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Problem 1.1
A zero-mean variable Z is sub-Gaussian with parameter σ if E[eλZ ] ≤ eλ2σ2/2

for all λ ∈ R. Let {Zi}ni=1 be a sequence of zero-mean random variables,
each sub-Gaussian with parameter σ. (No independence assumptions are
needed.)

(a) Prove that E
[

max
i=1,...,n

Zi
]
≤
√

2σ2 log n for all n ≥ 1. (Hint: The

exponential is a convex function.)

(b) Prove that E
[

max
i=1,...,n

|Zi|
]
≤ 2
√
σ2 log n for all n ≥ 2.

Problem 1.2
For a given q ∈ (0, 1], recall the (strong) `q-ball

Bq(Rq) : =
{
θ ∈ Rd |

d∑
j=1

|θj |q ≤ Rq
}
. (1)

The weak `q-ball with parameters (C,α) is defined as

Bw(α)(C) : =
{
θ ∈ Rd | |θ|(j) ≤ Cj−α for j = 1, . . . , d

}
. (2)

Here |θ|(j) denote the order statistics of θ∗ in absolute value, ordered from
largest to smallest (so that |θ|(1) = max

j=1,2,...,d
|θj | and |θ|(d) = min

j=1,2,...,d
|θj |.)

(a) Show that the set Bq(Rq) is star-shaped around the origin. (A set
C ⊆ Rd is star-shaped around the origin if θ ∈ C ⇒ tθ ∈ C for all
t ∈ [0, 1].)

(b) For any α > 1/q, show that there is a radius Rq depending on (C,α)
such that Bw(α)(C) ⊆ Bq(Rq). This inclusion underlies the terminology
“strong” and “weak” respectively.
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(c) For a given integer s ∈ {1, 2, . . . , d}, the best s-term approximation to
a vector θ∗ ∈ Rd is given by

Πs(θ
∗) : = arg min

‖θ‖0≤s
‖θ − θ∗‖22. (3)

Give a closed form expression for Πs(θ
∗).

(d) When θ∗ ∈ Bq(Rq) for some q ∈ (0, 1], show that the best s-term
approximation satisfies

‖Πs(θ
∗)− θ∗‖22 ≤

(
Rq
)2/q (1

s

) 2
q
−1
. (4)

Problem 1.3
For a given design matrix X ∈ Rn×d, suppose that its columns {X1, . . . , Xd}
satisfy the normalization condition ‖Xj‖2/

√
n = 1 for all j = 1, . . . , d. Define

its pairwise incoherence µ(X) : = maxi 6=j |〈Xi, Xj〉/n|. In this exercise, we
prove that for a given sparsity s, the condition

s µ(X) < γ for a sufficiently small constant γ (5)

implies that the restricted nullspace property holds.

(a) Let S ⊂ {1, 2, . . . d} be any subset of size s. Prove that the condi-
tion (5) implies there is a function γ 7→ c(γ) such that λmin(XT

SXS/n) ≥ c(γ) > 0,
as long as γ is sufficiently small.

(b) Prove that X satisfies the restricted nullspace property with respect
to S. (Do this from first principles, without using any results on
restricted isometry.)

Problem 1.4
Let X ∈ Rn×d be a standard Gaussian random matrix (i.e., Xij ∼ N(0, 1),
i.i.d. for all entries (i.j)).

(a) Letting Xj ∈ Rn be its jth row, prove that there are constants c1, c2

such that

P
[

max
j 6=k

∣∣〈Xj , Xk〉
n

∣∣ ≥ δ] ≤ c1e
−c2nδ2 for all δ ∈ (0, 1).

(Hint: The random variable 1√
n

(
‖Xj‖2 − E[‖Xj‖2]

)
is sub-Gaussian

with parameter σ = 1/
√
n.)

2



(b) Use this result to show that X satisfies the restricted nullspace prop-

erty for all sparsity s ≤ c3

√
n

log d .

Problem 1.5
Consider the standard linear regression model y = Xθ∗ + w, where θ∗ ∈
Bq(Rq). Using the oracle inequality from lecture, and given an appropriate
lower bound on the sample size n in terms of (d,Rq, σ, q), show that there
are universal constants (c0, c1, c2) such that with probability 1− c1e

−c2 log d,
any Lasso solution θ̂ satisfies the bound

‖θ̂ − θ∗‖22 ≤ c0Rq
(σ2 log d

n

)1− q
2 .

Problem 1.6
Consider the sparse linear regression model y = Xθ∗ + w, where w ∼
N (0, σ2In×n) and θ∗ ∈ Rd is supported on a subset S. Suppose that the
sample covariance matrix Σ̂ = 1

nX
TX has its diagonal entries uniformly

upper bounded by one, and that for some parameter γ > 0, it also satisfies
an `∞-curvature condition of the form∥∥Σ̂∆

∥∥
∞ ≥ γ‖∆‖∞ for all ∆ ∈ C3(S). (6)

Show that with the regularization parameter λn = 4σ
√

log d
n , any Lasso

solution satisfies the `∞-bound

‖θ̂ − θ∗‖∞ ≤
6σ

γ

√
log d

n

with high probability.

Problem 1.7

For an integer k ∈ {1, . . . , d}, consider the following two subsets:

L0(k) : = B2(1) ∩ B0(k) = {θ ∈ Rd | ‖θ‖2 ≤ 1, and ‖θ‖0 ≤ k
}
,

L1(k) : = B2(1) ∩ B1(
√
k) = {θ ∈ Rd | ‖θ‖2 ≤ 1, and ‖θ‖1 ≤

√
k
}
.

Let conv denote the closure of the convex hull (when applied to a set).

(a) Prove that conv
(
L0(k)

)
⊆ L1(k).
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(b) Prove that L1(k) ⊆ 3 conv
(
L0(k)

)
.

(Hint: For part (b), you may find it useful to consider the support functions
of the two sets.)

Problem 1.8
Let X ∈ Rn×d be a fixed design matrix such that

|||XS |||op√
n
≤ C for all

subsets S of cardinality at most s. In this exercise, we show that with high
probability, any solution of the constrained Lasso

θ̂ ∈ arg min
‖θ‖1≤R

{ 1

2n
‖y −Xθ‖22

}
with R = ‖θ∗‖1 satisfies the bound

‖θ̂ − θ∗‖2 -
σ

κ

√
s log(e d/s)

n
(7)

where s = ‖θ∗‖0. Note that this bound provides an improvement for linear
sparsity (i.e., whenever s = αd for some constant α ∈ (0, 1)).

(a) Define the random variable

Z : = sup
∆∈Rd

∣∣〈∆, 1

n
XTw〉

∣∣ such that ‖∆‖2 ≤ 1 and ‖∆‖1 ≤
√
s, (8)

where w ∼ N (0, σ2I). Show that

P
[
Z ≥ c1 C σ

{√s log ed
s

n
+ δ
}]
≤ c2e

−c3 nδ2

for universal constants (c1, c2, c3). (Hint: The result of Exercise 1.7(b)
may be useful here.)

(b) Use part (a) and results from lecture to show that if X satisfies an RE
condition, then any optimal Lasso solution θ̂ satisfies the bound (7)

with probability 1− c′2e
−c′3s log

(
ed
s

)
.
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