A primer on high-dimensional statistics: Part I

Martin Wainwright
UC Berkeley
Departments of Statistics, and EECS

Spring School, Westerland, March 2015

Introduction

- classical asymptotic theory: sample size $n \rightarrow+\infty$ with number of parameters d fixed
- law of large numbers, central limit theory
- consistency of maximum likelihood estimation

Introduction

- classical asymptotic theory: sample size $n \rightarrow+\infty$ with number of parameters d fixed
- law of large numbers, central limit theory
- consistency of maximum likelihood estimation
- modern applications in science and engineering:
- large-scale problems: both d and n may be large (possibly $d \gg n$)
- need for high-dimensional theory that provides non-asymptotic results for (n, d)

Introduction

- classical asymptotic theory: sample size $n \rightarrow+\infty$ with number of parameters d fixed
- law of large numbers, central limit theory
- consistency of maximum likelihood estimation
- modern applications in science and engineering:
- large-scale problems: both d and n may be large (possibly $d \gg n$)
- need for high-dimensional theory that provides non-asymptotic results for (n, d)
- curses and blessings of high dimensionality
- exponential explosions in computational complexity
- statistical curses (sample complexity)
- concentration of measure

Introduction

- modern applications in science and engineering:
- large-scale problems: both d and n may be large (possibly $d \gg n$)
- need for high-dimensional theory that provides non-asymptotic results for (n, d)
- curses and blessings of high dimensionality
- exponential explosions in computational complexity
- statistical curses (sample complexity)
- concentration of measure

Key questions:

- What embedded low-dimensional structures are present in data?
- How can they can be exploited algorithmically?

Outline

(1) Lecture 1-2: Basics of sparse linear models

- Sparse linear systems: ℓ_{0} / ℓ_{1} equivalence
- Noisy case: Lasso, ℓ_{2}-bounds, prediction error and variable selection
(2) Lectures 2-3: More general theory

Noiseless linear models and basis pursuit

- under-determined linear system: unidentifiable without constraints
- say $\theta^{*} \in \mathbb{R}^{d}$ is sparse: supported on $S \subset\{1,2, \ldots, d\}$.
$\underline{\ell_{0} \text {-optimization }}$
$\theta^{*}=\arg \min _{\theta \in \mathbb{R}^{d}}\|\theta\|_{0}$
$X \theta=y$
$\underline{\ell_{1} \text {-relaxation }}$

$$
\begin{gathered}
\widehat{\theta} \in \arg \min _{\theta \in \mathbb{R}^{d}}\|\theta\|_{1} \\
X \theta=y
\end{gathered}
$$

Computationally intractable NP-hard

Linear program (easy to solve)
Basis pursuit relaxation

Noiseless ℓ_{1} recovery: Unrescaled sample size

Prob. exact recovery vs. sample size $\mu=0$)

Probability of recovery versus sample size n.

Noiseless ℓ_{1} recovery: Rescaled

Probabability of recovery versus rescaled sample size $\alpha:=\frac{n}{s \log (d / s)}$.

Restricted nullspace: necessary and sufficient

Definition

For a fixed $S \subset\{1,2, \ldots, d\}$, the matrix $X \in \mathbb{R}^{n \times d}$ satisfies the restricted nullspace property w.r.t. S, or $\mathrm{RN}(S)$ for short, if

$$
\underbrace{\left\{\Delta \in \mathbb{R}^{d} \mid X \Delta=0\right\}}_{\mathbb{N}(X)} \cap \underbrace{\left\{\Delta \in \mathbb{R}^{d} \mid\left\|\Delta_{S^{c}}\right\|_{1} \leq\left\|\Delta_{S}\right\|_{1}\right\}}_{\mathbb{C}(S)}=\{0\} .
$$

(Donoho \& Xu, 2001; Feuer \& Nemirovski, 2003; Cohen et al, 2009)

Restricted nullspace: necessary and sufficient

Definition

For a fixed $S \subset\{1,2, \ldots, d\}$, the matrix $X \in \mathbb{R}^{n \times d}$ satisfies the restricted nullspace property w.r.t. S, or $\mathrm{RN}(S)$ for short, if

$$
\underbrace{\left\{\Delta \in \mathbb{R}^{d} \mid X \Delta=0\right\}}_{\mathbb{N}(X)} \cap \underbrace{\left\{\Delta \in \mathbb{R}^{d} \mid\left\|\Delta_{S^{c}}\right\|_{1} \leq\left\|\Delta_{S}\right\|_{1}\right\}}_{\mathbb{C}(S)}=\{0\}
$$

(Donoho \& Xu, 2001; Feuer \& Nemirovski, 2003; Cohen et al, 2009)

Proposition

Basis pursuit ℓ_{1}-relaxation is exact for all S-sparse vectors $\Longleftrightarrow X$ satisfies $\mathrm{RN}(S)$.

Restricted nullspace: necessary and sufficient

Definition

For a fixed $S \subset\{1,2, \ldots, d\}$, the matrix $X \in \mathbb{R}^{n \times d}$ satisfies the restricted nullspace property w.r.t. S, or $\mathrm{RN}(S)$ for short, if

$$
\underbrace{\left\{\Delta \in \mathbb{R}^{d} \mid X \Delta=0\right\}}_{\mathbb{N}(X)} \cap \underbrace{\left\{\Delta \in \mathbb{R}^{d} \mid\left\|\Delta_{S^{c}}\right\|_{1} \leq\left\|\Delta_{S}\right\|_{1}\right\}}_{\mathbb{C}(S)}=\{0\} .
$$

(Donoho \& Xu, 2001; Feuer \& Nemirovski, 2003; Cohen et al, 2009)
Proof (sufficiency):
(1) Error vector $\widehat{\Delta}=\theta^{*}-\widehat{\theta}$ satisfies $X \widehat{\Delta}=0$, and hence $\widehat{\Delta} \in \mathbb{N}(X)$.
(2) Show that $\widehat{\Delta} \in \mathbb{C}(S)$

Optimality of $\widehat{\theta}: \quad\|\widehat{\theta}\|_{1} \leq\left\|\theta^{*}\right\|_{1}=\left\|\theta_{S}^{*}\right\|_{1}$.
Sparsity of $\theta^{*}: \quad\|\widehat{\theta}\|_{1}=\left\|\theta^{*}+\widehat{\Delta}\right\|_{1}=\left\|\theta_{S}^{*}+\widehat{\Delta}_{S}\right\|_{1}+\left\|\widehat{\Delta}_{S^{c}}\right\|_{1}$.
Triangle inequality: $\left\|\theta_{S}^{*}+\widehat{\Delta}_{S}\right\|_{1}+\left\|\widehat{\Delta}_{S^{c}}\right\|_{1} \geq\left\|\theta_{S}^{*}\right\|_{1}-\left\|\widehat{\Delta}_{S}\right\|_{1}+\left\|\widehat{\Delta}_{S^{c}}\right\|_{1}$.
(3) Hence, $\widehat{\Delta} \in \mathbb{N}(X) \cap \mathbb{C}(S)$, and (RN) $\Longrightarrow \widehat{\Delta}=0$.

Illustration of restricted nullspace property

- consider $\theta^{*}=\left(0,0, \theta_{3}^{*}\right)$, so that $S=\{3\}$.
- error vector $\widehat{\Delta}=\widehat{\theta}-\theta^{*}$ belongs to the set

$$
\mathbb{C}(S ; 1):=\left\{\left(\Delta_{1}, \Delta_{2}, \Delta_{3}\right) \in \mathbb{R}^{3}| | \Delta_{1}\left|+\left|\Delta_{2}\right| \leq\left|\Delta_{3}\right|\right\} .\right.
$$

Some sufficient conditions

How to verify RN property for a given sparsity s ?
(1) Elementwise incoherence condition (Donoho \& Xuo, 2001; Feuer \& Nem., 2003)

$$
\max _{j, k=1, \ldots, d}\left|\left(\frac{X^{T} X}{n}-I_{d \times d}\right)_{j k}\right| \leq \frac{\delta_{1}}{s}
$$

Some sufficient conditions

How to verify RN property for a given sparsity s ?
(1) Elementwise incoherence condition (Donoho \& Xuo, 2001; Feuer \& Nem., 2003)

$$
\max _{j, k=1, \ldots, d}\left|\left(\frac{X^{T} X}{n}-I_{d \times d}\right)_{j k}\right| \leq \frac{\delta_{1}}{s}
$$

(2) Restricted isometry, or submatrix incoherence

$$
\max _{|U| \leq 2 s}\| \|\left(\frac{X^{T} X}{n}-I_{d \times d}\right)_{U U}\| \|_{\mathrm{op}} \leq \delta_{2 s}
$$

Some sufficient conditions

How to verify RN property for a given sparsity s ?
(1) Elementwise incoherence condition (Donoho \& Xuo, 2001; Feuer \& Nem., 2003)

$$
\max _{j, k=1, \ldots, d}\left|\left(\frac{X^{T} X}{n}-I_{d \times d}\right)_{j k}\right| \leq \frac{\delta_{1}}{s}
$$

Matrices with i.i.d. sub-Gaussian entries: holds w.h.p. for $n=\Omega\left(s^{2} \log d\right)$
(2) Restricted isometry, or submatrix incoherence
(Candes \& Tao, 2005)

$$
\max _{|U| \leq 2 s}\left\|\left(\frac{X^{T} X}{n}-I_{d \times d}\right)_{U U}\right\| \|_{\text {op }} \leq \delta_{2 s}
$$

Some sufficient conditions

How to verify RN property for a given sparsity s ?
(1) Elementwise incoherence condition (Donoho \& Xuo, 2001; Feuer \& Nem., 2003)

$$
\max _{j, k=1, \ldots, d}\left|\left(\frac{X^{T} X}{n}-I_{d \times d}\right)_{j k}\right| \leq \frac{\delta_{1}}{s}
$$

Matrices with i.i.d. sub-Gaussian entries: holds w.h.p. for $n=\Omega\left(s^{2} \log d\right)$
(2) Restricted isometry, or submatrix incoherence
(Candes \& Tao, 2005)

$$
\max _{|U| \leq 2 s}\left\|\left(\frac{X^{T} X}{n}-I_{d \times d}\right)_{U U}\right\| \|_{\text {op }} \leq \delta_{2 s}
$$

Matrices with i.i.d. sub-Gaussian entries: holds w.h.p. for $n=\Omega\left(s \log \frac{d}{s}\right)$

Violating matrix incoherence (elementwise/RIP)

Important:
Incoherence/RIP conditions imply RN, but are far from necessary. Very easy to violate them.....

Violating matrix incoherence (elementwise/RIP)

Form random design matrix
$X=\underbrace{\left[\begin{array}{cccc}x_{1} & x_{2} & \ldots & x_{d}\end{array}\right]}_{d \text { columns }}=\underbrace{\left[\begin{array}{c}X_{1}^{T} \\ X_{2}^{T} \\ \vdots \\ X_{n}^{T}\end{array}\right]}_{n \text { rows }} \in \mathbb{R}^{n \times d}, \quad$ each row $X_{i} \sim N(0, \Sigma)$, i.i.d.

Example: For some $\mu \in(0,1)$, consider the covariance matrix

$$
\Sigma=(1-\mu) I_{d \times d}+\mu \mathbf{1 1}^{T} .
$$

Violating matrix incoherence (elementwise/RIP)

Form random design matrix
$X=\underbrace{\left[\begin{array}{cccc}x_{1} & x_{2} & \ldots & x_{d}\end{array}\right]}_{d \text { columns }}=\underbrace{\left[\begin{array}{c}X_{1}^{T} \\ X_{2}^{T} \\ \vdots \\ X_{n}^{T}\end{array}\right]}_{n \text { rows }} \in \mathbb{R}^{n \times d}, \quad$ each row $X_{i} \sim N(0, \Sigma)$, i.i.d.

Example: For some $\mu \in(0,1)$, consider the covariance matrix

$$
\Sigma=(1-\mu) I_{d \times d}+\mu \mathbf{1 1}^{T} .
$$

- Elementwise incoherence violated: for any $j \neq k$

$$
\mathbb{P}\left[\frac{\left\langle x_{j}, x_{k}\right\rangle}{n} \geq \mu-\epsilon\right] \geq 1-c_{1} \exp \left(-c_{2} n \epsilon^{2}\right) .
$$

Violating matrix incoherence (elementwise/RIP)

Form random design matrix

$$
X=\underbrace{\left[\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{d}
\end{array}\right]}_{d \text { columns }}=\underbrace{\left[\begin{array}{c}
X_{1}^{T} \\
X_{2}^{T} \\
\vdots \\
X_{n}^{T}
\end{array}\right]}_{n \text { rows }} \in \mathbb{R}^{n \times d}, \quad \text { each row } X_{i} \sim N(0, \Sigma), \text { i.i.d. }
$$

Example: For some $\mu \in(0,1)$, consider the covariance matrix

$$
\Sigma=(1-\mu) I_{d \times d}+\mu \mathbf{1 1}^{T} .
$$

- Elementwise incoherence violated: for any $j \neq k$

$$
\mathbb{P}\left[\frac{\left\langle x_{j}, x_{k}\right\rangle}{n} \geq \mu-\epsilon\right] \geq 1-c_{1} \exp \left(-c_{2} n \epsilon^{2}\right) .
$$

- RIP constants tend to infinity as $(n,|S|)$ increases:

$$
\mathbb{P}\left[\left\|\frac{X_{S}^{T} X_{S}}{n}-I_{s \times s}\right\|_{2} \geq \mu(s-1)-1-\epsilon\right] \geq 1-c_{1} \exp \left(-c_{2} n \epsilon^{2}\right) .
$$

Noiseless ℓ_{1} recovery for $\mu=0.5$

Probab. versus rescaled sample size $\alpha:=\frac{n}{s \log (d / s)}$.

Direct result for restricted nullspace/eigenvalues

Theorem (Raskutti, W., \& Yu, 2010; Rudelson \& Zhou, 2012)
Random Gaussian/sub-Gaussian matrix $X \in \mathbb{R}^{n \times d}$ with i.i.d. rows, covariance Σ, and let $\kappa^{2}=\max _{j} \Sigma_{j j}$ be the maximal variance. Then
$\frac{\|X \theta\|_{2}^{2}}{n} \geq c_{1}\left\|\Sigma^{1 / 2} \theta\right\|_{2}^{2}-c_{2} \kappa^{2}(\Sigma) \frac{\log \left(\operatorname{ed}\left(\frac{\|\theta\|_{2}}{\|\theta\|_{1}}\right)^{2}\right)}{n}\|\theta\|_{1}^{2} \quad$ for all non-zero $\theta \in \mathbb{R}$ with probability at least $1-2 e^{-c_{3} n}$.

Direct result for restricted nullspace/eigenvalues

Theorem (Raskutti, W., \& Yu, 2010; Rudelson \& Zhou, 2012)
Random Gaussian/sub-Gaussian matrix $X \in \mathbb{R}^{n \times d}$ with i.i.d. rows, covariance Σ, and let $\kappa^{2}=\max _{j} \Sigma_{j j}$ be the maximal variance. Then
$\frac{\|X \theta\|_{2}^{2}}{n} \geq c_{1}\left\|\Sigma^{1 / 2} \theta\right\|_{2}^{2}-c_{2} \kappa^{2}(\Sigma)$
with probability at least $1-2 e^{-c_{3} n}$.

- many interesting matrix families are covered
- Toeplitz dependency
- constant μ-correlation (previous example)
- covariance matrix Σ can even be degenerate
- related results hold for generalized linear models

Easy verification of restricted nullspace

- for any $\Delta \in \mathbb{C}(S)$, we have

$$
\|\Delta\|_{1}=\left\|\Delta_{S}\right\|_{1}+\left\|\Delta_{S^{c}}\right\|_{1} \leq 2\left\|\Delta_{S}\right\| \leq 2 \sqrt{s}\|\Delta\|_{2}
$$

- applying previous result:

$$
\frac{\|X \Delta\|_{2}^{2}}{n} \geq \underbrace{\left\{c_{1} \lambda_{\min }(\Sigma)-4 c_{2} \kappa^{2}(\Sigma) \frac{s \log d}{n}\right\}}_{\gamma(\Sigma)}\|\Delta\|_{2}^{2}
$$

Easy verification of restricted nullspace

- for any $\Delta \in \mathbb{C}(S)$, we have

$$
\|\Delta\|_{1}=\left\|\Delta_{S}\right\|_{1}+\left\|\Delta_{S^{c}}\right\|_{1} \leq 2\left\|\Delta_{S}\right\| \leq 2 \sqrt{s}\|\Delta\|_{2}
$$

- applying previous result:

$$
\frac{\|X \Delta\|_{2}^{2}}{n} \geq \underbrace{\left\{c_{1} \lambda_{\min }(\Sigma)-4 c_{2} \kappa^{2}(\Sigma) \frac{s \log d}{n}\right\}}_{\gamma(\Sigma)}\|\Delta\|_{2}^{2}
$$

- have actually proven much more than restricted nullspace....

Easy verification of restricted nullspace

- for any $\Delta \in \mathbb{C}(S)$, we have

$$
\|\Delta\|_{1}=\left\|\Delta_{S}\right\|_{1}+\left\|\Delta_{S^{c}}\right\|_{1} \leq 2\left\|\Delta_{S}\right\| \leq 2 \sqrt{s}\|\Delta\|_{2}
$$

- applying previous result:

$$
\frac{\|X \Delta\|_{2}^{2}}{n} \geq \underbrace{\left\{c_{1} \lambda_{\min }(\Sigma)-4 c_{2} \kappa^{2}(\Sigma) \frac{s \log d}{n}\right\}}_{\gamma(\Sigma)}\|\Delta\|_{2}^{2}
$$

- have actually proven much more than restricted nullspace....

Definition

A design matrix $X \in \mathbb{R}^{n \times d}$ satisfies the restricted eigenvalue (RE) condition over S (denote $\operatorname{RE}(S)$) with parameters $\alpha \geq 1$ and $\gamma>0$ if

$$
\frac{\|X \Delta\|_{2}^{2}}{n} \geq \gamma\|\Delta\|_{2}^{2} \quad \text { for all } \Delta \in \mathbb{R}^{d} \text { such that }\left\|\Delta_{S^{c}}\right\|_{1} \leq \alpha\left\|\Delta_{S}\right\|_{1}
$$

Lasso and restricted eigenvalues

Turning to noisy observations...

Estimator: Lasso program

$$
\widehat{\theta}_{\lambda_{n}} \in \arg \min _{\theta \in \mathbb{R}^{d}}\left\{\frac{1}{2 n}\|y-X \theta\|_{2}^{2}+\lambda_{n}\|\theta\|_{1}\right\} .
$$

Goal: Obtain bounds on \{ prediction error, parametric error, variable selection \}.

Different error metrics

(1) (In-sample) prediction error: $\left\|X\left(\widehat{\theta}-\theta^{*}\right)\right\|_{2}^{2} / n$

- "weakest" error measure
- appropriate when θ^{*} itself not of primary interest
- strong dependence between columns of X possible (for slow rate)
- proof technique: basic inequality

Different error metrics

(1) (In-sample) prediction error: $\left\|X\left(\widehat{\theta}-\theta^{*}\right)\right\|_{2}^{2} / n$

- "weakest" error measure
- appropriate when θ^{*} itself not of primary interest
- strong dependence between columns of X possible (for slow rate)
- proof technique: basic inequality
(2) parametric error: $\left\|\widehat{\theta}-\theta^{*}\right\|_{r}$ for some $r \in[1, \infty]$
- appropriate for recovery problems
- RE-type conditions appear in both lower/upper bounds
- variable selection is not guaranteed
- proof technique: basic inequality

Different error metrics

(1) (In-sample) prediction error: $\left\|X\left(\widehat{\theta}-\theta^{*}\right)\right\|_{2}^{2} / n$

- "weakest" error measure
- appropriate when θ^{*} itself not of primary interest
- strong dependence between columns of X possible (for slow rate)
- proof technique: basic inequality
(2) parametric error: $\left\|\widehat{\theta}-\theta^{*}\right\|_{r}$ for some $r \in[1, \infty]$
- appropriate for recovery problems
- RE-type conditions appear in both lower/upper bounds
- variable selection is not guaranteed
- proof technique: basic inequality
(3) variable selection: is $\operatorname{supp}(\widehat{\theta})$ equal to $\operatorname{supp}\left(\theta^{*}\right)$?
- appropriate when non-zero locations are of scientific interest
- most stringent of all three criteria
- requires incoherence or irrepresentability conditions on X
- proof technique: primal-dual witness condition

Lasso ℓ_{2}-bounds: Four simple steps

Let's analyze constrained version:

$$
\min _{\theta \in \mathbb{R}^{d}} \frac{1}{2 n}\|y-X \theta\|_{2}^{2} \quad \text { such that }\|\theta\|_{1} \leq R=\left\|\theta^{*}\right\|_{1}
$$

Lasso ℓ_{2}-bounds: Four simple steps

Let's analyze constrained version:

$$
\min _{\theta \in \mathbb{R}^{d}} \frac{1}{2 n}\|y-X \theta\|_{2}^{2} \quad \text { such that }\|\theta\|_{1} \leq R=\left\|\theta^{*}\right\|_{1} .
$$

(1) By optimality of $\widehat{\theta}$ and feasibility of θ^{*} :

$$
\frac{1}{2 n}\|y-X \widehat{\theta}\|_{2}^{2} \leq \frac{1}{2 n}\left\|y-X \theta^{*}\right\|_{2}^{2}
$$

Lasso ℓ_{2}-bounds: Four simple steps

Let's analyze constrained version:

$$
\min _{\theta \in \mathbb{R}^{d}} \frac{1}{2 n}\|y-X \theta\|_{2}^{2} \quad \text { such that }\|\theta\|_{1} \leq R=\left\|\theta^{*}\right\|_{1} .
$$

(1) By optimality of $\hat{\theta}$ and feasibility of θ^{*} :

$$
\frac{1}{2 n}\|y-X \widehat{\theta}\|_{2}^{2} \leq \frac{1}{2 n}\left\|y-X \theta^{*}\right\|_{2}^{2}
$$

(2) Derive a basic inequality: re-arranging in terms of $\widehat{\Delta}=\widehat{\theta}-\theta^{*}$:

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle .
$$

Lasso ℓ_{2}-bounds: Four simple steps

Let's analyze constrained version:

$$
\min _{\theta \in \mathbb{R}^{d}} \frac{1}{2 n}\|y-X \theta\|_{2}^{2} \quad \text { such that }\|\theta\|_{1} \leq R=\left\|\theta^{*}\right\|_{1} .
$$

(1) By optimality of $\widehat{\theta}$ and feasibility of θ^{*} :

$$
\frac{1}{2 n}\|y-X \widehat{\theta}\|_{2}^{2} \leq \frac{1}{2 n}\left\|y-X \theta^{*}\right\|_{2}^{2}
$$

(2) Derive a basic inequality: re-arranging in terms of $\widehat{\Delta}=\widehat{\theta}-\theta^{*}$:

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle
$$

(3) Restricted eigenvalue for LHS; Hölder's inequality for RHS

$$
\gamma\|\widehat{\Delta}\|_{2}^{2} \leq \frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle \leq 2\|\widehat{\Delta}\|_{1}\left\|\frac{X^{T} w}{n}\right\|_{\infty} .
$$

Lasso ℓ_{2}-bounds: Four simple steps

Let's analyze constrained version:

$$
\min _{\theta \in \mathbb{R}^{d}} \frac{1}{2 n}\|y-X \theta\|_{2}^{2} \quad \text { such that }\|\theta\|_{1} \leq R=\left\|\theta^{*}\right\|_{1} .
$$

(1) By optimality of $\widehat{\theta}$ and feasibility of θ^{*} :

$$
\frac{1}{2 n}\|y-X \widehat{\theta}\|_{2}^{2} \leq \frac{1}{2 n}\left\|y-X \theta^{*}\right\|_{2}^{2}
$$

(2) Derive a basic inequality: re-arranging in terms of $\widehat{\Delta}=\widehat{\theta}-\theta^{*}$:

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle .
$$

(3) Restricted eigenvalue for LHS; Hölder's inequality for RHS

$$
\gamma\|\widehat{\Delta}\|_{2}^{2} \leq \frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle \leq 2\|\widehat{\Delta}\|_{1}\left\|\frac{X^{T} w}{n}\right\|_{\infty} .
$$

(4) As before, $\widehat{\Delta} \in \mathbb{C}(S)$, so that $\|\widehat{\Delta}\|_{1} \leq 2 \sqrt{s}\|\widehat{\Delta}\|_{2}$, and hence

$$
\|\widehat{\Delta}\|_{2} \leq \frac{4}{\gamma} \sqrt{s}\left\|\frac{X^{T} w}{n}\right\|_{\infty}
$$

Lasso error bounds for different models

Proposition

Suppose that

- vector θ^{*} has support S, with cardinality s, and
- design matrix X satisfies $\operatorname{RE}(S)$ with parameter $\gamma>0$.

For constrained Lasso with $R=\left\|\theta^{*}\right\|_{1}$ or regularized Lasso with $\lambda_{n}=2\left\|X^{T} w / n\right\|_{\infty}$, any optimal solution $\hat{\theta}$ satisfies the bound

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{2} \leq \frac{4 \sqrt{s}}{\gamma}\left\|\frac{X^{T} w}{n}\right\|_{\infty}
$$

Lasso error bounds for different models

Proposition

Suppose that

- vector θ^{*} has support S, with cardinality s, and
- design matrix X satisfies $\operatorname{RE}(S)$ with parameter $\gamma>0$.

For constrained Lasso with $R=\left\|\theta^{*}\right\|_{1}$ or regularized Lasso with $\lambda_{n}=2\left\|X^{T} w / n\right\|_{\infty}$, any optimal solution $\hat{\theta}$ satisfies the bound

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{2} \leq \frac{4 \sqrt{s}}{\gamma}\left\|\frac{X^{T} w}{n}\right\|_{\infty}
$$

- this is a deterministic result on the set of optimizers
- various corollaries for specific statistical models

Lasso error bounds for different models

Proposition

Suppose that

- vector θ^{*} has support S, with cardinality s, and
- design matrix X satisfies $\operatorname{RE}(S)$ with parameter $\gamma>0$.

For constrained Lasso with $R=\left\|\theta^{*}\right\|_{1}$ or regularized Lasso with $\lambda_{n}=2\left\|X^{T} w / n\right\|_{\infty}$, any optimal solution $\widehat{\theta}$ satisfies the bound

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{2} \leq \frac{4 \sqrt{s}}{\gamma}\left\|\frac{X^{T} w}{n}\right\|_{\infty}
$$

- this is a deterministic result on the set of optimizers
- various corollaries for specific statistical models
- Compressed sensing: $X_{i j} \sim N(0,1)$ and bounded noise $\|w\|_{2} \leq \sigma \sqrt{n}$
- Deterministic design: X with bounded columns and $w_{i} \sim N\left(0, \sigma^{2}\right)$

$$
\left\|\frac{X^{T} w}{n}\right\|_{\infty} \leq \sqrt{\frac{3 \sigma^{2} \log d}{n}} \quad \text { w.h.p. } \Longrightarrow\left\|\widehat{\theta}-\theta^{*}\right\|_{2} \leq \frac{4 \sigma}{\gamma} \sqrt{3 \frac{s \log d}{n}}
$$

Lasso ℓ_{2}-error: Unrescaled sample size

Lasso ℓ_{2}-error: Rescaled sample size

Rescaled sample size $\frac{n}{s \log p / s}$.

Extension to an oracle inequality

Previous theory assumed that θ^{*} was "hard" sparse. Not realistic in practice.

Extension to an oracle inequality

Previous theory assumed that θ^{*} was "hard" sparse. Not realistic in practice.

Theorem (An oracle inequality)

Suppose that least-squares loss satisfies $\gamma-R E$ condition. Then for $\lambda_{n} \geq \max \left\{2\left\|\frac{X^{T} w}{n}\right\|_{\infty}, \sqrt{\frac{\log d}{n}}\right\}$, any optimal Lasso solution satisfies

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{2}^{2} \leq \min _{S \subseteq\{1, \ldots, d\}}\{\underbrace{\frac{9}{4} \frac{\lambda_{n}^{2}}{\gamma^{2}}|S|}_{\text {estimation error }}+\underbrace{\frac{2 \lambda_{n}}{\gamma}\left\|\theta_{S^{c}}^{*}\right\|_{1}}_{\text {approximation error }}\} .
$$

(cf. Bunea et al., 2007; Buhlmann and van de Geer, 2009; Koltchinski et al., 2011)

Extension to an oracle inequality

Previous theory assumed that θ^{*} was "hard" sparse. Not realistic in practice.

Theorem (An oracle inequality)

Suppose that least-squares loss satisfies $\gamma-R E$ condition. Then for $\lambda_{n} \geq \max \left\{2\left\|\frac{X^{T} w}{n}\right\|_{\infty}, \sqrt{\frac{\log d}{n}}\right\}$, any optimal Lasso solution satisfies

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{2}^{2} \leq \min _{S \subseteq\{1, \ldots, d\}}\{\underbrace{\frac{9}{4} \frac{\lambda_{n}^{2}}{\gamma^{2}}|S|}_{\text {estimation error }}+\underbrace{\frac{2 \lambda_{n}}{\gamma}\left\|\theta_{S^{c}}^{*}\right\|_{1}}_{\text {approximation error }}\} .
$$

- when θ^{*} is exactly sparse, set $S=\operatorname{supp}\left(\theta^{*}\right)$ to recover previous result
(cf. Bunea et al., 2007; Buhlmann and van de Geer, 2009; Koltchinski et al., 2011)

Extension to an oracle inequality

Previous theory assumed that θ^{*} was "hard" sparse. Not realistic in practice.

Theorem (An oracle inequality)

Suppose that least-squares loss satisfies $\gamma-R E$ condition. Then for $\lambda_{n} \geq \max \left\{2\left\|\frac{X^{T} w}{n}\right\|_{\infty}, \sqrt{\frac{\log d}{n}}\right\}$, any optimal Lasso solution satisfies

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{2}^{2} \leq \min _{S \subseteq\{1, \ldots, d\}}\{\underbrace{\frac{9}{4} \frac{\lambda_{n}^{2}}{\gamma^{2}}|S|}_{\text {estimation error }}+\underbrace{\frac{2 \lambda_{n}}{\gamma}\left\|\theta_{S^{c}}^{*}\right\|_{1}}_{\text {approximation error }}\} .
$$

- when θ^{*} is exactly sparse, set $S=\operatorname{supp}\left(\theta^{*}\right)$ to recover previous result
- more generally, choose S adaptively to trade-off estimation error versus approximation error
(cf. Bunea et al., 2007; Buhlmann and van de Geer, 2009; Koltchinski et al., 2011)

Consequences for $\ell_{q^{-}}$"ball" sparsity

- for some $q \in[0,1]$, say θ^{*} belongs to $\ell_{q^{-}}$"ball"

$$
\mathbb{B}_{q}\left(R_{q}\right):=\left\{\left.\theta \in \mathbb{R}^{d}\left|\sum_{j=1}^{d}\right| \theta_{j}\right|^{q} \leq R_{q}\right\} .
$$

Consequences for $\ell_{q^{-}}$"ball" sparsity

- for some $q \in[0,1]$, say θ^{*} belongs to $\ell_{q^{-}}$"ball"

$$
\mathbb{B}_{q}\left(R_{q}\right):=\left\{\left.\theta \in \mathbb{R}^{d}\left|\sum_{j=1}^{d}\right| \theta_{j}\right|^{q} \leq R_{q}\right\} .
$$

Corollary

Consider the linear model $y=X \theta^{*}+w$, where X satisfies lower $R E$ conditions, and w has i.i.d σ sub-Gaussian entries. For $\theta^{*} \in \mathbb{B}_{q}\left(R_{q}\right)$, any Lasso solution satisfies (w.h.p.)

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{2}^{2} \precsim R_{q}\left(\frac{\sigma^{2} \log d}{n}\right)^{1-q / 2} .
$$

Are these good results? Minimax theory

- let \mathcal{P} be a family of probability distributions
- consider a parameter $\mathbb{P} \mapsto \theta(\mathbb{P})$
- define a metric ρ on the parameter space

Are these good results? Minimax theory

- let \mathcal{P} be a family of probability distributions
- consider a parameter $\mathbb{P} \mapsto \theta(\mathbb{P})$
- define a metric ρ on the parameter space

Definition (Minimax rate)

The minimax rate for $\theta(\mathcal{P})$ with metric ρ is given

$$
\mathfrak{M}_{n}(\theta(\mathcal{P}) ; \rho):=\inf _{\widehat{\theta}} \sup _{\mathbb{P} \in \mathcal{P}} \mathbb{E}\left[\rho^{2}(\widehat{\theta}, \theta(\mathbb{P}))\right]
$$

where the infimum ranges over all measureable functions of n samples.

Are these good results? Minimax theory

Definition (Minimax rate)

The minimax rate for $\theta(\mathcal{P})$ with metric ρ is given

$$
\mathfrak{M}_{n}(\theta(\mathcal{P}) ; \rho):=\inf _{\widehat{\theta}} \sup _{\mathbb{P} \in \mathcal{P}} \mathbb{E}\left[\rho^{2}(\widehat{\theta}, \theta(\mathbb{P}))\right]
$$

where the infimum ranges over all measureable functions of n samples.
Concrete example:

- let \mathcal{P} be family of sparse linear regression problems with $\theta^{*} \in \mathbb{B}_{q}\left(R_{q}\right)$
- consider ℓ_{2}-error metric $\rho^{2}(\widehat{\theta}, \theta)=\|\widehat{\theta}-\theta\|_{2}^{2}$

Are these good results? Minimax theory

Definition (Minimax rate)

The minimax rate for $\theta(\mathcal{P})$ with metric ρ is given

$$
\mathfrak{M}_{n}(\theta(\mathcal{P}) ; \rho):=\inf _{\widehat{\theta}} \sup _{\mathbb{P} \in \mathcal{P}} \mathbb{E}\left[\rho^{2}(\widehat{\theta}, \theta(\mathbb{P}))\right],
$$

where the infimum ranges over all measureable functions of n samples.
Concrete example:

- let \mathcal{P} be family of sparse linear regression problems with $\theta^{*} \in \mathbb{B}_{q}\left(R_{q}\right)$
- consider ℓ_{2}-error metric $\rho^{2}(\widehat{\theta}, \theta)=\|\widehat{\theta}-\theta\|_{2}^{2}$

Theorem (Raskutti, W. \& Yu, 2011)
Under "mild" conditions on design X and radius R_{q}, we have

$$
\mathfrak{M}_{n}\left(\mathbb{B}_{q}\left(R_{q}\right) ;\|\cdot\|_{2}\right) \asymp R_{q}\left(\frac{\sigma^{2} \log d}{n}\right)^{1-\frac{q}{2}}
$$

Bounds on prediction error

Can predict a new response vector $y \in \mathbb{R}^{n}$ via $\widehat{y}=X \widehat{\theta}$. Associated mean-squared error

$$
\left.\frac{1}{n} \mathbb{E}\left[\|y-\widehat{y}\|_{2}^{2}\right]=\frac{1}{n} \| X \widehat{\theta}-X \theta^{*}\right) \|_{2}^{2}+\sigma^{2}
$$

Theorem

Consider the constrained Lasso with $R=\left\|\theta^{*}\right\|_{1}$ or regularized Lasso with $\lambda_{n}=4 \sigma \sqrt{\frac{\log d}{n}}$ applied to an S-sparse problem with σ-sub-Gaussian noise. Then with high probability:

Slow rate: If X has normalized columns ($\max _{j}\left\|X_{j}\right\|_{2} / \sqrt{n} \leq C$), then any optimal $\widehat{\theta}$ satisfies the bound

$$
\frac{1}{n}\left\|X \widehat{\theta}-X \theta^{*}\right\|_{2}^{2} \leq c C R \sigma \sqrt{\frac{\log d}{n}}
$$

Fast rate: If X satisfies the γ - $R E$ condition over S, then

$$
\frac{1}{n}\left\|X \widehat{\theta}-X \theta^{*}\right\|_{2}^{2} \leq \frac{c \sigma^{2}}{\gamma} \frac{s \log d}{n}
$$

Prediction error: Proof of slow rate

Let's analyze constrained version:

$$
\min _{\theta \in \mathbb{R}^{d}} \frac{1}{2 n}\|y-X \theta\|_{2}^{2} \quad \text { such that }\|\theta\|_{1} \leq R=\left\|\theta^{*}\right\|_{1}
$$

(1) By optimality of $\widehat{\theta}$ and feasibility of θ^{*}, we have the basic inequality for $\widehat{\Delta}=\widehat{\theta}-\theta^{*}$:

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle .
$$

Prediction error: Proof of slow rate

Let's analyze constrained version:

$$
\min _{\theta \in \mathbb{R}^{d}} \frac{1}{2 n}\|y-X \theta\|_{2}^{2} \quad \text { such that }\|\theta\|_{1} \leq R=\left\|\theta^{*}\right\|_{1}
$$

(1) By optimality of $\widehat{\theta}$ and feasibility of θ^{*}, we have the basic inequality for $\widehat{\Delta}=\widehat{\theta}-\theta^{*}$:

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle
$$

(2) Hölder's inequality for RHS

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle \leq 2\|\widehat{\Delta}\|_{1}\left\|\frac{X^{T} w}{n}\right\|_{\infty}
$$

Prediction error: Proof of slow rate

Let's analyze constrained version:

$$
\min _{\theta \in \mathbb{R}^{d}} \frac{1}{2 n}\|y-X \theta\|_{2}^{2} \quad \text { such that }\|\theta\|_{1} \leq R=\left\|\theta^{*}\right\|_{1}
$$

(1) By optimality of $\widehat{\theta}$ and feasibility of θ^{*}, we have the basic inequality for $\widehat{\Delta}=\widehat{\theta}-\theta^{*}$:

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle
$$

(2) Hölder's inequality for RHS

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle \leq 2\|\widehat{\Delta}\|_{1}\left\|\frac{X^{T} w}{n}\right\|_{\infty}
$$

(3) Since both $\widehat{\theta}$ and θ^{*} are feasible, we have $\|\widehat{\Delta}\|_{1} \leq 2 R$ by triangle inequality, and hence

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq 4 R\left\|\frac{X^{T} w}{n}\right\|_{\infty}
$$

Prediction error: Proof of fast rate

Let's analyze constrained version:

$$
\min _{\theta \in \mathbb{R}^{d}} \frac{1}{2 n}\|y-X \theta\|_{2}^{2} \quad \text { such that }\|\theta\|_{1} \leq R=\left\|\theta^{*}\right\|_{1}
$$

(1) By optimality of $\widehat{\theta}$ and feasibility of θ^{*}, we have the basic inequality for $\widehat{\Delta}=\widehat{\theta}-\theta^{*}$:

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle .
$$

Prediction error: Proof of fast rate

(1) By optimality of $\hat{\theta}$ and feasibility of θ^{*}, we have the basic inequality for

$$
\widehat{\Delta}=\widehat{\theta}-\theta^{*}:
$$

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle .
$$

(2) Hölder's inequality for RHS

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle \leq 2\|\widehat{\Delta}\|_{1}\left\|\frac{X^{T} w}{n}\right\|_{\infty} .
$$

Prediction error: Proof of fast rate

(1) By optimality of $\hat{\theta}$ and feasibility of θ^{*}, we have the basic inequality for

$$
\widehat{\Delta}=\widehat{\theta}-\theta^{*}
$$

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle .
$$

(2) Hölder's inequality for RHS

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle \leq 2\|\widehat{\Delta}\|_{1}\left\|\frac{X^{T} w}{n}\right\|_{\infty} .
$$

(3) Since $\widehat{\Delta} \in \mathbb{C}(S)$, we have $\|\widehat{\Delta}\|_{1} \leq 2 \sqrt{s}\|\widehat{\Delta}\|_{2}$, and hence

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq 2 \sqrt{s}\|\widehat{\Delta}\|_{2}\left\|\frac{X^{T} w}{n}\right\|_{\infty}
$$

Prediction error: Proof of fast rate

(1) By optimality of $\hat{\theta}$ and feasibility of θ^{*}, we have the basic inequality for $\widehat{\Delta}=\widehat{\theta}-\theta^{*}$:

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle .
$$

(2) Hölder's inequality for RHS

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle \leq 2\|\widehat{\Delta}\|_{1}\left\|\frac{X^{T} w}{n}\right\|_{\infty} .
$$

(3) Since $\widehat{\Delta} \in \mathbb{C}(S)$, we have $\|\widehat{\Delta}\|_{1} \leq 2 \sqrt{s}\|\widehat{\Delta}\|_{2}$, and hence

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq 2 \sqrt{s}\|\widehat{\Delta}\|_{2}\left\|\frac{X^{T} w}{n}\right\|_{\infty}
$$

(4) Now apply γ-RE condition to RHS

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq 2 \sqrt{s}\|\widehat{\Delta}\|_{2}\left\|\frac{X^{T} w}{n}\right\|_{\infty} \leq \frac{1}{\sqrt{\gamma}} \frac{1}{\sqrt{n}}\|X \widehat{\Delta}\|_{2}\left\|\frac{X^{T} w}{n}\right\|_{\infty}
$$

Cancel terms and re-arrange.

Why RE conditions for fast rate?

Bothersome issue:

Why should prediction performance depend on an $R E$-condition?

- it is not fundamental: a method based on ℓ_{0}-regularization (exponential time) can achieve the fast rate with only column normalization

Why RE conditions for fast rate?

Bothersome issue:

Why should prediction performance depend on an $R E$-condition?

- it is not fundamental: a method based on ℓ_{0}-regularization (exponential time) can achieve the fast rate with only column normalization
- some negative evidence: an explicit design matrix and sparse vector ($k=2$) for which Lasso achieves slow rate Foygel \& Srebro (2011)

Why RE conditions for fast rate?

Bothersome issue:

Why should prediction performance depend on an $R E$-condition?

- it is not fundamental: a method based on ℓ_{0}-regularization (exponential time) can achieve the fast rate with only column normalization
- some negative evidence: an explicit design matrix and sparse vector ($k=2$) for which Lasso achieves slow rate Foygel \& Srebro (2011)
-but adaptive Lasso can achieve the fast rate for this counterexample.

A computationally-constrained minimax rate

Complexity classes:
P: decision problems solvable in poly. time by a Turing machine
$\mathbf{P} /$ poly: class \mathbf{P} plus polynomial-length advice string

Asssumptions:

- standard linear regression model $y=X \theta^{*}+w$ where $w \sim N\left(0, \sigma^{2} I_{n \times n}\right)$
- NP $\nsubseteq \mathbf{P} /$ poly

A computationally-constrained minimax rate

Complexity classes:
P: decision problems solvable in poly. time by a Turing machine $\mathbf{P} /$ poly: class \mathbf{P} plus polynomial-length advice string

Asssumptions:

- standard linear regression model $y=X \theta^{*}+w$ where $w \sim N\left(0, \sigma^{2} I_{n \times n}\right)$
- NP $\nsubseteq \mathbf{P} /$ poly

Theorem (Zhang, W. \& Jordan, COLT 2014)

There is a fixed "bad" design matrix $X \in \mathbb{R}^{n \times d}$ with $R E$ constant $\gamma(X)$ such for any polynomial-time computable $\widehat{\theta}$ returning s-sparse outputs:

$$
\sup _{\theta^{*} \in \mathbb{B}_{0}(s)} \mathbb{E}\left[\frac{\left\|X\left(\widehat{\theta}-\theta^{*}\right)\right\|_{2}^{2}}{n}\right] \succsim \frac{\sigma^{2}}{\gamma^{2}(X)} \frac{s^{1-\delta} \log d}{n}
$$

A primer on high-dimensional statistics: Part II

Martin Wainwright
UC Berkeley
Departments of Statistics, and EECS

Spring School, Westerland, March 2015

Analysis of Lasso estimator

Turning to noisy observations...

Estimator: Lasso program

$$
\widehat{\theta}_{\lambda_{n}} \in \arg \min _{\theta \in \mathbb{R}^{d}}\left\{\frac{1}{2 n}\|y-X \theta\|_{2}^{2}+\lambda_{n}\|\theta\|_{1}\right\} .
$$

Goal: Obtain bounds on \{ prediction error, parametric error, variable selection \}.

Different error metrics

(1) (In-sample) prediction error: $\left\|X\left(\widehat{\theta}-\theta^{*}\right)\right\|_{2}^{2} / n$

- "weakest" error measure
- appropriate when θ^{*} itself not of primary interest
- strong dependence between columns of X possible (for slow rate)
- proof technique: basic inequality

Different error metrics

(1) (In-sample) prediction error: $\left\|X\left(\widehat{\theta}-\theta^{*}\right)\right\|_{2}^{2} / n$

- "weakest" error measure
- appropriate when θ^{*} itself not of primary interest
- strong dependence between columns of X possible (for slow rate)
- proof technique: basic inequality
(2) parametric error: $\left\|\widehat{\theta}-\theta^{*}\right\|_{r}$ for some $r \in[1, \infty]$
- appropriate for recovery problems
- RE-type conditions appear in both lower/upper bounds
- variable selection is not guaranteed
- proof technique: basic inequality

Different error metrics

(1) (In-sample) prediction error: $\left\|X\left(\widehat{\theta}-\theta^{*}\right)\right\|_{2}^{2} / n$

- "weakest" error measure
- appropriate when θ^{*} itself not of primary interest
- strong dependence between columns of X possible (for slow rate)
- proof technique: basic inequality
(2) parametric error: $\left\|\widehat{\theta}-\theta^{*}\right\|_{r}$ for some $r \in[1, \infty]$
- appropriate for recovery problems
- RE-type conditions appear in both lower/upper bounds
- variable selection is not guaranteed
- proof technique: basic inequality
(3) variable selection: is $\operatorname{supp}(\widehat{\theta})$ equal to $\operatorname{supp}\left(\theta^{*}\right)$?
- appropriate when non-zero locations are of scientific interest
- most stringent of all three criteria
- requires incoherence or irrepresentability conditions on X
- proof technique: primal-dual witness condition

Extension to an oracle inequality

Previous theory assumed that θ^{*} was "hard" sparse. Not realistic in practice.

Extension to an oracle inequality

Previous theory assumed that θ^{*} was "hard" sparse. Not realistic in practice.

Theorem (An oracle inequality)

Suppose that least-squares loss satisfies $\gamma-R E$ condition. Then for $\lambda_{n} \geq \max \left\{2\left\|\frac{X^{T} w}{n}\right\|_{\infty}, \sqrt{\frac{\log d}{n}}\right\}$, any optimal Lasso solution satisfies

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{2}^{2} \leq \min _{S \subseteq\{1, \ldots, d\}}\{\underbrace{\frac{9}{4} \frac{\lambda_{n}^{2}}{\gamma^{2}}|S|}_{\text {estimation error }}+\underbrace{\frac{2 \lambda_{n}}{\gamma}\left\|\theta_{S^{c}}^{*}\right\|_{1}}_{\text {approximation error }}\} .
$$

(cf. Bunea et al., 2007; Buhlmann and van de Geer, 2009; Koltchinski et al., 2011)

Extension to an oracle inequality

Previous theory assumed that θ^{*} was "hard" sparse. Not realistic in practice.

Theorem (An oracle inequality)

Suppose that least-squares loss satisfies $\gamma-R E$ condition. Then for $\lambda_{n} \geq \max \left\{2\left\|\frac{X^{T} w}{n}\right\|_{\infty}, \sqrt{\frac{\log d}{n}}\right\}$, any optimal Lasso solution satisfies

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{2}^{2} \leq \min _{S \subseteq\{1, \ldots, d\}}\{\underbrace{\frac{9}{4} \frac{\lambda_{n}^{2}}{\gamma^{2}}|S|}_{\text {estimation error }}+\underbrace{\frac{2 \lambda_{n}}{\gamma}\left\|\theta_{S^{c}}^{*}\right\|_{1}}_{\text {approximation error }}\} .
$$

- when θ^{*} is exactly sparse, set $S=\operatorname{supp}\left(\theta^{*}\right)$ to recover previous result
(cf. Bunea et al., 2007; Buhlmann and van de Geer, 2009; Koltchinski et al., 2011)

Extension to an oracle inequality

Previous theory assumed that θ^{*} was "hard" sparse. Not realistic in practice.

Theorem (An oracle inequality)

Suppose that least-squares loss satisfies $\gamma-R E$ condition. Then for $\lambda_{n} \geq \max \left\{2\left\|\frac{X^{T} w}{n}\right\|_{\infty}, \sqrt{\frac{\log d}{n}}\right\}$, any optimal Lasso solution satisfies

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{2}^{2} \leq \min _{S \subseteq\{1, \ldots, d\}}\{\underbrace{\frac{9}{4} \frac{\lambda_{n}^{2}}{\gamma^{2}}|S|}_{\text {estimation error }}+\underbrace{\frac{2 \lambda_{n}}{\gamma}\left\|\theta_{S^{c}}^{*}\right\|_{1}}_{\text {approximation error }}\} .
$$

- when θ^{*} is exactly sparse, set $S=\operatorname{supp}\left(\theta^{*}\right)$ to recover previous result
- more generally, choose S adaptively to trade-off estimation error versus approximation error
(cf. Bunea et al., 2007; Buhlmann and van de Geer, 2009; Koltchinski et al., 2011)

Consequences for $\ell_{q^{-}}$"ball" sparsity

- for some $q \in[0,1]$, say θ^{*} belongs to $\ell_{q^{-}}$"ball"

$$
\mathbb{B}_{q}\left(R_{q}\right):=\left\{\left.\theta \in \mathbb{R}^{d}\left|\sum_{j=1}^{d}\right| \theta_{j}\right|^{q} \leq R_{q}\right\} .
$$

Consequences for $\ell_{q^{-}}$"ball" sparsity

- for some $q \in[0,1]$, say θ^{*} belongs to $\ell_{q^{-}}$"ball"

$$
\mathbb{B}_{q}\left(R_{q}\right):=\left\{\left.\theta \in \mathbb{R}^{d}\left|\sum_{j=1}^{d}\right| \theta_{j}\right|^{q} \leq R_{q}\right\} .
$$

Corollary

Consider the linear model $y=X \theta^{*}+w$, where X satisfies lower $R E$ conditions, and w has i.i.d σ sub-Gaussian entries. For $\theta^{*} \in \mathbb{B}_{q}\left(R_{q}\right)$, any Lasso solution satisfies (w.h.p.)

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{2}^{2} \precsim R_{q}\left(\frac{\sigma^{2} \log d}{n}\right)^{1-q / 2} .
$$

Are these good results? Minimax theory

- let \mathcal{P} be a family of probability distributions
- consider a parameter $\mathbb{P} \mapsto \theta(\mathbb{P})$
- define a metric ρ on the parameter space

Are these good results? Minimax theory

- let \mathcal{P} be a family of probability distributions
- consider a parameter $\mathbb{P} \mapsto \theta(\mathbb{P})$
- define a metric ρ on the parameter space

Definition (Minimax rate)

The minimax rate for $\theta(\mathcal{P})$ with metric ρ is given

$$
\mathfrak{M}_{n}(\theta(\mathcal{P}) ; \rho):=\inf _{\widehat{\theta}} \sup _{\mathbb{P} \in \mathcal{P}} \mathbb{E}\left[\rho^{2}(\widehat{\theta}, \theta(\mathbb{P}))\right]
$$

where the infimum ranges over all measureable functions of n samples.

Are these good results? Minimax theory

Definition (Minimax rate)

The minimax rate for $\theta(\mathcal{P})$ with metric ρ is given

$$
\mathfrak{M}_{n}(\theta(\mathcal{P}) ; \rho):=\inf _{\widehat{\theta}} \sup _{\mathbb{P} \in \mathcal{P}} \mathbb{E}\left[\rho^{2}(\widehat{\theta}, \theta(\mathbb{P}))\right]
$$

where the infimum ranges over all measureable functions of n samples.
Concrete example:

- let \mathcal{P} be family of sparse linear regression problems with $\theta^{*} \in \mathbb{B}_{q}\left(R_{q}\right)$
- consider ℓ_{2}-error metric $\rho^{2}(\widehat{\theta}, \theta)=\|\widehat{\theta}-\theta\|_{2}^{2}$

Are these good results? Minimax theory

Definition (Minimax rate)

The minimax rate for $\theta(\mathcal{P})$ with metric ρ is given

$$
\mathfrak{M}_{n}(\theta(\mathcal{P}) ; \rho):=\inf _{\widehat{\theta}} \sup _{\mathbb{P} \in \mathcal{P}} \mathbb{E}\left[\rho^{2}(\widehat{\theta}, \theta(\mathbb{P}))\right],
$$

where the infimum ranges over all measureable functions of n samples.
Concrete example:

- let \mathcal{P} be family of sparse linear regression problems with $\theta^{*} \in \mathbb{B}_{q}\left(R_{q}\right)$
- consider ℓ_{2}-error metric $\rho^{2}(\widehat{\theta}, \theta)=\|\widehat{\theta}-\theta\|_{2}^{2}$

Theorem (Raskutti, W. \& Yu, 2011)
Under "mild" conditions on design X and radius R_{q}, we have

$$
\mathfrak{M}_{n}\left(\mathbb{B}_{q}\left(R_{q}\right) ;\|\cdot\|_{2}\right) \asymp R_{q}\left(\frac{\sigma^{2} \log d}{n}\right)^{1-\frac{q}{2}}
$$

Variable selection consistency

Question

When is Lasso solution unique with support $(\widehat{\theta})=\operatorname{suppport}\left(\theta^{*}\right)$?

Variable selection consistency

Question

When is Lasso solution unique with support $(\widehat{\theta})=\operatorname{suppport}\left(\theta^{*}\right)$?

- Requires a different proof technique, known as a primal-dual witness method.
- A procedure that attempts to construct a pair $(\widehat{\theta}, \widehat{z}) \in \mathbb{R}^{d} \times \mathbb{R}^{d}$ that satisfy the KKT conditions for convex optimality
- When procedure succeeds, it certifies the uniqueness and optimality of $\widehat{\theta}$ as a Lasso solution.

Variable selection performance: unrescaled plots

Variable selection performance: rescaled plots

Rescaled sample size: $\frac{n}{s \log (d-s)}$

Primal-dual witness construction

Consider blocks $\left[\begin{array}{ll}\widehat{\theta}_{S} & \widehat{\theta}_{S^{c}}\end{array}\right]$ and $\left[\begin{array}{ll}\widehat{z}_{S} & \widehat{z}_{S^{c}}\end{array}\right]$.
(1) Set $\hat{\theta}_{S^{c}}=0$.

Primal-dual witness construction

Consider blocks $\left[\begin{array}{ll}\widehat{\theta}_{S} & \widehat{\theta}_{S^{c}}\end{array}\right]$ and $\left[\begin{array}{ll}\widehat{z}_{S} & \widehat{z}_{S^{c}}\end{array}\right]$.
(1) Set $\hat{\theta}_{S^{c}}=0$.
(2) Solve oracle sub-problem

$$
\widehat{\theta}_{S}=\arg \min _{\theta_{S} \in \mathbb{R}^{|S|}}\left\{\frac{1}{2 n}\left\|y-X_{S} \theta_{S}\right\|_{2}^{2}+\lambda_{n}\left\|\theta_{S}\right\|_{1}\right\}
$$

and choose $\left.\widehat{z} \in \partial\left\|\theta_{S}\right\|_{1}\right|_{\theta_{S}=\widehat{\theta}_{S}}$ such that $\frac{1}{n} X_{S}^{T}\left(X_{s} \widehat{\theta}_{S}-y\right)+\lambda_{n} \widehat{z}_{S}=0$.
Require $\frac{1}{n} \lambda_{\min }\left(X_{S}^{T} X_{S}\right)>0$ in this step.

Primal-dual witness construction

Consider blocks $\left[\begin{array}{ll}\widehat{\theta}_{S} & \widehat{\theta}_{S^{c}}\end{array}\right]$ and $\left[\begin{array}{ll}\widehat{z}_{S} & \widehat{z}_{S^{c}}\end{array}\right]$.
(1) $\operatorname{Set} \widehat{\theta}_{S^{c}}=0$.
(2) Solve oracle sub-problem

$$
\widehat{\theta}_{S}=\arg \min _{\theta_{S} \in \mathbb{R}^{|S|}}\left\{\frac{1}{2 n}\left\|y-X_{S} \theta_{S}\right\|_{2}^{2}+\lambda_{n}\left\|\theta_{S}\right\|_{1}\right\}
$$

and choose $\left.\widehat{z} \in \partial\left\|\theta_{S}\right\|_{1}\right|_{\theta_{S}=\widehat{\theta}_{S}}$ such that $\frac{1}{n} X_{S}^{T}\left(X_{s} \widehat{\theta}_{S}-y\right)+\lambda_{n} \widehat{z}_{S}=0$.
Require $\frac{1}{n} \lambda_{\text {min }}\left(X_{S}^{T} X_{S}\right)>0$ in this step.
(3) Choose $\widehat{z}_{S^{c}} \in \mathbb{R}^{d-s}$ to satisfy the zero-subgradient conditions, and such that $\left\|\widehat{z}_{S^{c}}\right\|_{\infty}<1$.

Primal-dual witness construction

Consider blocks $\left[\begin{array}{ll}\widehat{\theta}_{S} & \widehat{\theta}_{S^{c}}\end{array}\right]$ and $\left[\begin{array}{ll}\widehat{z}_{S} & \widehat{z}_{S^{c}}\end{array}\right]$.
(1) Set $\hat{\theta}_{S^{c}}=0$.
(2) Solve oracle sub-problem

$$
\hat{\theta}_{S}=\arg \min _{\theta_{S} \in \mathbb{R}^{|S|}}\left\{\frac{1}{2 n}\left\|y-X_{S} \theta_{S}\right\|_{2}^{2}+\lambda_{n}\left\|\theta_{S}\right\|_{1}\right\}
$$

and choose $\left.\widehat{z} \in \partial\left\|\theta_{S}\right\|_{1}\right|_{\theta_{S}=\widehat{\theta}_{S}}$ such that $\frac{1}{n} X_{S}^{T}\left(X_{s} \widehat{\theta}_{S}-y\right)+\lambda_{n} \widehat{z}_{S}=0$.
Require $\frac{1}{n} \lambda_{\text {min }}\left(X_{S}^{T} X_{S}\right)>0$ in this step.
(3) Choose $\widehat{z}_{S^{c}} \in \mathbb{R}^{d-s}$ to satisfy the zero-subgradient conditions, and such that $\left\|\widehat{z}_{S^{c}}\right\|_{\infty}<1$.

Lemma

If the PDW succeeds, then $\widehat{\theta}$ is the unique optimal solution of the Lasso and satisfies support $(\widehat{\theta}) \subseteq \operatorname{support}\left(\theta^{*}\right)$.

Proof sketch

(1) Form zero-subgradient conditions:

$$
\frac{1}{n}\left[\begin{array}{cc}
X_{S}^{T} X_{S} & X_{S^{c}}^{T} X_{S} \\
X_{S^{c}}^{T} X_{S} & X_{S^{c}}^{T} X_{S^{c}}
\end{array}\right]\left[\begin{array}{c}
\widehat{\theta}_{S}-\theta_{S}^{*} \\
0
\end{array}\right]-\frac{1}{n}\left[\begin{array}{c}
X_{S}^{T} \\
X_{S^{c}}^{T}
\end{array}\right] w+\lambda_{n}\left[\begin{array}{c}
\widehat{z}_{S} \\
\widehat{z}_{S^{c}}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

Proof sketch

(1) Form zero-subgradient conditions:

$$
\frac{1}{n}\left[\begin{array}{cc}
X_{S}^{T} X_{S} & X_{S^{c}}^{T} X_{S} \\
X_{S^{c}}^{T} X_{S} & X_{S^{c}}^{T} X_{S^{c}}
\end{array}\right]\left[\begin{array}{c}
\widehat{\theta}_{S}-\theta_{S}^{*} \\
0
\end{array}\right]-\frac{1}{n}\left[\begin{array}{c}
X_{S}^{T} \\
X_{S^{c}}^{T}
\end{array}\right] w+\lambda_{n}\left[\begin{array}{c}
\widehat{z}_{S} \\
\widehat{z}_{S^{c}}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

(2) Solve for $\widehat{\theta}_{S}-\theta_{S}^{*}$:

$$
\underbrace{\hat{\theta}_{S}-\theta_{S}^{*}}_{U_{S}}=-\left(X_{S}^{T} X_{S}\right)^{-1} X_{S}^{T} \mathbf{w}-\lambda_{n} n\left(X_{S}^{T} X_{S}\right)^{-1} z_{S} .
$$

Proof sketch

(1) Form zero-subgradient conditions:

$$
\frac{1}{n}\left[\begin{array}{cc}
X_{S}^{T} X_{S} & X_{S^{c}}^{T} X_{S} \\
X_{S^{c}}^{T} X_{S} & X_{S^{c}}^{T} X_{S^{c}}
\end{array}\right]\left[\begin{array}{c}
\widehat{\theta}_{S}-\theta_{S}^{*} \\
0
\end{array}\right]-\frac{1}{n}\left[\begin{array}{c}
X_{S}^{T} \\
X_{S^{c}}^{T}
\end{array}\right] w+\lambda_{n}\left[\begin{array}{c}
\widehat{z}_{S} \\
\widehat{z}_{S^{c}}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

(2) Solve for $\widehat{\theta}_{S}-\theta_{S}^{*}$:

$$
\underbrace{\hat{\theta}_{S}-\theta_{S}^{*}}_{U_{S}}=-\left(X_{S}^{T} X_{S}\right)^{-1} X_{S}^{T} \mathbf{w}-\lambda_{n} n\left(X_{S}^{T} X_{S}\right)^{-1} z_{S} .
$$

(3) Solve for $z_{S^{c}}$:

$$
z_{S^{c}}=\underbrace{X_{S^{c}}^{T} X_{S}\left(X_{S}^{T} X_{S}\right)^{-1} z_{S}}_{\mu}+\underbrace{X_{S^{c}}^{T}\left[I-X_{S}\left(X_{S}^{T} X_{S}\right)^{-1} X_{S}^{T}\right]\left(\frac{\mathbf{w}}{\lambda_{n} n}\right)}_{V_{S^{c}}} .
$$

Checking that $\left\|z_{S^{c}}\right\|_{\infty}<1$ requires irrepresentability condition

$$
\max _{j \in S^{c}} X_{j}^{T}\left\|X_{S}\left(X_{S}^{T} X_{S}\right)^{-1}\right\|_{1}<\alpha<1
$$

Bounds on prediction error

Can predict a new response vector $y \in \mathbb{R}^{n}$ via $\widehat{y}=X \widehat{\theta}$. Associated mean-squared error

$$
\left.\frac{1}{n} \mathbb{E}\left[\|y-\widehat{y}\|_{2}^{2}\right]=\frac{1}{n} \| X \widehat{\theta}-X \theta^{*}\right) \|_{2}^{2}+\sigma^{2}
$$

Theorem

Consider the constrained Lasso with $R=\left\|\theta^{*}\right\|_{1}$ or regularized Lasso with $\lambda_{n}=4 \sigma \sqrt{\frac{\log d}{n}}$ applied to an S-sparse problem with σ-sub-Gaussian noise. Then with high probability:

Slow rate: If X has normalized columns ($\max _{j}\left\|X_{j}\right\|_{2} / \sqrt{n} \leq C$), then any optimal $\widehat{\theta}$ satisfies the bound

$$
\frac{1}{n}\left\|X \widehat{\theta}-X \theta^{*}\right\|_{2}^{2} \leq c C R \sigma \sqrt{\frac{\log d}{n}}
$$

Fast rate: If X satisfies the γ - $R E$ condition over S, then

$$
\frac{1}{n}\left\|X \widehat{\theta}-X \theta^{*}\right\|_{2}^{2} \leq \frac{c \sigma^{2}}{\gamma} \frac{s \log d}{n}
$$

Prediction error: Proof of slow rate

Let's analyze constrained version:

$$
\min _{\theta \in \mathbb{R}^{d}} \frac{1}{2 n}\|y-X \theta\|_{2}^{2} \quad \text { such that }\|\theta\|_{1} \leq R=\left\|\theta^{*}\right\|_{1}
$$

(1) By optimality of $\widehat{\theta}$ and feasibility of θ^{*}, we have the basic inequality for $\widehat{\Delta}=\widehat{\theta}-\theta^{*}$:

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle .
$$

Prediction error: Proof of slow rate

Let's analyze constrained version:

$$
\min _{\theta \in \mathbb{R}^{d}} \frac{1}{2 n}\|y-X \theta\|_{2}^{2} \quad \text { such that }\|\theta\|_{1} \leq R=\left\|\theta^{*}\right\|_{1}
$$

(1) By optimality of $\widehat{\theta}$ and feasibility of θ^{*}, we have the basic inequality for $\widehat{\Delta}=\widehat{\theta}-\theta^{*}$:

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle
$$

(2) Hölder's inequality for RHS

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle \leq 2\|\widehat{\Delta}\|_{1}\left\|\frac{X^{T} w}{n}\right\|_{\infty}
$$

Prediction error: Proof of slow rate

Let's analyze constrained version:

$$
\min _{\theta \in \mathbb{R}^{d}} \frac{1}{2 n}\|y-X \theta\|_{2}^{2} \quad \text { such that }\|\theta\|_{1} \leq R=\left\|\theta^{*}\right\|_{1}
$$

(1) By optimality of $\widehat{\theta}$ and feasibility of θ^{*}, we have the basic inequality for $\widehat{\Delta}=\widehat{\theta}-\theta^{*}$:

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle
$$

(2) Hölder's inequality for RHS

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle \leq 2\|\widehat{\Delta}\|_{1}\left\|\frac{X^{T} w}{n}\right\|_{\infty}
$$

(3) Since both $\widehat{\theta}$ and θ^{*} are feasible, we have $\|\widehat{\Delta}\|_{1} \leq 2 R$ by triangle inequality, and hence

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq 4 R\left\|\frac{X^{T} w}{n}\right\|_{\infty}
$$

Prediction error: Proof of fast rate

Let's analyze constrained version:

$$
\min _{\theta \in \mathbb{R}^{d}} \frac{1}{2 n}\|y-X \theta\|_{2}^{2} \quad \text { such that }\|\theta\|_{1} \leq R=\left\|\theta^{*}\right\|_{1}
$$

(1) By optimality of $\widehat{\theta}$ and feasibility of θ^{*}, we have the basic inequality for $\widehat{\Delta}=\widehat{\theta}-\theta^{*}$:

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle .
$$

Prediction error: Proof of fast rate

(1) By optimality of $\hat{\theta}$ and feasibility of θ^{*}, we have the basic inequality for

$$
\widehat{\Delta}=\widehat{\theta}-\theta^{*}:
$$

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle .
$$

(2) Hölder's inequality for RHS

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle \leq 2\|\widehat{\Delta}\|_{1}\left\|\frac{X^{T} w}{n}\right\|_{\infty} .
$$

Prediction error: Proof of fast rate

(1) By optimality of $\hat{\theta}$ and feasibility of θ^{*}, we have the basic inequality for

$$
\widehat{\Delta}=\widehat{\theta}-\theta^{*}
$$

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle .
$$

(2) Hölder's inequality for RHS

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle \leq 2\|\widehat{\Delta}\|_{1}\left\|\frac{X^{T} w}{n}\right\|_{\infty} .
$$

(3) Since $\widehat{\Delta} \in \mathbb{C}(S)$, we have $\|\widehat{\Delta}\|_{1} \leq 2 \sqrt{s}\|\widehat{\Delta}\|_{2}$, and hence

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq 2 \sqrt{s}\|\widehat{\Delta}\|_{2}\left\|\frac{X^{T} w}{n}\right\|_{\infty}
$$

Prediction error: Proof of fast rate

(1) By optimality of $\hat{\theta}$ and feasibility of θ^{*}, we have the basic inequality for $\widehat{\Delta}=\widehat{\theta}-\theta^{*}$:

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle .
$$

(2) Hölder's inequality for RHS

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq \frac{2}{n}\left\langle\widehat{\Delta}, X^{T} w\right\rangle \leq 2\|\widehat{\Delta}\|_{1}\left\|\frac{X^{T} w}{n}\right\|_{\infty} .
$$

(3) Since $\widehat{\Delta} \in \mathbb{C}(S)$, we have $\|\widehat{\Delta}\|_{1} \leq 2 \sqrt{s}\|\widehat{\Delta}\|_{2}$, and hence

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq 2 \sqrt{s}\|\widehat{\Delta}\|_{2}\left\|\frac{X^{T} w}{n}\right\|_{\infty}
$$

(4) Now apply γ-RE condition to RHS

$$
\frac{1}{n}\|X \widehat{\Delta}\|_{2}^{2} \leq 2 \sqrt{s}\|\widehat{\Delta}\|_{2}\left\|\frac{X^{T} w}{n}\right\|_{\infty} \leq \frac{1}{\sqrt{\gamma}} \frac{1}{\sqrt{n}}\|X \widehat{\Delta}\|_{2}\left\|\frac{X^{T} w}{n}\right\|_{\infty}
$$

Cancel terms and re-arrange.

Why RE conditions for fast rate?

Bothersome issue:

Why should prediction performance depend on an $R E$-condition?

- it is not fundamental: a method based on ℓ_{0}-regularization (exponential time) can achieve the fast rate with only column normalization

Why RE conditions for fast rate?

Bothersome issue:

Why should prediction performance depend on an $R E$-condition?

- it is not fundamental: a method based on ℓ_{0}-regularization (exponential time) can achieve the fast rate with only column normalization
- some negative evidence: an explicit design matrix and sparse vector ($k=2$) for which Lasso achieves slow rate Foygel \& Srebro (2011)

Why RE conditions for fast rate?

Bothersome issue:

Why should prediction performance depend on an $R E$-condition?

- it is not fundamental: a method based on ℓ_{0}-regularization (exponential time) can achieve the fast rate with only column normalization
- some negative evidence: an explicit design matrix and sparse vector ($k=2$) for which Lasso achieves slow rate Foygel \& Srebro (2011)
-but adaptive Lasso can achieve the fast rate for this counterexample.

A computationally-constrained minimax rate

Complexity classes:
P: decision problems solvable in poly. time by a Turing machine
$\mathbf{P} /$ poly: class \mathbf{P} plus polynomial-length advice string

Asssumptions:

- standard linear regression model $y=X \theta^{*}+w$ where $w \sim N\left(0, \sigma^{2} I_{n \times n}\right)$
- NP $\nsubseteq \mathbf{P} /$ poly

A computationally-constrained minimax rate

Complexity classes:
P: decision problems solvable in poly. time by a Turing machine $\mathbf{P} /$ poly: class \mathbf{P} plus polynomial-length advice string

Asssumptions:

- standard linear regression model $y=X \theta^{*}+w$ where $w \sim N\left(0, \sigma^{2} I_{n \times n}\right)$
- NP $\nsubseteq \mathbf{P} /$ poly

Theorem (Zhang, W. \& Jordan, COLT 2014)

There is a fixed "bad" design matrix $X \in \mathbb{R}^{n \times d}$ with $R E$ constant $\gamma(X)$ such for any polynomial-time computable $\widehat{\theta}$ returning s-sparse outputs:

$$
\sup _{\theta^{*} \in \mathbb{B}_{0}(s)} \mathbb{E}\left[\frac{\left\|X\left(\widehat{\theta}-\theta^{*}\right)\right\|_{2}^{2}}{n}\right] \succsim \frac{\sigma^{2}}{\gamma^{2}(X)} \frac{s^{1-\delta} \log d}{n}
$$

High-level overview

Regularized M-estimators:

Many statistical estimators take the form:

High-level overview

Regularized M-estimators:

Many statistical estimators take the form:

Past years have witnessed an explosion of results (compressed sensing, covariance estimation, block-sparsity, graphical models, matrix completion...)

Question:

Is there a common set of underlying principles?

Up until now: Sparse regression

Set-up: Observe $\left(y_{i}, x_{i}\right)$ pairs for $i=1,2, \ldots, n$, where

$$
y_{i} \sim \mathbb{P}\left(\cdot \mid\left\langle\theta^{*}, x_{i}\right\rangle\right),
$$

where $\theta \in \mathbb{R}^{d}$ is sparse.

Up until now: Sparse regression

Set-up: Observe $\left(y_{i}, x_{i}\right)$ pairs for $i=1,2, \ldots, n$, where

$$
y_{i} \sim \mathbb{P}\left(\cdot \mid\left\langle\theta^{*}, x_{i}\right\rangle\right),
$$

where $\theta \in \mathbb{R}^{d}$ is sparse.

Estimator: ℓ_{1}-regularized likelihood

$$
\widehat{\theta} \in \arg \min _{\theta}\left\{-\frac{1}{n} \sum_{i=1}^{n} \log \mathbb{P}\left(y_{i} \mid\left\langle x_{i}, \theta\right\rangle\right)+\lambda\|\theta\|_{1}\right\} .
$$

Up until now: Sparse regression

Example: Logistic regression for binary responses $y_{i} \in\{0,1\}$:

$$
\widehat{\theta} \in \arg \min _{\theta}\left\{\frac{1}{n} \sum_{i=1}^{n}\left\{\log \left(1+e^{\left\langle x_{i}, \theta\right\rangle}\right)-y_{i}\left\langle x_{i}, \theta\right\rangle\right\}+\lambda\|\theta\|_{1}\right\} .
$$

Example: Block sparsity and group Lasso

- Matrix Θ^{*} partitioned into non-zero rows S and zero rows S^{c}
- Various applications: multiple-view imaging, gene array prediction, graphical model fitting.

Example: Block sparsity and group Lasso

- Matrix Θ^{*} partitioned into non-zero rows S and zero rows S^{c}
- Various applications: multiple-view imaging, gene array prediction, graphical model fitting.
- Row-wise ℓ_{1} / ℓ_{2}-norm $\|\Theta\|_{1,2}=\sum_{j=1}^{d}\left\|\Theta_{j}\right\|_{2}$

Example: Block sparsity and group Lasso

- Row-wise ℓ_{1} / ℓ_{2}-norm $\|\Theta\|_{1,2}=\sum_{j=1}^{d}\left\|\Theta_{j}\right\|_{2}$
- Weighted r-group Lasso: (Wright et al., 2005; Tropp et al., 2006; Yuan \& Lin, 2006)

$$
\left\|\Theta^{*}\right\|_{\mathcal{G}, r}=\sum_{g \in \mathcal{G}} \omega_{g}\left\|\Theta_{g}\right\|_{r} \quad \text { for some } r \in[2, \infty] .
$$

Example: Block sparsity and group Lasso

- Row-wise ℓ_{1} / ℓ_{2}-norm $\|\Theta\|_{1,2}=\sum_{j=1}^{d}\left\|\Theta_{j}\right\|_{2}$
- Weighted r-group Lasso: (Wright et al., 2005; Tropp et al., 2006; Yuan \& Lin, 2006)

$$
\left\|\Theta^{*}\right\|_{\mathcal{G}, r}=\sum_{g \in \mathcal{G}} \omega_{g}\left\|\Theta_{g}\right\|_{r} \quad \text { for some } r \in[2, \infty] .
$$

- Extensions to \{ hierarchical, graph-based \} groups (e.g., Zhao et al., 2006; Bach et al., 2009; Baraniuk et al., 2009)

Example: Structured (inverse) covariance matrices

Set-up: Samples from random vector with sparse covariance Σ or sparse inverse covariance $\Theta^{*} \in \mathbb{R}^{d \times d}$.

Estimator (for inverse covariance)

$$
\widehat{\Theta} \in \arg \min _{\Theta}\left\{\left\langle\left\langle\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{T}, \Theta\right\rangle\right\rangle-\log \operatorname{det}(\Theta)+\lambda_{n} \sum_{j \neq k}\left|\Theta_{j k}\right|\right\}
$$

Some past work: Yuan \& Lin, 2006; d'Asprémont et al., 2007; Bickel \& Levina, 2007; El Karoui, 2007; d'Aspremont et al., 2007; Rothman et al., 2007; Zhou et al., 2007; Friedman et al., 2008; Lam \& Fan, 2008; Ravikumar et al., 2008; Zhou, Cai \& Huang, 2009; Guo et

Example: Low-rank matrix approximation

Set-up: Matrix $\Theta^{*} \in \mathbb{R}^{p_{1} \times p_{2}}$ with rank $r \ll \min \left\{p_{1}, p_{2}\right\}$.

Example: Low-rank matrix approximation

Set-up: Matrix $\Theta^{*} \in \mathbb{R}^{p_{1} \times p_{2}}$ with rank $r \ll \min \left\{p_{1}, p_{2}\right\}$.
Least-squares matrix regression: Given observations $y_{i}=\left\langle\left\langle X_{i}, \Theta^{*}\right\rangle\right\rangle+w_{i}$, solve:

$$
\widehat{\Theta} \in \arg \min _{\Theta}\left\{\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left\langle\left\langle X_{i}, \Theta\right\rangle\right\rangle\right)^{2}+\lambda_{n} \sum_{j=1}^{\min \left\{p_{1}, p_{2}\right\}} \gamma_{j}(\Theta)\right\}
$$

Some past work: Fazel, 2001; Srebro et al., 2004; Recht, Fazel \& Parillo, 2007; Bach, 2008;
Candes \& Recht, 2008; Keshavan et al., 2009; Rohde \& Tsybakov, 2010; Recht, 2009;
Negahban \& W., 2010, Koltchinski et al., 2011

Application: Collaborative filtering

Universe of p_{1} individuals and p_{2} films Observe $n \ll p_{2} p_{2}$ ratings
(e.g., Srebro, Alon \& Jaakkola, 2004; Candes \& Recht, 2008)

Example: Additive matrix decomposition

Matrix Y can be (approximately) decomposed into sum:

$$
Y=\underbrace{\Theta^{*}}_{\text {Low-rank component }}+\underbrace{\Gamma^{*}}_{\text {Sparse component }}
$$

Example: Additive matrix decomposition

Matrix Y can be (approximately) decomposed into sum:

- Initially proposed by Chandrasekaran, Sanghavi, Parillo \& Willsky, 2009
- Various applications:
- robust collaborative filtering
- robust PCA
- graphical model selection with hidden variables

Example: Additive matrix decomposition

Matrix Y can be (approximately) decomposed into sum:

- Initially proposed by Chandrasekaran, Sanghavi, Parillo \& Willsky, 2009
- Various applications:
- robust collaborative filtering
- robust PCA
- graphical model selection with hidden variables
- subsequent work: Candes et al., 2010; Xu et al., 2010 Hsu et al., 2010; Agarwal et al., 2011

Example: Discrete Markov random fields

Set-up: Samples from discrete MRF(e.g., Ising or Potts model):

$$
\mathbb{P}_{\theta}\left(x_{1}, \ldots, x_{d}\right)=\frac{1}{Z(\theta)} \exp \left\{\sum_{j \in V} \theta_{j}\left(x_{j}\right)+\sum_{(j, k) \in E} \theta_{j k}\left(x_{j}, x_{k}\right)\right\}
$$

Estimator: Given empirical marginal distributions $\left\{\widehat{\mu}_{j}, \widehat{\mu}_{j k}\right\}$:
$\widehat{\Theta} \in \arg \min _{\Theta}\left\{\sum_{s \in V} \mathbb{E}_{\widehat{\mu}_{j}}\left[\theta_{j}\left(x_{j}\right)\right]+\sum_{(j, k)} \mathbb{E}_{\widehat{\mu}_{j k}}\left[\theta_{j k}\left(x_{j}, x_{k}\right)\right]-\log Z(\theta)+\lambda_{n} \sum_{(j, k)}\left\|\theta_{j k}\right\|_{F}\right\}$
Some past work: Spirtes et al., 2001; Abbeel et al., 2005; Csiszar \& Telata, 2005;
Ravikumar et al, 2007; Schneidman et al., 2007; Santhanam \& Wainwright, 2008; Sly et al., 2008; Montanari and Pereira, 2009; Anandkumar et al., 2010

Non-parametric problems: Sparse additive models

- non-parametric regression: severe curse of dimensionality!
- many structured classes of non-parametric models are possible:

Non-parametric problems: Sparse additive models

- non-parametric regression: severe curse of dimensionality!
- many structured classes of non-parametric models are possible:
- additive models $f^{*}(x)=\sum_{j=1}^{d} f_{j}^{*}\left(x_{j}\right)$
(Stone, 1985)
- multiple-index models $f^{*}(x)=g\left(B^{*} x\right)$

Non-parametric problems: Sparse additive models

- non-parametric regression: severe curse of dimensionality!
- many structured classes of non-parametric models are possible:
- additive models $f^{*}(x)=\sum_{j=1}^{d} f_{j}^{*}\left(x_{j}\right)$
(Stone, 1985)
- multiple-index models $f^{*}(x)=g\left(B^{*} x\right)$
- sparse additive models:

$$
f^{*}(x)=\sum_{j \in S}^{d} f_{j}^{*}\left(x_{j}\right) \quad \text { for unknown subset } S
$$

(Lin \& Zhang, 2003; Meier et al., 2007; Ravikumar et al. 2007; Koltchinski and Yuan, 2008; Raskutti et al., 2010)

Non-parametric problems: Sparse additive models

Sparse additive models:

$$
f^{*}(x)=\sum_{j \in S}^{d} f_{j}^{*}\left(x_{j}\right) \quad \text { for unknown subset } S
$$

(Lin \& Zhang, 2003; Meier et al., 2007; Ravikumar et al. 2007; Koltchinski and Yuan, 2008; Raskutti, W., \& Yu, 2010) Noisy observations $y_{i}=f^{*}\left(x_{i}\right)+w_{i}$ for $i=1, \ldots, n$.

Estimator:

$$
\widehat{f} \in \arg \min _{f=\sum_{j=1}^{d} f_{j}}\{\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{d} f_{j}\left(x_{i j}\right)\right)^{2}+\lambda \underbrace{\sum_{j=1}^{d}\left\|f_{j}\right\|_{\mathcal{H}}}_{\left\|f_{j}\right\|_{1, \mathcal{H}}}+\mu_{n} \underbrace{\sum_{j=1}^{d}\left\|f_{j}\right\|_{n}}_{\|f\|_{1, n}}\}
$$

Example: Sparse principal components analysis

Set-up: Covariance matrix $\Sigma=Z Z^{T}+D$, where leading eigenspace Z has sparse columns.

Estimator:

$$
\widehat{\Theta} \in \arg \min _{\Theta}\left\{-\langle\langle\Theta, \widehat{\Sigma}\rangle\rangle+\lambda_{n} \sum_{(j, k)}\left|\Theta_{j k}\right|\right\}
$$

Some past work: Johnstone, 2001; Joliffe et al., 2003; Johnstone \& Lu, 2004; Zou et al., 2004; d'Asprémont et al., 2007; Johnstone \& Paul, 2008; Amini \& Wainwright, 2008; Ma, 2012; Berthet \& Rigollet, 2012; Nadler et al., 2012

Motivation and roadmap

- many results on different high-dimensional models
- all based on estimators of the type:

Motivation and roadmap

- many results on different high-dimensional models
- all based on estimators of the type:

Question:

Is there a common set of underlying principles?

Motivation and roadmap

- many results on different high-dimensional models
- all based on estimators of the type:

$$
\underbrace{\widehat{\theta}_{\lambda_{n}}}_{\text {Estimate }} \in \arg \min _{\theta \in \Omega}\{\underbrace{\mathcal{L}\left(\theta ; Z_{1}^{n}\right)}_{\text {Loss function }}+\lambda_{n} \underbrace{\mathcal{R}(\theta)}_{\text {Regularizer }}\} .
$$

Question:

Is there a common set of underlying principles?

Answer: Yes, two essential ingredients.
(I) Restricted strong convexity of loss function
(II) Decomposability of the regularizer

(I) Classical role of curvature in statistics

(1) Curvature controls difficulty of estimation:

High curvature: easy to estimate

(b) Low curvature: harder

Canonical example:

Log likelihood, Fisher information matrix and Cramér-Rao bound.

(I) Classical role of curvature in statistics

(1) Curvature controls difficulty of estimation:

High curvature: easy to estimate

(b) Low curvature: harder

Canonical example:

Log likelihood, Fisher information matrix and Cramér-Rao bound.
(2) Formalized by lower bound on Taylor series error $\mathcal{E}_{n}(\Delta)$

$$
\underbrace{\mathcal{L}\left(\theta^{*}+\Delta\right)-\mathcal{L}\left(\theta^{*}\right)-\left\langle\nabla \mathcal{L}\left(\theta^{*}\right), \Delta\right\rangle}_{\mathcal{E}_{n}(\Delta)} \geq \gamma^{2}\|\Delta\|_{\star}^{2} \quad \text { for all } \Delta \text { around } \theta^{*} .
$$

High dimensions: no strong convexity!

When $d>n$, the Hessian $\nabla^{2} \mathcal{L}\left(\theta ; Z_{1}^{n}\right)$ has nullspace of dimension $d-n$.

Restricted strong convexity

Definition

Loss function \mathcal{L}_{n} satisfies restricted strong convexity (RSC) with respect to regularizer \mathcal{R} if

for all Δ in a suitable neighborhood of θ^{*}.

Restricted strong convexity

Definition

Loss function \mathcal{L}_{n} satisfies restricted strong convexity (RSC) with respect to regularizer \mathcal{R} if

for all Δ in a suitable neighborhood of θ^{*}.

- ordinary strong convexity:
- special case with tolerance $\tau_{\ell}=0$
- does not hold for most loss functions when $d>n$

Restricted strong convexity

Definition

Loss function \mathcal{L}_{n} satisfies restricted strong convexity (RSC) with respect to regularizer \mathcal{R} if

for all Δ in a suitable neighborhood of θ^{*}.

- ordinary strong convexity:
- special case with tolerance $\tau_{\ell}=0$
- does not hold for most loss functions when $d>n$
- RSC enforces a lower bound on curvature, but only when $\mathcal{R}^{2}(\Delta) \ll\|\Delta\|_{2}^{2}$

Restricted strong convexity

Definition

Loss function \mathcal{L}_{n} satisfies restricted strong convexity (RSC) with respect to regularizer \mathcal{R} if

for all Δ in a suitable neighborhood of θ^{*}.

- ordinary strong convexity:
- special case with tolerance $\tau_{\ell}=0$
- does not hold for most loss functions when $d>n$
- RSC enforces a lower bound on curvature, but only when $\mathcal{R}^{2}(\Delta) \ll\|\Delta\|_{2}^{2}$
- a function satisfying RSC can actually be non-convex

Example: RSC \equiv RE for least-squares

- for least-squares loss $\mathcal{L}(\theta)=\frac{1}{2 n}\|y-X \theta\|_{2}^{2}$:

$$
\mathcal{E}_{n}(\Delta)=\mathcal{L}_{n}\left(\theta^{*}+\Delta\right)-\left\{\mathcal{L}_{n}\left(\theta^{*}\right)-\left\langle\nabla \mathcal{L}_{n}\left(\theta^{*}\right), \Delta\right\rangle\right\}=\frac{1}{2 n}\|X \Delta\|_{2}^{2}
$$

Example: RSC \equiv RE for least-squares

- for least-squares loss $\mathcal{L}(\theta)=\frac{1}{2 n}\|y-X \theta\|_{2}^{2}$:

$$
\mathcal{E}_{n}(\Delta)=\mathcal{L}_{n}\left(\theta^{*}+\Delta\right)-\left\{\mathcal{L}_{n}\left(\theta^{*}\right)-\left\langle\nabla \mathcal{L}_{n}\left(\theta^{*}\right), \Delta\right\rangle\right\}=\frac{1}{2 n}\|X \Delta\|_{2}^{2} .
$$

- Restricted eigenvalue (RE) condition (van de Geer, 2007; Bickel et al., 2009):

$$
\frac{\|X \Delta\|_{2}^{2}}{2 n} \geq \gamma\|\Delta\|_{2}^{2} \quad \text { for all }\left\|\Delta_{S^{c}}\right\|_{1} \leq\left\|\Delta_{S}\right\|_{1}
$$

Example: RSC \equiv RE for least-squares

- for least-squares loss $\mathcal{L}(\theta)=\frac{1}{2 n}\|y-X \theta\|_{2}^{2}$:

$$
\mathcal{E}_{n}(\Delta)=\mathcal{L}_{n}\left(\theta^{*}+\Delta\right)-\left\{\mathcal{L}_{n}\left(\theta^{*}\right)-\left\langle\nabla \mathcal{L}_{n}\left(\theta^{*}\right), \Delta\right\rangle\right\}=\frac{1}{2 n}\|X \Delta\|_{2}^{2} .
$$

- Restricted eigenvalue (RE) condition (van de Geer, 2007; Bickel et al., 2009):

$$
\frac{\|X \Delta\|_{2}^{2}}{2 n} \geq \gamma\|\Delta\|_{2}^{2} \quad \text { for all } \Delta \in \mathbb{R}^{d} \text { with }\|\Delta\|_{1} \leq 2 \sqrt{s}\|\Delta\|_{2}
$$

Example: Generalized linear models

A broad class of models for relationship between response $y \in \mathcal{X}$ and predictors $x \in \mathbb{R}^{d}$.

Example: Generalized linear models

A broad class of models for relationship between response $y \in \mathcal{X}$ and predictors $x \in \mathbb{R}^{d}$.

Based on families of conditional distributions:

$$
\mathbb{P}_{\theta}\left(y \mid x, \theta^{*}\right) \propto \exp \left\{\frac{y\left\langle x, \theta^{*}\right\rangle-\Phi\left(\left\langle x, \theta^{*}\right\rangle\right)}{c(\sigma)}\right\} .
$$

Example: Generalized linear models

A broad class of models for relationship between response $y \in \mathcal{X}$ and predictors $x \in \mathbb{R}^{d}$.

Based on families of conditional distributions:

$$
\mathbb{P}_{\theta}\left(y \mid x, \theta^{*}\right) \propto \exp \left\{\frac{y\left\langle x, \theta^{*}\right\rangle-\Phi\left(\left\langle x, \theta^{*}\right\rangle\right)}{c(\sigma)}\right\} .
$$

Examples:

- Linear Gaussian model: $\Phi(t)=t^{2} / 2$ and $c(\sigma)=\sigma^{2}$.
- Binary response data $y \in\{0,1\}$, Bernouilli model: $\Phi(t)=\log \left(1+e^{t}\right)$.
- Multinomial responses (e.g., ratings)
- Poisson models (count-valued data): $\Phi(t)=e^{t}$.

GLM-based restricted strong convexity

- let \mathcal{R} be norm-based regularizer dominating the ℓ_{2}-norm (e.g., ℓ_{1}, group-sparse, nuclear etc.)
- let \mathcal{R}^{*} be the associated dual norm
- covariate-Rademacher complexity of norm ball

$$
\sup _{\mathcal{R}(u) \leq 1}\left\langle u, \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\rangle=\mathcal{R}^{*}\left(\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} x_{i}\right)
$$

where $\left\{\varepsilon_{i}\right\}_{i=1}^{n}$ are i.i.d sign variables

GLM-based restricted strong convexity

- let \mathcal{R} be norm-based regularizer dominating the ℓ_{2}-norm (e.g., ℓ_{1}, group-sparse, nuclear etc.)
- let \mathcal{R}^{*} be the associated dual norm
- covariate-Rademacher complexity of norm ball

$$
\sup _{\mathcal{R}(u) \leq 1}\left\langle u, \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\rangle=\mathcal{R}^{*}\left(\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} x_{i}\right)
$$

where $\left\{\varepsilon_{i}\right\}_{i=1}^{n}$ are i.i.d sign variables

Theorem (Negahban et al., 2012; W. 2014)

Let the covariates $\left\{x_{i}\right\}_{i=1}^{n}$ be sampled i.i.d. Then

$$
\underbrace{\mathcal{E}_{n}(\Delta)} \geq \underbrace{\overline{\mathcal{E}}(\Delta)} \quad-c_{1}\{t \mathcal{R}(\Delta)\}^{2} \quad \text { for all }\|\Delta\|_{2} \leq 1
$$

Emp. Taylor error Pop. Taylor error
with probability at least $1-\mathbb{P}\left[\mathcal{R}^{*}\left(\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} x_{i}\right) \geq t\right]$.

(II) Decomposable regularizers

Subspace A :
Complementary subspace A^{\perp} :

Approximation to model parameters Undesirable deviations.

(II) Decomposable regularizers

Subspace A :
Approximation to model parameters
Complementary subspace A^{\perp} : Undesirable deviations.
Regularizer \mathcal{R} decomposes across $\left(A, A^{\perp}\right)$ if

$$
\mathcal{R}(\alpha+\beta)=\mathcal{R}(\alpha)+\mathcal{R}(\beta) \quad \text { for all } \alpha \in A, \text { and } \beta \in A^{\perp} .
$$

(II) Decomposable regularizers

Regularizer \mathcal{R} decomposes across $\left(A, A^{\perp}\right)$ if

$$
\mathcal{R}(\alpha+\beta)=\mathcal{R}(\alpha)+\mathcal{R}(\beta) \quad \text { for all } \alpha \in A, \text { and } \beta \in A^{\perp} .
$$

Includes:

- (weighted) ℓ_{1}-norms
- nuclear norm
- group-sparse norms
- sums of decomposable norms

(II) Decomposable regularizers

Regularizer \mathcal{R} decomposes across $\left(A, A^{\perp}\right)$ if

$$
\mathcal{R}(\alpha+\beta)=\mathcal{R}(\alpha)+\mathcal{R}(\beta) \quad \text { for all } \alpha \in A, \text { and } \beta \in A^{\perp} .
$$

Related definitions:
Geometric decomposability: Candes \& Recht, 2012; Chandrasekaran et al., 20 Weak decomposability: van de Geer, 2012

Significance of decomposability

(a) \mathbb{C} for exact model (cone)
(b) \mathbb{C} for approximate model (star-shaped)

Lemma

Suppose that \mathcal{L} is convex, and \mathcal{R} is decomposable w.r.t. A. Then as long as $\lambda_{n} \geq 2 \mathcal{R}^{*}\left(\nabla \mathcal{L}\left(\theta^{*} ; Z_{1}^{n}\right)\right)$, the error vector $\widehat{\Delta}=\widehat{\theta}_{\lambda_{n}}-\theta^{*}$ belongs to

$$
\mathbb{C}\left(A, B ; \theta^{*}\right):=\left\{\Delta \in \Omega \mid \mathcal{R}\left(\Pi_{A^{\perp}}(\Delta)\right) \leq 3 \mathcal{R}\left(\Pi_{B}(\Delta)\right)+4 \mathcal{R}\left(\Pi_{A^{\perp}}\left(\theta^{*}\right)\right)\right\} .
$$

Example: Sparse vectors and ℓ_{1}-regularization

- for each subset $S \subset\{1, \ldots, d\}$, define subspace pairs

$$
\begin{aligned}
A(S) & :=\left\{\theta \in \mathbb{R}^{d} \mid \theta_{S^{c}}=0\right\}, \\
B^{\perp}(S) & :=\left\{\theta \in \mathbb{R}^{d} \mid \theta_{S}=0\right\}=A^{\perp}(S) .
\end{aligned}
$$

- decomposability of ℓ_{1}-norm:

$$
\left\|\theta_{S}+\theta_{S^{c}}\right\|_{1}=\left\|\theta_{S}\right\|_{1}+\left\|\theta_{S^{c}}\right\|_{1} \quad \text { for all } \theta_{S} \in A(S) \text { and } \theta_{S^{c}} \in B^{\perp}(S)
$$

- natural extension to group Lasso:
- collection of groups \mathcal{G}_{j} that partition $\{1, \ldots, d\}$
- group norm

$$
\|\theta\|_{\mathcal{G}, \alpha}=\sum_{j}\left\|\theta_{\mathcal{G}_{j}}\right\|_{\alpha} \quad \text { for some } \alpha \in[1, \infty] .
$$

Example: Low-rank matrices and nuclear norm

- for each pair of r-dimensional subspaces $U \subseteq \mathbb{R}^{p_{1}}$ and $V \subseteq \mathbb{R}^{p_{2}}$:

$$
\begin{aligned}
A(U, V) & :=\left\{\Theta \in \mathbb{R}^{p_{1} \times p_{2}} \mid \operatorname{row}(\Theta) \subseteq V, \operatorname{col}(\Theta) \subseteq U\right\} \\
B^{\perp}(U, V) & :=\left\{\Gamma \in \mathbb{R}^{p_{1} \times p_{2}} \mid \operatorname{row}(\Gamma) \subseteq V^{\perp}, \operatorname{col}(\Gamma) \subseteq U^{\perp}\right\} .
\end{aligned}
$$

Example: Low-rank matrices and nuclear norm

- for each pair of r-dimensional subspaces $U \subseteq \mathbb{R}^{p_{1}}$ and $V \subseteq \mathbb{R}^{p_{2}}$:

$$
\begin{aligned}
A(U, V) & :=\left\{\Theta \in \mathbb{R}^{p_{1} \times p_{2}} \mid \operatorname{row}(\Theta) \subseteq V, \operatorname{col}(\Theta) \subseteq U\right\} \\
B^{\perp}(U, V) & :=\left\{\Gamma \in \mathbb{R}^{p_{1} \times p_{2}} \mid \operatorname{row}(\Gamma) \subseteq V^{\perp}, \operatorname{col}(\Gamma) \subseteq U^{\perp}\right\} .
\end{aligned}
$$

(a) $\Theta \in A$

(b) $\Gamma \in B^{\perp}$

(c) $\Sigma \in B$

Example: Low-rank matrices and nuclear norm

- for each pair of r-dimensional subspaces $U \subseteq \mathbb{R}^{p_{1}}$ and $V \subseteq \mathbb{R}^{p_{2}}$:

$$
\begin{aligned}
A(U, V) & :=\left\{\Theta \in \mathbb{R}^{p_{1} \times p_{2}} \mid \operatorname{row}(\Theta) \subseteq V, \operatorname{col}(\Theta) \subseteq U\right\} \\
B^{\perp}(U, V) & :=\left\{\Gamma \in \mathbb{R}^{p_{1} \times p_{2}} \mid \operatorname{row}(\Gamma) \subseteq V^{\perp}, \operatorname{col}(\Gamma) \subseteq U^{\perp}\right\} .
\end{aligned}
$$

(a) $\Theta \in A$

(b) $\Gamma \in B^{\perp}$

(c) $\Sigma \in B$

- by construction, $\Theta^{T} \Gamma=0$ for all $\Theta \in A(U, V)$ and $\Gamma \in B^{\perp}(U, V)$
- decomposability of nuclear norm $\|\Theta\|_{1}=\sum_{j=1}^{\min \left\{p_{1}, p_{2}\right\}} \sigma_{j}(\Theta)$:

$$
\|\Theta+\Gamma\|_{1}=\|\Theta\|_{1}+\|\Gamma\|_{1} \quad \text { for all } \Theta \in A(U, V) \text { and } \Gamma \in B^{\perp}(U, V)
$$

Main theorem

Estimator

$$
\widehat{\theta}_{\lambda_{n}} \in \quad \arg \min _{\theta \in \mathbb{R}^{d}}\left\{\mathcal{L}_{n}\left(\theta ; Z_{1}^{n}\right)+\lambda_{n} \mathcal{R}(\theta)\right\},
$$

where \mathcal{L} satisfies $\operatorname{RSC}(\gamma, \tau)$ w.r.t regularizer \mathcal{R}.

Main theorem

Estimator

$$
\widehat{\theta}_{\lambda_{n}} \in \arg \min _{\theta \in \mathbb{R}^{d}}\left\{\mathcal{L}_{n}\left(\theta ; Z_{1}^{n}\right)+\lambda_{n} \mathcal{R}(\theta)\right\},
$$

where \mathcal{L} satisfies $\operatorname{RSC}(\gamma, \tau)$ w.r.t regularizer \mathcal{R}.
Theorem (Negahban, Ravikumar, W., \& Yu, 2012)
Suppose that $\theta^{*} \in A$, and $\Psi^{2}(A) \tau_{n}^{2}<1$. Then for any regularization parameter $\lambda_{n} \geq 2 \mathcal{R}^{*}\left(\nabla \mathcal{L}\left(\theta^{*} ; Z_{1}^{n}\right)\right)$, any solution $\widehat{\theta}_{\lambda_{n}}$ satisfies

$$
\left\|\widehat{\theta}_{\lambda_{n}}-\theta^{*}\right\|_{\star}^{2} \precsim \frac{1}{\gamma^{2}(\mathcal{L})} \lambda_{n}^{2} \Psi^{2}(A) .
$$

Quantities that control rates:

- curvature in RSC: γ_{ℓ}
- tolerance in RSC: τ
- dual norm of regularizer: $\mathcal{R}^{*}(v):=\sup _{\mathcal{R}(u) \leq 1}\langle v, u\rangle$.
- optimal subspace const.: $\Psi(A)=\sup _{\theta \in A \backslash\{0\}} \mathcal{R}(\theta) /\|\theta\|_{\star}$

Main theorem

Estimator

$$
\widehat{\theta}_{\lambda_{n}} \in \quad \arg \min _{\theta \in \mathbb{R}^{d}}\left\{\mathcal{L}_{n}\left(\theta ; Z_{1}^{n}\right)+\lambda_{n} \mathcal{R}(\theta)\right\},
$$

Theorem (Oracle version)
With $\lambda_{n} \geq 2 \mathcal{R}^{*}\left(\nabla \mathcal{L}\left(\theta^{*} ; Z_{1}^{n}\right)\right)$, any solution $\widehat{\theta}$ satisfies

$$
\left\|\widehat{\theta}_{\lambda_{n}}-\theta^{*}\right\|_{\star}^{2} \precsim \underbrace{\frac{\left(\lambda_{n}^{\prime}\right)^{2}}{\gamma^{2}} \Psi^{2}(A)}_{\text {Estimation error }}+\underbrace{\frac{\lambda_{n}^{\prime}}{\gamma} \mathcal{R}\left(\Pi_{A^{\perp}}\left(\theta^{*}\right)\right)}_{\text {Approximation error }}
$$

where $\lambda^{\prime}=\max \{\lambda, \tau\}$.

Quantities that control rates:

- curvature in RSC: γ_{ℓ}
- tolerance in RSC: τ
- dual norm of regularizer: $\mathcal{R}^{*}(v):=\sup _{\mathcal{R}(u) \leq 1}\langle v, u\rangle$.
- optimal subspace const.: $\Psi(A)=\sup _{\theta \in A \backslash\{0\}} \mathcal{R}(\theta) /\|\theta\|_{\star}$

Example: Group-structured regularizers

Many applications exhibit sparsity with more structure.....

- divide index set $\{1,2, \ldots, d\}$ into groups $\mathcal{G}=\left\{G_{1}, G_{2}, \ldots, G_{T}\right\}$
- for parameters $\nu_{i} \in[1, \infty]$, define block-norm

$$
\|\theta\|_{\nu, \mathcal{G}}:=\sum_{t=1}^{T}\left\|\theta_{G_{t}}\right\|_{\nu_{t}}
$$

- group/block Lasso program

$$
\widehat{\theta}_{\lambda_{n}} \in \arg \min _{\theta \in \mathbb{R}^{d}}\left\{\frac{1}{2 n}\|y-X \theta\|_{2}^{2}+\lambda_{n}\|\theta\|_{\nu, \mathcal{G}}\right\} .
$$

- different versions studied by various authors
(Wright et al., 2005; Tropp et al., 2006; Yuan \& Li, 2006; Baraniuk, 2008; Obozinski et al., 2008; Zhao et al., 2008; Bach et al., 2009; Lounici et al., 2009)

Convergence rates for general group Lasso

Corollary

Say Θ^{*} is supported on group subset $\mathcal{S}_{\mathcal{G}}$, and X satisfies $R S C$. Then for regularization parameter

$$
\lambda_{n} \geq 2 \max _{t=1,2, \ldots, T}\left\|\frac{X^{T} w}{n}\right\|_{\nu_{t}^{*}}, \quad \text { where } \frac{1}{\nu_{t}^{*}}=1-\frac{1}{\nu_{t}},
$$

any solution $\widehat{\theta}_{\lambda_{n}}$ satisfies

$$
\left\|\widehat{\theta}_{\lambda_{n}}-\theta^{*}\right\|_{2} \leq \frac{2}{\gamma(\mathcal{L})} \Psi_{\nu}\left(S_{\mathcal{G}}\right) \lambda_{n}, \quad \text { where } \Psi_{\nu}\left(S_{\mathcal{G}}\right)=\sup _{\theta \in A\left(S_{\mathcal{G}}\right) \backslash\{0\}} \frac{\|\theta\|_{\nu, \mathcal{G}}}{\|\theta\|_{2}} .
$$

Convergence rates for general group Lasso

Corollary

Say Θ^{*} is supported on group subset $\mathcal{S}_{\mathcal{G}}$, and X satisfies RSC. Then for regularization parameter

$$
\lambda_{n} \geq 2 \max _{t=1,2, \ldots, T}\left\|\frac{X^{T} w}{n}\right\|_{\nu_{t}^{*}}, \quad \text { where } \frac{1}{\nu_{t}^{*}}=1-\frac{1}{\nu_{t}},
$$

any solution $\widehat{\theta}_{\lambda_{n}}$ satisfies

$$
\left\|\widehat{\theta}_{\lambda_{n}}-\theta^{*}\right\|_{2} \leq \frac{2}{\gamma(\mathcal{L})} \Psi_{\nu}\left(S_{\mathcal{G}}\right) \lambda_{n}, \quad \text { where } \Psi_{\nu}\left(S_{\mathcal{G}}\right)=\sup _{\theta \in A\left(S_{\mathcal{G}}\right) \backslash\{0\}} \frac{\|\theta\|_{\nu, \mathcal{G}}}{\|\theta\|_{2}}
$$

Some special cases with $m \equiv$ max. group size
(1) ℓ_{1} / ℓ_{2} regularization: Group norm with $\nu=2$

$$
\left\|\widehat{\theta}_{\lambda_{n}}-\theta^{*}\right\|_{2}^{2}=\mathcal{O}\left(\frac{\left|\mathcal{S}_{\mathcal{G}}\right| m}{n}+\frac{\left|\mathcal{S}_{\mathcal{G}}\right| \log T}{n}\right)
$$

Convergence rates for general group Lasso

Corollary

Say Θ^{*} is supported on group subset $\mathcal{S}_{\mathcal{G}}$, and X satisfies RSC. Then for regularization parameter

$$
\lambda_{n} \geq 2 \max _{t=1,2, \ldots, T}\left\|\frac{X^{T} w}{n}\right\|_{\nu_{t}^{*}}, \quad \text { where } \frac{1}{\nu_{t}^{*}}=1-\frac{1}{\nu_{t}},
$$

any solution $\widehat{\theta}_{\lambda_{n}}$ satisfies

$$
\left\|\widehat{\theta}_{\lambda_{n}}-\theta^{*}\right\|_{2} \leq \frac{2}{\gamma(\mathcal{L})} \Psi_{\nu}\left(S_{\mathcal{G}}\right) \lambda_{n}, \quad \text { where } \Psi_{\nu}\left(S_{\mathcal{G}}\right)=\sup _{\theta \in A\left(S_{\mathcal{G}}\right) \backslash\{0\}} \frac{\|\theta\|_{\nu, \mathcal{G}}}{\|\theta\|_{2}}
$$

Some special cases with $m \equiv$ max. group size
(1) ℓ_{1} / ℓ_{∞} regularization: group norm with $\nu=\infty$

$$
\left\|\widehat{\theta}_{\lambda_{n}}-\theta^{*}\right\|_{2}^{2}=\mathcal{O}\left(\frac{\left|\mathcal{S}_{\mathcal{G}}\right| m^{2}}{n}+\frac{\left|\mathcal{S}_{\mathcal{G}}\right| \log T}{n}\right)
$$

Is adaptive estimation possible?

Consider a group-sparse problem with:

- T groups in total
- each of size m
- $\left|\mathcal{S}_{\mathcal{G}}\right|$-active groups
- T active coefficients per group

Group Lasso will achieve

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{2}^{2} \precsim \frac{\left|\mathcal{S}_{\mathcal{G}}\right| m}{n}+\frac{\left|\mathcal{S}_{\mathcal{G}}\right| \log |\mathcal{G}|}{n} .
$$

Lasso will achieve

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{2}^{2} \precsim \frac{\left|\mathcal{S}_{\mathcal{G}}\right| T \log (|\mathcal{G}| m)}{n} .
$$

Is adaptive estimation possible?

Consider a group-sparse problem with:

- T groups in total
- each of size m
- $\left|\mathcal{S}_{\mathcal{G}}\right|$-active groups
- T active coefficients per group

Group Lasso will achieve

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{2}^{2} \precsim \frac{\left|\mathcal{S}_{\mathcal{G}}\right| m}{n}+\frac{\left|\mathcal{S}_{\mathcal{G}}\right| \log |\mathcal{G}|}{n} .
$$

Lasso will achieve

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{2}^{2} \precsim \frac{\left|\mathcal{S}_{\mathcal{G}}\right| T \log (|\mathcal{G}| m)}{n} .
$$

Natural question:

Can we design an estimator that optimally adapts to the degree of elementwise versus group sparsity?

Answer: Overlap group Lasso

Represent Θ^{*} as a sum of row-sparse and element-wise sparse matrices.

Answer: Overlap group Lasso

Represent Θ^{*} as a sum of row-sparse and element-wise sparse matrices.

Define new norm on matrix space:

$$
\mathcal{R}_{\omega}(\Theta)=\inf _{\Theta=\Omega+\Gamma}\left\{\omega\|\Omega\|_{1,2}+\|\Gamma\|_{1}\right\} .
$$

Answer: Overlap group Lasso

Represent Θ^{*} as a sum of row-sparse and element-wise sparse matrices.

Define new norm on matrix space:

$$
\mathcal{R}_{\omega}(\Theta)=\inf _{\Theta=\Omega+\Gamma}\left\{\omega\|\Omega\|_{1,2}+\|\Gamma\|_{1}\right\} .
$$

Special case of the overlap group Lasso: (Obozinski et al., 2008; Jalali et al., 2011)

Example: Adaptivity with overlap group Lasso

Consider regularizer

$$
\mathcal{R}_{\omega}(\Theta)=\inf _{\Theta=\Omega+\Gamma}\left\{\omega\|\Omega\|_{1,2}+\|\Gamma\|_{1}\right\} .
$$

with

$$
\omega=\frac{\sqrt{m}+\sqrt{\log |\mathcal{G}|}}{\sqrt{\log d}}
$$

- $|\mathcal{G}|$ is number of groups
- m is max. group size
- d is number of predictors.

Example: Adaptivity with overlap group Lasso

Consider regularizer

$$
\mathcal{R}_{\omega}(\Theta)=\inf _{\Theta=\Omega+\Gamma}\left\{\omega\|\Omega\|_{1,2}+\|\Gamma\|_{1}\right\} .
$$

with

$$
\omega=\frac{\sqrt{m}+\sqrt{\log |\mathcal{G}|}}{\sqrt{\log d}}
$$

- $|\mathcal{G}|$ is number of groups
- m is max. group size
- d is number of predictors.

Corollary

Under RSC condition on loss function, suppose that Θ^{*} can be decomposed as a sum of an $\left|S_{\text {elt }}\right|$-elementwise sparse matrix and an $\left|\mathcal{S}_{\mathcal{G}}\right|$-groupwise sparse matrix (disjointly). Then for $\lambda=4 \sigma \sqrt{\frac{\log d}{n}}$, any optimal solution satisfies (w.h.p.)

$$
\left\|\widehat{\Theta}-\Theta^{*}\right\|_{F}^{2} \precsim \sigma^{2}\left\{\frac{\left|\mathcal{S}_{\mathcal{G}}\right| m}{n}+\frac{\left|\mathcal{S}_{\mathcal{G}}\right| \log |\mathcal{G}|}{n}\right\}+\sigma^{2}\left\{\frac{\left|S_{e l t}\right| \log d}{n}\right\} .
$$

Example: Low-rank matrices and nuclear norm

- low-rank matrix $\Theta^{*} \in \mathbb{R}^{p_{1} \times p_{2}}$ that is exactly (or approximately) low-rank
- noisy/partial observations of the form

$$
y_{i}=\left\langle\left\langle X_{i}, \Theta^{*}\right\rangle\right\rangle+w_{i}, i=1, \ldots, n, \quad w_{i} \quad \text { i.i.d. noise }
$$

- estimate by solving semi-definite program (SDP):

$$
\widehat{\Theta} \in \arg \min _{\Theta}\{\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left\langle\left\langle X_{i}, \Theta\right\rangle\right\rangle\right)^{2}+\lambda_{n} \underbrace{\sum_{j=1}^{\min \left\{p_{1}, p_{2}\right\}} \gamma_{j}(\Theta)}_{\|\Theta\|_{1}}\}
$$

Example: Low-rank matrices and nuclear norm

- low-rank matrix $\Theta^{*} \in \mathbb{R}^{p_{1} \times p_{2}}$ that is exactly (or approximately) low-rank
- noisy/partial observations of the form

$$
y_{i}=\left\langle\left\langle X_{i}, \Theta^{*}\right\rangle\right\rangle+w_{i}, i=1, \ldots, n, \quad w_{i} \quad \text { i.i.d. noise }
$$

- estimate by solving semi-definite program (SDP):

$$
\widehat{\Theta} \in \arg \min _{\Theta}\{\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left\langle\left\langle X_{i}, \Theta\right\rangle\right\rangle\right)^{2}+\lambda_{n} \underbrace{\sum_{j=1}^{\min \left\{p_{1}, p_{2}\right\}} \gamma_{j}(\Theta)}_{\|\Theta\|_{1}}\}
$$

- various applications:
- matrix compressed sensing
- matrix completion
- rank-reduced multivariate regression (multi-task learning)
- time-series modeling (vector autoregressions)
- phase-retrieval problems

Rates for (near) low-rank estimation

For simplicity, consider matrix compressed sensing model: X_{i} are random sub-Gaussian projections).

For parameter $q \in[0,1]$, set of near low-rank matrices:

$$
\mathbb{B}_{q}\left(R_{q}\right)=\left\{\left.\Theta^{*} \in \mathbb{R}^{p_{1} \times p_{2}}\left|\sum_{j=1}^{\min \left\{p_{1}, p_{2}\right\}}\right| \sigma_{j}\left(\Theta^{*}\right)\right|^{q} \leq R_{q}\right\} .
$$

Rates for (near) low-rank estimation

For simplicity, consider matrix compressed sensing model: X_{i} are random sub-Gaussian projections).

For parameter $q \in[0,1]$, set of near low-rank matrices:

$$
\mathbb{B}_{q}\left(R_{q}\right)=\left\{\left.\Theta^{*} \in \mathbb{R}^{p_{1} \times p_{2}}\left|\sum_{j=1}^{\min \left\{p_{1}, p_{2}\right\}}\right| \sigma_{j}\left(\Theta^{*}\right)\right|^{q} \leq R_{q}\right\} .
$$

Corollary (Negahban \& W., 2011)

With regularization parameter $\lambda_{n} \geq 16 \sigma\left(\sqrt{\frac{p_{1}}{n}}+\sqrt{\frac{\overline{p_{2}}}{n}}\right)$, we have w.h.p.

$$
\left\|\widehat{\Theta}-\Theta^{*}\right\|_{F}^{2} \leq c_{0} \frac{R_{q}}{\gamma(\mathcal{L})^{2}}\left(\frac{\sigma^{2}\left(p_{1}+p_{2}\right)}{n}\right)^{1-\frac{q}{2}}
$$

Rates for (near) low-rank estimation

For parameter $q \in[0,1]$, set of near low-rank matrices:

$$
\mathbb{B}_{q}\left(R_{q}\right)=\left\{\left.\Theta^{*} \in \mathbb{R}^{p_{1} \times p_{2}}\left|\sum_{j=1}^{\min \left\{p_{1}, p_{2}\right\}}\right| \sigma_{j}\left(\Theta^{*}\right)\right|^{q} \leq R_{q}\right\}
$$

Corollary (Negahban \& W., 2011)

With regularization parameter $\lambda_{n} \geq 16 \sigma\left(\sqrt{\frac{p_{1}}{n}}+\sqrt{\frac{p_{2}}{n}}\right)$, we have w.h.p.

$$
\left\|\widehat{\Theta}-\Theta^{*}\right\|_{F}^{2} \leq c_{0} \frac{R_{q}}{\gamma(\mathcal{L})^{2}}\left(\frac{\sigma^{2}\left(p_{1}+p_{2}\right)}{n}\right)^{1-\frac{q}{2}}
$$

- for a rank r matrix M

$$
\|M\|_{1}=\sum_{j=1}^{r} \sigma_{j}(M) \leq \sqrt{r} \sqrt{\sum_{j=1}^{r} \sigma_{j}^{2}(M)}=\sqrt{r}\|M\|_{F}
$$

- solve nuclear norm regularized program with $\lambda_{n} \geq \frac{2}{n}\left\|\sum_{i=1}^{n} w_{i} X_{i}\right\|_{2}$

Matrix completion

Random operator $\mathfrak{X}: \mathbb{R}^{d \times d} \rightarrow \mathbb{R}^{n}$ with

$$
\left[\mathfrak{X}\left(\Theta^{*}\right)\right]_{i}=d \Theta_{a(i) b(i)}^{*}
$$

where $(a(i), b(i))$ is a matrix index sampled uniformly at random.

Matrix completion

Random operator $\mathfrak{X}: \mathbb{R}^{d \times d} \rightarrow \mathbb{R}^{n}$ with

$$
\left[\mathfrak{X}\left(\Theta^{*}\right)\right]_{i}=d \Theta_{a(i) b(i)}^{*}
$$

where $(a(i), b(i))$ is a matrix index sampled uniformly at random.
Even in noiseless setting, model is unidentifiable: Consider a rank one matrix:

$$
\Theta^{*}=e_{1} e_{1}^{T}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & 0 \\
0 & 0 & 0 & \ldots & 0
\end{array}\right]
$$

Matrix completion

Random operator $\mathfrak{X}: \mathbb{R}^{d \times d} \rightarrow \mathbb{R}^{n}$ with

$$
\left[\mathfrak{X}\left(\Theta^{*}\right)\right]_{i}=d \Theta_{a(i) b(i)}^{*}
$$

where $(a(i), b(i))$ is a matrix index sampled uniformly at random.

Even in noiseless setting, model is unidentifiable: Consider a rank one matrix:

$$
\Theta^{*}=e_{1} e_{1}^{T}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & 0 \\
0 & 0 & 0 & \ldots & 0
\end{array}\right]
$$

Exact recovery based on eigen-incoherence involving leverage scores (e.g., Recht \& Candes, 2008; Gross, 2009)

A milder "spikiness" condition

Consider the "poisoned" low-rank matrix:

$$
\Theta^{*}=\Gamma^{*}+\delta e_{1} e_{1}^{T}=\Gamma^{*}+\delta\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & 0 \\
0 & 0 & 0 & \ldots & 0
\end{array}\right]
$$

where Γ^{*} is rank $r-1$, all eigenectors perpendicular to e_{1}.

Excluded by eigen-incoherence for all $\delta>0$.

A milder "spikiness" condition

Consider the "poisoned" low-rank matrix:

$$
\Theta^{*}=\Gamma^{*}+\delta e_{1} e_{1}^{T}=\Gamma^{*}+\delta\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & 0 \\
0 & 0 & 0 & \ldots & 0
\end{array}\right]
$$

where Γ^{*} is rank $r-1$, all eigenectors perpendicular to e_{1}.

Excluded by eigen-incoherence for all $\delta>0$.

Control by spikiness ratio:

$$
1 \leq \frac{d\left\|\Theta^{*}\right\|_{\infty}}{\left\|\Theta^{*}\right\|_{F}} \leq d
$$

Spikiness constraints used in various papers: Oh et al., 2009; Negahban \& W. 2010, Koltchinski et al., 2011.

Uniform law for matrix completion

Let $\mathfrak{X}_{n}: \mathbb{R}^{d \times d} \rightarrow \mathbb{R}^{n}$ be rescaled matrix completion random operator
$\left(\mathfrak{X}_{n}(\Theta)\right)_{i} \mapsto d \Theta_{a(i), b(i)} \quad$ where index $(a(i), b(i))$ from uniform distribution.
Define family of zero-mean random variables:

$$
Z_{n}(\Theta):=\frac{\left\|\mathfrak{X}_{n}(\Theta)\right\|_{2}^{2}}{n}-\|\Theta\|_{F}^{2}, \quad \text { for } \Theta \in \mathbb{R}^{d \times d}
$$

Uniform law for matrix completion

Let $\mathfrak{X}_{n}: \mathbb{R}^{d \times d} \rightarrow \mathbb{R}^{n}$ be rescaled matrix completion random operator

$$
\left(\mathfrak{X}_{n}(\Theta)\right)_{i} \mapsto d \Theta_{a(i), b(i)} \quad \text { where index }(a(i), b(i)) \text { from uniform distribution. }
$$

Define family of zero-mean random variables:

$$
Z_{n}(\Theta):=\frac{\left\|\mathfrak{X}_{n}(\Theta)\right\|_{2}^{2}}{n}-\|\Theta\|_{F}^{2}, \quad \text { for } \Theta \in \mathbb{R}^{d \times d}
$$

Theorem (Negahban \& W., 2010)
For random matrix completion operator \mathfrak{X}_{n}, there are universal positive constants $\left(c_{1}, c_{2}\right)$ such that

$$
\sup _{\Theta \in \mathbb{R}^{d \times d} \backslash\{0\}} Z_{n}(\Theta) \leq \underbrace{c_{1} d\|\Theta\|_{\infty}\|\Theta\|_{n u c} \sqrt{\frac{d \log d}{n}}}_{\text {"low-rank term" }}+\underbrace{c_{2}\left(d\|\Theta\|_{\infty} \sqrt{\frac{d \log d}{n}}\right)^{2}}_{\text {"spikiness" term }}
$$

with probability at least $1-\exp (-d \log d)$.

