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Introduction

@ modern applications in science and engineering:

> large-scale problems: both d and n may be large (possibly d > n)
» need for high-dimensional theory that provides non-asymptotic results for
(n,d)

@ curses and blessings of high dimensionality

» exponential explosions in computational complexity
» statistical curses (sample complexity)
» concentration of measure

Key questions:
@ What embedded low-dimensional structures are present in data?

@ How can they can be exploited algorithmically?




QOutline

© Lecture 1-—2: Basics of sparse linear models

» Sparse linear systems: {y/¢1 equivalence
» Noisy case: Lasso, 2-bounds, prediction error and variable selection

© Lectures 2—3: More general theory

Martin V



Noiseless linear models and basis pursuit
X 9*
- S
SC
@ under-determined linear system: unidentifiable without constraints
@ say 0* € R? is sparse: supported on S C {1,2,...,d}.

)

n =

lo-optimization f1-relaxation
0* = arg min |0 0 € arg min ||0
g min 61l g min 6]
X0=y X0=y
Computationally intractable Linear program (easy to solve)

NP-hard Basis pursuit relaxation



Noiseless ¢/, recovery: Unrescaled sample size

Prob. exact recovery vs. sample size (1 = 0)
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Noiseless /; recovery: Rescaled

Prob. exact recovery vs. sample size {1 = 0)
1 i T < 2 4 4 9 4 L4
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Probabability of recovery versus rescaled sample size o 1= .
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Restricted nullspace: necessary and sufficient

Definition

For a fixed S C {1,2,...,d}, the matrix X € R"*? satisfies the restricted
nullspace property w.r.t. S, or RN(S) for short, if

{AeR! | XA =0} n {AeR!| [Aser < [As|i} = {0}.

N(X) c(9)

(Donoho & Xu, 2001; Feuer & Nemirovski, 2003; Cohen et al, 2009)
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o

Proposition

Basis pursuit ¢;-relaxation is exact for all S-sparse vectors <= X satisfies

RN(S).




Restricted nullspace: necessary and sufficient

Definition

For a fixed S C {1,2,...,d}, the matrix X € R"*? satisfies the restricted
nullspace property w.r.t. S, or RN(S) for short, if

{AeR! | XA =0} n {AeR!| [Aser < [As|i} = {0}.

N(X) c(9)

(Donoho & Xu, 2001; Feuer & Nemirovski, 2003; Cohen et al, 2009)

Proof (sufficiency):
(1) Error vector A = 6" — § satisfies XA = 0, and hence A € N(X).
(2) Show that A € C(S5)
Optimality of 8:  [[0]l; < [16*]1 = [05]:
Sparsity of 0*:  [|0]]; = 0" + Allx = |05 + Asly + || Ase]s.
Triangle ineauality: 03 + Rsll + [Bscls 2 1051 — 1Bsl + 1Bl

(3) Hence, A € N(X)NC(S), and (RN) = A =0.




lllustration of restricted nullspace property

Ag AS

(A1, Ag)

@ consider 6* = (0,0, 65), so that S = {3}.

@ error vector A =0 — §* belongs to the set

(C(S,].) = {(Al,Az,Ag,) S R3 | |A1| + |A2| < |A3|}

Martin Wainwright (UC Berkeley) High-dimensional statistics
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d

(X Tx ) - 51 T
max — — n
k=l d n dxd ikl = s \ 1 T
© Restricted isometry, or submatrix incoherence (Candes & Tao, 2005
Y,
XTx
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Some sufficient conditions
How to verify RN property for a given sparsity s?

© Elementwise incoherence condition (Donoho & Xuo, 2001; Feuer & Nem., 2003)
d

noir T4

Matrices with i.i.d. sub-Gaussian entries: holds w.h.p. for n = Q(s?log d)

© Restricted isometry, or submatrix incoherence (Candes & Tao, 2005)

S 62s~
U op

<7U—>

Matrices with i.i.d. sub-Gaussian entries: holds w.h.p. for n = Q(slog %)




Violating matrix incoherence (elementwise/RIP)

Important:

Incoherence/RIP conditions imply RN, but are far from necessary.
Very easy to violate them.....




Violating matrix incoherence (elementwise/RIP)

Form random design matrix

Xy
X3
X = [xl 9 xd] = T erXd,
d columns XT
——
N TOWS

each row X; ~ N(0,%), i.i.d.

Example: For some p € (0,1), consider the covariance matrix

Y= (1 p)laxa + p11".
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Violating matrix incoherence (elementwise/RIP)

Form random design matrix

Xt
X3
X:[:cl Ty ... xd] = T erXd,
d columns XT
——
n TOWS

each row X; ~ N(0,%), i.i.d.

Example: For some p € (0,1), consider the covariance matrix

S = (1= ) Lea + p117.

@ Elementwise incoherence violated: for any j # k

>p— e] > 1 — cj exp(—cane?).

@ RIP constants tend to infinity as (n, |S]|) increases:

[

- ISXSWQ >pu(s—1)—1- e} > 1 — ¢y exp(—cone?).



Noiseless ¢ recovery for ;1 = 0.5

Prob. exact recovery vs. sample size {1 = 0.5)
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Direct result for restricted nullspace/eigenvalues

Theorem (Raskutti, W., & Yu, 2010; Rudelson & Zhou, 2012)

Random Gaussian/sub-Gaussian matriz X € R™ ¢ with i.i.d. rows, covariance
Y, and let K% = max; Yj; be the maximal variance. Then

o e f)

2
1X613
n

1IZY20)12 — cor?(%) len: for all non-zero 6 € R

with probability at least 1 — 2e~ 3™,




Direct result for restricted nullspace/eigenvalues

Theorem (Raskutti, W., & Yu, 2010; Rudelson & Zhou, 2012)

Random Gaussian/sub-Gaussian matriz X € R™ ¢ with i.i.d. rows, covariance
Y, and let kK% = max; Yj; be the maximal variance. Then

o e f)

1613

> ¢1||ZY20|2 — cox%(D) len: for all non-zero 6 € R

with probability at least 1 — 2e~ 3™,

@ many interesting matrix families are covered
» Toeplitz dependency
» constant p-correlation (previous example)
» covariance matrix X can even be degenerate

@ related results hold for generalized linear models




Easy verification of restricted nullspace
@ for any A € C(S5), we have

1Al = Aslh + [Aselln < 2[1As] < 2Vs]|A]l

@ applying previous result:

2
IXALZ
n
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Easy verification of restricted nullspace
@ for any A € C(S5), we have

1Al = Aslh + [Aselln < 2[1As] < 2Vs]|A]l

@ applying previous result:

2
IXALZ
n

logd
{errmn(®) - dew(®) ZELL a2

(%)

@ have actually proven much more than restricted nullspace....

Definition

A design matrix X € R"*? satisfies the restricted eigenvalue (RE) condition
over S (denote RE(S)) with parameters & > 1 and v > 0 if

2
|XA3

v|lAll3 for all A € R such that ||Ase|; < alAs|:-
n

(van de Geer, 2007; Bickel, Ritov & Tsybakov, 2008)

-



Lasso and restricted eigenvalues

Turning to noisy observations...
S
n - +
SC
Estimator: Lasso program

. 1
0 in { —1ly — X602+ \,||0]1}.
A, € arg min {ofly — X0l + A 6]1}

Goal: Obtain bounds on { prediction error, parametric error, variable
selection }.

Martin Wainwright (UC Berkeley) High-dimension.



Different error metrics
© (In-sample) prediction error: || X (6 — 6%)(|2/n
“weakest” error measure
appropriate when 0 itself not of primary interest

strong dependence between columns of X possible (for slow rate)
proof technique: basic inequality

vvyVvVvyy
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Different error metrics
© (In-sample) prediction error: || X (6 — 6%)(|2/n

“weakest” error measure

appropriate when 0 itself not of primary interest

strong dependence between columns of X possible (for slow rate)
proof technique: basic inequality

vvyVvVvyy

© parametric error: |0 — 0%, for some r € [1, 0]
» appropriate for recovery problems
RE-type conditions appear in both lower/upper bounds
variable selection is not guaranteed
proof technique: basic inequality

vyvVvy

~

© variable selection: is supp(d) equal to supp(6*)?
» appropriate when non-zero locations are of scientific interest
» most stringent of all three criteria
> requires incoherence or irrepresentability conditions on X
» proof technique: primal-dual witness condition
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Lasso />-bounds: Four simple steps

Let’s analyze constrained version:

. 1 2 *
min —ly — X603 such that 0] < R = 6"

(1) By optimality of 8 and feasibility of 6*:
1 ~ 1
—lly — X0|13 < —lly — X6"|3.
oy — X1 < 5y~ X6°|3

o~

(2) Derive a basic inequality: re-arranging in terms of A=0-06"
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CIXA3 < (A XTw)
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Lasso />-bounds: Four simple steps

Let’s analyze constrained version:

. 1 2 *
min —ly — X603 such that 0] < R = 6"

(1) By optimality of 8 and feasibility of 6*:

1 ~ 1
My — X012 < —|ly — X0%2.
2nlly 5 < 2nlly 15

(2) Derive a basic inequality: re-arranging in terms of A=0—0"

1, .~ 2
ZIXAN?2 < Z(A. XTw).
CIXA3 < (A XTw)

(3) Restricted eigenvalue for LHS;  Hélder’s inequality for RHS

XTw

— 1 —~ 2 —~
Al2 < —IXA|2 < Z(A, XTw) < 2|A .
WA < ~IXAJF < ~(A, XTw) < 2JAl|L [|=—],

(4) As before, A € C(5), so that ||All; < 2/5|Al2, and hence

~ 4 xT
I e



Lasso error bounds for different models

Proposition
Suppose that
@ vector 6* has support S, with cardinality s, and
@ design matrix X satisfies RE(S) with parameter v > 0.

For constrained Lasso with R = ||0*||; or regularized Lasso with
An = 2| XTw/n||«, any optimal solution 6 satisfies the bound

XTw

n

oo

19—, < 25
:

Martin Wainwright (UC Berkeley) High-dimensional statistics March 2015
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Lasso error bounds for different models

Proposition
Suppose that
@ vector 6* has support S, with cardinality s, and
@ design matrix X satisfies RE(S) with parameter v > 0.

For constrained Lasso with R = ||0*||; or regularized Lasso with
An = 2| XTw/n||«, any optimal solution 6 satisfies the bound

XTw

n

oo

19—, < 25
:

@ this is a deterministic result on the set of optimizers

@ various corollaries for specific statistical models
» Compressed sensing: X;; ~ N(0,1) and bounded noise |Jw|2 < oy/n
» Deterministic design: X with bounded columns and w; ~ N(0,0?)

XTw 2logd ~ 4 log d
I n“ ocg,/?’”% whp, = [|f— 07|l < —/3° ‘;t’ .

Martin Wainwright (UC Berkeley) High-dimensional statistics March 2015

17 / 28



Lasso /s-error: Unrescaled sample size

MSE versus raw sample size
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Lasso />-error: Rescaled sample size

MSE versus rescaled sample size
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Extension to an oracle inequality

Previous theory assumed that 6* was “hard” sparse. Not realistic in practice.
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Previous theory assumed that 6* was “hard” sparse. Not realistic in practice.

Theorem (An oracle inequality)

Suppose that least-squares loss satisfies v-RE condition. Then for

An > max{2||X:w lloos 1/ 1Ogd} any optimal Lasso solution satisfies

~ 9 A2 2\,
—_0%12 < i 2 n Zrn
16— 6%z < __min d}{ 2 1S+ 5 = (|05l }

SC{t,...,
~——
estimation error approximation error

(cf. Bunea et al., 2007; Buhlmann and van de Geer, 2009; Koltchinski et al., 2011)
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Extension to an oracle inequality

Previous theory assumed that 6* was “hard” sparse. Not realistic in practice.

Theorem (An oracle inequality)
Suppose that least-squares loss satisfies v-RE condition. Then for

An > max{2||X:w lloos 1/ 1Ogd} any optimal Lasso solution satisfies

~ 9 A2 2\,
—_0%12 < i 2 n Zrn
16— 6%z < __min d}{ 2 1S+ 5 = (|05l }

SC{i,...,
~——
estimation error approximation error

@ when 0* is exactly sparse, set S = supp(6*) to recover previous result

@ more generally, choose S adaptively to trade-off estimation error versus
approximation error

(cf. Bunea et al., 2007; Buhlmann and van de Geer, 2009; Koltchinski et al., 2011)

Martin Wainwright (UC Berkeley) High-dimensional statistics March 2015 20 / 28



Consequences for /,-“ball” sparsity

@ for some ¢ € [0, 1], say 6* belongs
to £4-“ball”

d
By(Ry) := {0 € R? | Z 10,17 < Ry}
j=1

Martin Wainwright (UC Berkeley) High-dimensional statistics



Consequences for /,-“ball” sparsity

@ for some ¢ € [0,1], say 6* belongs
to £4-“ball”

d
By(Ry) := {0 € R? | Z 10,17 < Ry}
j=1

Corollary

Consider the linear model y = X0* + w, where X satisfies lower RE

conditions, and w has i.3.d o sub-Gaussian entries. For §* € B,(R,), any
Lasso solution satisfies (w.h.p.)

~ 2logd\1-a/2
_p*|12 < o~ log
18-6"13 3 R, (T2°)

Martin Wainwright (UC Berkeley)

High-dimensional statistics

March 2015 21 / 28
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@ let P be a family of probability distributions
@ consider a parameter P — 0(IP)
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where the infimum ranges over all measureable functions of n samples.
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Are these good results? Minimax theory

Definition (Minimax rate)

The minimax rate for (P) with metric p is given

M (0(P); p) := i HgtelgE[pQ(@H(P))],

where the infimum ranges over all measureable functions of n samples.

Concrete example:
@ let P be family of sparse linear regression problems with 60* € B, (R,)

@ consider fy-error metric p2(8,6) = || — 62

Theorem (Raskutti, W. & Yu, 2011)

Under “mild” conditions on design X and radius R,, we have

o? log d)l—%

M By (Ro): | - l12) = Ry (T—

see Donoho & Johnstone, 1994 for normal sequence model




Bounds on prediction error

Can predict a new response vector y € R” via gy = X 9. Associated
mean-squared error

~ IS X
—E[lly - 9] = ~[1X0 = X07)[|3 + o,

Theorem
Consider the constrained Lasso with R = ||0* ||y or regularized Lasso with

An = 404/ 1Ogd applied to an S-sparse problem with o-sub-Gaussian noise.
Then with hzgh probability:

Slow rate: If X has normalized columns (max; || X;|2/v/n < C), then any
optimal 0 satisfies the bound

1.~ log d
~|1X8 — X6*||2 < cC Roy| 22
n n
Fast rate: If X satisfies the v-RE condition over S, then

ca slogd

—X X0
15 - X073 < < 2




Prediction error: Proof of slow rate

Let’s analyze constrained version:

1 .
min o-fly = X603 such that |61 < R = [6° .

(1) By optimality of 9 and feasibility of #*, we have the basic inequality for
A=0- 06"

1 ~ 2~
— XAz < = Tav).
CIXA3 < (A XTw)
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A=0- 06"

1 ~ 2~
— XAz < = Tav).
CIXA3 < (A XTw)

(2) Holder’s inequality for RHS

oo’

1 ~ 2~ ~
CIXAJE < Z(8, XTw) < 2L |



Prediction error: Proof of slow rate

Let’s analyze constrained version:

. 1 2 *
min -y~ X03  such that 0] < R = 6"

(1) By optimality of 9 and feasibility of #*, we have the basic inequality for
A=0- 06"

1 ~ 2~
— XAz < = Tav).
CIXA3 < (A XTw)

(2) Holder’s inequality for RHS

1 ~ 2~ ~
CIXAJE < Z(8, XTw) < 2L |

oo’

(3) Since both # and 6* are feasible, we have ||Al; < 2R by triangle
inequality, and hence

1 ~ XTw
LixApg <ar |



Prediction error: Proof of fast rate

Let’s analyze constrained version:

1
min — ||y — X6|13 such that ||0|l; < R =|6%]1.
cRd 2n

(1) By optimality of 9 and feasibility of #*, we have the basic inequality for
A=060-— 0%

1, ~ 2 -
ZIXAN?2 < Z(A. XTw).
nH ”2*n<’ w)



Prediction error: Proof of fast rate

(1) By optimality of § and feasibility of 6*, we have the basic inequality for
A=0— 6%

1, .~ 2
ZIXAN?2 < (A, XTw).
CIXA3 < (A XTw)

(2) Holder’s inequality for RHS

oo
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)
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(1) By optimality of § and feasibility of 6*, we have the basic inequality for
A=0— 6%

1, .~ 2
ZIXAN?2 < (A, XTw).
CIXA3 < (A XTw)

(2) Holder’s inequality for RHS

oo

XTw
)

7
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XA < 2(A, XTw) < 2L |
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Prediction error: Proof of fast rate

(1) By optimality of § and feasibility of 6*, we have the basic inequality for
A=0- 0"

1, .~ 2
ZIXAN?2 < (A, XTw).
CIXA3 < (A XTw)

(2) Holder’s inequality for RHS

oo

XTw
)

7

1 ~ 2~ ~
XA < 2(A, XTw) < 2L |

(3) Since A € C(S5), we have ||Al|; < 24/5||Al|2, and hence

XTwH
n oo

1~ ~
EIIXAH% < 2Vs]|Alls|

(4) Now apply v-RE condition to RHS
XTw I < 11
n T A n

1, o~ ~ ~n Xt
~XAJ3 < 2v5AL| 1X Al | ==

oo’

Cancel terms and re-arrange.



Why RE conditions for fast rate?

Bothersome issue:
Why should prediction performance depend on an RE-condition? J

@ it is not fundamental: a method based on fy-regularization (exponential
time) can achieve the fast rate with only column normalization
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A computationally-constrained minimax rate

Complexity classes:
P: decision problems solvable in poly. time by a Turing machine

P/poly: class P plus polynomial-length advice string

Asssumptions:
o standard linear regression model y = X6* + w where w ~ N (0, O'2In><n)
o NP ¢ P/poly

Theorem (Zhang, W. & Jordan, COLT 2014)
There is a fized “bad” design matriz X € R™*? with RE constant v(X) such
for any polynomial-time computable 6 returning s-sparse outputs:

o o s 9logd
X)) o

X (0 — 0%)|2
sup E [l X ( )”2}
G*GBQ(S) n
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Analysis of Lasso estimator

Turning to noisy observations...
S
n - +
SC
Estimator: Lasso program

. 1
0 in { —1ly — X602+ \,||0]1}.
A, € arg min {ofly — X0l + A 6]1}

Goal: Obtain bounds on { prediction error, parametric error, variable
selection }.

Martin Wainwright (UC Berkeley) High-dimension.



Different error metrics
© (In-sample) prediction error: || X (6 — 6%)(|2/n
“weakest” error measure
appropriate when 0 itself not of primary interest

strong dependence between columns of X possible (for slow rate)
proof technique: basic inequality

vvyVvVvyy
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Different error metrics
© (In-sample) prediction error: || X (6 — 6%)(|2/n

“weakest” error measure

appropriate when 0 itself not of primary interest

strong dependence between columns of X possible (for slow rate)
proof technique: basic inequality

vvyVvVvyy

© parametric error: |0 — 0%, for some r € [1, 0]
» appropriate for recovery problems
RE-type conditions appear in both lower/upper bounds
variable selection is not guaranteed
proof technique: basic inequality

vyvVvy

~

© variable selection: is supp(d) equal to supp(6*)?
» appropriate when non-zero locations are of scientific interest
» most stringent of all three criteria
> requires incoherence or irrepresentability conditions on X
» proof technique: primal-dual witness condition



Extension to an oracle inequality

Previous theory assumed that 6* was “hard” sparse. Not realistic in practice.
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Extension to an oracle inequality

Previous theory assumed that 6* was “hard” sparse. Not realistic in practice.

Theorem (An oracle inequality)

Suppose that least-squares loss satisfies v-RE condition. Then for

An > max{2||X:w lloos 1/ 1Ogd} any optimal Lasso solution satisfies

~ 9 A2 2\,
—_0%12 < i 2 n Zrn
16— 6%z < __min d}{ 2 1S+ 5 = (|05l }

SC{t,...,
~——
estimation error approximation error

(cf. Bunea et al., 2007; Buhlmann and van de Geer, 2009; Koltchinski et al., 2011)
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Extension to an oracle inequality

Previous theory assumed that 6* was “hard” sparse. Not realistic in practice.

Theorem (An oracle inequality)
Suppose that least-squares loss satisfies v-RE condition. Then for

An > max{2||X:w lloos 1/ 1Ogd} any optimal Lasso solution satisfies

~ 9 A2 2\,
—_0%12 < i 2 n Zrn
16— 6%z < __min d}{ 2 1S+ 5 = (|05l }

SC{i,...,
~——
estimation error approximation error

@ when 0* is exactly sparse, set S = supp(6*) to recover previous result

@ more generally, choose S adaptively to trade-off estimation error versus
approximation error

(cf. Bunea et al., 2007; Buhlmann and van de Geer, 2009; Koltchinski et al., 2011)

Martin Wainwright (UC Berkeley) High-dimensional statistics March 2015 4 / 48



Consequences for /,-“ball” sparsity

@ for some ¢ € [0, 1], say 6* belongs
to £4-“ball”

d
By(Ry) := {0 € R? | Z 10,17 < Ry}
j=1
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Consequences for /,-“ball” sparsity

@ for some ¢ € [0,1], say 6* belongs
to £4-“ball”

d
By(Ry) := {0 € R? | Z 10,17 < Ry}
j=1

Corollary

Consider the linear model y = X0* + w, where X satisfies lower RE

conditions, and w has i.3.d o sub-Gaussian entries. For §* € B,(R,), any
Lasso solution satisfies (w.h.p.)

~ 2logd\1-a/2
_p*|12 < o~ log
18-6"13 3 R, (T2°)

Martin Wainwright (UC Berkeley)

High-dimensional statistics

March 2015 5/ 48
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@ let P be a family of probability distributions
@ consider a parameter P — 0(IP)
@ define a metric p on the parameter space
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Are these good results? Minimax theory

Definition (Minimax rate)

The minimax rate for (P) with metric p is given

M (0(P); p) := i HgtelgE[pQ(@H(P))],

where the infimum ranges over all measureable functions of n samples.

Concrete example:
@ let P be family of sparse linear regression problems with 60* € B, (R,)

@ consider fy-error metric p2(8,6) = || — 62

Theorem (Raskutti, W. & Yu, 2011)

Under “mild” conditions on design X and radius R,, we have

o? log d)l—%

M By (Ro): | - l12) = Ry (T—

see Donoho & Johnstone, 1994 for normal sequence model




Variable selection consistency

-~

Question
When is Lasso solution unique with support(6) = suppport(6*)? J
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Variable selection consistency

-~

Question
When is Lasso solution unique with support(6) = suppport(6*)? J

@ Requires a different proof technique, known as a primal-dual witness
method.

@ A procedure that attempts to construct a pair (é\, z) € R? x R? that
satisfy the KKT conditions for convex optimality

@ When procedure succeeds, it certifies the uniqueness and optimality of 0
as a Lasso solution.

Martin Wainwright (UC Berkeley) High-dimensional statistics March 2015 7 /48



Variable selection performance: unrescaled plots
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Variable selection performance: rescaled plots

Identity; Linear
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Consider blocks {é\s §Sc:| and [Zg  Zse].

e Set é\sc =0.
© Solve oracle sub-problem
fs = "y — Xs0s113 + Aalls]
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Primal-dual witness construction
Consider blocks {é\s §Sc:| and [Zg  Zge].

e Set é\sc =0.
© Solve oracle sub-problem
fs = "y — Xs0s113 + Aalls]
5 = arg Jfrel]ﬁf‘lsI 5, 1Y s0s|5 nllfsl1 ¢,
and choose Zz € 8||95||1’6 5 such that %Xg (Xsés — y) + Mzs = 0.
s=Ugs
l)\mm(XgﬂXs) > 0 in this step.

n
© Choose Zge € R4~ to satisfy the zero-subgradient conditions, and such

that ||Zse||oo < 1.

Require

Lemma

If the PDW succeeds, then 9 is the unique optimal solution of the Lasso and
satisfies support(0) C support(0*).




Proof sketch

© Form zero-subgradient conditions:

1[XTXs XEXs)[0s—05] 1[XZ L [Es] o
n|XLXs XL Xge 0 n | XL YT 2| T o]
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Proof sketch

© Form zero-subgradient conditions:

1[XTXs XEXs)[0s—05] 1[XZ L [Es] o
n|XLXs XL Xge 0 n | XL YT 2| T o]

© Solve for HAS — 0%:

Os — 05 = —(XTXs) ' XTw — \on(XEXg) ' 2s.
——

Us

Martin Wainwright (UC Berkeley) High-dimensional statistics



Proof sketch

© Form zero-subgradient conditions:

1[XTXs XEXs)[0s—05] 1[XZ war 7] 0
n XguXS Xg:uXSc 0 n ch n %\Sc B

© Solve for 53 — 0%:
s — 0% = —(XEXs) " XEw — Aan(XE Xg) ' 2s.
——

Us

© Solve for zge:

_ _ \%%
rge = XL Xo(XE Xg) 1 2g + X1 [I ~ Xs(XT Xg) 1X§} (5

nn

m
VS c

Checking that ||zg|lcoc < 1 requires irrepresentability condition

max X | Xg(X§Xs) i <a <1
jeS®

Martin Wainwright (UC Berkeley) High-dimensional statistics March 2015
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Bounds on prediction error

Can predict a new response vector y € R” via gy = X 9. Associated
mean-squared error

~ IS X
—E[lly - 9] = ~[1X0 = X07)[|3 + o,

Theorem
Consider the constrained Lasso with R = ||0* ||y or regularized Lasso with

An = 404/ 1Ogd applied to an S-sparse problem with o-sub-Gaussian noise.
Then with hzgh probability:

Slow rate: If X has normalized columns (max; || X;|2/v/n < C), then any
optimal 0 satisfies the bound

1.~ log d
~|1X8 — X6*||2 < cC Roy| 22
n n
Fast rate: If X satisfies the v-RE condition over S, then

ca slogd

—X X0
15 - X073 < < 2




Prediction error: Proof of slow rate

Let’s analyze constrained version:
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(1) By optimality of 9 and feasibility of #*, we have the basic inequality for
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Prediction error: Proof of slow rate

Let’s analyze constrained version:

. 1 2 *
min -y~ X03  such that 0] < R = 6"

(1) By optimality of 9 and feasibility of #*, we have the basic inequality for
A=0- 06"

1 ~ 2~
— XAz < = Tav).
CIXA3 < (A XTw)

(2) Holder’s inequality for RHS

1 ~ 2~ ~
CIXAJE < Z(8, XTw) < 2L |

oo’

(3) Since both # and 6* are feasible, we have ||Al; < 2R by triangle
inequality, and hence

1 ~ XTw
LixApg <ar |



Prediction error: Proof of fast rate

Let’s analyze constrained version:

1
min — ||y — X6|13 such that ||0|l; < R =|6%]1.
cRd 2n

(1) By optimality of 9 and feasibility of #*, we have the basic inequality for
A=060-— 0%

1, ~ 2 -
ZIXAN?2 < Z(A. XTw).
nH ”2*n<’ w)



Prediction error: Proof of fast rate

(1) By optimality of § and feasibility of 6*, we have the basic inequality for
A=0— 6%

1, .~ 2
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CIXA3 < (A XTw)

(2) Holder’s inequality for RHS
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Prediction error: Proof of fast rate

(1) By optimality of § and feasibility of 6*, we have the basic inequality for
A=0— 6%

1, .~ 2
ZIXAN?2 < (A, XTw).
CIXA3 < (A XTw)

(2) Holder’s inequality for RHS

oo

XTw
)

7
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XA < 2(A, XTw) < 2L |

(3) Since A € C(S5), we have ||Al|; < 24/5||Al|2, and hence
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Prediction error: Proof of fast rate

(1) By optimality of § and feasibility of 6*, we have the basic inequality for
A=0- 0"

1, .~ 2
ZIXAN?2 < (A, XTw).
CIXA3 < (A XTw)

(2) Holder’s inequality for RHS

oo

XTw
)

7

1 ~ 2~ ~
XA < 2(A, XTw) < 2L |

(3) Since A € C(S5), we have ||Al|; < 24/5||Al|2, and hence

XTwH
n oo

1~ ~
EIIXAH% < 2Vs]|Alls|

(4) Now apply v-RE condition to RHS
XTw I < 11
n T A n

1, o~ ~ ~n Xt
~XAJ3 < 2v5AL| 1X Al | ==

oo’

Cancel terms and re-arrange.



Why RE conditions for fast rate?

Bothersome issue:
Why should prediction performance depend on an RE-condition? J

@ it is not fundamental: a method based on fy-regularization (exponential
time) can achieve the fast rate with only column normalization
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A computationally-constrained minimax rate

Complexity classes:
P: decision problems solvable in poly. time by a Turing machine

P/poly: class P plus polynomial-length advice string

Asssumptions:
o standard linear regression model y = X6* + w where w ~ N (0, O'2In><n)
o NP ¢ P/poly

Theorem (Zhang, W. & Jordan, COLT 2014)
There is a fized “bad” design matriz X € R™*? with RE constant v(X) such
for any polynomial-time computable 6 returning s-sparse outputs:

o o s 9logd
X)) o

X (0 — 0%)|2
sup E [l X ( )”2}
G*GBQ(S) n




High-level overview

Regularized M-estimators:

Many statistical estimators take the form:

é\,\n cargmin{ L(6;Z]) +Xx. RO }.
~—~ 02 ———— ~——

Estimate Loss function Regularizer
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High-level overview

Regularized M-estimators:

Many statistical estimators take the form:

0\, cargmin{ L(6Z}) +x RO }
e ———— ~——
Estimate Loss function Regularizer

Past years have witnessed an explosion of results (compressed sensing,
covariance estimation, block-sparsity, graphical models, matrix completion...)

Question: J

Is there a common set of underlying principles?

Martin Wainwright (UC Berkeley) High-dimensional statistics March 2015 17 / 48



Up until now: Sparse regression

Set-up: Observe (y;, ;) pairs for i = 1,2,...,n, where

where 6 € R? is sparse.
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Up until now: Sparse regression

Set-up: Observe (y;, ;) pairs for i = 1,2,...,n, where

where 6 € R? is sparse.
X *
y 0
( S)
n ~ P
SC
Estimator: /¢;-regularized likelihood

~ ) 1 &
0 e argn%m{ - EZlogIF’(yi | (zi, 0)) + /\||0||1}.

i=1



Up until now: Sparse regression
X *
y 0
I ( S)
n ~ P
SC
Example: Logistic regression for binary responses y; € {0,1}:

- 1<
. - <$i,9) — . .
0 e argmeln{n ;zl {log(l +e ) — vilxi, 9)} + )\||9||1}.



Example: Block sparsity and group Lasso
Y X o* W
d

@ Matrix ©* partitioned into non-zero rows S and zero rows S¢
@ Various applications: multiple-view imaging, gene array prediction,
graphical model fitting.
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Example: Block sparsity and group Lasso
Y X o* W
d

@ Row-wise ¢1/l2-norm ||©]1,2 = Z?Zl 1©;1l2

@ Weighted r-group Lasso: (Wright et al., 2005; Tropp et al., 2006; Yuan & Lin,
2006)

1©%llg,r = > wgllOllr  for some r € [2,00].
geg

@ Extensions to { hierarchical, graph-based } groups
(e.g., Zhao et al., 2006; Bach et al., 2009; Baraniuk et al., 2009)



Example: Structured (inverse) covariance matrices

Zero pattern of inverse covariance

1 2 3 4 5 4
Set-up: Samples from random vector with sparse covariance ¥ or sparse

inverse covariance ©* € R4xd,

Estimator (for inverse covariance)

0 e argmm{ ZL z7 —log det(©) + )‘”Z (—)Jk|}

J#k

Some past work: Yuan & Lin, 2006; d’Asprémont et al., 2007; Bickel & Levina, 2007; El
Karoui, 2007; d’Aspremont et al., 2007; Rothman et al., 2007; Zhou et al., 2007; Friedman
et al., 2008; Lam & Fan, 2008; Ravikumar et al., 2008; Zhou, Cai & Huang, 2009; Guo et



Example: Low-rank matrix approximation
U D VT

Set-up: Matrix ©* € RP**P2 with rank r < min{py, p2}.

@*




Example: Low-rank matrix approximation

VT

Set-up: Matrix ©* € RP**P2 with rank r < min{py, p2}.

@*

Least-squares matrix regression: Given observations y; = (X;, ©*)) + w;,
solve:
min{p1,p2}

@Gargmln{ Zj (X O+ A Y w(@)}

j=1

Some past work: Fazel, 2001; Srebro et al., 2004; Recht, Fazel & Parillo, 2007; Bach, 2008;
Candes & Recht, 2008; Keshavan et al., 2009; Rohde & Tsybakov, 2010; Recht, 2009;
Negahban & W., 2010, Koltchinski et al., 2011



Application: Collaborative filtering

1

Universe of p; individuals and po films Observe n < pops ratings

(e.g., Srebro, Alon & Jaakkola, 2004; Candes & Recht, 2008)



Example: Additive matrix decomposition

Matrix Y can be (approximately) decomposed into sum:

Y

U D v
. II- .

Y = e + r
~—~ ~—~
Low-rank component Sparse component
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Matrix Y can be (approximately) decomposed into sum:

Y U D v
~ + " .
" oa
" L]

Y = e + r
~—~ ~—~
Low-rank component Sparse component

@ Initially proposed by Chandrasekaran, Sanghavi, Parillo & Willsky, 2009
@ Various applications:

» robust collaborative filtering
» robust PCA
» graphical model selection with hidden variables




Example: Additive matrix decomposition

Matrix Y can be (approximately) decomposed into sum:

Y U D v
~ + " .
" n
" L]

Y = e + r
~—~ ~—~
Low-rank component Sparse component

@ Initially proposed by Chandrasekaran, Sanghavi, Parillo & Willsky, 2009
@ Various applications:
» robust collaborative filtering
» robust PCA
» graphical model selection with hidden variables
@ subsequent work: Candes et al., 2010; Xu et al., 2010 Hsu et al., 2010;
Agarwal et al., 2011




Example: Discrete Markov random fields

Ok (x5, k)

Oi(zi)— | o Onlan)

Set-up: Samples from discrete MRF(e.g., Ising or Potts model):

]P’g(l‘l,...,xd) = % exp{ Zej(xj) + Z ij(l‘j,l‘k)}.

Jev (4:k)€E
Estimator: Given empirical marginal distributions {fi;, fi;x }:

6 < argmind 3= B, (0] + 3 Bp Bin(ay ] ~ 08 Z0)+0, 3 10301}

sV (j.k) (4,k)

Some past work: Spirtes et al., 2001; Abbeel et al., 2005; Csiszar & Telata, 2005;
Ravikumar et al, 2007; Schneidman et al., 2007; Santhanam & Wainwright, 2008; Sly et al.,
2008: Montanari and Pereira. 2009: Anandkumar et al.. 2010
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@ many structured classes of non-parametric models are possible:
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Non-parametric problems: Sparse additive models
@ non-parametric regression: severe curse of dimensionality!

@ many structured classes of non-parametric models are possible:
» additive models f*(x) = ijl fi () (Stone, 1985)
» multiple-index models f*(z) = g(B*x)

» sparse additive models:

d
fi(z) = Z 17 (z5) for unknown subset S
jeSs
(Lin & Zhang, 2003; Meier et al., 2007; Ravikumar et al. 2007; Koltchinski and
Yuan, 2008; Raskutti et al., 2010)



Non-parametric problems: Sparse additive models

Sparse additive models:

d
) = Z fi(z;) for unknown subset S
jeSs
(Lin & Zhang, 2003; Meier et al., 2007; Ravikumar et al. 2007; Koltchinski and Yuan, 2008

Raskutti, W., & Yu, 2010)
Noisy observations y; = f*(x;) +w; for i =1,...,n.

Estimator:

d

n d d
m 2 (= 2 o) LAY Ifilla+n D Il -
j=1 j=1

—_

fearg mdin
=Xiafi 4
Ilf5llx, 7 1 ll2,m




Example: Sparse principal components analysis

— +

n z27zT D

Set-up: Covariance matrix ¥ = ZZ7 + D, where leading eigenspace Z has
sparse columns.

Estimator:
O e argm@in{—«@, ) —|—)\nz (-)Jk}
(4.k)
Some past work: Johnstone, 2001; Joliffe et al., 2003; Johnstone & Lu, 2004; Zou et al.,

2004; d’Asprémont et al., 2007; Johnstone & Paul, 2008; Amini & Wainwright, 2008; Ma,
2012; Berthet & Rigollet, 2012; Nadler et al., 2012



Motivation and roadmap

@ many results on different high-dimensional models

@ all based on estimators of the type:

HA)\W cargmin{ L(6;Z]) +X, R(O) }.
~— 0eN —— N———
Estimate Loss function Regularizer
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Motivation and roadmap

@ many results on different high-dimensional models

@ all based on estimators of the type:

HA)\W cargmin{ L(6;Z]) +X, R(O) }.
~—~ 0eq N — N——~
Estimate Loss function Regularizer
Question:
Is there a common set of underlying principles? J

Answer: Yes, two essential ingredients.

(1) Restricted strong convexity of loss function

(1) Decomposability of the regularizer

Martin Wainwright (UC Berkeley) High-dimensional statistics



(1) Classical role of curvature in statistics

© Curvature controls difficulty of estimation:

oL

High curvature:

,,,,,,,,,,,,,,,

)

Canonical example:

easy to estimate

) 9

(b) Low curvature: harder

Log likelihood, Fisher information matrix and Cramér-Rao bound.




(1) Classical role of curvature in statistics

© Curvature controls difficulty of estimation:

0 0 0 0
High curvature: easy to estimate (b) Low curvature: harder

Canonical example:

Log likelihood, Fisher information matrix and Cramér-Rao bound.

© Formalized by lower bound on Taylor series error &, (A)

L0+ A) — L(6%) — (VLO"), A) > ~*|A|2  for all A around 6*.

En(A)




High dimensions: no strong convexity!

When d > n, the Hessian V2£(0; Z}) has nullspace of dimension d — n.



Restricted strong convexity

Definition
Loss function £,, satisfies restricted strong convexity (RSC) with respect to
regularizer R if

cmwm{ﬁ,,,<e*>+<vcn<e*),A>} > AR - 2R

Lower curvature Tolerance

Taylor error &,(A)

for all A in a suitable neighborhood of 6*.




Restricted strong convexity
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regularizer R if

Ln(0"+A) - {ﬁ,,,(e*) +(VLA(07), A>} > vlAll3 =7 R*(A)

Lower curvature Tolerance

Taylor error &,(A)

for all A in a suitable neighborhood of 6*.

@ ordinary strong convexity:
» special case with tolerance 7, = 0
» does not hold for most loss functions when d > n
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Restricted strong convexity

Definition
Loss function £,, satisfies restricted strong convexity (RSC) with respect to
regularizer R if

Ln(0"+A) - {ﬁ,,,(e*) +(VLA(07), A>} > vlAll3 =7 R*(A)

Lower curvature Tolerance

Taylor error &,(A)

for all A in a suitable neighborhood of 6*.

@ ordinary strong convexity:
» special case with tolerance 7, = 0
» does not hold for most loss functions when d > n
@ RSC enforces a lower bound on curvature, but only when R?(A) < [|A[|3

@ a function satisfying RSC can actually be non-convex




Example: RSC = RE for least-squares

o for least-squares loss £(0) = 5|y — X0||3:

En(A) = L, (0" + A) — {an*) (VLA (07), A>} - %HXAH%.

Martin Wainwright (UC Berkeley) High-dimensional statistics



Example: RSC = RE for least-squares

o for least-squares loss £(0) = 5|y — X0||3:

En(A) = Lo(0" + A) — {an*) (VLA (0%), A>} — %HXAHg.

@ Restricted eigenvalue (RE) condition  (van de Geer, 2007; Bickel et al., 2009):

XA|2
AL > a3 for all ase s < sl

Martin Wainwright (UC Berkeley) High-dimensional statistics



Example: RSC = RE for least-squares

o for least-squares loss £(0) = 5|y — X0||3:

En(A) = Lo(0" + A) — {an*) (VLA (0%), A>} — %HXAHg.

@ Restricted eigenvalue (RE) condition  (van de Geer, 2007; Bickel et al., 2009):

IX A3 2 d i
5 27 IAIR for all A€ R with [|A]L < 2v/5]Al..

Martin Wainwright (UC Berkeley) High-dimensional statistics



Example: Generalized linear models

A broad class of models for relationship between response y € X and
predictors z € R<.



Example: Generalized linear models

A broad class of models for relationship between response y € X and
predictors z € R<.
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Example: Generalized linear models

A broad class of models for relationship between response y € X and
predictors z € R<.

Based on families of conditional distributions:

€, 9*> _ (I)(<x7 9*>)}
c(0) '

Po(y | 2,0%) ox exp { L1

Examples:
@ Linear Gaussian model: ®(¢) = t2/2 and c(0) = o2
@ Binary response data y € {0,1}, Bernouilli model: ®(t) = log(1 + €*).
@ Multinomial responses (e.g., ratings)

@ Poisson models (count-valued data): ®(t) = e'.



GLM-based restricted strong convexity

@ let R be norm-based regularizer dominating the ¢>-norm (e.g., ¢1,
group-sparse, nuclear etc.)
@ let R* be the associated dual norm

@ covariate-Rademacher complexity of norm ball

n
sup (u, 75 Eili) = ’R* g €il‘i)
ni=

R(u)<1

where {e;}7_, are i.i.d sign variables



GLM-based restricted strong convexity

@ let R be norm-based regularizer dominating the fo-norm (e.g., £y,
group-sparse, nuclear etc.)

o let R* be the associated dual norm

@ covariate-Rademacher complexity of norm ball

n
sup (u, fg Eili) = R* g eiasi)
ni=

R(u)<1

where {e;}7_, are i.i.d sign variables
Theorem (Negahban et al., 2012; W. 2014)
1 be sampled i.i.d. Then

£(A) — {tR(A)Y forall |Alp <1
~——
Pop. Taylor error

with probability at least 1 — P[R*(L Y1 | g;2;) > t].

Let the covariates {x;}7

En(A) >
———
Emp. Taylor error




(11) Decomposable regularizers

AJ_

Subspace A: Approximation to model parameters
Complementary subspace A+: Undesirable deviations.

Martin Wainwright (UC Berkeley) High-dimension.



(11) Decomposable regularizers

AJ_

Subspace A: Approximation to model parameters
Complementary subspace A+: Undesirable deviations.

Regularizer R decomposes across (A4, A1) if

R(a+ ) = R(a) +R(B) for all « € A, and 3 € AL,
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(11) Decomposable regularizers

AJ_

Regularizer R decomposes across (4, A1) if

R(a+ ) =R(a)+R(B) foralla € A, and g€ A*.

o (weighted) £;-norms e nuclear norm

Includes:
® group-sparse norms e sums of decomposable norms

Martin Wainwright (UC Berkeley) High-dimensional statistics



(11) Decomposable regularizers

AJ_

Regularizer R decomposes across (A4, A1) if

R(a+ B) = R(a) + R(S) for all « € A, and 3 € AL,

Related definitions:

Geometric decomposability: Candes & Recht, 2012; Chandrasekaran et al., 2(
Weak decomposability: van de Geer, 2012

Martin Wainwright (UC Berkeley) High-dimensional statistics



Significance of decomposability

R(ITA(A)) R4+ (A))

R4+ (A))

(a) C for exact model (cone) (b) C for approximate model (star-shaped)

Lemma

Suppose that L is convex, and R is decomposable w.r.t. A. Then as long as
Ap > 2R* (Vﬁ(@*; Z{’)), the error vector A = @\n — 0* belongs to

C(A,B;6") == {A € Q | R(IL1. (A)) < 3R(I(A)) + 4R(M 41 (6%))}.




Example: Sparse vectors and /;-regularization
@ for each subset S C {1,...,d}, define subspace pairs

A(S) = {0eR?| 5 =0},
B*(9) {0 eR? | 95 =0} = AL(S).

@ decomposability of £;-norm:

Hes’ + 95‘6

. = l0slli +|0se]l1  for all 65 € A(S) and Osc € B+(S).

@ natural extension to group Lasso:
» collection of groups G; that partition {1,...,d}
> group norm

10llg,a = Z 18 1l o for some « € [1, 00].
J



Example: Low-rank matrices and nuclear norm
@ for each pair of r-dimensional subspaces U C RP! and V C RP2:
AUV) = {©eRP? | row(0) CV, col(®) CU}
B+U,V) = {TeRr*P | row(l) CV*, col(l) CU*}.
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Example: Low-rank matrices and nuclear norm
@ for each pair of r-dimensional subspaces U C RP! and V C RP2:
AUV) = {©eRP? | row(0) CV, col(®) CU}
B+U,V) = {TeRr*P | row(l) CV*, col(l) CU*}.

(a)©@c A (b) T € B+ (c)XeB

@ by construction, ©TT =0 for all © € A(U,V) and I € B+(U,V)
@ decomposability of nuclear norm ||©]|; = Z;n:lri{p 172} 5 (0):

lo+T): = IO+ T for all © € A(U,V) and T € B+(U, V).



Main theorem

Estimator

—~

0

n

in { £, (0; Z1") + \nR(0) 1,
€ argmin {£,(0:Z]) + AR (0) }

where L satisfies RSC(v, 7) w.r.t regularizer R.



Main theorem
Estimator

o~

0

n

€ in {1L,(0;27) 4+ \R(0) §,
arg min {£,,(6: Z1) + X R(0) }
where L satisfies RSC(v, 7) w.r.t regularizer R.

Theorem (Negahban, Ravikumar, W., & Yu, 2012)

Suppose that 0* € A, and W2(A)72 < 1. Then for any reqularization parameter
Ap > 2R* (V/J(H*; Zln)), any solution 0y, satisfies

~ N 1
1B, =071 3 =575 X2 WA,
Quantities that control rates:
@ curvature in RSC: v,
@ tolerance in RSC: 7
@ dual norm of regularizer: R*(v) := sup (v, u).
R(u)<1

@ optimal subspace const.: W(A) = sup R(0)/|9]«
e A\{0}




Main theorem

Estimator

o~

0

n

G i £77, 0: Z’n )\77,R 0 )
arg min {£,,(6: Z1) + X R(0) }

Theorem (Oracle version)

With \,, > 2R* (V/L(H*; Z{L)), any solution 9 satisfies

e )\/ 2 /\/
By —0r1e 3 Llwra)  + 0 2R, e

72 )
—_——— | ——
FEstimation error Approximation error

where X' = max{\, 7}.

Quantities that control rates:
@ curvature in RSC: ~p
@ tolerance in RSC: 7

@ dual norm of regularizer: R*(v) := sup (v, u).
R(u)<1

® optimal subspace const.: ¥(A) = sup R(9)/]|0]|«
6cA\{0}



Example: Group-structured regularizers

Many applications exhibit sparsity with more structure.....

@ ) @)

G, Go Gs

o divide index set {1,2,...,d} into groups G = {G1,Ga,...,Gr}

o for parameters v; € [1,00], define block-norm

T
16116 =D l6c. ]I,
t=1

@ group/block Lasso program
~ 1
0y, € in { —|ly — X015+ X\ 10]l,.g}
A, € arg min {o—fly — X6ll; + Aull6]g}

@ different versions studied by various authors
(Wright et al., 2005; Tropp et al., 2006; Yuan & Li, 2006; Baraniuk, 2008; Obozinski et
al., 2008; Zhao et al., 2008; Bach et al., 2009; Lounici et al., 2009)



Convergence rates for general group Lasso

Corollary

Say ©* is supported on group subset Sg, and X satisfies RSC. Then for
regularization parameter

XT
Ap =2 max H w| o where L4 =1 — L,
t=1,2,.... T n Vi Vi Ve
any solution §>\n satisfies
~ " 2 1ell..q
[10x, — 0%]l2 < —— P, (Sg) \ns where U, (Sg) = sup <

(L) 9 A(Sg)\{0}




Convergence rates for general group Lasso

Corollary

Say ©* is supported on group subset Sg, and X satisfies RSC. Then for
regularization parameter

XTw
Ap =2 max H “ o where L4 =1 — L,
t=1,2,.... T n Vi Vi Ve
any solution @n satisfies
1x,, = 07ll2 < — - Wu(Sg) An,  where W, (Sg) =  sup  lolwe
V(L) 6€A(Sg)\{0}

Some special cases with m = max. group size

© (/5 regularization: Group norm with v = 2

> " Sg|m | |Sg|logT
18, — 013 = (1% 1Saloe T




Convergence rates for general group Lasso

Corollary

Say ©* is supported on group subset Sg, and X satisfies RSC. Then for
regularization parameter

XTw
Ap =2 max H “ o where L4 =1 — L,
t=1,2,.... T n Vi Vi Ve
any solution @n satisfies
1x,, = 07ll2 < — - Wu(Sg) An,  where W, (Sg) =  sup  lolwe
V(L) 6€A(Sg)\{0}

Some special cases with m = max. group size

© /(1 /l regularization: group norm with v = oo

Sglm?2  |Sg| logT
|97L +|g\ g

163, — 713 = O .

).




Is adaptive estimation possible?

Consider a group-sparse problem with:
@ T groups in total
@ each of size m
@ |Sgl-active groups
@ T active coefficients per group

Group Lasso will achieve

16— 0713 3

S Scll
| i|m+| gl Og\g|.

n
Lasso will achieve

S| T log(1Glm)

0— 0|3 3
16 =612 3 -



Is adaptive estimation possible?

Consider a group-sparse problem with:
@ T groups in total
@ each of size m
@ |Sgl-active groups
o T active coefficients per group

Group Lasso will achieve

n

Lasso will achieve

Hé\_e*HQ < \Sg|Tlog(|g|m)
2~ n N
Natural question:

Can we design an estimator that optimally adapts to the degree of
elementwise versus group sparsity?




Answer: Overlap group Lasso

Represent ©* as a sum of row-sparse and element-wise sparse matrices.




Answer: Overlap group Lasso
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Define new norm on matrix space:

R.(0) = inf {wlllliz+ (7)1 }-



Answer: Overlap group Lasso

Represent ©* as a sum of row-sparse and element-wise sparse matrices.

Define new norm on matrix space:
R,(©) = inf {w Q + || }
( ) o IQ r || ”1,2 H ”1

Special case of the overlap group Lasso: (Obozinski et al., 2008; Jalali et al., 2011)



Example: Adaptivity with overlap group Lasso

Consider regularizer

R.(©) = inf {wlQiz+ Tl J.

with
@ |G| is number of groups
w = vm + Vlog|g] VIOg|g|’ @ m is max. group size
Vlogd

@ d is number of predictors.



Example: Adaptivity with overlap group Lasso

Consider regularizer

R.(©) = inf {wlQiz+ Tl J.

with
@ |G| is number of groups
w=-—2>X_>= @ m is max. group size

@ d is number of predictors.

Corollary

Under RSC condition on loss function, suppose that ©* can be decomposed as

a sum of an |S.,|-elementwise sparse matriz and an |Sg|-groupwise sparse

. . log d . . .
matriz (disjointly). Then for X = 4o/ 2%, any optimal solution satisfies
(w.h.p.)

S ;og d }

5 oz < o2 ISalm _ ISslloglgly |
18 -0712 3 o> {0 + b+

n




Example: Low-rank matrices and nuclear norm

@ low-rank matrix ©* € RP1*P2 that is exactly (or approximately) low-rank

@ noisy/partial observations of the form
yi = (X, ©)+w;,i=1,...,n, w; iid. noise
@ estimate by solving semi-definite program (SDP):

n min{p1,p2}
~ . 1 5
6 cargugn{ 1Y - (L 0D+ A Y 0]

i=1 j=1

el



Example: Low-rank matrices and nuclear norm

@ low-rank matrix ©* € RP1*P2 that is exactly (or approximately) low-rank

@ noisy/partial observations of the form
yi = (Xi, Y 4w;, i=1,...,n, w; 1iid. noise

@ estimate by solving semi-definite program (SDP):

n “ :
=1 j=1

n min{p1,p2}
~ . 1
6 cargugn{ 1Y - (L 0D+ A Y 0]

el

@ various applications:
» matrix compressed sensing
matrix completion
rank-reduced multivariate regression (multi-task learning)
time-series modeling (vector autoregressions)

>
>
>
» phase-retrieval problems



Rates for (near) low-rank estimation

For simplicity, consider matrix compressed sensing model: X; are random
sub-Gaussian projections).
For parameter ¢ € [0, 1], set of near low-rank matrices:

min{py,p2}
By(Ry) = {©° € RPP2 | 3" [0;(07) < Ry}

j=1



Rates for (near) low-rank estimation

For simplicity, consider matrix compressed sensing model: X; are random
sub-Gaussian projections).

For parameter ¢ € [0, 1], set of near low-rank matrices:

min{py,p2}
By(Ry) = {©° € RPP2 | 3" [0;(07) < Ry}

J=1

Corollary (Negahban & W., 2011)
With regularization parameter N\, > 160( \/% + /B ), we have w.h.p.

n

5 R, (o*(p+p2)\'"?
_ * (12 < q
B-el < ot (T




Rates for (near) low-rank estimation

For parameter g € [0, 1], set of near low-rank matrices:

min{py,p2}
By(Ry) = {©° €RPP2 | N~ [0;(07) < Ry}

j=1

Corollary (Negahban & W., 2011)
With regularization parameter N\, > 160( \/% + ./ ), we have w.h.p.

n

2 R o® (p1+p2)\ "2
— O*I2 < q
B-o < @t (Z

@ for a rank r matrix M
1Ml = "o (M) < Vi | o2(M) = Vr|M|r
j=1 j=1

@ solve nuclear norm regularized program with \,, > %\H > wiXi|2



Matrix completion

Random operator X : R¥*? — R™ with
[2(07)]; = Oy

where (a(i),b(7)) is a matrix index sampled uniformly at random.



Matrix completion

Random operator X : R¥*? — R™ with

where (a(i),b(7)) is a matrix index sampled uniformly at random.

Even in noiseless setting, model is unidentifiable:
Consider a rank one matrix:

1 00 ... 0
000 ... 0

O —eel = [00 0 ... 0
: 0

00 0 0



Matrix completion

Random operator X : R¥*? — R™ with
[%(@ )] = d®a(1

where (a(i),b(7)) is a matrix index sampled uniformly at random.

Even in noiseless setting, model is unidentifiable:
Consider a rank one matrix:

10 0 0
00 0 0
0" —eel = [0 00 0
: 0
00 0 0

Exact recovery based on eigen-incoherence involving leverage scores

(e.g., Recht & Candes, 2008; Gross, 2009)



A milder “spikiness” condition

Consider the “poisoned” low-rank matrix:

100 0
00 0 0
O =T +derel =T*+4|0 0 0 0
Do 0
00 0 0

where I'* is rank 7 — 1, all eigenectors perpendicular to e;.

Excluded by eigen-incoherence for all § > 0.

Martin Wainwright (UC Berkeley) High-dimensional statistics



A milder “spikiness” condition

Consider the “poisoned” low-rank matrix:

10 0 0
00 0 0
O  =T*+dejel =1 44|00 0 0 0
Do 0
00 0 0

where I'* is rank 7 — 1, all eigenectors perpendicular to e;.
Excluded by eigen-incoherence for all § > 0.

Control by spikiness ratio:

d)|© [0
1< < d.
(CHFe

Spikiness constraints used in various papers: Oh et al., 2009; Negahban & W.
2010, Koltchinski et al., 2011.

Martin Wainwright (UC Berkeley) High-dimensional statistics



Uniform law for matrix completion
Let X, : R¥*?4 — R™ be rescaled matrix completion random operator
(Xn(0))i = d O4(iy by where index (a(i),b(7)) from uniform distribution.
Define family of zero-mean random variables:

_x.(0)]3

Z,(©) : 2 ez,  for ® c R4,



Uniform law for matrix completion
Let X, : R¥*?4 — R™ be rescaled matrix completion random operator
(Xn(0))i = d O4(iy by where index (a(i),b(7)) from uniform distribution.
Define family of zero-mean random variables:

_x.(0)]3

Z,(©) : 2 ez,  for ® c R4,

Theorem (Negahban & W., 2010)

For random matriz completion operator X,,, there are universal positive
constants (c1,ca) such that

dlogd dlogd\ 2
Sup Za(©) < 1 d]O]lue [O]]y L28E 1 cQ(dn@nm\/ : )
©cRIXd\ {0} n n

“low-rank term” “spikiness” term

with probability at least 1 — exp(—dlogd).




