Spring School, Westerland, Germany
 Lectures by Martin Wainwright (wainwrig@berkeley.edu)
 Based on book in preparation

Problem Set 1

March 2015

Problem 1.1

A zero-mean variable Z is sub-Gaussian with parameter σ if $\mathbb{E}\left[e^{\lambda Z}\right] \leq e^{\lambda^{2} \sigma^{2} / 2}$ for all $\lambda \in \mathbb{R}$. Let $\left\{Z_{i}\right\}_{i=1}^{n}$ be a sequence of zero-mean random variables, each sub-Gaussian with parameter σ. (No independence assumptions are needed.)
(a) Prove that $\mathbb{E}\left[\max _{i=1, \ldots, n} Z_{i}\right] \leq \sqrt{2 \sigma^{2} \log n}$ for all $n \geq 1$. (Hint: The exponential is a convex function.)
(b) Prove that $\mathbb{E}\left[\max _{i=1, \ldots, n}\left|Z_{i}\right|\right] \leq 2 \sqrt{\sigma^{2} \log n}$ for all $n \geq 2$.

Problem 1.2

For a given $q \in(0,1]$, recall the (strong) ℓ_{q}-ball

$$
\begin{equation*}
\mathbb{B}_{q}\left(R_{q}\right):=\left\{\left.\theta \in \mathbb{R}^{d}\left|\sum_{j=1}^{d}\right| \theta_{j}\right|^{q} \leq R_{q}\right\} . \tag{1}
\end{equation*}
$$

The weak ℓ_{q}-ball with parameters (C, α) is defined as

$$
\begin{equation*}
\mathbb{B}_{w(\alpha)}(C):=\left\{\left.\theta \in \mathbb{R}^{d}| | \theta\right|_{(j)} \leq C j^{-\alpha} \quad \text { for } j=1, \ldots, d\right\} . \tag{2}
\end{equation*}
$$

Here $|\theta|_{(j)}$ denote the order statistics of θ^{*} in absolute value, ordered from largest to smallest (so that $|\theta|_{(1)}=\max _{j=1,2, \ldots, d}\left|\theta_{j}\right|$ and $|\theta|_{(d)}=\min _{j=1,2, \ldots, d}\left|\theta_{j}\right|$.)
(a) Show that the set $\mathbb{B}_{q}\left(R_{q}\right)$ is star-shaped around the origin. (A set $\mathcal{C} \subseteq \mathbb{R}^{d}$ is star-shaped around the origin if $\theta \in \mathcal{C} \Rightarrow t \theta \in \mathcal{C}$ for all $t \in[0,1]$.)
(b) For any $\alpha>1 / q$, show that there is a radius R_{q} depending on (C, α) such that $\mathbb{B}_{w(\alpha)}(C) \subseteq \mathbb{B}_{q}\left(R_{q}\right)$. This inclusion underlies the terminology "strong" and "weak" respectively.
(c) For a given integer $s \in\{1,2, \ldots, d\}$, the best s-term approximation to a vector $\theta^{*} \in \mathbb{R}^{d}$ is given by

$$
\begin{equation*}
\Pi_{s}\left(\theta^{*}\right):=\arg \min _{\|\theta\|_{0} \leq s}\left\|\theta-\theta^{*}\right\|_{2}^{2} \tag{3}
\end{equation*}
$$

Give a closed form expression for $\Pi_{s}\left(\theta^{*}\right)$.
(d) When $\theta^{*} \in \mathbb{B}_{q}\left(R_{q}\right)$ for some $q \in(0,1]$, show that the best s-term approximation satisfies

$$
\begin{equation*}
\left\|\Pi_{s}\left(\theta^{*}\right)-\theta^{*}\right\|_{2}^{2} \leq\left(R_{q}\right)^{2 / q}\left(\frac{1}{s}\right)^{\frac{2}{q}-1} \tag{4}
\end{equation*}
$$

Problem 1.3

For a given design matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$, suppose that its columns $\left\{X_{1}, \ldots, X_{d}\right\}$ satisfy the normalization condition $\left\|X_{j}\right\|_{2} / \sqrt{n}=1$ for all $j=1, \ldots, d$. Define its pairwise incoherence $\mu(\mathbf{X}):=\max _{i \neq j}\left|\left\langle X_{i}, X_{j}\right\rangle / n\right|$. In this exercise, we prove that for a given sparsity s, the condition

$$
\begin{equation*}
s \mu(\mathbf{X})<\gamma \quad \text { for a sufficiently small constant } \gamma \tag{5}
\end{equation*}
$$

implies that the restricted nullspace property holds.
(a) Let $S \subset\{1,2, \ldots d\}$ be any subset of size s. Prove that the condition (5) implies there is a function $\gamma \mapsto c(\gamma)$ such that $\lambda_{\min }\left(\mathbf{X}_{S}^{T} \mathbf{X}_{S} / n\right) \geq c(\gamma)>0$, as long as γ is sufficiently small.
(b) Prove that \mathbf{X} satisfies the restricted nullspace property with respect to S. (Do this from first principles, without using any results on restricted isometry.)

Problem 1.4

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be a standard Gaussian random matrix (i.e., $X_{i j} \sim N(0,1)$, i.i.d. for all entries ($i . j$)).
(a) Letting $X_{j} \in \mathbb{R}^{n}$ be its $j^{\text {th }}$ row, prove that there are constants c_{1}, c_{2} such that

$$
\mathbb{P}\left[\max _{j \neq k}\left|\frac{\left\langle X_{j}, X_{k}\right\rangle}{n}\right| \geq \delta\right] \leq c_{1} e^{-c_{2} n \delta^{2}} \quad \text { for all } \delta \in(0,1)
$$

(Hint: The random variable $\frac{1}{\sqrt{n}}\left(\left\|X_{j}\right\|_{2}-\mathbb{E}\left[\left\|X_{j}\right\|_{2}\right]\right)$ is sub-Gaussian with parameter $\sigma=1 / \sqrt{n}$.)
(b) Use this result to show that X satisfies the restricted nullspace property for all sparsity $s \leq c_{3} \sqrt{\frac{n}{\log d}}$.

Problem 1.5

Consider the standard linear regression model $y=\mathbf{X} \theta^{*}+w$, where $\theta^{*} \in$ $\mathbb{B}_{q}\left(R_{q}\right)$. Using the oracle inequality from lecture, and given an appropriate lower bound on the sample size n in terms of $\left(d, R_{q}, \sigma, q\right)$, show that there are universal constants $\left(c_{0}, c_{1}, c_{2}\right)$ such that with probability $1-c_{1} e^{-c_{2} \log d}$, any Lasso solution $\widehat{\theta}$ satisfies the bound

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{2}^{2} \leq c_{0} R_{q}\left(\frac{\sigma^{2} \log d}{n}\right)^{1-\frac{q}{2}} .
$$

Problem 1.6

Consider the sparse linear regression model $y=\mathbf{X} \theta^{*}+w$, where $w \sim$ $\mathcal{N}\left(0, \sigma^{2} I_{n \times n}\right)$ and $\theta^{*} \in \mathbb{R}^{d}$ is supported on a subset S. Suppose that the sample covariance matrix $\widehat{\Sigma}=\frac{1}{n} \mathbf{X}^{T} \mathbf{X}$ has its diagonal entries uniformly upper bounded by one, and that for some parameter $\gamma>0$, it also satisfies an ℓ_{∞}-curvature condition of the form

$$
\begin{equation*}
\|\widehat{\Sigma} \Delta\|_{\infty} \geq \gamma\|\Delta\|_{\infty} \quad \text { for all } \Delta \in \mathbb{C}_{3}(S) . \tag{6}
\end{equation*}
$$

Show that with the regularization parameter $\lambda_{n}=4 \sigma \sqrt{\frac{\log d}{n}}$, any Lasso solution satisfies the ℓ_{∞}-bound

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{\infty} \leq \frac{6 \sigma}{\gamma} \sqrt{\frac{\log d}{n}}
$$

with high probability.

Problem 1.7

For an integer $k \in\{1, \ldots, d\}$, consider the following two subsets:

$$
\begin{aligned}
& \mathbb{L}_{0}(k):=\mathbb{B}_{2}(1) \cap \mathbb{B}_{0}(k)=\left\{\theta \in \mathbb{R}^{d} \mid\|\theta\|_{2} \leq 1, \text { and }\|\theta\|_{0} \leq k\right\}, \\
& \mathbb{L}_{1}(k):=\mathbb{B}_{2}(1) \cap \mathbb{B}_{1}(\sqrt{k})=\left\{\theta \in \mathbb{R}^{d} \mid\|\theta\|_{2} \leq 1, \text { and }\|\theta\|_{1} \leq \sqrt{k}\right\} .
\end{aligned}
$$

Let $\overline{\text { conv }}$ denote the closure of the convex hull (when applied to a set).
(a) Prove that $\overline{\operatorname{conv}}\left(\mathbb{L}_{0}(k)\right) \subseteq \mathbb{L}_{1}(k)$.
(b) Prove that $\mathbb{L}_{1}(k) \subseteq 3 \overline{\operatorname{conv}}\left(\mathbb{L}_{0}(k)\right)$.
(Hint: For part (b), you may find it useful to consider the support functions of the two sets.)

Problem 1.8

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be a fixed design matrix such that $\frac{\left\|\mathbf{X}_{S}\right\|_{\text {op }}}{\sqrt{n}} \leq C$ for all subsets S of cardinality at most s. In this exercise, we show that with high probability, any solution of the constrained Lasso

$$
\widehat{\theta} \in \arg \min _{\|\theta\|_{1} \leq R}\left\{\frac{1}{2 n}\|y-\mathbf{X} \theta\|_{2}^{2}\right\}
$$

with $R=\left\|\theta^{*}\right\|_{1}$ satisfies the bound

$$
\begin{equation*}
\left\|\widehat{\theta}-\theta^{*}\right\|_{2} \precsim \frac{\sigma}{\kappa} \sqrt{\frac{s \log (e d / s)}{n}} \tag{7}
\end{equation*}
$$

where $s=\left\|\theta^{*}\right\|_{0}$. Note that this bound provides an improvement for linear sparsity (i.e., whenever $s=\alpha d$ for some constant $\alpha \in(0,1))$.
(a) Define the random variable

$$
\begin{equation*}
Z:=\sup _{\Delta \in \mathbb{R}^{d}}\left|\left\langle\Delta, \frac{1}{n} \mathbf{X}^{T} w\right\rangle\right| \quad \text { such that }\|\Delta\|_{2} \leq 1 \text { and }\|\Delta\|_{1} \leq \sqrt{s}, \tag{8}
\end{equation*}
$$

where $w \sim \mathcal{N}\left(0, \sigma^{2} I\right)$. Show that

$$
\mathbb{P}\left[Z \geq c_{1} C \sigma\left\{\sqrt{\frac{s \log \frac{e d}{s}}{n}}+\delta\right\}\right] \leq c_{2} e^{-c_{3} n \delta^{2}}
$$

for universal constants $\left(c_{1}, c_{2}, c_{3}\right)$. (Hint: The result of Exercise 1.7(b) may be useful here.)
(b) Use part (a) and results from lecture to show that if \mathbf{X} satisfies an RE condition, then any optimal Lasso solution $\widehat{\theta}$ satisfies the bound (7) with probability $1-c_{2}^{\prime} e^{-c_{3}^{\prime} s \log \left(\frac{e d}{s}\right)}$.

