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Prediction with sequentially-revealed data. This problem should be in the
realm of statistics!

Questions:▸ How to formulate the prediction problem? What does it mean to
predict a sequence? What is the objective to be minimized?

▸ Can we employ Statistician’s toolkit, or do we need new notions?

▸ What can we model in probabilistic way, and what can we not
model? What can we treat as i.i.d.? How to incorporate
assumptions? What if the model is misspecified?

▸ Is there a general algorithmic approach to such sequential
prediction problems? (e.g. a substitute for the canonical
’maximum likelihood’ principle in Statistics)

▸ How to develop computationally feasible methods?



Plan for 3 lectures

Before diving into a new area of online prediction, we will review some old
and new results in Statistical Learning (first lecture).

We then turn to sequential prediction and develop some of the analogues in
a surprising parallel to statistical learning (second lecture).

We discuss algorithmic techniques and examples in the third lecture.
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Prediction

Unknown distribution P = PX × PY∣X on pair (X,Y) taking values in X ×Y.

Given data (X1,Y1), . . . , (Xn,Yn) i.i.d. from P, find a function f that
“explains the relationship.”

Formally, construct estimator f̂n ∶ (X ×Y)n → YX

Loss function ` ∶ Y ×Y → R (e.g. quadratic `(a,b) = (a−b)2, absolute ∣a−b∣)

Benchmark class of functions F ⊂ YX

Expected loss L(f) = E`(f(X),Y). Excess loss L(f) − inff ′ L(f ′).

Empirical loss L̂(f) = 1
n ∑

n
t=1 `(f(Xt),Yt)



Statistical learning theory

Let P be the set of all distributions on X ×Y. Let P0 ⊆ P.

Goal: find f̂n that approximately minimizes

sup
P∈P0

{EL(f̂n) − inf
f∈F

L(f)}

If P0 = P, we say the setting is “distribution-free”.

Let

η = argmin
f

L(f)



Bias-variance tradeoff

L(f̂n) − L(η) = L(f̂n) − inf
f∈F

L(f)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Estimation Error

+ inf
f∈F

L(f) − L(η)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Approximation Error

F

f̂n ⌘

fF

▸ Larger F ⇒ smaller approximation error but larger estimation error

▸ Larger n ⇒ smaller estimation error and no effect on approx. error.

▸ Trade off size of F and n: Structural Risk Minimization, or Method of
Sieves, or Model Selection.

Model selection can be done via penalization as soon as we have good
bounds for fixed F . We focus on the latter goal.



Square loss: prediction vs estimation

Regression function η(x) = E[Y∣X = x] achieves argminf L(f).

E(f̂(X) − Y)2 − inf
f∈F

E(f(X) − Y)2 = E∥f̂ − η∥2 − inf
f∈F

∥f − η∥2

where ∥ ⋅ ∥ = ∥ ⋅ ∥L2(PX) (prove it)

Model is well-specified if η ∈ F (this is a strong assumption!). In this case,
expected excess loss of f̂ is same as

E∥f̂ − η∥2

which is the problem of estimation in L2(PX) norm.

If η ∉ F , the model is misspecified and we are asking for oracle inequalities.

For other loss functions, we don’t have this nice connection between
estimation and prediction.
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Empirical risk minimization

When is it a good idea to take

f̂ = argmin
f∈F

1

n

n

∑
t=1

`(f(Xt),Yt) ?

Sufficient condition is uniform “closeness” of empirical and expected loss:

L(f̂n) − L(fF) = {L(f̂n) − L̂(f̂n)} + {L̂(f̂n) − L̂(fF)} + {L̂(fF) − L(fF)}
≤ sup
f∈F

{L(f) − L̂(f)} + {L̂(fF) − L(fF)}

and so in expectation

EL(f̂n) − L(fF) ≤ E sup
f∈F

{L(f) − L̂(f)}

Next: detour into empirical process theory.
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A bit of notation to simplify things...

To ease the notation,

▸ zi = (xi,yi) so that data are {z1, . . . , zn}
▸ g(z) = `(f(x),y) for z = (x,y)
▸ Loss class G = {g ∶ g(z) = `(f(x),y)} = ` ○F
▸ ĝn = `(f̂n(⋅), ⋅), gG = `(fF(⋅), ⋅)
▸ g∗ = argming Eg(z) = `(f∗(⋅), ⋅)

We can now work with the set G, but keep in mind that each g ∈ G
corresponds to an f ∈ F :

g ∈ G ←→ f ∈ F

Once again, the quantity of interest is

sup
g∈G

{Eg(z) − 1

n

n

∑
i=1

g(zi)}

Next: visualize deviations Eg(z) − 1
n ∑

n
i=1 g(zi) for all possible functions g

and discuss all the concepts introduces so far.
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G

g⇤
0

Eg

all functions

1

n

nX

i=1

g(zi)



Empirical process viewpoint

g⇤
0

Eg

all functionsg⇤
0

Eg

all functions

1

n

nX

i=1

g(zi)

g⇤
0

Eg

all functions

1

n

nX

i=1

g(zi)

g⇤
0

Eg

all functions

1

n

nX

i=1

g(zi)
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Empirical process viewpoint

A stochastic process is a collection of random variables indexed by some set.

An empirical process is a stochastic process

{Eg(z) − 1

n

n

∑
i=1

g(zi)}
g∈G

indexed by a function class G.

(one-sided) Uniform Law of Large Numbers:

sup
g∈G

{Eg − 1

n

n

∑
i=1

g(zi)}→ 0

in probability.

How does one quantify this rate of convergence when P is not known?



Rademacher process

Conditionally on z1, . . . , zn, consider the Rademacher process

{ 1

n

n

∑
i=1

εig(zi)}
g∈G

where ε1, . . . ,εn are i.i.d. symmetric {±1}-valued random vars.

Symmetrization (similar result holds for tails):

E sup
g∈G

{Eg − 1

n

n

∑
i=1

g(zi)} ≤ 2EEε sup
g∈G

{ 1

n

n

∑
i=1

εig(zi)}



Rademacher process

The empirical Rademacher averages of G are defined as

R̂n(G) = Eε sup
g∈G

{ 1

n

n

∑
i=1

εig(zi)}

and let R(G) = Ez1∶nR̂n(G).

Why? Empirical Rademacher averages are a fully data-dependent quantity.



Maximal inequalities

A random variable X is v-subgaussian if for any λ ≥ 0,

logE exp{λX} ≤ vλ2/2.

If X1, . . . ,XN are v-subgaussian,

Emax
i

Xi ≤
√

2v logN

Hoeffding: a ≤ X ≤ b a.s. then X − EX is (b − a)2/4-subgaussian.



First step: finite class

If G ⊆ [−1, 1]Z , ∣G∣ = N, each ∑ni=1 εig(zi) is n-subgaussian, g ∈ G.

Thus,

Emax
g∈G

{
n

∑
i=1

εig(zi)} ≤
√

2n logN.

In fact, a better bound is (prove!)

Emax
g∈G

{
n

∑
i=1

εig(zi)} ≤ r
√

2 logN, r = max
g∈G

¿
ÁÁÀ

n

∑
i=1

g(zi)2



Empirical covering numbers
Projection

G∣z1∶n = G∣z1,...,zn = {(g(z1), . . . ,g(zn)) ∶ g ∈ G} ⊆ Rn

Can write empirical Rademacher averages as

Eε sup
a∈G∣z1∶n

⟨ε,a⟩

Very similar quantity: Gaussian widths (e.g. compressed sensing literature)

↵

Given α > 0, suppose we can find V ⊂ Rn of finite cardinality such that

∀g,∃v ∈ V, s.t.
1

n

n

∑
i=1

∣g(zi) − vi∣p ≤ αp



Empirical covering numbers

Such a set V is called an α-cover (or α-net) with respect to `p (p ≥ 1). The
size of the smallest α-cover is denoted by Np(G∣z1∶n ,α).

Using p = 1,

R̂n(G) = Eε sup
g∈G

1

n

n

∑
i=1

εig(zi)

= Eε sup
g∈G

1

n

n

∑
i=1

εi(g(zi) − vgi ) + Eε1∶n sup
g∈F

1

n

n

∑
i=1

εiv
g
i

≤ α + Eε max
v∈V

1

n

n

∑
i=1

εivi

Thus,

R̂n(G) ≤ α + B
√

2 logN1(G∣z1∶n ,α)
n

where B = supf ∣f∣∞.



Chaining

Suppose G ⊆ [−1, 1]Z .

We have proved that conditionally on z1, . . . , zn,

R̂n(G) ≤ inf
α≥0

{α + 1√
n

√
2 logN1(G∣z1∶n ,α)}

A better bound (called Dudley entropy integral):

R̂n(G) ≤ inf
α≥0

{4α + 12√
n
∫

1

α

√
logN2(G∣z1∶n , δ)dδ}



Example: nondecreasing functions.

Consider the set F of nondecreasing functions R→ [−1, 1].

While F is a very large set, F ∣x1∶n is not that large:

N1(F ∣x1∶n ,α) ≤ N2(F ∣x1∶n ,α) ≤ n2/α.

The first bound on the previous slide yields

inf
α≥0

{α + 1√
αn

√
4 log(n)} = Õ(n−1/3)

while the second bound (the Dudley entropy integral)

inf
α≥0

{4α + 12√
n
∫

1

α

√
4/δ log(n)dδ} = Õ(n−1/2)

where the Õ notation hides logarithmic factors.

Note: pointwise cover (w.r.t d(f,g) = supx ∣f(x) − g(x)∣) does not exist!



Offset Rademacher

Offset Rademacher averages of G and constant c ≥ 0 are defined as

R̂off
n (G; c) = Eε sup

g∈G

{ 1

n

n

∑
i=1

εig(zi) − cg2(zi)}

Empirical Rademacher averages correspond to c = 0.



Intuition

g = 0

1
n ∑n

i=1 ✏ig(zi)

g with larger Eg2g with larger Eg2

0

g = 0 g with larger Eg2g with larger Eg2

0

1
n ∑n

i=1 ✏ig(zi) − cg(zi)2
critical radius



Let G ⊂ RZ be a finite class of cardinality N. Then for any C > 0,

Eε max
g∈G

[ 1

n

n

∑
i=1

εig(zi) −Cg(zi)2] ≤
1

2C

logN

n
.

When the noise ξ is unbounded,

Eε max
v∈V

[ 1

n

n

∑
i=1

εiξig(zi) −Cg(zi)2] ≤M ⋅ logN

n

where

M ∶= max
g∈G

∑ni=1 g(zi)2ξ2i
2C∑ni=1 g(zi)2

.

Lemma.

(Liang, R., Sridharan ’15)



Let G be a class of functions from Z to R. Then for any z1, . . . , zn ∈ Z

Eε sup
g∈G

[ 1

n

n

∑
t=1

εig(zi) −Cg(zi)2]

≤ inf
γ≥0,α∈[0,γ]

{(2/C) logN2(G,γ)
n

+ 4α + 12√
n
∫

γ

α

√
logN2(G, δ)dδ}

where N2(G,γ) is an `2-cover of G on (z1, . . . , zn) at scale γ (assumed
to contain 0).

Lemma (Localized Chaining).

γ is an upper bound on critical radius.

(Liang, R., Sridharan ’15)



Back-of-the-envelope calculation: if N2(G, δ) ≤ (1/δ)d (parametric class),
then choosing γ = 1/

√
n and α = 1/n,

inf
γ≥0,α∈[0,γ]

{(2/C) logN2(G,γ)
n

+ 4α + 12√
n
∫

γ

α

√
logN2(G, δ)dδ}

≤ O(d logn

n
) +O( 1√

n
∫

1/
√
n

1/n

√
d log(1/δ)dδ) = O(d logn

n
)

In contrast, the usual (non-offset) complexity will only give n−1/2 rates.
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The bottom line of the following slides in this lecture: the minimax rate for
excess loss

▸ for loss functions without strong convexity (indicator loss, absolute
loss) is given by Rademacher averages

▸ for square loss – by offset Rademacher averages.



Classification: loss function disappears

Consider binary classification with indicator loss, F a class of {0, 1}-valued
functions, and

`(f(x),y) = I{f(x) ≠ y} = (1 − 2y)f(x) + y.

Then

R̂n(` ○F) = E [sup
f∈F

{ 1

n

n

∑
i=1

εi(f(xi)(1 − 2yi) + yi)} ∣ (x1,y1) . . . , (xn,yn)]

= E [sup
f∈F

{ 1

n

n

∑
i=1

εif(xi)} ∣ x1, . . . ,xn] = R̂n(F)

because, given y1, . . . ,yn, the distribution of εi(1 − 2yi) is the same as εi.



Absolute loss: disappears again

F ⊆ RX and `(f(x),y) = ∣f(x) − y∣.

Prove that
R̂n(` ○F) ≤ R̂n(F)

This contraction (or, comparison inequality) holds for any Lipschitz loss. In
fact, because there are no absolute values inside the supremum, the proof is
easier than that in (Talagrand & Ledoux ’91).



Lower bound

For indicator loss and for absolute loss, minimax rates in the
distribution-free setting are given by Rademacher averages:

R̄iid(F ;n) ≜ sup
x1,...,xn

R̂n(F ;x1, . . . ,xn)

inf
f̂

sup
PX×Y

{E∣f̂(X) − Y∣ − inf
f∈F

E∣f(X) − Y∣} ≥ R̄iid(F , 2n) − 1

2
R̄iid(F ,n)



Square Loss: no contraction, please!

If we attempt to pass to the Rademacher averages of R̂n(F), the upper
bound will be too loose (why? recall O(σ2d/n) rate for classical regression)

Thankfully, offset Rademacher retains the curvature information. But we
should not get to R̂n(` ○F) in the first place. We should come up with a
method that directly gets us the offset Rademacher complexity.

ERM is the right algorithm for absolute/indictor loss. How about square
loss?

Turns out that for square (or other “curved”) loss, ERM is suboptimal if F
is non-convex.
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The Star algorithm

Ê empirical expectation, star(F ,g) = {λg + (1 − λ)f ∶ f ∈ F ,λ ∈ [0, 1]}

ĝ = argmin
f∈F

Ê(f(X) − Y)2, f̂ = argmin
f∈star(F,ĝ)

Ê(f(X) − Y)2

Y

F ĝ

Y

F ĝ

Y

F ĝ

Y

F ĝ

f̂

If F is convex, the Star algorithm coincides with ERM.
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ĝ = argmin
f∈F
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Key geometric inequality

ĝ = argmin
f∈F

Ê(f(X) − Y)2, f̂ = argmin
f∈star(F,ĝ)

Ê(f(X) − Y)2

The Star algorithm f̂ satisfies

Ê(h − Y)2 − Ê(f̂ − Y)2 ≥ c ⋅ Ê(f̂ − h)2 (1)

for any h ∈ F and c = 1/18. If F is convex, (1) holds with c = 1.
If F is a linear subspace, (1) holds with equality and c = 1 by the
Pythagorean theorem.

Lemma (Liang, R., Sridharan ’15).

Y

F ĝ

f̂
Y

F
f̂



Proof of key geometric inequality

h⊥

ĝ

f ′

h

Y

B1

B2



Excess loss of f̂ is upper bounded by

(Ê − E)[2(fF − Y)(fF − f̂)] + E(fF − f̂)2 − (1 + c) ⋅ Ê(fF − f̂)2

Corollary.

Proof is immediate:

E(f̂ − Y)2 − E(fF − Y)2 + [Ê(fF − Y)2 − Ê(f̂ − Y)2 − c ⋅ Ê(f̂ − fF)2]
= (Ê − E)[2(fF − Y)(fF − f̂)] + E(fF − f̂)2 − (1 + c) ⋅ Ê(fF − f̂)2.

The mismatch between coefficients 1 and (1 + c) allows to perform
symmetrization and get offset Rademacher complexity as an upper bound on
excess loss of f̂.



Define H ∶= F − fF + star(F −F , 0). The following expectation bound
on excess loss of the Star estimator holds:

c
′′ ⋅ ER̂off

n (H; c ′)

where c ′ = min{ c
4M

, c
4K(2+c)

}, K = supf ∣f∣∞, M = supf ∣Y − f∣∞, and

c ′′ = (2M + K(2 + c)/2).

Theorem (Liang, R., Sridharan, 15).

▸ A similar bound in terms of offset Rademacher holds in high
probability and without the boundedness assumption (but under a
weak lower isometry assumption).

▸ Easy to show that complexity of H is of same order as that of F
(except for finite F).



Example: ordinary least squares

G = {x↦ wTx ∶ w ∈ Rp}. Offset Rademacher becomes

1

n
sup
w∈Rp

{wT (
n

∑
t=1

εtxt) − c∥w∥2Σ} = c
′

n
∥
n

∑
t=1

εtxt∥
2

Σ−1

where Σ = ∑nt=1 xtxT
t .



Example: OLS, a more precise statement

Consider parametric regression Yi = XTi β∗ + ξi, 1 ≤ i ≤ n, where ξi
need not be centered. The offset Rademacher complexity is bounded
as

Eε sup
β∈Rp

{ 1

n

n

∑
i=1

2εiξiX
T
i β −CβTXiXTi β} =

tr (G−1H)
Cn

where G ∶= ∑ni=1 XiXTi and H = ∑ni=1 ξ2iXiXTi . In well-specified case
(ξi are zero-mean), assuming that conditional var is σ2, then condi-

tionally on the design, EG−1H = σ2Ip and excess loss is order σ2p

n
.

Lemma.

A high-probability statement holds as well.



High probability statement for unbounded functions

We say that a function class F satisfies the lower isometry bound with
parameters 0 < ε < 1 and 0 < δ < 1 if

P( inf
f∈F∖{0}

1

n

n

∑
i=1

f2(Xi)
Ef2

≥ 1 − ε) ≥ 1 − δ

for all n ≥ n0(F , δ,ε), where n0(F , δ,ε) depends on the complexity of
the class.

This holds under small ball assumption of Mendelson + norm comparison
(e.g. ∥f∥q ≤ L∥f∥2 for all f ∈ F). It also holds for subgaussian classes.



High probability statement for unbounded functions

H ∶= star (F − f∗ + star(F −F)). Assume lower isometry holds with
ε = 1/72. Let ξi = Yi − f∗(Xi).

P (E(f̂) > 4u) ≤ 4δ + 4P(sup
h∈H

1

n

n

∑
i=1

εiξih(Xi) − c̃h(Xi)2 > u)

for any u > 0, as long as

n > sup
h∈H

2 ⋅Var [2ξh + (1 − c ′) ⋅ h2]
[c ′ ⋅ Eh2]2 ∨ n0(H, δ, c/4).

Theorem (Liang, R., Sridharan, 15).



Example: nonparametric function classes

For many nonparametric classes, we can compute an estimate of empirical
entropy. Suppose an upper bound is of the form

logN2(F ∣x1,...,xn ,α) ≤ α−p

By plugging this into the bound for localized chaining, we obtain rate

n
− 2

2+p for p ∈ (0, 2), n−1/p for p > 2, and n−1/2 log(n) at p = 2.

This gives an upper bound on excess square loss (and, hence, estimation in
the sense of oracle inequalities).

One can show that for well-specified models, transition at p = 2 does not

happen, and the rate remains n−
2

2+p . For instance, for estimation of
bounded convex functions on [0, 1]d, it has been shown that p = d/2.
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Exercise 1

For A ⊆ [−1, 1]n define Rademacher averages of A as

R(A) = Eε sup
a∈A

1

n

n

∑
t=1

εtat

where ε1, . . . ,εn are i.i.d. ±1 Rademacher random variables.

Prove that for any r1, . . . , rn ∈ [0, 1],

E sup
a∈A

n

∑
t=1

εtrtat ≤ E sup
a∈A

n

∑
t=1

εtat



Exercise 2

Define Gaussian averages of A as

G(A) = E sup
a∈A

1

n

n

∑
t=1

γtat

where γ1, . . . ,γn are independent N(0, 1). Show that

cR(A) ≤ G(A) ≤ C
√

log(n)R(A)

and find explicit constants c,C.



Exercise 3

Let φ ∶ R→ R be L-Lipschitz. Prove that

E sup
a∈A

n

∑
t=1

εtφ(at) ≤ LE sup
a∈A

n

∑
t=1

εtat

Hint: condition on all but one εt, write out the two possibilities for εt, and
combine the suprema. Make sure the argument does not leave any absolute
values.



Exercise 4

Prove that for a finite collection A ⊂ Rn and any c > 0,

Emax
a∈A

{
n

∑
t=1

εtat − ca2
t} ≤ C log ∣A∣

for some C that does not depend on the magnitude of vectors in A.

Hint: write out the moment-generating function and use

(e−x + ex)/2 ≤ ex
2
/2.



Exercise 5

We argued in the lecture that for a finite collection A ⊂ [−1, 1]n,

Emax
a∈A

n

∑
t=1

εtat ≤ r
√

2 logN, r = max
a∈A

∥a∥2

Now suppose B is a set of predictable processes with respect to
{Ft = σ(ε1, . . . ,εt)}nt=0. That is, each b ∈ B is a sequence b1, . . . ,bn where
each bt is Ft−1-measurable. Prove that

Emax
b∈B

n

∑
t=1

εtbt ≤ r
√

2 logN, r = max
ε∈{±1}n

max
b∈B

¿
ÁÁÀ

n

∑
t=1

b2
t .

where ε = (ε1, . . . ,εn).

Hint: Consider the moment generating function and peel off one term at a
time, from n backwards to t = 1.



Exercise 6

Let W be a random variable with values in A. Prove that for a measurable
function Ψ ∶ A × B → R,

EW sup
b∈B

Ψ(W,b) = sup
γ

EWΨ(W,γ(W))

where the supremum ranges over all functions γ ∶ A→ B. (Assume
compactness or boundedness if needed to make the argument rigorous).



Exercise 7

Let ε1∶n ≜ (ε1,ε2, . . . ,εn) be n i.i.d. Rademacher random variables. Use the
previous exercise to conclude that for Ψ ∶ Xn × {±1}n → R,

sup
x1∈X

Eε1 . . . sup
xn∈X

EεnΨ(x1∶n,ε1∶n) = sup
x1,...,xn

Eε1∶nΨ(x1,x2(ε1) . . . ,xn(ε1∶n−1),ε1∶n)

where the last supremum is taken over functions xt ∶ {±1}t−1 → X .



Exercise 8

Let Q be the set of distributions on some set A and P the set of
distributions on B. Under very general conditions on `,A,B,

min
q∈Q

max
b∈B

Ea∼q`(a,b) = max
p∈P

min
a∈A

Eb∼p`(a,b).

This is known as the minimax theorem. Note that the inner max/min can
be taken at a pure strategy (delta distribution) because a linear function
achieves its max/min at a corner of the probability simplex.

Prove the following: if `(a,b) is convex in a and A is a convex set, then the
outer minimization

min
q∈Q

max
b∈B

Ea∼q`(a,b) = min
a∈A

max
b∈B

`(a,b)

is achieved at a pure strategy. We will use this result to restrict our
attention to deterministic strategies.



Exercise 9

Let W be a random variable, and suppose that for any realization of W,

inf
a∈A

sup
b∈B

{`(a,b) +Ψt(b,W)} ≤ Ψt−1(W)

Prove that

inf
q∈∆(A)

sup
b∈B

{Ea∼q`(a,b) + EWΨt(b,W)} ≤ EWΨt−1(W)

by exhibiting a strategy for the infimum. This statement will be useful for
defining computationally-efficient random playout methods in Lecture #3.



Exercise 10

Consider the following online prediction problem, taking place over rounds
t = 1, . . . ,n. On each round, we make a prediction ŷt ∈ [0, 1], observe an
outcome yt ∈ {0, 1}, and suffer the loss of `(ŷt,yt) = yt + ŷt − 2ŷt ⋅ yt. Take
a potential function Φ ∶ {±1}n → R with two properties: first, it is stable
with respect to flip of any coordinate:

∣Φ(. . . ,−1, . . .) −Φ(. . . ,+1, . . .)∣ ≤ 1.

Second, EΦ(b1, . . . ,bn) ≥ n/2 where bi’s are i.i.d. Bernoulli with bias 1/2.
Show that

min
ŷt

max
yt

{`(ŷt,yt) + Ebt+1∶nΦ(y1, . . . ,yt,bt+1, . . . ,bn)} ≤ Ebt∶nΦ(y1, . . . ,yt−1,bt, . . . ,bn) +
1

2

Conclude that there is a prediction strategy that guarantees

n

∑
t=1

`(ŷt,yt) ≤ Φ(y1, . . . ,yn) (2)

for any sequence y1, . . . ,yn of binary outcomes. Conversely, argue that if
there is a function Φ that satisfies (2) for all sequences, then it must hold
that EΦ ≥ n/2.



Exercise 11

Write the loss function in the previous exercise as expected indicator loss
under the randomized strategy with bias ŷt. Use the previous exercise to
argue that there must exist a randomized algorithm that predicts an
arbitrary sequence of bits with the following strong guarantee:

the expected average number of mistakes (per n rounds) is at most the
minimum of proportion of 1’s and proportion of 0’s in the sequence, up to
a O(1/

√
n) additive factor.

That is, if the sequence, say, has 40% of 0’s, then the method will only err
roughly 40% of the time, even though the locations of 0’s. The method is
adaptive: it does not need to know any prior information about the
sequence. This result might seem surprising, given that the sequence is not
governed by any stochastic process that we can describe.
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Last lecture: (X1,Y1), . . . , (Xn,Yn) ∼ PX × PY∣X i.i.d.

Objective: excess loss

E`(f̂(X),Y) − inf
f∈F

E`(f(X),Y)

We showed that this quantity is controlled by Rademacher averages or by
offset Rademacher averages.



Consider a time-averaged variant

1

n

n

∑
t=1

E`(f̂t(X),Y) − inf
f∈F

1

n

n

∑
t=1

E`(f(X),Y)

where f̂t ∶ (X ×Y)t−1 → YX is calculated based on (X1,Y1), . . . , (Xt−1,Yt−1).

Since data are i.i.d. we can write this equivalently as

E [ 1

n

n

∑
t=1

`(f̂t(Xt),Yt)] − inf
f∈F

1

n

n

∑
t=1

E`(f(Xt),Yt)



Via Jensen’s, a harder objective is

E [ 1

n

n

∑
t=1

`(f̂t(Xt),Yt) − inf
f∈F

1

n

n

∑
t=1

`(f(Xt),Yt)]

It’s time to discuss the online protocol:

1. At time t, compute f̂t based on (X1,Y1), . . . , (Xt−1,Yt−1)
2. Observe (Xt,Yt)
3. Pay loss `(f̂t(Xt),Yt)

Or, equivalently (from the point of view of the objective),

1. At time t, observe Xt

2. Compute ŷt based on (X1,Y1), . . . , (Xt−1,Yt−1) and Xt

3. Observe Yt

4. Pay loss `(ŷt,Yt)



A leap

Our objective (which we shall call regret) is

E [ 1

n

n

∑
t=1

`(ŷt,Yt) − inf
f∈F

1

n

n

∑
t=1

`(f(Xt),Yt)]

We now make a step that might be hard to digest.

We assume that Y’s are not i.i.d. Moreover, they do not come from a
stochastic process that is easy to describe.

We analyze this case by making two simplifying assumptions:

▸ each Yt ∈ [−1, 1] (this boundedness assumption can be removed)

▸ we know PX (we will remove this assumption in the next lecture)



An optimization problem?

Wald’s decision theory: min over decision rules, max over problems. Not
possible to solve this in general.

Here, we only need to compute one number per time step. Let us try to
solve for it!

On round t we observe Xt and need to choose ŷt. Here is the optimal choice:

argmin
ŷt

sup
yt∈[−1,1]

{`(ŷt,yt) +OPT(past,yt)}

where OPT(past,yt) is the “future” minimax value of regret with

∑ts=1 `(ŷt,yt) removed. This future depends on the choice of yt.

Recursive definition, and not clear how to solve it. It definitely does not
look like ERM or Star algorithm!



Dynamic programming

Suppose we can find a function Rel ∶ ∪nt=0(X ×Y)t → R satisfying these two
conditions:

1. For any x1,y1, . . . ,xn,yn,

Rel(x1,y1, . . . ,xn,yn) ≥ − inf
f∈F

n

∑
t=1

`(f(xt),yt)

2. For any x1,y1, . . . ,xt−1,yt−1,

Ext inf
ŷt

sup
yt∈[−1,1]

{`(ŷt,yt)+Rel(x1,y1, . . . ,xt,yt)} ≤ Rel(x1,y1, . . . ,xt−1,yt−1)

A relaxation satisfying these conditions will be called admissible.

If `(⋅,y) is not convex, we need an extra expectation for mixed strategies. But for now

assume it is convex.



If Rel is admissible, the algorithm

ŷt = argmin
ŷt

sup
yt∈[−1,1]

{`(ŷt,yt) +Rel(x1,y1, . . . ,xt,yt)}

has regret bound of

E [ 1

n

n

∑
t=1

`(ŷt,Yt) − inf
f∈F

1

n

n

∑
t=1

`(f(Xt),Yt)] ≤
1

n
ERel(∅)

Lemma.

(R., Shamir, Sridharan, ’12)



Let `(ŷ,y) = ∣ŷ − y∣. Rademacher-based relaxation

Rel(x1,y1, . . . ,xt,yt) = E
xt+1∶n,εt+1∶n

sup
f∈F

{
n

∑
s=t+1

2εsf(xs) −
t

∑
s=1

∣f(xs) − ys∣}

is admissible.

Hence, expected regret is upper bounded by

1

n
ERel(∅) = Ex,ε sup

f∈F

{ 1

n

n

∑
s=1

2εsf(xs)} = 2ERn(F),

the i.i.d. Rademacher averages.

Lemma.

see e.g. (R. and Sridharan, ’15)



We removed the assumption that Y’s are i.i.d. and still obtained a bound of
Rademacher complexity, as in the previous lecture!

The proposed algorithm needs to solve an optimization problem involving
Rel and so it needs to approximate this value. We assumed that PX is
known, but one can sample or use unlabeled data (we will discuss this in
Lecture #3)



Why is

Rel(x1,y1, . . . ,xt,yt) = E
xt+1∶n,εt+1∶n

sup
f∈F

{
n

∑
s=t+1

2εsf(xs) −
t

∑
s=1

∣f(xs) − ys∣}

admissible? Recall that − inf[. . .] is same as sup−[. . .]. Relaxation
interpolates (t = n to t = 1) between

Rel(x1,y1, . . . ,xn,yn) = − inf
f∈F

n

∑
s=1

∣f(xs) − ys∣

and

Rel(∅) = Ex,ε sup
f∈F

{
n

∑
s=1

2εsf(xs)}

However, this observation is not enough for admissibility. Need to show
that change of potential function from t to t − 1 is related to loss on that
step (condition #2).

Notation: ∆ = ∆([−1, 1]), Lt(f) = ∑ts=1 ∣f(xs) − ys∣, At+1(f) = ∑ns=t+1 2εsf(xs)



Proof of admissibility (it’s not as scary as it looks, really!)

inf
ŷt

sup
yt∈[−1,1]

{∣ŷt − yt∣ + Ext+1∶n,εt+1∶n sup
f∈F

{At+1(f) − Lt(f)}}

= sup
pt∈∆

inf
ŷt

Eyt∼pt {∣ŷt − yt∣ + Ext+1∶n,εt+1∶n sup
f∈F

{At+1(f) − Lt(f)}}

= sup
pt∈∆

{inf
ŷt

Ey ′
t
∣ŷt − y ′t∣ + Ext+1∶n,yt,εt+1∶n sup

f∈F

{At+1(f) − Lt(f)}}

≤ sup
pt∈∆

Ext+1∶n,εt+1∶n,yt sup
f∈F

{At+1(f) − Lt−1(f) + Ey ′
t
∣f(xt) − y ′t∣ − ∣f(xt) − yt∣}

≤ sup
pt∈∆

Ext+1∶n,εt∶n,yt,y
′
t

sup
f∈F

{At+1(f) − Lt−1(f) + εt(∣f(xt) − y ′t∣ − ∣f(xt) − yt∣)}

≤ sup
pt∈∆

Ext+1∶n,εt∶n,yt sup
f∈F

{At+1(f) − Lt−1(f) + 2εt∣f(xt) − yt∣}

≤ Ext+1∶n,εt∶n sup
f∈F

{At(f) − Lt−1(f)}

Taking expectation w.r.t xt on both sides completes the proof.

In above, first step is minimax theorem. Third replaces inf with f(xt). Fourth – symmetrization.

Fifth – splitting sup into two equal terms. Last – contraction as per exercise.
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Same proof without shorthand (skip it)

inf
ŷt

sup
yt∈[−1,1]

{∣ŷt −yt∣ + Ext+1∶n,εt+1∶n sup
f∈F

{ n∑
s=t+1

2εsf(xs) − t∑
s=1

∣f(xs) −ys∣}}
= sup
pt∈∆([−1,1])

inf
ŷt

Eyt∼pt {∣ŷt −yt∣ + Ext+1∶n,εt+1∶n sup
f∈F

{ n∑
s=t+1

2εsf(xs) − t∑
s=1

∣f(xs) −ys∣}}
= sup
pt∈∆([−1,1])

⎧⎪⎪⎨⎪⎪⎩infŷt Eyt ∣ŷt −yt∣ + Ext+1∶n,yt,εt+1∶n sup
f∈F

{ n∑
s=t+1

2εsf(xs) − t∑
s=1

∣f(xs) −ys∣}⎫⎪⎪⎬⎪⎪⎭
≤ sup
pt∈∆([−1,1])

Ext+1∶n,εt+1∶n,yt sup
f∈F

{ n∑
s=t+1

2εsf(xs) − t−1∑
s=1

∣f(xs) −ys∣
+Ey ′

t
∣f(xt) −y ′t∣ − ∣f(xt) −yt∣}

≤ sup
pt∈∆([−1,1])

Ext+1∶n,εt∶n,yt,y
′
t
sup
f∈F

{ n∑
s=t+1

2εsf(xs) − t−1∑
s=1

∣f(xs) −ys∣
+εt(∣f(xt) −y ′t∣ − ∣f(xt) −yt∣)}

≤ sup
pt∈∆([−1,1])

Ext+1∶n,εt∶n,yt sup
f∈F

{ n∑
s=t+1

2εsf(xs) − t−1∑
s=1

∣f(xs) −ys∣ + 2εt∣f(xt) −yt∣}
≤ Ext+1∶n,εt∶n sup

f∈F
{ n∑
s=t

2εsf(xs) − t−1∑
s=1

∣f(xs) −ys∣}
Taking expectation w.r.t xt on both sides completes the proof.
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Suppose neither X’s nor Y’s come from a stochastic process that we can
model.

We can still consider the objective

1

n

n

∑
t=1

`(ŷt,yt) − inf
f∈F

1

n

n

∑
t=1

`(f(xt),yt)

1. At time t, observe xt

2. Compute ŷt based on (x1,y1), . . . , (xt−1,yt−1) and xt

3. Observe yt

4. Pay loss `(ŷt,yt)

At every step, prediction is being evaluated (as in cross-validation). Then
new datum added to dataset.

Objective is still coupled through F which we believe to perform well.

Duality: Modeling data sources vs modeling solutions.



Admissibility

Slight change for admissibility in 2nd condition– replace Ext with supxt :

sup
xt

inf
ŷt

sup
yt∈[−1,1]

{`(ŷt,yt)+Rel(x1,y1, . . . ,xt,yt)} ≤ Rel(x1,y1, . . . ,xt−1,yt−1)

Observe that the main part of earlier proof of admissibility was done
conditionally on xt followed by expectation on both sides. Instead, we take
supremum. It is easy to check that this leads to interleaved supxt and Eεt :

Rel(x1,y1, . . . ,xt,yt) = sup
xt+1

E
εt+1

. . . sup
xn

E
εn

sup
f∈F

{
n

∑
s=t+1

2εsf(xs) −
t

∑
s=1

∣f(xs) − ys∣}



Sequential Rademacher Complexity

Relaxation on previous slide is admissible for prediction with absolute
loss (similar relaxations can be derived for other losses too).

Lemma.

The algorithm based on this relaxation is as before: observe xt and predict

ŷt = argmin
ŷt

sup
yt∈[−1,1]

{`(ŷt,yt) +Rel(x1,y1, . . . ,xt,yt)}

Upper bound on regret of this method is 1
n

times

sup
x1

E
ε1

. . . sup
xn

E
εn

sup
f∈F

{
n

∑
t=1

2εtf(xt)}



Sequential Rademacher Complexity

The expression

sup
x1

E
ε1

. . . sup
xn

E
εn

sup
f∈F

{
n

∑
t=1

εtf(xt)}

can be written as

Rseq
n (F) ≜ sup

x
Eε sup

f∈F

{
n

∑
t=1

εtf(xt(ε))}

where x is a tree (predictable process).

An X -valued tree x is a sequence of functions x1, . . . ,xn with xt ∶
{±1}t−1 → X .

When ε1, . . . ,εn are taken i.i.d. Rademacher, {xt} is a predictable process
with xt being σ(ε1, . . . ,εt−1)-measurable. We write xt(ε) for xt(ε1∶t−1).



Sequential Rademacher complexity of F on x:

Rseq
n (F ;x) = Eε sup

f∈F

{
n

∑
t=1

εtf(xt(ε))}

Constant {xt(ε) = xt} predictable process gives us the classical definition.

Minimax regret for online learning with absolute loss or indicator loss is
upper-bounded by 2Rseq

n (F) and lower-bounded by Rseq
n (F).

For square loss, the behavior of minimax regret is given by sequential offset
Rademacher (defined later).

This story is in parallel to i.i.d. statistical learning. But there are even more
parallels! Much of empirical process theory extends to the case of trees.
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Finite class

If G ⊆ [−1, 1]X , ∣G∣ = N. Let z be a Z-valued tree of depth n. Then

Emax
g∈G

{
n

∑
i=1

εig(zi(ε))} ≤
√

2n logN.

Again, a better bound (note maxε) is

Emax
g∈G

{
n

∑
i=1

εig(zi(ε))} ≤ r
√

2 logN, r = max
ε

max
g∈G

¿
ÁÁÀ

n

∑
i=1

g(zi(ε))2



Covering numbers

In the i.i.d. case, we considered G∣z1,...,zn as the effective n-dimensional
projection. In the sequential case, G∣z = {g ○ z ∶ g ∈ G} might be too large.
Instead, consider the notion of a 0-cover (for binary-valued classes first).

Fix A, a set of {0, 1}-valued trees.

A 0-cover is the smallest set V of {0, 1}-valued trees with the property

∀a ∈ A,ε ∈ {±1}n,∃v ∈ V s.t. ∀t, at(ε) = vt(ε)

Definition.

Clearly,

Emax
a∈A

n

∑
t=1

εtat(ε) ≤ Emax
v∈V

n

∑
t=1

εtvt(ε)



Covering numbers

Let N (G, z, 0) denote the size of the smallest 0-cover. We have shown that

Rseq
n (G; z) ≤

√
2 logN (G, z, 0)

n

for a binary-valued class G.

Gap between the size of G∣z and the size of its 0-cover can be exponential.

Example: Fix z and take

G = {gε̂ ∶ ∀ε, ∀t < n, g
ε̂(zt(ε)) = 0; g

ε̂(zn(ε)) = I{ε̂1∶n−1 = ε1∶n−1}}

Then cardinality of G∣z is 2n−1, but size of 0-cover is 2.



Example: Covering number
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Covering numbers

For real-valued G, a scale-sensitive cover is needed.

A set V of R-valued trees of depth n is an `p-cover at scale α > 0 of
G ⊆ RZ on a z-valued tree z if

∀g ∈ G,ε ∈ {±1}n, ∃v ∈ V, s.t.
1

n

n

∑
t=1

∣g(zt(ε)) − vt(ε)∣p ≤ αp.

The size of the smallest cover is denoted Np(G, z,α).

Definition.

(R., Sridharan, Tewari ’10)



Sequential Chaining

Suppose G ⊆ [−1, 1]Z .

For any Z-valued tree z of depth n,

Rseq
n (G; z) ≤ inf

α≥0
{α + 1√

n

√
2 logN1(G, z,α)}

A better bound (called Dudley entropy integral):

Rseq
n (G; z) ≤ inf

α≥0
{4α + 12√

n
∫

1

α

√
logN2(G, z, δ)dδ}



Combinatorial parameters: real-valued case

A Z-valued tree z of depth d is α-shattered by G if there exists an
R-valued tree s such that

∀ε ∈ {±1}d, ∃g ∈ G s.t. ∀t ∈ [d], εt(g(zt(ε)) − st(ε)) ≥ α/2

The fat-shattering dimension fatα(G) at scale α is the largest d
such that G α-shatters an Z-valued tree of depth d.

Definition.

This is a generalization of the scale-sensitive dimension introduced in
(Kearns and Schapire, ’94) and (Bartlett, Long, and Williamson, ’94) for
i.i.d. learning.



Combinatorial parameters: binary case

An Z-valued tree z of depth d is shattered by a function class G ⊆
{±1}Z if

∀ε ∈ {±1}d ∃g ∈ G s.t. ∀t ∈ [d] g(zt(ε)) = εt.

The Littlestone dimension `dim (G) is the largest d such that G
shatters an Z-valued tree of depth d.

Definition ( Littlestone 88; Ben-David, Pál, Shalev-Shwartz 09).

z1

z2 z3

z4 z5 z6 z7

g1 g2 g3 g8...

+

+

+

+

+ +

-

- -

- -+ -

ε = (ε1,ε2,ε3) = (−1,+1,−1)

g3(x1) = −1

g3(x2) = +1

g3(x5) = −1



Combinatorial parameters: binary case

The notion of Vapnik-Chervonenkis dimension is recovered if the tree has
constant zt at each level: zt(ε1∶t−1) = zt.

z1

z2 z2

z3

g1 g2 g3 g8...

+

+

+

+

+ +

-

- -

- -+ -
z3 z3 z3

In particular, this implies vc (G) ≤ `dim (G).



Analogue of Vapnik-Chervonenkis-Sauer-Shelah Lemma for trees:

For binary-valued class G of `dim (G) = d and any z,

N (0,G, z) ≤
d

∑
i=0

(n
i
) ≤ (en

d
)
d

.

Theorem.

For [−1, 1]-valued class G and any z,

N∞(α,G, z) ≤ (2en

α
)
fatα(G)

Theorem.

Open: dimension-free estimate on `2-cover a la Mendelson & Vershynin.



Martingale uGC

Function class F satisfies Sequential Uniform Convergence if,

∀δ > 0, lim
n ′→∞

sup
P

P( sup
n≥n ′

sup
f∈F

∣ 1

n

n

∑
t=1

E[f(Xt)∣Xt−1] − f(Xt))∣ > δ) = 0

Definition.

Definition of uniform Glivenko-Cantelli classes is recovered if supremum is
taken over i.i.d. distributions.



Let F be a class of [−1, 1]-valued functions. The following are equiv-
alent:

1. F satisfies uniform convergence of averages to conditional
means (martingale extension of uniform Glivenko-Cantelli)

2. Sequential Rademacher Rseq
n (F)→ 0

3. Sequential version of Dudley entropy integral converges

4. Sequential fatα(F) is finite for all α > 0

5. F is “online learnable”

Theorem (R., Sridharan, Tewari ’10, ’15).
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The minimax rate for excess loss

▸ for loss functions without strong convexity (indicator loss, absolute
loss) is given by sequential Rademacher averages

▸ for square loss – by sequential offset Rademacher averages (we are not
going to state this formally, but you can check out the paper “Online
Non-Parametric Regression”).
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Problem I: Estimation (Random Design)

Model:
Yi = η(Xi) + ξi, η ∈ F

▸ F is a class of functions X → Y
▸ (X1,Y1), . . . , (Xn,Yn) i.i.d. from Pη on X ×Y
▸ Regression function E[Y∣X = x] = η(x), ∥ ⋅ ∥ = ∥ ⋅ ∥L2(PX)

Minimax risk:
Wn(F) = inf

f̂

sup
Pη ∶η∈F

E∥f̂ − η∥2.



From well-specified to misspecified

P is the set of all distributions on X ×Y (or a superset of {Pη ∶ η ∈ F})

Wn(F) = inf
f̂

sup
Pη ∶η∈F

{E∥f̂ − η∥2}

= inf
f̂

sup
Pη ∶η∈F

{E∥f̂ − η∥2 − inf
f∈F

∥f − η∥2}

≤ inf
f̂

sup
P∈P

{E∥f̂ − η∥2 − inf
f∈F

∥f − η∥2}

= inf
f̂

sup
P∈P

{E(f̂(X) − Y)2 − inf
f∈F

E(f(X) − Y)2}

= Vn(F)
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Problem II: Statistical Learning

Model: any distribution P on X ×Y

▸ Dn = {(X1,Y1), . . . , (Xn,Yn)} i.i.d. from P

▸ Regression function E[Y∣X = x] = η(x) not necessarily in F .

Minimax regret:

Vn(F) = inf
f̂

sup
P

{E(f̂(X) − Y)2 − inf
f∈F

E(f(X) − Y)2}



From statistical to online learning

Shorthand Z = X ×Y, Zi = (Xi,Yi), `(f,Z) = (f(X) − Y)2. Sequence of
estimators: f̂t = f̂t(Z1, . . . ,Zt−1), t = 1, . . . ,n.

Vn(F) = inf
f̂

sup
P

{E`(f̂,Z) − inf
f∈F

E`(f,Z)}

≈ inf
{f̂t}

sup
P⊗n

{ 1

n

n

∑
t=1

E`(f̂t,Z) − inf
f∈F

1

n

n

∑
t=1

E`(f,Z)}

≤ inf
{f̂t}

sup
P⊗n

E{ 1

n

n

∑
t=1

`(f̂t,Zt) − inf
f∈F

1

n

n

∑
t=1

`(f,Zt)}

≤ inf
{f̂t}

sup
P

E{ 1

n

n
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t=1

`(f̂t,Zt) − inf
f∈F

1

n

n
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t=1

`(f,Zt)}
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Problem III: Sequential Prediction (Online Regression)

Model: individual sequence (x1,y1), . . . , (xn,yn)

At each time step t = 1, . . . ,n,

▸ xt is revealed

▸ prediction ŷt ∈ Y is made by the forecaster

▸ yt ∈ Y is revealed

Minimax regret:

Rn(F) = inf
Algo

sup
{(xt,yt)}

n
t=1

{ 1

n

n

∑
t=1

(ŷt − yt)2 − inf
f∈F

1

n

n

∑
t=1

(f(xt) − yt)2}



Whenever sequential offset complexity and i.i.d. offset Rademacher
averages are of the same order of magnitude, one may claim no gaps in the
above sequence of inequalities. In particular, one may claim that methods
built for the online problem are near-optimal for statistical learning and the
estimation problems with i.i.d. data.
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In this lecture, we focus on computation.

Pretty much all the online prediction methods can be derived through the
relaxation framework, starting with sequential Rademacher complexity. We
outline the main algorithmic techniques on several examples.

We have reduced the problem of finding a prediction method to the
problem of finding a good admissible relaxation. Think about this
statement: it is rare that we have an algorithmic parametrization like this
(in general, the space of all algorithms is very large!).

First, we show that one can use these constructions for deriving estimators
in the i.i.d. setting (1st lecture). This gives a new language for talking
about improper estimators.
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We will describe an array of tools for building low-regret algorithms. Given
xt we can solve for ŷt s.t. for any sequence (x1,y1), . . . , (xn,yn),

E [ 1

n

n

∑
t=1

`(ŷt,yt) − inf
f∈F

1

n

n

∑
t=1

`(f(xt),yt)] ≤ ψn

for some decreasing ψn, where the expectation is with respect to a possible
randomization of the prediction method.

We can compute the solution ŷt(xt) as a function for all possible xt:
f̂t = ŷt(⋅). If data are i.i.d., we use Polyak averaging

f̂ = 1

n

n

∑
t=1

f̂t

If `(⋅,y) is convex and data are i.i.d., an easy argument shows that (prove!)

EL(f̂) − inf
f∈F

L(f) ≤ ψn

Furthermore, if ψn is data-dependent, we may obtain data-dependent
bounds.
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The starting point is the lemma from previous lecture: the
Rademacher-based relaxation

Rel(x1,y1, . . . ,xt,yt) = sup
x

E sup
f∈F

{
n

∑
s=t+1

2εsf(xs) −
t

∑
s=1

∣f(xs) − ys∣}

is admissible for prediction with absolute (in fact, any 1-Lipshitz or the
indicator) loss for the problem when both x and y come from some
unknown process.

The algorithm then is to find an (approximate) minimum of

argmin
ŷt

sup
yt∈[−1,1]

{`(ŷt,yt) +Rel(x1,y1, . . . ,xt,yt)}

The main computational impediment to using this relaxation is the
supremum over x which requires us to search over binary trees.



Getting rid of the trees

Computationally efficient methods are obtained by removing the tree in
some fashion. This is typically done by further upper bounding Rel to
obtain a new relaxation. Note: admissibility needs to be checked for any
such upper bound.

The following are major approaches to getting rid of the tree:

1. Use a probabilistic upper bound to remove the tree (see, for instance,
derivations of Exponential Weights and Dual Averaging below).

2. Show existence of a distribution on X that is “almost as bad” as a
single worst-case choice of x ∈ X . Sample from this distribution to
imitate the supremum over trees (this can be made precise!)

3. Assume that x’s come from some stochastic process from which we can
sample. Example: use unlabeled data together with random playout
(see below).

4. Suppose x’s come from a finite set of size n without replacement.

5. Of course, the tree also disappears when there are effectively no x’s
and each f = (f1, . . . , fn) (this case is known as static experts).



In many (but not all) cases, sequential Rademacher complexity is of the
same order as the classical Rademacher. In these cases, the second approach
(showing existence of a distribution) appears to be extremely powerful.
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Example: finite class F

Assume F ⊆ [−1, 1]X . Then

Rel(x1,y1, . . . ,xt,yt) = sup
x

Emax
f∈F

{
n

∑
s=t+1

2εsf(xs(ε)) −
t

∑
s=1

`(f(xs),ys)}

≤ sup
x

1

η
lnE∑

f∈F

exp{η
n

∑
s=t+1

2εsf(xs(ε)) − η
t

∑
s=1

`(f(xs),ys)}

≤ 1

η
ln∑
f∈F

exp{−η
t

∑
s=1

`(f(xs),ys)} + 2η(n − t)

How did we get rid of the tree in the last inequality? By the standard
subgaussian inequality, peeling off one term at a time from s = n to s = t+ 1.



Example: finite class F
It is an good exercise to check that

inf
η>0

{ 1

η
log(∑

f∈F

exp(−η
t

∑
s=1

`(f(xs),ys))) + 2η(n − t)}

is admissible and leads to a parameter-free version of the Exponential
Weights Algorithm. Without any structural assumptions on the class, this
is the tightest relaxation.

The bound on regret is simply

Rel(∅) = inf
η

{ 1

η
log∑

f∈F

exp{0} + 2ηn} =
√

2 logN

n

The Exponential Weights Algorithm was re-discovered several times: Vovk ’90,

Littlestone & Warmuth 94, etc. It can be seen as an instance of Mirror Descent with

entropy function (Nemirovskii & Yudin ’79). It remains the most basic prediction

method because it does not assume any knowledge of how experts (functions f) make

prediction, as long as there are N of them.



Example: linear loss and dual averaging

Slightly different setting: `(f, z) = ⟨f, z⟩, F and Z are unit balls in dual
Banach spaces. Protocol: we forecast ft and then observe zt. Known as
Online Convex Optimization (OCO).

Recall the definition of a dual norm: supf∈F ⟨f, z⟩ = ∥z∥. Write sequential
Rademacher as

Rel(z1, . . . , zt) = sup
x

E∥
n

∑
s=t+1

2εszs(ε) −
t

∑
s=1

zs∥



Example: linear loss and dual averaging

If norm is smooth (second derivative is bounded), we can expand

∥a + ε1b∥2 ≤ ∥a∥2 + ε1 ⟨∇ ∥a∥2 ,b⟩ +C ∥b∥2

and the middle term is zero in expectation. We use this simple fact to get
rid of the tree.

By Jensen’s inequality and then by repeating the above manipulation n − t
times, an upper bound on sequential Rademacher is

√
∥z̃t−1∥2 + ⟨∇ ∥z̃t−1∥2 , zt⟩ +C(n − t + 1)

where z̃t−1 = ∑t−1i=1 zt.

This simple upper bound turns out to be an admissible relaxation and it
leads to a projection-free “dual-averaging”-style method:

ft = −
∇ ∥z̃t−1∥2

2
√

∥z̃t−1∥2 +C(n − t + 1)
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From Sequential to Classical Rademacher

Consider the proof of admissibility (the “scary proof”) from the previous
lecture. For the case of non-i.i.d. xt, we took supremum on both sides. For
the right-most term on that slide this supremum is

sup
xt

Eεt [E sup
f∈F

{
n

∑
s=t+1

2εsf(xs) + εtf(xt) −
t−1

∑
s=1

∣f(xs) − ys∣}]

Suppose we can find a distribution D on X such that the above quantity is
upper bounded by

Ext∼D Eεt [E sup
f∈F

{
n

∑
s=t+1

2εsf(xs) +Cεtf(xt) −
t−1

∑
s=1

∣f(xs) − ys∣}]

for some constant C ≥ 2.



If we can find such a distribution D, several nice things happen:

▸ sequential Rademacher is upper bounded by classical one (under the
distribution D) up to constant C

▸ regret of the prediction method based on the classical Rademacher
relaxation is bounded by classical Rademacher under D

▸ we may use the knowledge of D to gain efficiency by “sampling future”



Random Playout
On the last point, as soon as the relaxation involves Ext∶n,εt∶n , we can
sample these random variables.

Recall the exercise:

Let W be a random variable, and suppose that for any realization of W,

inf
a∈A

sup
b∈B

{`(a,b) +Ψt(b,W)} ≤ Ψt−1(W)

Prove that

inf
q∈∆(A)

sup
b∈B

{Ea∼q`(a,b) + EWΨt(b,W)} ≤ EWΨt−1(W)

by exhibiting a strategy for the infimum.

Random playout: draw xt∶n ∼ D and εt∶n and solve for

sup
f∈F

{
n

∑
s=t

Cεsf(xs) −
t−1

∑
s=1

∣f(xs) − ys∣}

Alternative: use unlabeled data xt∶n



Random Playout

Easiest example is linear loss `(f, z) = ⟨f, z⟩. Need to find a distribution
D ∈ ∆(Z) and C such that for any w

sup
z∈Z

E
ε
∥w + εz∥ ≤ E

z∼D
∥w +Cz∥ .

At time t, draw zt+1, . . . , zn ∼ D and and compute

ft = argmin
g∈F

sup
z∈Z

{⟨g, z⟩ + ∥C
n

∑
i=t+1

zi −
t−1

∑
i=1

zi − z∥}

This randomized strategy is an admissible algorithm w.r.t. conditional
classical Rademacher complexity. Can find closed-form solutions.

The idea of replacing martingales with iid draws is quite general.



Smoothed Fictitious Play / Follow the Perturbed Leader

Add noise to the cumulative payoffs of each action and choose the best.

Turns out that algorithm on previous page can be of above form.

Idea goes back to (Hannan, 1957), re-discovered in (Kalai & Vempala, 2004)

“Smoothed” empirical risk minimization (or, smooth fictitious play).

General idea is related to random rollout in approximate dynamic
programming.
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Suppose xt’s come from a finite set of n items without replacement.

Then the tree disappears and the future xt+1, . . . ,xn can be chosen in any
prefixed order.

Algorithms for classification problems are especially simple. Relaxation is

Rel(x1,y1, . . . ,xt,yt) = Eε max
f∈F

{
n

∑
s=t+1

2εsf(xs) −
t

∑
s=1

I{f(xs) ≠ ys}}

and

ŷt = argmin
qt∈∆({−1,1})

max
yt∈{−1,1}

{Eŷt∼qtI{ŷt ≠ yt} +Rel(x1,y1, . . . ,xt,yt)}



Writing I{ŷt ≠ yt} = 1
2
(1 − ŷtyt),

ŷt = argmin
µt∈[−1,1]

max
yt∈{−1,1}

{1

2
(1 − µtyt) +Rel(x1,y1, . . . ,xt,yt)}

where µt is the mean of the distribution qt. Equating the two possibilities,
optimum is at

µt = Rel(x1,y1, . . . ,xt,+1) −Rel(x1,y1, . . . ,xt,−1)

Interpretation: if potential does not change when changing −1 to 1, predict
with probability 1/2.

(to be precise, we require that solution be clipped to [−1, 1])
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Claim: can make number of mistakes not much worse than that made by a
low-trace-norm matrix.

Set it up as a sequential optimization problem and solve the dynamic
programming problem with some tricks.



Matrix completion / collaborative filtering

movies

u
se
rs

5

3

1

2

movies

u
se
rs

5

3

1

2

?

movies

u
se
rs

5

3

1

2

4

movies

u
se
rs

5

3

1

2

4

?

movies

u
se
rs

5

3

1

2

4

5

Claim: can make number of mistakes not much worse than that made by a
low-trace-norm matrix.

Set it up as a sequential optimization problem and solve the dynamic
programming problem with some tricks.



Matrix completion / collaborative filtering

movies

u
se
rs

5

3

1

2

movies

u
se
rs

5

3

1

2

?

movies

u
se
rs

5

3

1

2

4

movies

u
se
rs

5

3

1

2

4

?

movies

u
se
rs

5

3

1

2

4

5

Claim: can make number of mistakes not much worse than that made by a
low-trace-norm matrix.

Set it up as a sequential optimization problem and solve the dynamic
programming problem with some tricks.



Matrix completion / collaborative filtering

movies

u
se
rs

5

3

1

2

movies

u
se
rs

5

3

1

2

?

movies

u
se
rs

5

3

1

2

4

movies

u
se
rs

5

3

1

2

4

?

movies

u
se
rs

5

3

1

2

4

5

Claim: can make number of mistakes not much worse than that made by a
low-trace-norm matrix.

Set it up as a sequential optimization problem and solve the dynamic
programming problem with some tricks.



Matrix completion / collaborative filtering

movies

u
se
rs

5

3

1

2

movies

u
se
rs

5

3

1

2

?

movies

u
se
rs

5

3

1

2

4

movies

u
se
rs

5

3

1

2

4

?

movies

u
se
rs

5

3

1

2

4

5

Claim: can make number of mistakes not much worse than that made by a
low-trace-norm matrix.

Set it up as a sequential optimization problem and solve the dynamic
programming problem with some tricks.



Matrix completion / collaborative filtering

For t = 1, . . . , T
Observe person/movie identity xt = 1(it, jt) ∈ {0, 1}m×n

Make randomized prediction ŷt ∼ qt ∈ ∆({−1, 1})
Observe the outcome yt.

Optimization objective with respect to trace norm:

1

n

n

∑
t=1

I{ŷt ≠ yt} − inf
M∶∥M∥Σ≤B

1

n

n

∑
t=1

I{M(xt) ≠ yt}

Relaxation:

Rel(x1, . . . ,xt) = B E∥2
n

∑
s=t+1

εsxs −
t

∑
s=1

xs∥
σ
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√
m +

√
n)

n
)

Power method works well in practice.
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Node prediction

For t = 1, . . . , T
Observe node identity vt ∈ V
Make randomized prediction ŷt ∼ qt ∈ ∆({−1, 1})
Observe the outcome yt.

Optimization objective:

1

n

n

∑
t=1

I{ŷt ≠ yt} − inf
f∈F

1

n

n

∑
t=1

I{f(vt) ≠ yt}

for a class F ⊆ {±1}V of labelings of vertices.

Similar nodes (as measured by W) should have similar labels and dissimilar
nodes – different labels.
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Solve two linear programs and subtract the objective values:

Val+t = Maximize f
⊺
X
+
t Val−t = Maximize f

⊺
X
−
t

subject to f ∈ F subject to f ∈ F (3)

Randomized predictor given distribution with mean

qt =
1

2
Clip(Val+t −Val−t )
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Algorithm (Using Graph Laplacian)

Low label disagreement:

F =
⎧⎪⎪⎨⎪⎪⎩
f ∈ {±1}∣V ∣ ∶ ∑

(u,v)∈E

W(u,v) (f(u) − f(v))2 ≤ K
⎫⎪⎪⎬⎪⎪⎭
= {f ∈ {±1}∣V ∣ ∶ f⊺Lf ≤ K}

Further relaxation for computational purposes:

F = {±1}�V � ∩ {f ∶ f TLf ≤K}

F = {±1}�V � ∩ {f ∶ f TLf ≤K}F = {±1}�V � ∩ {f ∶ f TLf ≤K}
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At time t,▸ xt and a set of constraints Ct is revealed

▸ ŷt ∈ {1, . . . ,k} is made

▸ outcome yt ∈ {1, . . . ,k} is revealed

▸ n = V
▸ Assume we know generating process for (xt,Ct)
▸ Each constraint measures affinity of labeling for a group of nodes (e.g.

whether labels of u, v match for edge (u, v) )

▸ (f(x1), . . . , f(xn)) are labels of all nodes at the end

▸ F is a set of labelings on xt’s that violate at most K constraints at the
end of n = V rounds

F(x1∶n,C1∶n) =
⎧⎪⎪⎨⎪⎪⎩
f ∈ F ∣x1∶n ∶ ∑

c∈∪Ct

c(f) ≤ K
⎫⎪⎪⎬⎪⎪⎭



Regret
n

∑
t=1

I{ŷt ≠ yt} − inf
f∈F(x1∶n,C1∶n)

n

∑
t=1

I{ft ≠ yt}

is against a time-changing target.

Randomized method:

▸ Observe xt,Ct
▸ Randomly generate xt+1∶n,Ct+1∶n (or use unlabeled data)

▸ Approximately solve a version of CSP (constraint satisfaction
problem) using semidefinite relaxations

▸ Use this approximate value in the relaxation framework to compute
prediction



The power of improper learning

▸ Computing an offline solution (even approximately) is NP-hard in
many interesting cases

▸ We do not need to round the solution but only need the approximate
value of the relaxation per step

▸ Integrality gap multiplies the final regret bound, not the OPT

▸ Lasserre hierarchy to trade off computation and prediction performance
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