Spring School, Westerland, Germany

Lectures by Martin Wainwright (wainwrig@berkeley.edu) Based on book in preparation

Problem Set 1

March 2015

Problem 1.1

A zero-mean variable Z is sub-Gaussian with parameter σ if $\mathbb{E}[e^{\lambda Z}] \leq e^{\lambda^2 \sigma^2/2}$ for all $\lambda \in \mathbb{R}$. Let $\{Z_i\}_{i=1}^n$ be a sequence of zero-mean random variables, each sub-Gaussian with parameter σ . (No independence assumptions are needed.)

- (a) Prove that $\mathbb{E}\left[\max_{i=1,\dots,n} Z_i\right] \leq \sqrt{2\sigma^2 \log n}$ for all $n \geq 1$. (*Hint:* The exponential is a convex function.)
- (b) Prove that $\mathbb{E}\left[\max_{i=1,\dots,n} |Z_i|\right] \le 2\sqrt{\sigma^2 \log n}$ for all $n \ge 2$.

Problem 1.2

For a given $q \in (0, 1]$, recall the (strong) ℓ_q -ball

$$\mathbb{B}_q(R_q) := \left\{ \theta \in \mathbb{R}^d \mid \sum_{j=1}^d |\theta_j|^q \le R_q \right\}.$$
(1)

The weak ℓ_q -ball with parameters (C, α) is defined as

$$\mathbb{B}_{w(\alpha)}(C) := \left\{ \theta \in \mathbb{R}^d \mid |\theta|_{(j)} \le Cj^{-\alpha} \quad \text{for } j = 1, \dots, d \right\}.$$
(2)

Here $|\theta|_{(j)}$ denote the order statistics of θ^* in absolute value, ordered from largest to smallest (so that $|\theta|_{(1)} = \max_{j=1,2,\dots,d} |\theta_j|$ and $|\theta|_{(d)} = \min_{j=1,2,\dots,d} |\theta_j|$.)

- (a) Show that the set $\mathbb{B}_q(R_q)$ is star-shaped around the origin. (A set $\mathcal{C} \subseteq \mathbb{R}^d$ is star-shaped around the origin if $\theta \in \mathcal{C} \Rightarrow t\theta \in \mathcal{C}$ for all $t \in [0, 1]$.)
- (b) For any $\alpha > 1/q$, show that there is a radius R_q depending on (C, α) such that $\mathbb{B}_{w(\alpha)}(C) \subseteq \mathbb{B}_q(R_q)$. This inclusion underlies the terminology "strong" and "weak" respectively.

(c) For a given integer $s \in \{1, 2, ..., d\}$, the best s-term approximation to a vector $\theta^* \in \mathbb{R}^d$ is given by

$$\Pi_s(\theta^*) := \arg\min_{\|\theta\|_0 \le s} \|\theta - \theta^*\|_2^2.$$
(3)

Give a closed form expression for $\Pi_s(\theta^*)$.

(d) When $\theta^* \in \mathbb{B}_q(R_q)$ for some $q \in (0, 1]$, show that the best *s*-term approximation satisfies

$$\|\Pi_s(\theta^*) - \theta^*\|_2^2 \le \left(R_q\right)^{2/q} \left(\frac{1}{s}\right)^{\frac{2}{q}-1}.$$
(4)

Problem 1.3

For a given design matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$, suppose that its columns $\{X_1, \ldots, X_d\}$ satisfy the normalization condition $\|X_j\|_2/\sqrt{n} = 1$ for all $j = 1, \ldots, d$. Define its pairwise incoherence $\mu(\mathbf{X}) := \max_{i \neq j} |\langle X_i, X_j \rangle/n|$. In this exercise, we prove that for a given sparsity s, the condition

$$s\,\mu(\mathbf{X}) < \gamma$$
 for a sufficiently small constant γ (5)

implies that the restricted nullspace property holds.

- (a) Let $S \subset \{1, 2, \ldots d\}$ be any subset of size s. Prove that the condition (5) implies there is a function $\gamma \mapsto c(\gamma)$ such that $\lambda_{\min}(\mathbf{X}_S^T \mathbf{X}_S/n) \ge c(\gamma) > 0$, as long as γ is sufficiently small.
- (b) Prove that \mathbf{X} satisfies the restricted nullspace property with respect to S. (Do this from first principles, without using any results on restricted isometry.)

Problem 1.4

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be a standard Gaussian random matrix (i.e., $X_{ij} \sim N(0, 1)$, i.i.d. for all entries (i.j)).

(a) Letting $X_j \in \mathbb{R}^n$ be its j^{th} row, prove that there are constants c_1, c_2 such that

$$\mathbb{P}\Big[\max_{j\neq k} \Big|\frac{\langle X_j, X_k\rangle}{n}\Big| \ge \delta\Big] \le c_1 e^{-c_2 n\delta^2} \quad \text{for all } \delta \in (0, 1).$$

(*Hint:* The random variable $\frac{1}{\sqrt{n}} (||X_j||_2 - \mathbb{E}[||X_j||_2])$ is sub-Gaussian with parameter $\sigma = 1/\sqrt{n}$.)

(b) Use this result to show that X satisfies the restricted nullspace property for all sparsity $s \leq c_3 \sqrt{\frac{n}{\log d}}$.

Problem 1.5

Consider the standard linear regression model $y = \mathbf{X}\theta^* + w$, where $\theta^* \in \mathbb{B}_q(R_q)$. Using the oracle inequality from lecture, and given an appropriate lower bound on the sample size n in terms of (d, R_q, σ, q) , show that there are universal constants (c_0, c_1, c_2) such that with probability $1 - c_1 e^{-c_2 \log d}$, any Lasso solution $\hat{\theta}$ satisfies the bound

$$\|\widehat{\theta} - \theta^*\|_2^2 \le c_0 R_q (\frac{\sigma^2 \log d}{n})^{1-\frac{q}{2}}.$$

Problem 1.6

Consider the sparse linear regression model $y = \mathbf{X}\theta^* + w$, where $w \sim \mathcal{N}(0, \sigma^2 I_{n \times n})$ and $\theta^* \in \mathbb{R}^d$ is supported on a subset S. Suppose that the sample covariance matrix $\hat{\Sigma} = \frac{1}{n} \mathbf{X}^T \mathbf{X}$ has its diagonal entries uniformly upper bounded by one, and that for some parameter $\gamma > 0$, it also satisfies an ℓ_{∞} -curvature condition of the form

$$\left\|\widehat{\Sigma}\Delta\right\|_{\infty} \ge \gamma \|\Delta\|_{\infty} \quad \text{for all } \Delta \in \mathbb{C}_3(S).$$
 (6)

Show that with the regularization parameter $\lambda_n = 4\sigma \sqrt{\frac{\log d}{n}}$, any Lasso solution satisfies the ℓ_{∞} -bound

$$\|\widehat{\theta} - \theta^*\|_{\infty} \le \frac{6\sigma}{\gamma} \sqrt{\frac{\log d}{n}}$$

with high probability.

Problem 1.7

For an integer $k \in \{1, \ldots, d\}$, consider the following two subsets:

$$\mathbb{L}_{0}(k) := \mathbb{B}_{2}(1) \cap \mathbb{B}_{0}(k) = \{ \theta \in \mathbb{R}^{d} \mid \|\theta\|_{2} \le 1, \text{ and } \|\theta\|_{0} \le k \}, \\ \mathbb{L}_{1}(k) := \mathbb{B}_{2}(1) \cap \mathbb{B}_{1}(\sqrt{k}) = \{ \theta \in \mathbb{R}^{d} \mid \|\theta\|_{2} \le 1, \text{ and } \|\theta\|_{1} \le \sqrt{k} \}.$$

Let $\overline{\text{conv}}$ denote the closure of the convex hull (when applied to a set).

(a) Prove that $\overline{\operatorname{conv}}(\mathbb{L}_0(k)) \subseteq \mathbb{L}_1(k)$.

(b) Prove that $\mathbb{L}_1(k) \subseteq 3 \overline{\operatorname{conv}}(\mathbb{L}_0(k))$.

(*Hint:* For part (b), you may find it useful to consider the support functions of the two sets.)

Problem 1.8

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be a fixed design matrix such that $\frac{\|\mathbf{X}_{S}\|\|_{\text{op}}}{\sqrt{n}} \leq C$ for all subsets S of cardinality at most s. In this exercise, we show that with high probability, any solution of the constrained Lasso

$$\widehat{\theta} \in \arg\min_{\|\theta\|_1 \le R} \left\{ \frac{1}{2n} \|y - \mathbf{X}\theta\|_2^2 \right\}$$

with $R = \|\theta^*\|_1$ satisfies the bound

$$\|\widehat{\theta} - \theta^*\|_2 \precsim \frac{\sigma}{\kappa} \sqrt{\frac{s \log(e \, d/s)}{n}} \tag{7}$$

where $s = \|\theta^*\|_0$. Note that this bound provides an improvement for linear sparsity (i.e., whenever $s = \alpha d$ for some constant $\alpha \in (0, 1)$).

(a) Define the random variable

$$Z := \sup_{\Delta \in \mathbb{R}^d} \left| \langle \Delta, \frac{1}{n} \mathbf{X}^T w \rangle \right| \quad \text{such that } \|\Delta\|_2 \le 1 \text{ and } \|\Delta\|_1 \le \sqrt{s}, \quad (8)$$

where $w \sim \mathcal{N}(0, \sigma^2 I)$. Show that

$$\mathbb{P}\Big[Z \ge c_1 C \sigma \left\{\sqrt{\frac{s \log \frac{ed}{s}}{n}} + \delta\right\}\Big] \le c_2 e^{-c_3 n \delta^2}$$

for universal constants (c_1, c_2, c_3) . (*Hint:* The result of Exercise 1.7(b) may be useful here.)

(b) Use part (a) and results from lecture to show that if **X** satisfies an RE condition, then any optimal Lasso solution $\hat{\theta}$ satisfies the bound (7) with probability $1 - c'_2 e^{-c'_3 s \log\left(\frac{ed}{s}\right)}$.