
Large scale limits of random geometric structures
Some exercises, definitions and facts
(Malente, 8-10/3/2017, by G. Peccati)

Every random element considered below is defined on a common probability space
(Ω,F ,P), with E indicating expectation with respect to P.

Some notations/jargon from the lectures

(a) For n ≥ 1, we set [n] := {1, ..., n}.
(b) Given a function in k variables (x1, ..., xk) we write f̃ to indicate the symmetrization

of f , that is :

f̃(x1, ..., xk) =
1

k!

∑
σ

f(xσ(1), ..., xσ(k)),

where the sum runs over all permutations σ of [k].
(c) Po(λ), λ > 0 is the one-dimensional Poisson distribution with parameter λ.
(d) For n ≥ 0, Tn(x) :=

∑n
k=0 S(n, k)xk is the nth Touchard polynomial, where

S(n, k) := #{ partitions of [n] with exactly k blocks }.

(e) (A,A ) is a mesurable space such that A is a Polish space and A is its associate
Borel σ-field. Note that this implies that {x} ∈ A for every x ∈ A. We write µ to
indicate a non-atomic Borel measure on (A,A ) (“Borel” means that µ(B) < ∞ for
every bounded measurable B, so that in particular µ is σ-finite).

(f) A0 := {B ∈ A : µ(B) <∞}.
(g) Nl(A) is the class of measures on (A,A ) that take values in N ∪ {+∞} and are

locally finite (i.e., finite on every bounded set). We endow Nl(A) with the σ-field N
generated by all sets of the form

{ν ∈ Nl(A) : ν(B) = k}, k = 0, 1, ..., B ∈ A .

(h) η is a Poisson process on (A,A ) with intensity (or “control”) µ. We write η̂ := η−µ.
(i) The finite intensity Poisson process corresponds to an intensity of the form λπ, where

λ > 0 and π is a probability measure.
(j) The homogeneous Poisson process with intensity (or “parameter”) λ corresponds to

the case (A,A ) = (Rd,B(Rd)) and µ = λ× Lebesgue.
(k) We write supp (η) := {x ∈ A : η({x}) > 0)} (in view of our assumptions, this is

consistent with the usual definition of support as a closed set).
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(l) For every k ≥ 1, we use the notation D0 = D0(k) := {(x1, ..., xk) ∈ Ak : xi 6= xj, ∀i 6=
j} (purely non-diagonal sets).

(m) We write S0 := R whereas, for k ≥ 1, Sk indicates the collection of all measurable
mappings

f : Ak → R : (x1, ..., xk) 7→ f(x1, ..., xk),

such that f is symmetric, bounded and such that there exists a measurable bounded
set C ⊂ Ak verifying f(x1, ..., xk) = 0, for every (x1, ..., xk) /∈ C. Also, S := ∪∞k=0Sk.

(n) For k ≥ 1 and f ∈ Sk, we set

Uk(f) :=

∫
A

· · ·
∫
A

f(x1, ..., xk)1D0(x1, ..., xk)η(dx1) · · · η(dxk)

=

∫
A

· · ·
∫ 6=
A

f(x1, ..., xk)η(dx1) · · · η(dxk),

Ik(f) :=

∫
A

· · ·
∫
A

f(x1, ..., xk)1D0(x1, ..., xk)η̂(dx1) · · · η̂(dxk)

=

∫
A

· · ·
∫ 6=
A

f(x1, ..., xk)η̂(dx1) · · · η̂(dxk)

Also, U0(c) = I0(c) = c.
(o) We define, for k ≥ 0

Uk := {Uk(f) : f ∈ Sk}
Ck := {Ik(f) : f ∈ Sk}
U := span {Uk : k ≥ 0} = span {Ck : k ≥ 0}.

(p) Given F (η) ∈ U , we write D+
x F (η) = F (η + δx) − F (η) (add-one cost operator).

Given x ∈ supp (η), we set D−x F (η) = F (η)− F (η − δx) (remove-one cost operator).
(q) Given

G =
k∑
`=0

I`(g`) ∈ U ,

the operator L acts on G as follows

LG = −
k∑
`=0

`I`(g`),

whereas the pseudo-inverse L−1 is defined in the obvious way.
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(r) For every α ∈ [0, 1], and F,H ∈ U , we introduce the operator

Γα(F,H) = α

∫
A

(D+
x F D

+
xH)µ(dx) + (1− α)

∫
A

(D−x F D
−
xH) η(dx),

and we declare Γ 1
2
to be the carré-du-champ operator.

(s) Given f ∈ Sp and g ∈ Sq, and integers 0 ≤ l ≤ r ≤ p ∧ q, we define the contraction
kernel in p+q−l−r variables as follows (r variables are identified and l are integrated
out) :

f ?lr g(x1, ..., xp+q−r−l)

=

∫
A

· · ·
∫
A

f(z1, ..., zl, x1, ..., xr−l, xr−l+1, ..., xp−l)×

×g(z1, ..., zl, x1, ..., xr−l, xp−l+1, ..., xp+q−r−l)µ(dz1) · · ·µ(dzl).

Note that f̃ ?lr g ∈ Sp+q−r−l.
(t) dW and dTV stand, respectively, for the 1-Wasserstein and total variation distances

between the laws of two random variables.

One often needs the following result.

Proposition 0.1 (Product formula) Let f ∈ Sp and g ∈ Sq. Then,

Ip(f)× Iq(g) =

min(p,q)∑
r=0

r!

(
p

r

)(
q

r

) r∑
l=0

(
r

l

)
Ip+q−r−l.

(
f̃ ?lr g

)
(0.1)

This result implies in particular that E[Ip(f)Iq(g)] = 0, if p 6= q, and

E[Ip(f)Iq(g)] = p!〈f, g〉L2(µp), if p = q.

Proof: (Sketch) One has that

Ip(f)Iq(g) =

∫
D0(p)×D0(q)

f(x1, ..., xp)g(y1, ..., yq)η̂
p+q(dx1, ....dxp, dy1, ..., dyq).

We can represent the set D0(p)×D0(q) as a disjoint union of the type

D0(p)×D0(q) =

min(p,q)⋃
r=0

A(r)
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where the set A(r) is a union of r-diagonals, in the sense that each of its elements
(x1, ....xp, y1, ..., yq) verifies the following property : there are exactly r elements of the
vector (x1, ..., xp) that are repeated in the vector (y1, ..., yq). Symmetry considerations,
together with the fact that µ has no atoms yield that∫

A(r)

f(x1, ..., xp)g(y1, ..., yq)dη̂
p+q(dx1, ....dxp, dy1, ..., dyq)

= r!

(
p

r

)(
q

r

)∫
D0(p+q−2r)

f(x1, ..., xr, a1, ..., ap−r)×

×g(x1, ..., xr, b1, ..., bq−r)η
r(dx1, ..., dxr)η̂

p+q−2r(da1, ..., dbq−r),

and the result follows by observing that, for every symmetric function ϕ : Ar → R,∫
Ar

ϕ(x1, ..., xr)η
r(dx1, ..., dxr)

=
r∑
l=0

(
r

l

)∫
Ar

ϕ(x1, ..., xr)µ(dx1) · · ·µ(dxl)η̂(dxl+1) · · · η̂(dxr).

Nota : I consider exercises with a [?] more interesting for Thursday’s afternoon session.

Excercise 1 Given a random variable X with finite moments of every order, we define
the nth cumulant of X (n = 1, 2, ...) to be the quantity

κn(X) := (−i)n ∂
∂z

logE[eizX ]
∣∣∣
z=0

,

with i2 = −1.
1. Show that κ1(X) = E(X), and κ2(X) = Var(X). Prove that, if X and Y are

stochastically independent, then κn(X + Y ) = κn(X) + κn(Y ), and deduce from
this property that cumulants of order ≥ 2 are translation-invariant, that is : for
every c ∈ R and every m ≥ 2, κm(X + c) = κm(X)

2. Prove that, if X ∼ Po(λ), then κm(X) = λ, for every m ≥ 1.
3. Compute the cumulants of a Gaussian random variable with mean µ and variance
σ2.

Excercise 2 Let X ∼ Po(λ) (λ > 0). Compute an explicit expression for

E[etX ], t ∈ R,
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and deduce that the law of X is determined by its moments. Conclude by proving the
so-called Chen-Stein Lemma, that is : a random variable Z with values in N has the
Poisson distribution with parameter λ if and only if

E[Zf(Z)] = λE[f(Z + 1)],

for every bounded mapping f .

Excercise 3 Let {Xi : i ≥ 1} be a sequence of independent random variables such that
Xi ∼ Po(λi), where the parameters λi > 0 are such that λ? :=

∑∞
i=1 λi <∞. Show that

the sum X? :=
∑∞

i=1Xi exists in L2(P), and that X? ∼ Po(λ?).

Excercise 4 Let X ∼ Po(1). Show that, for every integer m, the quantity E[(X − 1)m]
coincides with the numbers of partitions β of [m], such that every block of β has at least
size 2 (that is, β has no singletons).

Excercise 5 Build an example of a σ-field C of [0, 1], such that there exists a measure
ν on ([0, 1], C) with values in {0, 1} and such that ν({x}) = 0 for every x ∈ R.

Excercise 6 Conclude the proof of the existence of a Poisson process.

Excercise 7 Prove Mecke formula for the finite intensity Poisson process. The extension
to the general situation is then a standard affair.

Excercise 8 Prove the multivariate Mecke formula (for deterministic kernels) for the
finite intensity Poisson process. The extension to the general situation is again standard.

Excercise 9 [?] Use the multivariate Mecke formula to show that, for every k ≥ 1 and
every f ∈ Sk, one has that E[Ik(f)] = 0.

Excercise 10 [?] Show that, for every k ≥ 1 and every f ∈ Sk,

D+
x Uk(f) = kUk−1

(
f(x, •)1D0(x, •)

)
,

where D0 = D0(k) := {(x1, ..., xk) : xi 6= xj, ∀i 6= j}.

Excercise 11 [?] Prove that

Γ 1
2
(F,G) =

1

2
{L(FG)−GLF − FLG}

(this explains why we call Γ 1
2
a carré-du-champ).
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Excercise 12 [?] Prove the following Poincaré inequalities, valid for every F ∈ U and
every α ∈ [0, 1] :

E[Γα(L−1F,L−1F )] ≤ Var(F ) ≤ E[Γα(F, F )].

Excercise 13 [?] Prove the following improved Poincaré inequality, valid for every F ∈ U
and every α ∈ [0, 1] :

Var(F ) ≤ 1

2
E[Γα(F, F )] +

1

2

∫
A

{E(D+
x F )}2µ(dx).

It is interesting to notice that a Gaussian version of such an estimate has played an
important role in our recent work on compressed sensing : L. Goldstein, I. Nourdin and
G. Peccati : “Gaussian phase transitions and conic intrinsic volumes : Steining the Steiner
formula”, Annals of Applied Probability 2017, Vol. 27(1), 1-47.

Excercise 14 [?] Prove that, for every F ∈ Ck, k ≥ 1 :

E
∫
A

(D+
x F )4 µ(dx) =

3

k
E
[
F 2Γ 1

2
(F, F )

]
− E

[
F 4
]
.

Excercise 15 Let k ≥ 2, consider f ∈ Sk and let F = Ik(f). Prove the following
formula :

(2k)!‖f̃ ?00 f‖2L2(µ2k) = 2E[F 2]2 + (k!)2
k−1∑
r=1

(
k

r

)2

‖f ?rr f‖2L2(µ2k−2r).

(This result is a little bit technical, but useful in the forthcoming Exercise 16. You can find
a proof at p. 97-98 of my book with I. Nourdin “Normal Approximations with Malliavin
Calculus”, Cambridge 2012)

Excercise 16 [?] Let F = Ik(f) ∈ Sk, in such a way that L−1F = −k−1F , and assume
for simplicity that Var(F ) = 1. Recall the bound proved in the lectures : for N a standard
normal random variable,

dW (F,N) ≤ Var(k−1Γ 1
2
(F, F ))1/2 +

(
E
∫
A

(D+
x F )4µ(dx)

)1/2

(i) Use Exercises 11 and 15 in order to write explicitly Var(k−1Γ 1
2
(F, F )) in terms of

the norms of the projections proj(F 2 | Ck), k = 1, ..., 2k − 1, and deduce that

Var(k−1Γ 1
2
(F, F )) ≤ C(E(F 4)− 3),

where F is an absolute constant.
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(ii) Use Exercises 11, 14 and 15 to prove that

E
∫
A

(D+
x F )4µ(dx) ≤ C(E(F 4)− 3),

where C is an absolute constant.
(iii) Deduce the following special case of the main result in Ch. Döbler and G. Peccati

“The fourth moment theorem on the Poisson space” (Preprint, 2017) : for some
absolute constant K

dW (F,N) ≤ K
{
E(F 4)− E(N4)

}1/2

.

One should notice that “fourth moment results” and associated techniques now account
for a quite substantial body of work, spanning several domains of theoretical and applied
probability, like functional inequalities, concentration estimates, geometry of random
fields, random matrices, compressed sensing and many more – see the dedicated webpage
https://sites.google.com/site/malliavinstein/home for a constantly updated re-
source. The actual possibility of having an exact fourth moment theorem on the Poisson
space (as the one described above) was an open problem for several years.

Remark. We recall the following bound, that one can find e.g. in the paper : R.
Lachièze-Rey and G. Peccati (2013). Fine Gaussian fluctuations on the Poisson space,
I : contractions, cumulants and random geometric graphs. The Electronic Journal of
Probability, 18(32), 1-35. It is a direct application of the product formula (0.1). If
F =

∑M
i=1 Iqi(fi) ∈ UM has variance σ2 and N is a centred standard normal, then

dW

(
F

σ
,N

)
≤ C

σ2

{
max
(∗)
‖fi ?lr fj‖L2(µqi+qj−r−l) + max

i=1,...,M
‖fi‖2L4(µqi )

}
,

where max(∗) runs over all choices of indices such that 1 ≤ l ≤ r ≤ qi ≤ qj, with l 6= qj,
and C is absolute constant depending on q1 + · · ·+ qM .

Excercise 17 [?] (Edge counting in the Gilbert graph) For every λ > 0 we denote
by ηλ the homogeneous Poisson process on Rd with parameter λ, and write η1 = η. We fix
a “window” W given by a compact set such that ∂W has zero Lebesgue measure (taking
the unit cube centered at the origin is perfectly fine). We will let W “grow”, as n→∞,
by setting

Wn := n1/dW,

in such a way thatW1 = W ; for simplicity we can assume that LebW = 1. Now consider
a bounded sequence of positive numbers {tn : n ≥ 1}, and define the Gilbert graph

Ĝn = (V̂n, Ên), n ≥ 1,
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as follows : V̂n = supp (η) ∩Wn, and x ∼ y if and only if ‖x − y‖ ∈ (0, tn), where ‖ • ‖
stands for the Euclidean norm. Note that by construction V̂n has no loops. For simplicity,
we set sn := tnn

−1/d ; in what follows we will distinguish among four regimes, as n→∞ :

(R1) nsdn → 0 and n2sdn →∞ ;
(R2) nsdn →∞ ;
(R3) nsdn → c ∈ (0,+∞) (termodynamic regime) ;
(R4) n2sdn → c ∈ [0,∞).

We are interested in understanding the behaviour, as n → ∞, of the edge counting
statistic

Ên := #Ên, n ≥ 1.

(i) Show that Ên has the same distribution as En = #En, which is defined as the
number of edges in the random geometric graph Gn = (Vn, En) defined as Vn =
supp(ηn) ∩W , and x ∼ y if and only if ‖x− y‖ ∈ (0, sn).

(ii) Show that, in all four regimes E[En] ≈ n2sdn ;
(iii) Write En as an element of U2, and write its chaotic representation.
(iv) Show that, under (R1) and (R4), the projection on the second chaos dominates

asymptotically, and Var(En) ≈ n2sdn.
(v) Show that, under (R2), the projection on the first chaos dominates asymptotically,

and Var(En) ≈ n3(sdn)2.
(vi) Show that, under (R3), both projections contribute asymptotically, and Var(En) ≈

n.
(vii) Let N be a centred standard normal random variable, and set

En :=
Ên − E(Ên)

Var(Ên)1/2
, n = 1, 2, ...

Show that, under (R1)—(R3)

dW (En, N)→ 0,

by showing that, under (R1)

dW (En, N)� 1√
n2sdn

,

and under (R2)—(R3)

dW (En, N)� 1√
n
.
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(viii) Show that, under (R4), the random variable En admits either a trivial or a Poisson
limit.

(ix) If you feel like it, you can repeat the same analysis for generic subgraph coun-
ting, by replacing the “edge” with any connected graph with k vertices (triangles,
arcs, squares, cliques, ...) ; in all cases, the asymptotic behaviour boils down to the
analysis of four well-chosen regimes.

(x) Another interesting question is about joint distributions, for instance : are triangles
and edges asymptotically independent ?

Remark. The Gilbert graph plays a prominent role in the beautiful monograph by M.D.
Penrose “Random Geometric Graphs”, Oxford (2003).
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