N\left(\zeta \epsilon ;\left\{\left\|f-f_{0}\right\|_{1} \in(\epsilon, 2 \epsilon)\right\} \cap \mathcal{F}_{n},\|\cdot\|_{1}\right) \leq a n \epsilon^{2}
$$

for all $\epsilon \geq \epsilon_{n}$ for some sequence $\epsilon_{n}=o(1)$, then show that one can construct a test ϕ_{n} such that

$$
E_{0}^{n}\left[\phi_{n}\right] \leq e^{-n c_{1} \epsilon_{n}^{2}}, \quad \sup _{\left\|f-f_{0}\right\|_{1}>M \epsilon_{n}, f \in \mathcal{F}_{n}} E_{f}^{n}\left[1-\phi_{n}\right] \leq e^{-n c_{1} \epsilon_{n}^{2}}
$$

1.2 Regression and sieve priors

Consider the model

$$
Y_{i}=f\left(x_{i}\right)+\epsilon_{i}, \quad \epsilon_{i} \stackrel{i d}{\sim} \mathcal{N}\left(0, \sigma^{2}\right), \quad x_{i} \in(0,1), \quad i \leq n
$$

- Prior for f

$$
f:=f_{\theta}=\sum_{j=1}^{k} \theta_{j} \phi_{j}, \quad\left(\phi_{j}\right)_{j}=\mathrm{BON} \text { of } \quad L^{2}([0,1])
$$

$$
k \sim \pi_{k}, \quad\left(\theta_{1}, \cdots, \theta_{k}\right) \mid k \stackrel{i i d}{\sim} g
$$

- prior for $\sigma: \pi_{\sigma}$.

$$
f_{0} \in L^{2}[0,1]
$$

1. Compute the Kullback-Leibler divergence between P_{0}^{n} and P_{θ}^{n}
2. Assume that θ_{0} is in Sobolev ball

$$
\sum_{j=1}^{+\infty}(1+j)^{2 \beta} \theta_{0 j}^{2} \leq L<+\infty
$$

and that $\sigma_{0}>0$ is fixed.
Show that under random design with appropriate iid distribution for the x_{i} 's

$$
S_{n}=\left\{K L\left(\theta_{0}, \theta\right) \leq(n / \log n)^{1 /(2 \beta+1)} ; V_{2}\left(\theta_{0}, \theta\right) \lesssim(n \log n)^{1 /(2 \beta+1)}\right\}
$$

contains

$$
\left\{\theta \in \mathbb{R}^{k_{n}} ;\left\|\theta-\theta_{[0 k]}\right\|_{2} \lesssim(n / \log n)^{-\beta /(2 \beta+1)} k_{n}^{-1 / 2}\right\}, \quad k_{n} \asymp(n / \log n)^{1 /(2 \beta+1)}
$$

3. Deduce that if g is positive and continuous on \mathbb{R} and if π_{σ} is positive and continuous on $\mathbb{R}^{+} *$ and

$$
\pi\left(S_{n}\right) \geq e^{-c n^{1 /(2 \beta+1)}}
$$

for some $c>0$ when n is large enough.
4. The construction of tests can be done using individual tests f_{0} versus $f_{\theta_{1}}$ using the likelihood ratio statistic.

2 Empirical Bayes

Consider the mixture model for monotone nonincreasing densities

$$
f_{P}(x)=\int_{0}^{\infty} \frac{1_{[0, \theta)}(x)}{\theta} d P(\theta)
$$

assume that f_{0} is decreasing : $\exists P_{0}$ s.t.
Consider a prior distribution on $\mathcal{P}=\left\{P\right.$, proba on $\left.\mathbb{R}^{+}\right\}$as a $D P(M, \Gamma(a, b))$

1. Find the transformation $\psi_{b, b^{\prime}}$ such that if $P \sim D P(M, \Gamma(a, b))$ then $P \sim D P\left(M, \Gamma\left(a, b^{\prime}\right)\right)$
2. Same thing with $\psi_{a, a^{\prime}}$.
3. Consider $X^{n}=\left(X_{1}, \cdots, X_{n}\right)$ i.i.d f_{P}; study

$$
\sup _{b^{\prime} \in\left[b, b\left(1+u_{n}\right)\right]}\left(\ell_{n}\left(\psi_{b, b^{\prime}}(P)\right)-\ell_{n}(P)\right), \inf _{b^{\prime} \in\left[b, b\left(1+u_{n}\right)\right]}\left(\ell_{n}\left(\psi_{b, b^{\prime}}(P)-\ell_{n}(P)\right)\right.
$$

4. Why is it more complicated with $\psi_{a, a^{\prime}}$?
