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Introduction

modern applications in science and engineering:
◮ large-scale problems: both d and n may be large (possibly d ≫ n)
◮ need for high-dimensional theory that provides non-asymptotic results for

(n, d)

curses and blessings of high dimensionality
◮ exponential explosions in computational complexity
◮ statistical curses (sample complexity)
◮ concentration of measure

Key questions:

What embedded low-dimensional structures are present in data?

How can they can be exploited algorithmically?



Outline

1 Lecture 1—2: Basics of sparse linear models

◮ Sparse linear systems: ℓ0/ℓ1 equivalence
◮ Noisy case: Lasso, ℓ2-bounds, prediction error and variable selection

2 Lectures 2—3: More general theory
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Noiseless linear models and basis pursuit

=

y

S

Sc

n× dn

X θ∗

under-determined linear system: unidentifiable without constraints
say θ∗ ∈ Rd is sparse: supported on S ⊂ {1, 2, . . . , d}.

ℓ0-optimization ℓ1-relaxation

θ∗ = arg min
θ∈Rd

‖θ‖0 θ̂ ∈ arg min
θ∈Rd

‖θ‖1
Xθ = y Xθ = y

Computationally intractable Linear program (easy to solve)
NP-hard Basis pursuit relaxation



Noiseless ℓ1 recovery: Unrescaled sample size
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Noiseless ℓ1 recovery: Rescaled
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Probabability of recovery versus rescaled sample size α := n
s log(d/s) .



Restricted nullspace: necessary and sufficient

Definition

For a fixed S ⊂ {1, 2, . . . , d}, the matrix X ∈ Rn×d satisfies the restricted
nullspace property w.r.t. S, or RN(S) for short, if

{
∆ ∈ Rd | X∆ = 0}︸ ︷︷ ︸

N(X)

∩
{
∆ ∈ Rd | ‖∆Sc‖1 ≤ ‖∆S‖1

}
︸ ︷︷ ︸

C(S)

=
{
0
}
.

(Donoho & Xu, 2001; Feuer & Nemirovski, 2003; Cohen et al, 2009)
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Proposition

Basis pursuit ℓ1-relaxation is exact for all S-sparse vectors ⇐⇒ X satisfies
RN(S).
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Definition

For a fixed S ⊂ {1, 2, . . . , d}, the matrix X ∈ Rn×d satisfies the restricted
nullspace property w.r.t. S, or RN(S) for short, if

{
∆ ∈ Rd | X∆ = 0}︸ ︷︷ ︸

N(X)

∩
{
∆ ∈ Rd | ‖∆Sc‖1 ≤ ‖∆S‖1

}
︸ ︷︷ ︸

C(S)

=
{
0
}
.

(Donoho & Xu, 2001; Feuer & Nemirovski, 2003; Cohen et al, 2009)

Proof (sufficiency):

(1) Error vector ∆̂ = θ∗ − θ̂ satisfies X∆̂ = 0, and hence ∆̂ ∈ N(X).

(2) Show that ∆̂ ∈ C(S)

Optimality of θ̂: ‖θ̂‖1 ≤ ‖θ∗‖1 = ‖θ∗S‖1.
Sparsity of θ∗: ‖θ̂‖1 = ‖θ∗ + ∆̂‖1 = ‖θ∗S + ∆̂S‖1 + ‖∆̂Sc‖1.

Triangle inequality: ‖θ∗S + ∆̂S‖1 + ‖∆̂Sc‖1 ≥ ‖θ∗S‖1 − ‖∆̂S‖1 + ‖∆̂Sc‖1.

(3) Hence, ∆̂ ∈ N(X) ∩ C(S), and (RN) =⇒ ∆̂ = 0.



Illustration of restricted nullspace property

∆3

(∆1,∆2)

∆3

(∆1,∆2)

consider θ∗ = (0, 0, θ∗3), so that S = {3}.
error vector ∆̂ = θ̂ − θ∗ belongs to the set

C(S; 1) :=
{
(∆1,∆2,∆3) ∈ R3 | |∆1|+ |∆2| ≤ |∆3|

}
.

Martin Wainwright (UC Berkeley) High-dimensional statistics March 2015 8 / 28



Some sufficient conditions
How to verify RN property for a given sparsity s?

1 Elementwise incoherence condition (Donoho & Xuo, 2001; Feuer & Nem., 2003)
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Violating matrix incoherence (elementwise/RIP)

Important:

Incoherence/RIP conditions imply RN, but are far from necessary.
Very easy to violate them.....



Violating matrix incoherence (elementwise/RIP)

Form random design matrix

X =
[
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]
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∈ Rn×d, each row Xi ∼ N(0,Σ), i.i.d.

Example: For some µ ∈ (0, 1), consider the covariance matrix

Σ = (1− µ)Id×d + µ11T .
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Example: For some µ ∈ (0, 1), consider the covariance matrix

Σ = (1− µ)Id×d + µ11T .

Elementwise incoherence violated: for any j 6= k

P
[ 〈xj , xk〉

n
≥ µ− ǫ

]
≥ 1− c1 exp(−c2nǫ

2).

RIP constants tend to infinity as (n, |S|) increases:

P
[∣∣∣∣∣∣X

T
S XS

n
− Is×s

∣∣∣∣∣∣
2
≥ µ (s− 1)− 1− ǫ

]
≥ 1− c1 exp(−c2nǫ

2).



Noiseless ℓ1 recovery for µ = 0.5
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Direct result for restricted nullspace/eigenvalues

Theorem (Raskutti, W., & Yu, 2010; Rudelson & Zhou, 2012)

Random Gaussian/sub-Gaussian matrix X ∈ Rn×d with i.i.d. rows, covariance
Σ, and let κ2 = maxj Σjj be the maximal variance. Then

‖Xθ‖22
n

≥ c1‖Σ1/2θ‖22 − c2κ
2(Σ)

log
(
e d (‖θ‖2

‖θ‖1
)2
)

n
‖θ‖21 for all non-zero θ ∈ Rd

with probability at least 1− 2e−c3n.



Direct result for restricted nullspace/eigenvalues

Theorem (Raskutti, W., & Yu, 2010; Rudelson & Zhou, 2012)

Random Gaussian/sub-Gaussian matrix X ∈ Rn×d with i.i.d. rows, covariance
Σ, and let κ2 = maxj Σjj be the maximal variance. Then

‖Xθ‖22
n

≥ c1‖Σ1/2θ‖22 − c2κ
2(Σ)

log
(
e d (‖θ‖2

‖θ‖1
)2
)

n
‖θ‖21 for all non-zero θ ∈ Rd

with probability at least 1− 2e−c3n.

many interesting matrix families are covered
◮ Toeplitz dependency
◮ constant µ-correlation (previous example)
◮ covariance matrix Σ can even be degenerate

related results hold for generalized linear models



Easy verification of restricted nullspace
for any ∆ ∈ C(S), we have

‖∆‖1 = ‖∆S‖1 + ‖∆Sc‖1 ≤ 2‖∆S‖ ≤ 2
√
s ‖∆‖2

applying previous result:

‖X∆‖22
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≥
{
c1λmin(Σ)− 4c2κ
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s log d
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for any ∆ ∈ C(S), we have

‖∆‖1 = ‖∆S‖1 + ‖∆Sc‖1 ≤ 2‖∆S‖ ≤ 2
√
s ‖∆‖2

applying previous result:

‖X∆‖22
n

≥
{
c1λmin(Σ)− 4c2κ

2(Σ)
s log d

n

}

︸ ︷︷ ︸
γ(Σ)

‖∆‖22.

have actually proven much more than restricted nullspace....

Definition

A design matrix X ∈ Rn×d satisfies the restricted eigenvalue (RE) condition
over S (denote RE(S)) with parameters α ≥ 1 and γ > 0 if

‖X∆‖22
n

≥ γ ‖∆‖22 for all ∆ ∈ Rd such that ‖∆Sc‖1 ≤ α‖∆S‖1.

(van de Geer, 2007; Bickel, Ritov & Tsybakov, 2008)



Lasso and restricted eigenvalues

Turning to noisy observations...

= +n
S

wy X θ∗

Sc

n× d

Estimator: Lasso program

θ̂λn
∈ arg min

θ∈Rd

{ 1

2n
‖y −Xθ‖22 + λn‖θ‖1

}
.

Goal: Obtain bounds on { prediction error, parametric error, variable
selection }.
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Different error metrics
1 (In-sample) prediction error: ‖X(θ̂ − θ∗)‖22/n

◮ “weakest” error measure
◮ appropriate when θ∗ itself not of primary interest
◮ strong dependence between columns of X possible (for slow rate)
◮ proof technique: basic inequality
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Different error metrics
1 (In-sample) prediction error: ‖X(θ̂ − θ∗)‖22/n

◮ “weakest” error measure
◮ appropriate when θ∗ itself not of primary interest
◮ strong dependence between columns of X possible (for slow rate)
◮ proof technique: basic inequality

2 parametric error: ‖θ̂ − θ∗‖r for some r ∈ [1,∞]
◮ appropriate for recovery problems
◮ RE-type conditions appear in both lower/upper bounds
◮ variable selection is not guaranteed
◮ proof technique: basic inequality

3 variable selection: is supp(θ̂) equal to supp(θ∗)?
◮ appropriate when non-zero locations are of scientific interest
◮ most stringent of all three criteria
◮ requires incoherence or irrepresentability conditions on X
◮ proof technique: primal-dual witness condition
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1

2n
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Let’s analyze constrained version:

min
θ∈Rd

1

2n
‖y −Xθ‖22 such that ‖θ‖1 ≤ R = ‖θ∗‖1.

(1) By optimality of θ̂ and feasibility of θ∗:

1

2n
‖y −Xθ̂‖22 ≤ 1

2n
‖y −Xθ∗‖22.

(2) Derive a basic inequality: re-arranging in terms of ∆̂ = θ̂ − θ∗:

1

n
‖X∆̂‖22 ≤ 2

n
〈∆̂, XTw〉.

(3) Restricted eigenvalue for LHS; Hölder’s inequality for RHS

γ‖∆̂‖22 ≤ 1

n
‖X∆̂‖22 ≤ 2

n
〈∆̂, XTw〉 ≤ 2‖∆̂‖1

∥∥X
Tw

n

∥∥
∞.

(4) As before, ∆̂ ∈ C(S), so that ‖∆̂‖1 ≤ 2
√
s‖∆̂‖2, and hence

‖∆̂‖2 ≤ 4

γ

√
s
∥∥X

Tw

n

∥∥
∞.



Lasso error bounds for different models

Proposition

Suppose that

vector θ∗ has support S, with cardinality s, and

design matrix X satisfies RE(S) with parameter γ > 0.

For constrained Lasso with R = ‖θ∗‖1 or regularized Lasso with

λn = 2‖XTw/n‖∞, any optimal solution θ̂ satisfies the bound

‖θ̂ − θ∗‖2 ≤ 4
√
s

γ

∥∥X
Tw

n
‖∞.
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various corollaries for specific statistical models
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Lasso error bounds for different models

Proposition

Suppose that

vector θ∗ has support S, with cardinality s, and

design matrix X satisfies RE(S) with parameter γ > 0.

For constrained Lasso with R = ‖θ∗‖1 or regularized Lasso with

λn = 2‖XTw/n‖∞, any optimal solution θ̂ satisfies the bound

‖θ̂ − θ∗‖2 ≤ 4
√
s

γ

∥∥X
Tw

n
‖∞.

this is a deterministic result on the set of optimizers
various corollaries for specific statistical models

◮ Compressed sensing: Xij ∼ N(0, 1) and bounded noise ‖w‖2 ≤ σ
√
n

◮ Deterministic design: X with bounded columns and wi ∼ N(0, σ2)

‖X
Tw

n
‖∞ ≤

√
3σ2 log d

n
w.h.p. =⇒ ‖θ̂ − θ∗‖2 ≤ 4σ

γ

√
3
s log d

n
.
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Lasso ℓ2-error: Unrescaled sample size
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Lasso ℓ2-error: Rescaled sample size
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Extension to an oracle inequality

Previous theory assumed that θ∗ was “hard” sparse. Not realistic in practice.
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Extension to an oracle inequality

Previous theory assumed that θ∗ was “hard” sparse. Not realistic in practice.

Theorem (An oracle inequality)

Suppose that least-squares loss satisfies γ-RE condition. Then for

λn ≥ max{2‖XTw
n ‖∞,

√
log d
n }, any optimal Lasso solution satisfies

‖θ̂ − θ∗‖22 ≤ min
S⊆{1,...,d}

{ 9

4

λ2
n

γ2
|S|

︸ ︷︷ ︸
estimation error

+
2λn

γ
‖θ∗Sc‖1

︸ ︷︷ ︸
approximation error

}
.

(cf. Bunea et al., 2007; Buhlmann and van de Geer, 2009; Koltchinski et al., 2011)
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Theorem (An oracle inequality)

Suppose that least-squares loss satisfies γ-RE condition. Then for

λn ≥ max{2‖XTw
n ‖∞,

√
log d
n }, any optimal Lasso solution satisfies

‖θ̂ − θ∗‖22 ≤ min
S⊆{1,...,d}

{ 9

4

λ2
n
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|S|

︸ ︷︷ ︸
estimation error

+
2λn

γ
‖θ∗Sc‖1
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approximation error

}
.

when θ∗ is exactly sparse, set S = supp(θ∗) to recover previous result

(cf. Bunea et al., 2007; Buhlmann and van de Geer, 2009; Koltchinski et al., 2011)
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Definition (Minimax rate)

The minimax rate for θ(P) with metric ρ is given

Mn(θ(P); ρ) := inf
θ̂

sup
P∈P

E
[
ρ2(θ̂, θ(P))

]
,

where the infimum ranges over all measureable functions of n samples.

Concrete example:

let P be family of sparse linear regression problems with θ∗ ∈ Bq(Rq)

consider ℓ2-error metric ρ2(θ̂, θ) = ‖θ̂ − θ‖22

Theorem (Raskutti, W. & Yu, 2011)

Under “mild” conditions on design X and radius Rq, we have

Mn

(
Bq(Rq); ‖ · ‖2

)
≍ Rq

(σ2 log d

n

)1− q
2

.

see Donoho & Johnstone, 1994 for normal sequence model



Bounds on prediction error

Can predict a new response vector y ∈ Rn via ŷ = Xθ̂. Associated
mean-squared error

1

n
E
[
‖y − ŷ‖22

]
=

1

n
‖Xθ̂ −Xθ∗)‖22 + σ2.

Theorem

Consider the constrained Lasso with R = ‖θ∗‖1 or regularized Lasso with

λn = 4σ
√

log d
n applied to an S-sparse problem with σ-sub-Gaussian noise.

Then with high probability:

Slow rate: If X has normalized columns (maxj ‖Xj‖2/
√
n ≤ C), then any

optimal θ̂ satisfies the bound

1

n
‖Xθ̂ −Xθ∗‖22 ≤ cC Rσ

√
log d

n

Fast rate: If X satisfies the γ-RE condition over S, then

1

n
‖Xθ̂ −Xθ∗‖22 ≤ cσ2

γ

s log d

n



Prediction error: Proof of slow rate
Let’s analyze constrained version:

min
θ∈Rd

1

2n
‖y −Xθ‖22 such that ‖θ‖1 ≤ R = ‖θ∗‖1.

(1) By optimality of θ̂ and feasibility of θ∗, we have the basic inequality for

∆̂ = θ̂ − θ∗:

1

n
‖X∆̂‖22 ≤ 2

n
〈∆̂, XTw〉.
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(3) Since both θ̂ and θ∗ are feasible, we have ‖∆̂‖1 ≤ 2R by triangle
inequality, and hence

1
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Prediction error: Proof of fast rate
(1) By optimality of θ̂ and feasibility of θ∗, we have the basic inequality for

∆̂ = θ̂ − θ∗:

1

n
‖X∆̂‖22 ≤ 2

n
〈∆̂, XTw〉.

(2) Hölder’s inequality for RHS

1

n
‖X∆̂‖22 ≤ 2

n
〈∆̂, XTw〉 ≤ 2‖∆̂‖1

∥∥X
Tw

n

∥∥
∞.

(3) Since ∆̂ ∈ C(S), we have ‖∆̂‖1 ≤ 2
√
s‖∆̂‖2, and hence

1

n
‖X∆̂‖22 ≤ 2

√
s‖∆̂‖2

∥∥X
Tw

n

∥∥
∞.

(4) Now apply γ-RE condition to RHS

1

n
‖X∆̂‖22 ≤ 2

√
s‖∆̂‖2

∥∥X
Tw

n

∥∥
∞ ≤ 1√

γ

1√
n
‖X∆̂‖2

∥∥X
Tw

n

∥∥
∞.

Cancel terms and re-arrange.



Why RE conditions for fast rate?

Bothersome issue:

Why should prediction performance depend on an RE-condition?

it is not fundamental: a method based on ℓ0-regularization (exponential
time) can achieve the fast rate with only column normalization
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Bothersome issue:

Why should prediction performance depend on an RE-condition?

it is not fundamental: a method based on ℓ0-regularization (exponential
time) can achieve the fast rate with only column normalization

some negative evidence: an explicit design matrix and sparse vector
(k = 2) for which Lasso achieves slow rate Foygel & Srebro (2011)

....but adaptive Lasso can achieve the fast rate for this counterexample.
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A computationally-constrained minimax rate
Complexity classes:
P: decision problems solvable in poly. time by a Turing machine
P/poly: class P plus polynomial-length advice string

Asssumptions:

standard linear regression model y = Xθ∗ + w where w ∼ N(0, σ2In×n)

NP 6⊆ P/poly

Theorem (Zhang, W. & Jordan, COLT 2014)

There is a fixed “bad” design matrix X ∈ Rn×d with RE constant γ(X) such

for any polynomial-time computable θ̂ returning s-sparse outputs:

sup
θ∗∈B0(s)

E
[‖X(θ̂ − θ∗)‖22

n

]
% σ2

γ2(X)

s1−δ log d

n
.
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Analysis of Lasso estimator

Turning to noisy observations...

= +n
S

wy X θ∗

Sc

n× d

Estimator: Lasso program

θ̂λn
∈ arg min

θ∈Rd

{ 1

2n
‖y −Xθ‖22 + λn‖θ‖1

}
.

Goal: Obtain bounds on { prediction error, parametric error, variable
selection }.
Martin Wainwright (UC Berkeley) High-dimensional statistics March 2015 2 / 48



Different error metrics
1 (In-sample) prediction error: ‖X(θ̂ − θ∗)‖22/n

◮ “weakest” error measure
◮ appropriate when θ∗ itself not of primary interest
◮ strong dependence between columns of X possible (for slow rate)
◮ proof technique: basic inequality
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Different error metrics
1 (In-sample) prediction error: ‖X(θ̂ − θ∗)‖22/n

◮ “weakest” error measure
◮ appropriate when θ∗ itself not of primary interest
◮ strong dependence between columns of X possible (for slow rate)
◮ proof technique: basic inequality

2 parametric error: ‖θ̂ − θ∗‖r for some r ∈ [1,∞]
◮ appropriate for recovery problems
◮ RE-type conditions appear in both lower/upper bounds
◮ variable selection is not guaranteed
◮ proof technique: basic inequality

3 variable selection: is supp(θ̂) equal to supp(θ∗)?
◮ appropriate when non-zero locations are of scientific interest
◮ most stringent of all three criteria
◮ requires incoherence or irrepresentability conditions on X
◮ proof technique: primal-dual witness condition



Extension to an oracle inequality

Previous theory assumed that θ∗ was “hard” sparse. Not realistic in practice.
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Previous theory assumed that θ∗ was “hard” sparse. Not realistic in practice.

Theorem (An oracle inequality)

Suppose that least-squares loss satisfies γ-RE condition. Then for

λn ≥ max{2‖XTw
n ‖∞,

√
log d
n }, any optimal Lasso solution satisfies

‖θ̂ − θ∗‖22 ≤ min
S⊆{1,...,d}

{ 9

4

λ2
n

γ2
|S|

︸ ︷︷ ︸
estimation error

+
2λn

γ
‖θ∗Sc‖1

︸ ︷︷ ︸
approximation error

}
.

(cf. Bunea et al., 2007; Buhlmann and van de Geer, 2009; Koltchinski et al., 2011)
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Consequences for ℓq-“ball” sparsity

for some q ∈ [0, 1], say θ∗ belongs
to ℓq-“ball”

Bq(Rq) :=
{
θ ∈ Rd |
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}
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The minimax rate for θ(P) with metric ρ is given
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θ̂

sup
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E
[
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,

where the infimum ranges over all measureable functions of n samples.

Concrete example:

let P be family of sparse linear regression problems with θ∗ ∈ Bq(Rq)

consider ℓ2-error metric ρ2(θ̂, θ) = ‖θ̂ − θ‖22

Theorem (Raskutti, W. & Yu, 2011)

Under “mild” conditions on design X and radius Rq, we have
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2
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see Donoho & Johnstone, 1994 for normal sequence model



Variable selection consistency

Question

When is Lasso solution unique with support(θ̂) = suppport(θ∗)?
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Variable selection consistency

Question

When is Lasso solution unique with support(θ̂) = suppport(θ∗)?

Requires a different proof technique, known as a primal-dual witness
method.

A procedure that attempts to construct a pair (θ̂, ẑ) ∈ Rd × Rd that
satisfy the KKT conditions for convex optimality

When procedure succeeds, it certifies the uniqueness and optimality of θ̂
as a Lasso solution.
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Variable selection performance: rescaled plots
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that ‖ẑSc‖∞ < 1.



Primal-dual witness construction

Consider blocks
[
θ̂S θ̂Sc

]
and

[
ẑS ẑSc

]
.

1 Set θ̂Sc = 0.

2 Solve oracle sub-problem

θ̂S = arg min
θS∈R|S|

{
1

2n
‖y −XSθS‖22 + λn‖θS‖1

}
,

and choose ẑ ∈ ∂‖θS‖1
∣∣∣
θS=θ̂S

such that 1
nX

T
S

(
Xsθ̂S − y

)
+ λnẑS = 0.

Require 1
nλmin(X

T
S XS) > 0 in this step.

3 Choose ẑSc ∈ Rd−s to satisfy the zero-subgradient conditions, and such
that ‖ẑSc‖∞ < 1.

Lemma

If the PDW succeeds, then θ̂ is the unique optimal solution of the Lasso and
satisfies support(θ̂) ⊆ support(θ∗).



Proof sketch

1 Form zero-subgradient conditions:

1

n

[
XT

S XS XT
ScXS

XT
ScXS XT

ScXSc

] [
θ̂S − θ∗S

0

]
− 1

n

[
XT

S

XT
Sc

]
w + λn

[
ẑS
ẑSc

]
=

[
0
0

]
.
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]
− 1

n

[
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S
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]
w + λn

[
ẑS
ẑSc

]
=

[
0
0

]
.

2 Solve for θ̂S − θ∗S :

θ̂S − θ∗S︸ ︷︷ ︸
US

= −(XT
S XS)

−1XT
S w − λnn(X

T
S XS)
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]
w + λn

[
ẑS
ẑSc

]
=

[
0
0

]
.

2 Solve for θ̂S − θ∗S :

θ̂S − θ∗S︸ ︷︷ ︸
US

= −(XT
S XS)

−1XT
S w − λnn(X

T
S XS)

−1zS .

3 Solve for zSc :

zSc = XT
ScXS(X

T
S XS)

−1zS︸ ︷︷ ︸
µ

+XT
Sc

[
I −XS(X

T
S XS)

−1XT
S

]
(

w

λn n
)

︸ ︷︷ ︸
VSc

.

Checking that ‖zSc‖∞ < 1 requires irrepresentability condition

max
j∈Sc

XT
j ‖XS(X

T
S XS)

−1‖1 < α < 1.
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Bounds on prediction error

Can predict a new response vector y ∈ Rn via ŷ = Xθ̂. Associated
mean-squared error

1

n
E
[
‖y − ŷ‖22

]
=

1

n
‖Xθ̂ −Xθ∗)‖22 + σ2.

Theorem

Consider the constrained Lasso with R = ‖θ∗‖1 or regularized Lasso with

λn = 4σ
√

log d
n applied to an S-sparse problem with σ-sub-Gaussian noise.

Then with high probability:

Slow rate: If X has normalized columns (maxj ‖Xj‖2/
√
n ≤ C), then any

optimal θ̂ satisfies the bound

1

n
‖Xθ̂ −Xθ∗‖22 ≤ cC Rσ

√
log d

n

Fast rate: If X satisfies the γ-RE condition over S, then

1

n
‖Xθ̂ −Xθ∗‖22 ≤ cσ2

γ

s log d

n



Prediction error: Proof of slow rate
Let’s analyze constrained version:

min
θ∈Rd

1

2n
‖y −Xθ‖22 such that ‖θ‖1 ≤ R = ‖θ∗‖1.

(1) By optimality of θ̂ and feasibility of θ∗, we have the basic inequality for

∆̂ = θ̂ − θ∗:

1

n
‖X∆̂‖22 ≤ 2

n
〈∆̂, XTw〉.
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(2) Hölder’s inequality for RHS

1

n
‖X∆̂‖22 ≤ 2

n
〈∆̂, XTw〉 ≤ 2‖∆̂‖1

∥∥X
Tw

n

∥∥
∞.

(3) Since both θ̂ and θ∗ are feasible, we have ‖∆̂‖1 ≤ 2R by triangle
inequality, and hence

1

n
‖X∆̂‖22 ≤ 4R

∥∥X
Tw

n

∥∥
∞.



Prediction error: Proof of fast rate
Let’s analyze constrained version:
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Prediction error: Proof of fast rate
(1) By optimality of θ̂ and feasibility of θ∗, we have the basic inequality for

∆̂ = θ̂ − θ∗:

1

n
‖X∆̂‖22 ≤ 2

n
〈∆̂, XTw〉.

(2) Hölder’s inequality for RHS

1

n
‖X∆̂‖22 ≤ 2

n
〈∆̂, XTw〉 ≤ 2‖∆̂‖1

∥∥X
Tw

n

∥∥
∞.

(3) Since ∆̂ ∈ C(S), we have ‖∆̂‖1 ≤ 2
√
s‖∆̂‖2, and hence

1

n
‖X∆̂‖22 ≤ 2

√
s‖∆̂‖2

∥∥X
Tw

n

∥∥
∞.

(4) Now apply γ-RE condition to RHS

1

n
‖X∆̂‖22 ≤ 2

√
s‖∆̂‖2

∥∥X
Tw

n

∥∥
∞ ≤ 1√

γ

1√
n
‖X∆̂‖2

∥∥X
Tw

n

∥∥
∞.

Cancel terms and re-arrange.



Why RE conditions for fast rate?

Bothersome issue:

Why should prediction performance depend on an RE-condition?

it is not fundamental: a method based on ℓ0-regularization (exponential
time) can achieve the fast rate with only column normalization
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Why RE conditions for fast rate?

Bothersome issue:

Why should prediction performance depend on an RE-condition?

it is not fundamental: a method based on ℓ0-regularization (exponential
time) can achieve the fast rate with only column normalization

some negative evidence: an explicit design matrix and sparse vector
(k = 2) for which Lasso achieves slow rate Foygel & Srebro (2011)

....but adaptive Lasso can achieve the fast rate for this counterexample.
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A computationally-constrained minimax rate
Complexity classes:
P: decision problems solvable in poly. time by a Turing machine
P/poly: class P plus polynomial-length advice string

Asssumptions:

standard linear regression model y = Xθ∗ + w where w ∼ N(0, σ2In×n)

NP 6⊆ P/poly



A computationally-constrained minimax rate
Complexity classes:
P: decision problems solvable in poly. time by a Turing machine
P/poly: class P plus polynomial-length advice string

Asssumptions:

standard linear regression model y = Xθ∗ + w where w ∼ N(0, σ2In×n)

NP 6⊆ P/poly

Theorem (Zhang, W. & Jordan, COLT 2014)

There is a fixed “bad” design matrix X ∈ Rn×d with RE constant γ(X) such

for any polynomial-time computable θ̂ returning s-sparse outputs:

sup
θ∗∈B0(s)

E
[‖X(θ̂ − θ∗)‖22

n

]
% σ2

γ2(X)

s1−δ log d

n
.



High-level overview

Regularized M-estimators:

Many statistical estimators take the form:

θ̂λn︸︷︷︸
Estimate

∈ argmin
θ∈Ω

{
L(θ;Zn

1 )︸ ︷︷ ︸
Loss function

+ λn R(θ)︸ ︷︷ ︸
Regularizer

}
.
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Regularized M-estimators:

Many statistical estimators take the form:

θ̂λn︸︷︷︸
Estimate

∈ argmin
θ∈Ω

{
L(θ;Zn

1 )︸ ︷︷ ︸
Loss function

+ λn R(θ)︸ ︷︷ ︸
Regularizer

}
.

Past years have witnessed an explosion of results (compressed sensing,
covariance estimation, block-sparsity, graphical models, matrix completion...)

Question:

Is there a common set of underlying principles?
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Up until now: Sparse regression
Set-up: Observe (yi, xi) pairs for i = 1, 2, . . . , n, where

yi ∼ P
(
· | 〈θ∗, xi〉

)
,

where θ ∈ Rd is sparse.
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Set-up: Observe (yi, xi) pairs for i = 1, 2, . . . , n, where

yi ∼ P
(
· | 〈θ∗, xi〉

)
,

where θ ∈ Rd is sparse.

( )n
S

y
X θ∗

Sc

n× dP∼

Estimator: ℓ1-regularized likelihood

θ̂ ∈ argmin
θ

{
− 1

n

n∑

i=1

logP(yi | 〈xi, θ〉
)
+ λ‖θ‖1

}
.



Up until now: Sparse regression

( )n
S

y
X θ∗

Sc

n× dP∼

Example: Logistic regression for binary responses yi ∈ {0, 1}:

θ̂ ∈ argmin
θ

{
1

n

n∑

i=1

{
log(1 + e〈xi, θ〉)− yi〈xi, θ〉

}
+ λ‖θ‖1

}
.



Example: Block sparsity and group Lasso
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n× d

Matrix Θ∗ partitioned into non-zero rows S and zero rows Sc

Various applications: multiple-view imaging, gene array prediction,
graphical model fitting.
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Example: Block sparsity and group Lasso

= +

m

m

m

n n

d

S

WY X Θ∗

Sc

n× d

Row-wise ℓ1/ℓ2-norm |||Θ|||1,2 =
∑d

j=1 ‖Θj‖2
Weighted r-group Lasso: (Wright et al., 2005; Tropp et al., 2006; Yuan & Lin,

2006)

|||Θ∗|||G,r =
∑

g∈G
ωg‖Θg‖r for some r ∈ [2,∞].

Extensions to { hierarchical, graph-based } groups
(e.g., Zhao et al., 2006; Bach et al., 2009; Baraniuk et al., 2009)



Example: Structured (inverse) covariance matrices

Zero pattern of inverse covariance

1 2 3 4 5

1

2

3

4

5

1 2

3

4

5

Set-up: Samples from random vector with sparse covariance Σ or sparse
inverse covariance Θ∗ ∈ Rd×d.

Estimator (for inverse covariance)

Θ̂ ∈ argmin
Θ

{
〈〈 1
n

n∑

i=1

xix
T
i , Θ〉〉 − log det(Θ) + λn

∑

j 6=k

|Θjk|
}

Some past work: Yuan & Lin, 2006; d’Asprémont et al., 2007; Bickel & Levina, 2007; El

Karoui, 2007; d’Aspremont et al., 2007; Rothman et al., 2007; Zhou et al., 2007; Friedman

et al., 2008; Lam & Fan, 2008; Ravikumar et al., 2008; Zhou, Cai & Huang, 2009; Guo et

al., 2010



Example: Low-rank matrix approximation

Θ∗ U D V T

r × r

p1 × p2 p1 × r
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Set-up: Matrix Θ∗ ∈ Rp1×p2 with rank r ≪ min{p1, p2}.



Example: Low-rank matrix approximation

Θ∗ U D V T

r × r

p1 × p2 p1 × r

r × p2

Set-up: Matrix Θ∗ ∈ Rp1×p2 with rank r ≪ min{p1, p2}.
Least-squares matrix regression: Given observations yi = 〈〈Xi, Θ

∗〉〉+ wi,
solve:

Θ̂ ∈ argmin
Θ

{
1

n

n∑

i=1

(yi − 〈〈Xi, Θ〉〉)2 + λn

min{p1,p2}∑

j=1

γj(Θ)

}

Some past work: Fazel, 2001; Srebro et al., 2004; Recht, Fazel & Parillo, 2007; Bach, 2008;

Candes & Recht, 2008; Keshavan et al., 2009; Rohde & Tsybakov, 2010; Recht, 2009;

Negahban & W., 2010, Koltchinski et al., 2011



Application: Collaborative filtering




. . . . . .

4 ∗ 3 . . . . . . ∗

3 5 ∗ . . . . . . 2

5 4 3 . . . . . . 3

2 ∗ ∗ . . . . . . 1




Universe of p1 individuals and p2 films Observe n ≪ p2p2 ratings

(e.g., Srebro, Alon & Jaakkola, 2004; Candes & Recht, 2008)



Example: Additive matrix decomposition
Matrix Y can be (approximately) decomposed into sum:
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Low-rank component

+ Γ∗
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Sparse component
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Example: Additive matrix decomposition
Matrix Y can be (approximately) decomposed into sum:

Y U V TD

p1 × p2 p1 × r

r × r r × p2

≈ +

Y = Θ∗
︸︷︷︸

Low-rank component

+ Γ∗
︸︷︷︸

Sparse component

Initially proposed by Chandrasekaran, Sanghavi, Parillo & Willsky, 2009
Various applications:

◮ robust collaborative filtering
◮ robust PCA
◮ graphical model selection with hidden variables

subsequent work: Candes et al., 2010; Xu et al., 2010 Hsu et al., 2010;

Agarwal et al., 2011



Example: Discrete Markov random fields

θj(xj) θk(xk)
θjk(xj , xk)

Set-up: Samples from discrete MRF(e.g., Ising or Potts model):

Pθ(x1, . . . , xd) =
1

Z(θ)
exp

{∑

j∈V

θj(xj) +
∑

(j,k)∈E

θjk(xj , xk)
}
.

Estimator: Given empirical marginal distributions {µ̂j , µ̂jk}:

Θ̂ ∈ argmin
Θ

{∑

s∈V

Eµ̂j
[θj(xj)] +

∑

(j,k)

Eµ̂jk
[θjk(xj , xk)]− logZ(θ)+λn

∑

(j,k)

|||θjk|||F
}

Some past work: Spirtes et al., 2001; Abbeel et al., 2005; Csiszar & Telata, 2005;

Ravikumar et al, 2007; Schneidman et al., 2007; Santhanam & Wainwright, 2008; Sly et al.,

2008; Montanari and Pereira, 2009; Anandkumar et al., 2010
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many structured classes of non-parametric models are possible:
◮ additive models f∗(x) =

∑d
j=1 f

∗
j (xj) (Stone, 1985)

◮ multiple-index models f∗(x) = g
(
B∗x

)

◮ sparse additive models:

f∗(x) =
d∑

j∈S

f∗
j (xj) for unknown subset S

(Lin & Zhang, 2003; Meier et al., 2007; Ravikumar et al. 2007; Koltchinski and

Yuan, 2008; Raskutti et al., 2010)



Non-parametric problems: Sparse additive models

Sparse additive models:

f∗(x) =
d∑

j∈S

f∗
j (xj) for unknown subset S

(Lin & Zhang, 2003; Meier et al., 2007; Ravikumar et al. 2007; Koltchinski and Yuan, 2008;

Raskutti, W., & Yu, 2010)

Noisy observations yi = f∗(xi) + wi for i = 1, . . . , n.

Estimator:

f̂ ∈ arg min
f=

∑d
j=1 fj

{ 1

n

n∑

i=1

(
yi −

d∑

j=1

fj(xij)
)2

+ λ

d∑

j=1

‖fj‖H
︸ ︷︷ ︸

‖fj‖1,H

+µn

d∑

j=1

‖fj‖n
︸ ︷︷ ︸

‖f‖1,n

}
.



Example: Sparse principal components analysis

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

+=
Σ ZZT D

Set-up: Covariance matrix Σ = ZZT +D, where leading eigenspace Z has
sparse columns.

Estimator:

Θ̂ ∈ argmin
Θ

{
−〈〈Θ, Σ̂〉〉+ λn

∑

(j,k)

|Θjk|
}

Some past work: Johnstone, 2001; Joliffe et al., 2003; Johnstone & Lu, 2004; Zou et al.,

2004; d’Asprémont et al., 2007; Johnstone & Paul, 2008; Amini & Wainwright, 2008; Ma,

2012; Berthet & Rigollet, 2012; Nadler et al., 2012



Motivation and roadmap

many results on different high-dimensional models

all based on estimators of the type:

θ̂λn︸︷︷︸
Estimate

∈ argmin
θ∈Ω

{
L(θ;Zn

1 )︸ ︷︷ ︸
Loss function

+ λn R(θ)︸ ︷︷ ︸
Regularizer

}
.
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Motivation and roadmap

many results on different high-dimensional models

all based on estimators of the type:

θ̂λn︸︷︷︸
Estimate

∈ argmin
θ∈Ω

{
L(θ;Zn

1 )︸ ︷︷ ︸
Loss function

+ λn R(θ)︸ ︷︷ ︸
Regularizer

}
.

Question:

Is there a common set of underlying principles?

Answer: Yes, two essential ingredients.

(I) Restricted strong convexity of loss function

(II) Decomposability of the regularizer

Martin Wainwright (UC Berkeley) High-dimensional statistics March 2015 27 / 48



(I) Classical role of curvature in statistics
1 Curvature controls difficulty of estimation:

δL

θ̂θ

∆

δL

θ̂θ

∆

High curvature: easy to estimate (b) Low curvature: harder

Canonical example:

Log likelihood, Fisher information matrix and Cramér-Rao bound.



(I) Classical role of curvature in statistics
1 Curvature controls difficulty of estimation:

δL

θ̂θ

∆

δL

θ̂θ

∆

High curvature: easy to estimate (b) Low curvature: harder

Canonical example:

Log likelihood, Fisher information matrix and Cramér-Rao bound.

2 Formalized by lower bound on Taylor series error En(∆)

L(θ∗ +∆)− L(θ∗)− 〈∇L(θ∗), ∆〉︸ ︷︷ ︸
En(∆)

≥ γ2‖∆‖2⋆ for all ∆ around θ∗.



High dimensions: no strong convexity!
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When d > n, the Hessian ∇2L(θ;Zn
1 ) has nullspace of dimension d− n.



Restricted strong convexity

Definition

Loss function Ln satisfies restricted strong convexity (RSC) with respect to
regularizer R if

Ln(θ
∗ +∆)−

{
Ln(θ

∗) + 〈∇Ln(θ
∗), ∆〉

}

︸ ︷︷ ︸
Taylor error En(∆)

≥ γℓ‖∆‖22︸ ︷︷ ︸
Lower curvature

− τ2ℓ R2(∆)︸ ︷︷ ︸
Tolerance

for all ∆ in a suitable neighborhood of θ∗.
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Restricted strong convexity

Definition

Loss function Ln satisfies restricted strong convexity (RSC) with respect to
regularizer R if

Ln(θ
∗ +∆)−

{
Ln(θ

∗) + 〈∇Ln(θ
∗), ∆〉

}

︸ ︷︷ ︸
Taylor error En(∆)

≥ γℓ‖∆‖22︸ ︷︷ ︸
Lower curvature

− τ2ℓ R2(∆)︸ ︷︷ ︸
Tolerance

for all ∆ in a suitable neighborhood of θ∗.

ordinary strong convexity:
◮ special case with tolerance τℓ = 0
◮ does not hold for most loss functions when d > n

RSC enforces a lower bound on curvature, but only when R2(∆) ≪ ‖∆‖22
a function satisfying RSC can actually be non-convex



Example: RSC ≡ RE for least-squares

for least-squares loss L(θ) = 1
2n‖y −Xθ‖22:

En(∆) = Ln(θ
∗ +∆)−

{
Ln(θ

∗)− 〈∇Ln(θ
∗), ∆〉

}
=

1

2n
‖X∆‖22.
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2n‖y −Xθ‖22:

En(∆) = Ln(θ
∗ +∆)−

{
Ln(θ

∗)− 〈∇Ln(θ
∗), ∆〉

}
=

1

2n
‖X∆‖22.

Restricted eigenvalue (RE) condition (van de Geer, 2007; Bickel et al., 2009):

‖X∆‖22
2n

≥ γ ‖∆‖22 for all ‖∆Sc‖1 ≤ ‖∆S‖1.
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Example: RSC ≡ RE for least-squares

for least-squares loss L(θ) = 1
2n‖y −Xθ‖22:

En(∆) = Ln(θ
∗ +∆)−

{
Ln(θ

∗)− 〈∇Ln(θ
∗), ∆〉

}
=

1

2n
‖X∆‖22.

Restricted eigenvalue (RE) condition (van de Geer, 2007; Bickel et al., 2009):

‖X∆‖22
2n

≥ γ ‖∆‖22 for all ∆ ∈ Rd with ‖∆‖1 ≤ 2
√
s‖∆‖2.

Martin Wainwright (UC Berkeley) High-dimensional statistics March 2015 31 / 48



Example: Generalized linear models
A broad class of models for relationship between response y ∈ X and
predictors x ∈ Rd.
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{y 〈x, θ∗〉 − Φ(〈x, θ∗〉)

c(σ)

}
.



Example: Generalized linear models
A broad class of models for relationship between response y ∈ X and
predictors x ∈ Rd.

Based on families of conditional distributions:

Pθ(y | x, θ∗) ∝ exp
{y 〈x, θ∗〉 − Φ(〈x, θ∗〉)

c(σ)

}
.

Examples:

Linear Gaussian model: Φ(t) = t2/2 and c(σ) = σ2.

Binary response data y ∈ {0, 1}, Bernouilli model: Φ(t) = log(1 + et).

Multinomial responses (e.g., ratings)

Poisson models (count-valued data): Φ(t) = et.



GLM-based restricted strong convexity
let R be norm-based regularizer dominating the ℓ2-norm (e.g., ℓ1,
group-sparse, nuclear etc.)

let R∗ be the associated dual norm

covariate-Rademacher complexity of norm ball

sup
R(u)≤1

〈u, 1

n

n∑

i=1

εixi〉 = R∗( 1
n

n∑

i=1

εixi

)

where {εi}ni=1 are i.i.d sign variables



GLM-based restricted strong convexity
let R be norm-based regularizer dominating the ℓ2-norm (e.g., ℓ1,
group-sparse, nuclear etc.)

let R∗ be the associated dual norm

covariate-Rademacher complexity of norm ball

sup
R(u)≤1

〈u, 1

n

n∑

i=1

εixi〉 = R∗( 1
n

n∑

i=1

εixi

)

where {εi}ni=1 are i.i.d sign variables

Theorem (Negahban et al., 2012; W. 2014)

Let the covariates {xi}ni=1 be sampled i.i.d. Then

En(∆)︸ ︷︷ ︸
Emp. Taylor error

≥ E(∆)︸ ︷︷ ︸
Pop. Taylor error

−c1
{
t R(∆)

}2
for all ‖∆‖2 ≤ 1

with probability at least 1− P[R∗( 1n
∑n

i=1 εixi) ≥ t].



(II) Decomposable regularizers

A

A⊥

Subspace A: Approximation to model parameters
Complementary subspace A⊥: Undesirable deviations.
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(II) Decomposable regularizers

A

A⊥

Regularizer R decomposes across (A,A⊥) if

R(α+ β) = R(α) +R(β) for all α ∈ A, and β ∈ A⊥.

Includes:
• (weighted) ℓ1-norms • nuclear norm
• group-sparse norms • sums of decomposable norms
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(II) Decomposable regularizers

A

A⊥

Regularizer R decomposes across (A,A⊥) if

R(α+ β) = R(α) +R(β) for all α ∈ A, and β ∈ A⊥.

Related definitions:

Geometric decomposability: Candes & Recht, 2012; Chandrasekaran et al., 2011
Weak decomposability: van de Geer, 2012
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Significance of decomposability

R(ΠA⊥(∆))

R(ΠA(∆))

R(ΠA(∆))

R(ΠA⊥(∆))

(a) C for exact model (cone) (b) C for approximate model (star-shaped)

Lemma

Suppose that L is convex, and R is decomposable w.r.t. A. Then as long as

λn ≥ 2R∗
(
∇L(θ∗;Zn

1 )
)
, the error vector ∆̂ = θ̂λn

− θ∗ belongs to

C(A,B; θ∗) :=
{
∆ ∈ Ω | R(ΠA⊥(∆)) ≤ 3R(ΠB(∆)) + 4R(ΠA⊥(θ∗))

}
.



Example: Sparse vectors and ℓ1-regularization
for each subset S ⊂ {1, . . . , d}, define subspace pairs

A(S) :=
{
θ ∈ Rd | θSc = 0

}
,

B⊥(S) :=
{
θ ∈ Rd | θS = 0

}
= A⊥(S).

decomposability of ℓ1-norm:

∥∥θS + θSc

∥∥
1

= ‖θS‖1 + ‖θSc‖1 for all θS ∈ A(S) and θSc ∈ B⊥(S).

natural extension to group Lasso:
◮ collection of groups Gj that partition {1, . . . , d}
◮ group norm

‖θ‖G,α =
∑

j

‖θGj‖α for some α ∈ [1,∞].



Example: Low-rank matrices and nuclear norm
for each pair of r-dimensional subspaces U ⊆ Rp1 and V ⊆ Rp2 :

A(U, V ) :=
{
Θ ∈ Rp1×p2 | row(Θ) ⊆ V, col(Θ) ⊆ U

}

B⊥(U, V ) :=
{
Γ ∈ Rp1×p2 | row(Γ) ⊆ V ⊥, col(Γ) ⊆ U⊥}.
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Example: Low-rank matrices and nuclear norm
for each pair of r-dimensional subspaces U ⊆ Rp1 and V ⊆ Rp2 :

A(U, V ) :=
{
Θ ∈ Rp1×p2 | row(Θ) ⊆ V, col(Θ) ⊆ U

}

B⊥(U, V ) :=
{
Γ ∈ Rp1×p2 | row(Γ) ⊆ V ⊥, col(Γ) ⊆ U⊥}.

(a) Θ ∈ A (b) Γ ∈ B⊥ (c) Σ ∈ B

by construction, ΘTΓ = 0 for all Θ ∈ A(U, V ) and Γ ∈ B⊥(U, V )

decomposability of nuclear norm |||Θ|||1 =
∑min{p1,p2}

j=1 σj(Θ):

|||Θ+ Γ|||1 = |||Θ|||1 + |||Γ|||1 for all Θ ∈ A(U, V ) and Γ ∈ B⊥(U, V ).



Main theorem
Estimator

θ̂λn
∈ arg min

θ∈Rd

{
Ln(θ;Z

n
1 ) + λnR(θ)

}
,

where L satisfies RSC(γ, τ) w.r.t regularizer R.



Main theorem
Estimator

θ̂λn
∈ arg min

θ∈Rd

{
Ln(θ;Z

n
1 ) + λnR(θ)

}
,

where L satisfies RSC(γ, τ) w.r.t regularizer R.

Theorem (Negahban, Ravikumar, W., & Yu, 2012)

Suppose that θ∗ ∈ A, and Ψ2(A)τ2n < 1. Then for any regularization parameter

λn ≥ 2R∗(∇L(θ∗;Zn
1 )

)
, any solution θ̂λn

satisfies

‖θ̂λn
− θ∗‖2⋆ - 1

γ2(L) λ2
n Ψ2(A).

Quantities that control rates:

curvature in RSC: γℓ

tolerance in RSC: τ

dual norm of regularizer: R∗(v) := sup
R(u)≤1

〈v, u〉.

optimal subspace const.: Ψ(A) = sup
θ∈A\{0}

R(θ)/‖θ‖⋆



Main theorem
Estimator

θ̂λn
∈ arg min

θ∈Rd

{
Ln(θ;Z

n
1 ) + λnR(θ)

}
,

Theorem (Oracle version)

With λn ≥ 2R∗(∇L(θ∗;Zn
1 )

)
, any solution θ̂ satisfies

‖θ̂λn
− θ∗‖2⋆ - (λ′

n)
2

γ2
Ψ2(A)

︸ ︷︷ ︸
Estimation error

+
λ′
n

γ
R(ΠA⊥(θ∗))

︸ ︷︷ ︸
Approximation error

where λ′ = max{λ, τ}.

Quantities that control rates:

curvature in RSC: γℓ

tolerance in RSC: τ

dual norm of regularizer: R∗(v) := sup
R(u)≤1

〈v, u〉.

optimal subspace const.: Ψ(A) = sup
θ∈A\{0}

R(θ)/‖θ‖⋆



Example: Group-structured regularizers
Many applications exhibit sparsity with more structure.....

G1 G2 G3

divide index set {1, 2, . . . , d} into groups G = {G1, G2, . . . , GT }

for parameters νi ∈ [1,∞], define block-norm

‖θ‖ν,G :=

T∑

t=1

‖θGt
‖νt

group/block Lasso program

θ̂λn
∈ arg min

θ∈Rd

{ 1

2n
‖y −Xθ‖22 + λn‖θ‖ν,G

}
.

different versions studied by various authors
(Wright et al., 2005; Tropp et al., 2006; Yuan & Li, 2006; Baraniuk, 2008; Obozinski et

al., 2008; Zhao et al., 2008; Bach et al., 2009; Lounici et al., 2009)



Convergence rates for general group Lasso

Corollary

Say Θ∗ is supported on group subset SG, and X satisfies RSC. Then for
regularization parameter

λn ≥ 2 max
t=1,2,...,T

∥∥X
Tw

n

∥∥
ν∗
t
, where 1

ν∗
t
= 1− 1

νt
,

any solution θ̂λn
satisfies

‖θ̂λn
− θ∗‖2 ≤ 2

γ(L)Ψν(SG)λn, where Ψν(SG) = sup
θ∈A(SG)\{0}

‖θ‖ν,G
‖θ‖2

.
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Some special cases with m ≡ max. group size

1 ℓ1/ℓ2 regularization: Group norm with ν = 2

‖θ̂λn
− θ∗‖22 = O

( |SG |m
n

+
|SG | log T

n

)
.



Convergence rates for general group Lasso

Corollary

Say Θ∗ is supported on group subset SG, and X satisfies RSC. Then for
regularization parameter

λn ≥ 2 max
t=1,2,...,T

∥∥X
Tw

n

∥∥
ν∗
t
, where 1

ν∗
t
= 1− 1

νt
,

any solution θ̂λn
satisfies

‖θ̂λn
− θ∗‖2 ≤ 2

γ(L)Ψν(SG)λn, where Ψν(SG) = sup
θ∈A(SG)\{0}

‖θ‖ν,G
‖θ‖2

.

Some special cases with m ≡ max. group size

1 ℓ1/ℓ∞ regularization: group norm with ν = ∞

‖θ̂λn
− θ∗‖22 = O

( |SG |m2

n
+

|SG | log T
n

)
.



Is adaptive estimation possible?
Consider a group-sparse problem with:

T groups in total

each of size m

|SG |-active groups

T active coefficients per group

Group Lasso will achieve

‖θ̂ − θ∗‖22 - |SG |m
n

+
|SG | log |G|

n
.

Lasso will achieve

‖θ̂ − θ∗‖22 - |SG |T log(|G|m)

n
.



Is adaptive estimation possible?
Consider a group-sparse problem with:

T groups in total

each of size m

|SG |-active groups

T active coefficients per group

Group Lasso will achieve

‖θ̂ − θ∗‖22 - |SG |m
n

+
|SG | log |G|

n
.

Lasso will achieve

‖θ̂ − θ∗‖22 - |SG |T log(|G|m)

n
.

Natural question:

Can we design an estimator that optimally adapts to the degree of
elementwise versus group sparsity?



Answer: Overlap group Lasso
Represent Θ∗ as a sum of row-sparse and element-wise sparse matrices.
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Define new norm on matrix space:

Rω(Θ) = inf
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{
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Answer: Overlap group Lasso
Represent Θ∗ as a sum of row-sparse and element-wise sparse matrices.

+=

Θ∗
Ω∗ Γ∗

Define new norm on matrix space:

Rω(Θ) = inf
Θ=Ω+Γ

{
ω‖Ω‖1,2 + ‖Γ‖1

}
.

Special case of the overlap group Lasso: (Obozinski et al., 2008; Jalali et al., 2011)



Example: Adaptivity with overlap group Lasso
Consider regularizer

Rω(Θ) = inf
Θ=Ω+Γ

{
ω‖Ω‖1,2 + ‖Γ‖1

}
.

with

ω =

√
m+

√
log |G|√

log d
,

|G| is number of groups

m is max. group size

d is number of predictors.



Example: Adaptivity with overlap group Lasso
Consider regularizer

Rω(Θ) = inf
Θ=Ω+Γ

{
ω‖Ω‖1,2 + ‖Γ‖1

}
.

with

ω =

√
m+

√
log |G|√

log d
,

|G| is number of groups

m is max. group size

d is number of predictors.

Corollary

Under RSC condition on loss function, suppose that Θ∗ can be decomposed as
a sum of an |Selt|-elementwise sparse matrix and an |SG |-groupwise sparse

matrix (disjointly). Then for λ = 4σ
√

log d
n , any optimal solution satisfies

(w.h.p.)

|||Θ̂−Θ∗|||2F - σ2
{ |SG |m

n
+

|SG | log |G|
n

}
+ σ2

{ |Selt| log d
n

}
.



Example: Low-rank matrices and nuclear norm

low-rank matrix Θ∗ ∈ Rp1×p2 that is exactly (or approximately) low-rank

noisy/partial observations of the form

yi = 〈〈Xi, Θ
∗〉〉+ wi, i = 1, . . . , n, wi i.i.d. noise

estimate by solving semi-definite program (SDP):

Θ̂ ∈ argmin
Θ

{
1

n

n∑

i=1

(yi − 〈〈Xi, Θ〉〉)2 + λn

min{p1,p2}∑

j=1

γj(Θ)

︸ ︷︷ ︸
|||Θ|||1

}



Example: Low-rank matrices and nuclear norm

low-rank matrix Θ∗ ∈ Rp1×p2 that is exactly (or approximately) low-rank

noisy/partial observations of the form

yi = 〈〈Xi, Θ
∗〉〉+ wi, i = 1, . . . , n, wi i.i.d. noise

estimate by solving semi-definite program (SDP):

Θ̂ ∈ argmin
Θ

{
1

n

n∑

i=1

(yi − 〈〈Xi, Θ〉〉)2 + λn

min{p1,p2}∑

j=1

γj(Θ)

︸ ︷︷ ︸
|||Θ|||1

}

various applications:
◮ matrix compressed sensing
◮ matrix completion
◮ rank-reduced multivariate regression (multi-task learning)
◮ time-series modeling (vector autoregressions)
◮ phase-retrieval problems



Rates for (near) low-rank estimation

For simplicity, consider matrix compressed sensing model: Xi are random
sub-Gaussian projections).

For parameter q ∈ [0, 1], set of near low-rank matrices:

Bq(Rq) =
{
Θ∗ ∈ Rp1×p2 |

min{p1,p2}∑

j=1

|σj(Θ
∗)|q ≤ Rq

}
.
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{
Θ∗ ∈ Rp1×p2 |
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|σj(Θ
∗)|q ≤ Rq

}
.

Corollary (Negahban & W., 2011)

With regularization parameter λn ≥ 16σ
(√

p1

n +
√

p2

n

)
, we have w.h.p.

|||Θ̂−Θ∗|||2F ≤ c0
Rq

γ(L)2
(
σ2 (p1 + p2)

n

)1− q
2



Rates for (near) low-rank estimation

For parameter q ∈ [0, 1], set of near low-rank matrices:

Bq(Rq) =
{
Θ∗ ∈ Rp1×p2 |

min{p1,p2}∑

j=1

|σj(Θ
∗)|q ≤ Rq

}
.

Corollary (Negahban & W., 2011)

With regularization parameter λn ≥ 16σ
(√

p1

n +
√

p2

n

)
, we have w.h.p.

|||Θ̂−Θ∗|||2F ≤ c0
Rq

γ(L)2
(
σ2 (p1 + p2)

n

)1− q
2

for a rank r matrix M

|||M |||1 =
r∑

j=1

σj(M) ≤ √
r

√√√√
r∑

j=1

σ2
j (M) =

√
r |||M |||F

solve nuclear norm regularized program with λn ≥ 2
n
|||∑n

i=1 wiXi|||2



Matrix completion

Random operator X : Rd×d → Rn with

[
X(Θ∗)

]
i
= dΘ∗

a(i)b(i)

where (a(i), b(i)) is a matrix index sampled uniformly at random.
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Random operator X : Rd×d → Rn with

[
X(Θ∗)

]
i
= dΘ∗

a(i)b(i)

where (a(i), b(i)) is a matrix index sampled uniformly at random.

Even in noiseless setting, model is unidentifiable:
Consider a rank one matrix:

Θ∗ = e1e
T
1 =




1 0 0 . . . 0
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Matrix completion

Random operator X : Rd×d → Rn with

[
X(Θ∗)

]
i
= dΘ∗

a(i)b(i)

where (a(i), b(i)) is a matrix index sampled uniformly at random.

Even in noiseless setting, model is unidentifiable:
Consider a rank one matrix:

Θ∗ = e1e
T
1 =




1 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

... 0
0 0 0 . . . 0




Exact recovery based on eigen-incoherence involving leverage scores
(e.g., Recht & Candes, 2008; Gross, 2009)



A milder “spikiness” condition

Consider the “poisoned” low-rank matrix:

Θ∗ = Γ∗ + δe1e
T
1 = Γ∗ + δ




1 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

... 0
0 0 0 . . . 0




where Γ∗ is rank r − 1, all eigenectors perpendicular to e1.

Excluded by eigen-incoherence for all δ > 0.
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A milder “spikiness” condition

Consider the “poisoned” low-rank matrix:

Θ∗ = Γ∗ + δe1e
T
1 = Γ∗ + δ




1 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

... 0
0 0 0 . . . 0




where Γ∗ is rank r − 1, all eigenectors perpendicular to e1.

Excluded by eigen-incoherence for all δ > 0.

Control by spikiness ratio:

1 ≤ d‖Θ∗‖∞
|||Θ∗|||F

≤ d.

Spikiness constraints used in various papers: Oh et al., 2009; Negahban & W.
2010, Koltchinski et al., 2011.
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Uniform law for matrix completion

Let Xn : Rd×d → Rn be rescaled matrix completion random operator

(Xn(Θ))i 7→ d Θa(i),b(i) where index (a(i), b(i)) from uniform distribution.

Define family of zero-mean random variables:

Zn(Θ) :=
‖Xn(Θ)‖22

n
− |||Θ|||2F , for Θ ∈ Rd×d.



Uniform law for matrix completion

Let Xn : Rd×d → Rn be rescaled matrix completion random operator

(Xn(Θ))i 7→ d Θa(i),b(i) where index (a(i), b(i)) from uniform distribution.

Define family of zero-mean random variables:

Zn(Θ) :=
‖Xn(Θ)‖22

n
− |||Θ|||2F , for Θ ∈ Rd×d.

Theorem (Negahban & W., 2010)

For random matrix completion operator Xn, there are universal positive
constants (c1, c2) such that

sup
Θ∈Rd×d\{0}

Zn(Θ) ≤ c1 d‖Θ‖∞ |||Θ|||nuc
√

d log d

n︸ ︷︷ ︸
“low-rank term”

+ c2

(
d‖Θ‖∞

√
d log d

n

)2

︸ ︷︷ ︸
“spikiness” term

with probability at least 1− exp(−d log d).


