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Abstract

After recalling an inverse problems perspective on supervised learning, we discuss regularization
methods for large scale machine learning. In particular, we derive and contrast different regularization
schemes. Starting from classic Tikhonov regularization, we then introduce iterative regularization,
a.k.a. early stopping, and discuss different variants including accelerated and stochastic versions. Fi-
nally we discuss projection with regularization and introduce stochastic extensions. Our discussion
shows how, while the different methods are grounded in common estimation principles, their computa-
tional properties are different. Iterative regularization allows to combine statistical and time complexi-
ties. While regularization with stochastic projections allows to simultaneously control statistical, time
and space complexity. These latter properties makes these method particularly suited to large scale
setting.
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1 Inverse problems

Inverse problems provide a general framework to describe a variety of applied problems. A linear inverse
problem is defined by a linear equation

Af = g (1)

where A : H → G is a linear continuos operator between Hilbert spaces and f ∈ H, g ∈ G. Given A and
g, the problem is to recover f . This problem is often ill-posed, that is:

• a solution might not exist g /∈ Range(A),

• it might now be unique Ker(A) 6= ∅,

• it might not depend continuously to the datum g .

The question is how to find well-posed approximate solutions to the above problem. The first two
requirements can be fixed considering

H0 = argmin
f∈H

∥∥Af − g∥∥2
which is not empty under the weaker condition Pg ∈ Range(A), and letting,

f † = argmin
f∈H0

∥∥f∥∥.
The function f † can be shown to be unique and is called pseudo-solution or Moore-Penrose solution, since
it can be shown that f † = A†g, where A† : G → H denotes the Moore-Penrose pseudo-inverse. The
latter is typically not continuous and the question is how to derive approximations to ensure stability.
This question is particularly important as data in practice might be affected by noise. A common way to
formalize this idea is assuming to be given gδ rather than g where∥∥g − gδ∥∥ ≤ δ
and δ > 0 is seen as a noise level.

Regularization theory provides a general framework to derive stable solutions. Broadly speaking
regularization refers to a sequence of solutions that converge to f † and is stable to noise. A classic
example is Tikhonov regularization given by

fλδ = argmin
f∈H

∥∥Af − gδ∥∥2 + λ‖f‖2H, λ > 0

Classical results in regularization theory show that if λ is chosen as function λδ of delta such that

lim
δ→0

λδ = 0, lim
δ→0

δ

λδ
= 0,
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then
lim
δ→0

∥∥fλδδ − f †∥∥ = 0

In the following, we introduce the problem of supervised learning, show how it can be seen as an
inverse problem and discuss how regularization techniques can be adapted to the learning setting.

2 Statistical Learning Theory

In this section we briefly introduce the problem of supervised learning.
Supervised learning is concerned with the problem of learning a function from random samples. More

precisely, consider a probability space X and assume ρ to be a probability measure on Z = X × R, such
that for all measurable functions h : X × R→ R,∫

f(x, y)dρ(x, y) =

∫
f(x, y)dρX (x)ρ(y|x) (2)

where ρX is called the marginal measure on X and ρ(· |x) the conditional probability measure on R for
almost all x ∈ X . Let

L2(X , ρX ) =

{
f : X → R |

∥∥f∥∥2
ρ

=

∫
|f(x)|2dρX (x) <∞

}
The function of interest is the regression function, defined by

fρ(x) =

∫
yρ(y|x)

for almost all x ∈ X . The distribution ρ, hence the regression function, are fixed but known only through
a set zn = (x1, y1), . . . , (xn, yn) ∈ Zn sampled independently and identically according to ρ. Given z, the
goal is find an estimate fn of the regression function fρ. Assuming fρ ∈ L2(X , ρX ), a natural metric to
measure the quality of the estimate is the norm in L2(X , ρX ). Indeed, if we consider∥∥fn − fρ∥∥2ρ =

∫
|fn(x)− fρ(x)|2dρX (x)

points that are more likely to be sampled will have more influence on the error. We will se that other
error measures are also possible. The above quantity is stochastic through its dependence to the data-set
z. In statistical learning theory the focus is on studying the convergence as well as explicit bounds on the
probability

ρn
{

zn ∈ Zn
∣∣ ∥∥fn − fρ∥∥2ρ ≥ ε}

for all ε ∈ (0,∞). We next discuss how the above problem can be reformulated as a linear inverse
problems. We first add one remark and discuss two basic examples of the above framework.

Remark 1 (Risk Minimization). It is standard in statistical learning to view the regression function as
a solution of a stochastic optimization problem. Indeed, if

∫
y2ρ(y|x) < ∞ is finite, then the so called

expected risk,

E : L2(X , ρX )→ R, E(f) =

∫
dρ(x, y)(y − f(x))2, (3)
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is well defined, continuous and convex. A direct computation shows that fρ is the minimizer of the expected
risk on L2(X , ρX ) and moreover the following equality holds for all f ∈ L2(X , ρX ),∥∥f − fρ∥∥2ρ = E(f)− E(fρ).

The above quantity is called the excess expected risk.

Example 1 (Regression). For all i = 1, . . . , n, n ∈ N, let xi be a sequence of random points in X , for
example X = Rd, d ∈ N, and εi a sequence of random numbers with zero mean, bounded variance and
possibly dependent on xi. Given a function f∗ : X → R, assume

yi = f∗(xi) + εi, i = 1, . . . , n. (4)

In other words, data are samples of a function corrupted with noise and evaluated at random locations.
The above is the classical model for regression. It is a special case of the general framework in this section
where fρ = f∗ and the conditional distribution is defined by the noise distribution.

Example 2 (Binary Classification). Consider the case where the conditional distribution is supported on
{−1, 1}, that is it corresponds to the pair of point masses ρ(1|x), ρ(−1|x) for almost all x ∈ X . In this
case, the natural error measure is the misclassification risk

R(f) = ρ{(x, y) ∈ Z | f(x)y < 0}

that is the expected number of misclassifications. In this setting, it is not hard to show that the misclas-
sification risk is minimized by the so called Bayes decision rule bρ = sign(fρ − 1/2). and moreover

R(f)−R(bρ) ≤
∥∥f − fρ∥∥ρ.

This latter observation justifies the use of least squares for classification problems.

3 Learning as an inverse problem

In this section we reformulate the problem of learning with least squares as linear inverse problems under
a suitable data model.

As a starter note that, considering the empirical data, it is well known that problem (4) could be
formulated as a linear inverse problem with discrete data. Indeed, in this case it is natural to consider the
candidate functions to belong to a Hilbert space of functions H where the evaluation functionals f 7→ f(x)
are continuous, for all x ∈ X. Then, Rietz representation theorem, ensures that for all x ∈ X there exists
a function Kx ∈ H such that

f(x) = 〈f,Kx〉H
where 〈·, ·〉H is the inner product in H.

If we define the sampling operator,

Sn : H → Rn, (Snf)i = 〈f,Kxi〉H , i = 1, . . . , n,

then problem (4) can be written as the linear inverse problem corresponding to finding f ∈ H such that

Snf = y (5)
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for y = (y1, . . . , yn).
While the above is a promising start, it essentially corresponds to a “noisy” inverse problem, in the

sense that we have only an empirical problem based on data. While this problem is the basis for practical
algorithms, it is not clear how it relates to the problem of estimating the regression function, which is
the target of learning. The question is then if the problem of estimating the regression function can be
written as a linear inverse problem, of which problem (5) is an empirical instantiation. Roughly speaking
the answer follows considering the infinite data limit of problem (5).

Assume the reproducing kernel K to be measurable and the operator

Sρ : H → L2(X , ρX ), (Sρf)(x) = 〈f,Kx〉H , ρX − almost surely,

to be bounded. Then, consider the linear inverse problem

Sρf = fρ. (6)

The above inverse problem can be seen as the one corresponding to estimating the regression function.
We add three remarks to illustrate the above discussion.

Remark 2 (Risk and Moore Penrose Solution). First, in words, the above inverse problem corresponds
to looking for a function in H providing a good approximation of the regression function. This problem
is typically ill-posed, in particular note that generally the regression function does not belong to H. The
associated least squares problem is

min
f∈H

∥∥Sρf − fρ∥∥2ρ (7)

which in light of Remark 1 corresponds to considering

min
f∈H
E(f).

The solutions of the above problem, if any, are the set of generalized solutions of problem (6). If this

set is not empty, then we denote by f †H the Moore-Penrose solution, that is the generalized solution with
minimal (RKHS) norm. Such a solution often replaces the regression function as the target of learning.

Note that f †H can be written as f †H = S†ρfρ and contrasted to the Moore-Penrose solution f †H = S†ny of
problem (5).

Remark 3 (Empirical and population problems). Second, if ρn = 1
n

∑n
i=1 δxi is the empirical measure on

the data, then we can identify Rn with L2(X , ρn), and Sρ reduces to Sn if we replace ρ by ρn. Developing
this latter observation we can view problem (6) as the ideal inverse problem we would wish to solve, and
to problem (5) as a corresponding empirical problem. It is important to note that unlike classical inverse
problems, here the operators defining the two problems have same domains but different ranges. We will
see in the following how the distance (noise) between the two problems can be quantified. Provided with
the above connection we next introduce and analyze a class of regularized methods for learning.

Remark 4 (Noise and sampling). Following the above remark, problem (5) can be seen as a noisy ran-
domly discretized version of Problem (6). Note however, that it is not immediately clear how this idea
can be formalized since the operators definining the two problems have different range (y is a vector and
fρ a function!). One idea is to consider the normal equations associated to the two problems that is

S∗ρSnf = S∗ρy, S∗ρSρf = S∗ρfρ.
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This suggests to consider ∥∥S∗ρfρ.− S∗ρy∥∥, ∥∥S∗ρSρ − S∗ρSn∥∥.
The above quantities provides a measure of the perturbation due to random noise and random sampling.
As seen in the following they will play a role similar to the noise level in classical inverse problems.

Remark 5 (Connection to compressed sensing and linear regression). Note that the sampling operator
can be seen as a collection of measurements defined by random linear functionals. This suggests a connec-
tion to classical linear regression and compressed sensing. Indeed, if we consider the linear kernel, then
problem (5) can be written as

Xnw = y

where Xn is the n by d data matrix, yi = x>i w∗ + εi and w∗ is a parameter to be estiamted. Unlike in
compressed sensing, the source of randomness in the sampling operator lies in the nature of the data and
it is not a design choice.

Remark 6 (Kernels and RKHS). The space H is called reproducing kernel Hilbert space (RKHS) and
the function K(x, x′) = 〈Kx,K

′
x〉H, x, x′ ∈ X reproducing kernel. It can be shown that H is the closure

of the span span{Kx | x ∈ X}. The list of examples of kernels and RKHS is endless. We provide three
examples.

• Linear. Let X = Rd and consider the kernel K(x, x′) = x>x′, for all x, x′ ∈ X . The corresponding
RKHS is the space of linear functions on X .

• Finite dictionaries. Consider {φi : X → R | i = 1, . . . , p} and the kernel K(x, x′) =
∑p

j=1 φj(x)φj(x
′)

for all x, x′ ∈ X . The corresponding RKHS is H = {f : X → R : ∃w ∈ Rp such that f =∑p
j=1w

jφj}

• Gaussian. Let X = Rd and consider the kernel K(x, x′) = e−
∥∥x−x′∥∥2

γ, for all x, x′ ∈ X . The
corresponding RKHS can be seen as a subspace H of L2(X ) = {f : X → R :

∫
|f(x)|2| <∞} such

that, for all f ∈ H ∫
|f̃(ω)|2e

ω2

γ <∞

where f̃ denotes the Fourier Transform of f .

The above discussion raises at least two lines of questions. The first concerns, the nature of the inverse
problem describing supervised learning. We investigate this in the first section, analyzing the operators
defining the problem. The second

4 An interlude: operators defined by the kernels

The above discussion can be further elucidated considering in details the operators defined by the kernel.

4.1 Population kernel operators

We begin noting that functions in H are defined over the whole space X , while functions in L2(X , ρX )
are defined on Xρ, the support of the distribution ρX which can be strictly contained in X . Indeed, it is

6



often interesting to think of X as a high dimensional Euclidean space and Xρ as smaller set, for example
a low dimensional sub-manifold.

In this view, the operator Sρ can be seen as restriction operator, that given a function defined over
the whole space X provides a restriction to Xρ. The corresponding adjoint operator S∗n : L2(X , ρX )→ H
can be shown to have the following form

S∗g =

∫
dρX (x)Kxg, ∀g ∈ L2(X , ρX )

and can be seen as an extension operator. Given a function g defined on Xρ it provides an harmonic
extension on the whole space X defined by the kernel K. The operator Lρ = SρS

∗
ρ : L2(X , ρX ) →

L2(X , ρX ) is the integral operator defined by the kernel

Lρg(x) =

∫
dρXK(x, x′)g(x′)dρX (x′), ∀g ∈ L2(X , ρX ), (8)

and ρX−almost everywhere. The operator Tρ = S∗ρSρ : H → H can be written as

Tρ =

∫
dρXKx ⊗Kx,

where Kx ⊗Kx = 〈Kx, ·〉HKx, so that〈
Tρf, f

′〉
H =

∫
dρX f(x)f ′(x), ∀f, f ′ ∈ H.

As discussed below Tρ can be seen as a suitable covariance operator.

Remark 7 (Properties of the kernel operators). If the kernel is bounded, that it there exists κ > 0 such
that

K(x, x′) ≤ κ2

ρX− almost everywhere, then all the above operators are well defined. The operators Lρ, Tρ are positive,
self-adjoint and trace class and the operators Sρ, S

∗
ρ are Hilbert-Schmidt.

4.2 Empirical kernel operators

The operator Sn is called sampling operator. Given a function in H it evaluates the function at the
training set inputs. The corresponding adjoint operator S∗n : Rn → H can be shown to have the following
form

S∗nc =
1

n

n∑
i=1

Kxic
i, ∀c ∈ Rn.

As discussed above Rn can be identified with L2(X , ρn), whereas the latter can be seen as space of
functions defined on the training set inputs. In this view, we can identify c f(x1), . . . , f(xn), the action
of S∗n can be seen as an extension operator providing the value of the functions outside of the training
set inputs. Such an operator is said to provide an out-of-sample extension. The operator Ln = SnS

∗
n :

L2(X , ρ̂X )→ L2(X , ρ̂X ) can be written as

(Lnc)
i =

1

n

n∑
j=1

K(xi, xj)c
j .
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The above operator can be seen as discretization of the integral operator in (8) and in particular as a so
called N ystrom approximation. The operator Tn = S∗nSn : H → H can be written as

Tn =
1

n

n∑
j=1

Kxi ⊗Kxi ,

so that 〈
Tnf, f

′〉
H =

1

n

n∑
j=1

f(xi)f
′(xi), ∀f, f ′ ∈ H.

As discussed below Tn can be seen as a suitable empirical covariance operator.

4.3 The linear kernel case

The above operators takes a familiar form if we consider the linear kernel. In this case the RKHS can
be identified with Rd and the sampling operator Sn with the n by d data matrix Xn whose rows are the
training set input points. The adjoint S∗n is the transpose of Xn (multiplied by 1/n) and S∗nSn is the
empirical covariance matrix1

Σn =
1

n
X>n Xn =

1

n

n∑
i=1

xix
>
i .

In the population case the only operator that have a familiar form is S∗ρSρ that can be seen as the
population covariance

Σ = E[
1

n
X>n Xn] =

∫
dρX (x)xx>.

5 Tikhonov regularization

Following, the connection discussed before, consider the family of variational problems,

min
f∈H

∥∥Snf − y
∥∥2
n

+ λ‖f‖2H, λ > 0, (9)

where ‖·‖H is the norm in H,
∥∥·∥∥

n
the norm in Rn (normalized by 1/n) and it is easy to see that

∥∥Snf − y
∥∥2
n

=
1

n

n∑
i=1

(f(xi)− yi)2. (10)

A direct computation shows that the minimizer of problem (9) is given by

fλn = (S∗nSn + λI)−1S∗ny, ∀λ > 0, (11)

where S∗n : H → L2(X , ρ̂X ) is the adjoint of the sampling operator. Note that, while the sampling operator
is finite rank, in general, the above expression is not directly applicable. However, the following simple
lemma holds.

1Or rather the second moment matrix.
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Lemma 1. For all λ > 0, let fλn be defined as in (11), then

fλn (x) =
n∑
i=1

K(x, xi)ci, c = (Kn + λnI)−1y, (12)

where c = (c1, . . . , cn) and

Kn : L2(X , ρ̂X )→ L2(X , ρ̂X ), (Kn)i,j = 1/nK(xi, xj), ∀i, j = 1, . . . , n.

Proof. Note that
(S∗nSn + λI)−1S∗n = S∗n(SnS

∗
n + λI)−1,

so that fλn = S∗n(SnS
∗
n+λI)−1y. Recalling that SnS

∗
n = 1

nKn and that S∗nc = 1
n

∑n
i=1Kxici, for all c ∈ Rn,

by a direct computation we can write

(SnS
∗
n + λI)−1 = n(Kn + λnI)−1 = nc

and

fλn (x) =
〈
Kx, f

λ
n

〉
H

= 〈Kx, S
∗
nnc〉H = n 〈SnKx, c〉n =

n∑
i=1

K(x, xi)ci

5.1 Error analysis for Tikhonov regularization

We next provide an error analysis for Tikhonov regularization.
We make a few simplifying assumptions. We assume K(x, x) ≤ 1 for all x ∈ X , and assume the

regression model
yi = f †H(xi) + εi

where xi are i.i.d. random vectors and εi zero mean random number smaller than 1. Note that this mean
that

Sρf
†
H = fρ.

The main results os this section are the following two theorems.

Theorem 1. Under the above assumptions, the following results holds:

• for all λ > 0, there exists constant c, C not depending on n, λ such that with probability at least
1− Ce−τ

‖fλn − f
†
H‖H ≤ c

τ

λ
√
n

+ ‖fλ − f †H‖H,

• If λ is chosen as a function λn of the number of points so that

lim
n→∞

λn = 0, lim
n→∞

1

λn
√
n

= 0,

then
lim
n→∞

‖fλnδ − f
†
H‖H = 0

almost surely.
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Theorem 2. Under the same assumption of the previous theorem, if

f †H ∈ Range((S∗ρSρ)
−r), r > 0, (13)

then the following results holds:

• For all λ > 0, there exist constants c, c′, C, C ′ not depending on n, λ such that with probability at
least 1− Ce−τ

‖fλn − f
†
H‖H ≤ c

τ

λ
√
n

+ c′λr

if 0 ≤ r ≤ 1.

• If λ is chosen as a λn = n
− 1

2(r+1) , there exist constant c, C not depending on n, λ such that with
probability at least 1− Ce−τ

‖fλnδ − f
†
H‖H ≤ cn

− r
2(r+1)

To derive the above bound we first consider a suitable error decomposition and then study the various
error terms.

5.2 Error decomposition

The idea is to fist study the difference ‖fλn − f
†
H‖H for any λ > 0, and then derive a suitable choice for λ.

The idea is to decompose such an error into several terms. We begin by considering

fλ = (S∗ρSρ + λI)−1S∗ρfρ (14)

which is the unique solution of the problem

min
f∈H

∥∥Sρf − fρ∥∥2ρ + λ‖f‖2H

Then, we have the following equation

fλn − f
†
H = fλn − fλ + fλ − f †H.

In the above expression:

• The term aλ = fλ − f †H does not depend on the data but only on the distribution and is called
approximation error.

• The term sλn = fλn − fλ depends on the data, is stochastic, and is called variance, estimation or
sample error.

We study this two terms next.
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5.3 Approximation error

Combining with (??) we have

aλ = fλ − f †H = ((S∗ρSρ + λI)−1S∗ρSρ − I)f †H = λ(S∗ρSρ + λI)−1f †H.

A first question is whether the approximation error converges to zero, and indeed from the above equation
it is possible to show that

lim
λ→0
‖aλ‖H = 0. (15)

A second question we can ask is if it possible to derive the rate of convergence for (15). This latter
question can be answered positively only under further assumption. A standard assumption is given by
the source condition (13). The source condition can be illustrated considering the eigen-system (σj , vj)

∞
j=1

of the operator S∗ρSρ. Indeed, (13) can written as

‖(S∗ρSρ)−rf †‖2H =
∞∑
j=1

|
〈
f †, vj

〉
H |

2

σ2rj
<∞

which can be seen as weak form of sparsity on the dictionary (vj)
∞
j=1. The coefficients of the pseudo-

solution with respect to the dictionary (vj)
∞
j=1 need be decreasing with respect to the eigen-values (σj)

∞
j=1.

Indeed, the following result holds

‖aλ‖H ≤ λr‖(S∗ρSρ)−rf †‖H

if 0 ≤ r ≤ 1 and
‖aλ‖H ≤ λ‖(S∗ρSρ)−1f †‖H

5.4 Sample error

Consider sλn and use the explicit form of fλn , fλ to get

sλn = (S∗nSn + λI)−1S∗ny − (S∗ρSρ + λI)−1S∗ρfρ

the idea is to further decompose the above expression to isolate the perturbations due to noise and random
sampling. We add and subtract (S∗nSn + λI)−1S∗nSnf

†
H so that

sλn = (S∗nSn + λI)−1(S∗ny − S∗nSnf
†
H) + [(S∗nSn + λI)−1S∗nSn − (S∗ρSρ + λI)−1S∗ρSρ)f

†
H]

where we used the fact that S∗ρfρ = S∗ρSρf
†
H. The study of the above expression is based on two analytic

and two probabilistic inequalities. Indeed,

• using the spectral theorem and the definition of operator norm∥∥(S∗nSn + λI)−1
∥∥ ≤ 1

λ
;

• a result in functional analysis allows to study Lipschitz continuity of spectral functions∥∥[(S∗nSn + λI)−1S∗nSn − (S∗ρSρ + λI)−1S∗ρSρ)]
∥∥ ≤ 1

λ

∥∥S∗nSn − S∗ρSρ∥∥
where 1

λ is the Lipschitz constant of the function of the real valued function (σ + λ)−1σ.
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Then

‖sλn‖H =
1

λ
‖S∗ny − S∗nSnf

†
H‖H +

1

λ

∥∥S∗nSn − S∗ρSρ∥∥‖f †H‖H
The study of the latter terms follows applying Höeffidng inequality(??) for the random variables in

Hilbert space defined by:

ξi = Kxiyi

with valued in H, and the random variable

ζi = Kxi ⊗Kxi

seen as a Hilbert Schmidt operator.

5.5 Deriving the final bound

Combining the above bounds we have for some universal constant c

‖fλn − f
†
H‖H ≤ c

τ

λ
√
n

(1 + ‖f †H‖H) + ‖fλ − f †H‖H,

which easily allows to derive Theorem ??, using Borel-Cantelli Lemma. Further assuming a source
condition we have

‖fλn − f
†
H‖H ≤ c

τ

λ
√
n

(1 + ‖f †H‖H) + λr‖(S∗ρSρ)−rf
†
H‖H

if 0 ≤ r ≤ 1.

which allows to derive Theorem ??.

6 From Tikhonov to iterative regularization

In this section, we consider the algorithm defined by the following sequence

f jn = f j−1n − 2
η

n

n∑
i=1

S∗n(Snf
j−1
n − y), j = 1, . . . t− 1 (16)

where f0n = 0, η > 0 and t ∈ N. The above iteration can be seen to be the gradient descent iteration of
the empirical error (10). It is called Landweber iteration in the context of inverse problems. Following
the same reasoning as in Lemma 2 we have the following result providing a numerical realization for the
above method.

Lemma 2. For all t ∈ N, let fλn be defined as in (16), then

f tn(x) =
n∑
i=1

K(x, xi)c
t
i, ct+1 = ct − η

n
(Knc

t − y) (17)

where ct = (ct1, . . . , c
t
n) and c0 = 0

The following result allows to draw a connection to Tikhonov regularization and shed light on the
regularization properties of Landweber iteration.

12



Lemma 3. The iteration in (16) can be written as

f tn = η
t−1∑
j=0

(I − ηS∗nSn)jS∗ny.

The proof of the above results follows from a basic induction argument. It shows that Landweber
iteration can be seen as the linear operator Gt =

∑t−1
j=0(I−ηS∗nSn)j applied to S∗ny. If η is chosen so that∥∥I − ηS∗nSn∥∥ < 1 (18)

then

η
∞∑
j=0

(I − ηS∗nSn)j = (S∗nSn)−1

where (S∗nSn)−1 is assumed to exists for the sake of simplicity2 Then, if the step-size is chosen to sat-
isfy (18), the operator corresponding to Landweber iteration can be seen as truncated series expansion.
The only free parameter is the number of iterations which corresponds to the number of terms in such an
expansion. It is easy to see that the condition number of the operator Gt is controlled by t, the bigger t
the larger is the condition number. Indeed, the operators

(S∗nSn + λI)−1, η
∞∑
j=0

(I − ηS∗nSn)j

are similar and one can consider roughly a correspondence t ∼ 1/λ. The number of iteration t acts as the
regularization parameter for Landweber iteration.

Landweber iteration and iterative regularization. Indeed, Landweber iteration is an instance of so
called iterative regularization, sometimes called early stopping regularization. The remarkable property of
these class of method is that they couple computational and learning (statistical) properties. The number
of iterations controls at the same time the stability, and hence the learning properties, of the solution
as well the computational requirements. More computations are needed if the data can be exploited,
whereas fewer computations must be considered to ensure stability when data are poor or scarce.

The above reasoning is made for precise by the following result.

Theorem 3.

The proof of the above result follows the same line of the one of Theorem (??).

A regularization view on optimization Another interesting aspect of the above discussion is that it
provides a different perspectives on optimization methods in the context of machine learning. The classical
optimization perspective would be to consider the convergence properties of the gradient iteration (16)
to a minimizer of the empirical error (10). The above discussion provides an alternative point of view,
by looking at gradient descent from a regularization perspectives. The iteration (16) is only an empirical

2 More generally it can be shown that

η

∞∑
j=0

(I − ηS∗nSn)
jS∗n = S†n
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iteration whereas the ideal objective is to solve (7). From this perspective, early stopping is needed to
ensure a stable solution can be learned given finite data.

Following this discussion, it is natural to ask whether other optimization methods can also be analyzed
within a regularization framework. This is indeed, the case as we discuss in the following. However before
doing this we pro

6.1 Accelerated iterative regularization

A key problem in optimization is to find fast methods to minimize an objective function of interest. The
literature on the topic is vast and here we discuss two ideas which have been considered in the context of
machine learning.

Nesterov acceleration. The first is the so called Nesterov acceleration of the gradient method defining
Landweber iteration. In out context it defines the following iteration

f jn = f j−1n − ηS∗n(Snh
j−1
n − y), hj−1n = f j−1n + αj(f

j−1
n + f j−2n )

for f0n = f−1n = 0 and
η ≤ 1

αj =
j − 1

j + β
, β ≥ 1.

The ν-method This method is also known as Chebychev method is given ν > 0 by

f jn = f j−1n − ωtS∗n(Snh
j−1
n − y) + αj(f

j−1
n + f j−2n )

for f0n = f−1n = 0 and ω1 =

ηj = 4
(2j + 2ν − 1)(j + ν − 1)

(j + 2ν − 1)(2j + 4ν − 1)
,

αj =
(j − 1)(2j − 3)(2j + 2ν − 1)

(j + 2ν − 1)(2j + 4ν − 1)(2j + 2ν − 3)
,

Remark 8 (Numerical realization). The numerical realization of the above methods can be derived anal-
ogously to Tikhonov regularization and Landwber iteration.

Error bounds The proof of the corresponding error bounds can also be proved following similar argu-
ments, to obtain

‖fλn − f
†
H‖H ≤ c

τt2√
n

+ c′
1

t2r

if 0 ≤ r ≤ r∗, and where r∗ = 1/2 for Nesterov acceleration, and r∗ = ν − 1/2 for the ν-method.
The remarkable properties of the above method is that they yield again the same optimal bound, but

now the regularization parameter is t2, so that a more aggressive stopping rule

tn =

√
n

1
2(r+1)

is allowed!
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6.2 Incremental and stochastic Iterative Regularization

Here we consider incremental optimization techniques defined by the following iteration

f jn = f j−1n − ηtKxp(j)(f
j−1
n (xp(j))− yp(j)).

Compared to Landweber iteration only a pair of input-output is used to compute a point-wise gradient
in each iteration.

Remark 9 (Numerical realization). The numerical realization of the above methods can be derived anal-
ogously to Tikhonov regularization and Landwber iteration.

Error bounds The proof of the corresponding error bounds is more complex than in the above cases
and some care is needed. However, the final bound can be shown to be the same as Landweber iteration,
suggesting that there is no gain in considering incremental techniques!

A Basic mathematical facts

A.1 Basic functional analysis

Let A : H → G

• Cauchy-Schwartz inequality

∀f, f ′ ∈ H
〈
f, f ′

〉
H ≤ ‖f‖H‖f

′‖H

• Operator norm ∥∥A∥∥ = sup
f∈H

∥∥Af∥∥
‖f‖H

• Hilbert Schmidt operator ∥∥A∥∥
2

= Trace(A∗A) <∞

recalling that Trace(A) =
∑

j σ
1/2
j =

∑
j

〈
(A∗A)1/2ej , ej

〉
. The norm

∥∥A∥∥
2

is called Hilbert-Schmidt
or Frobenius norm.

• Trace class operator ∥∥A∥∥
1

= Trace(A) <∞

A.2 Singular system

Recall that if A : H → G is a linear, compact operator than there is a corresponding singular system
(σj ;uj , vj) such that for all j

A∗Avj = σjvj , AA∗uj = σjui

and
Avj = σ

1/2
j uj , A∗uj = σ

1/2
j vi.

The singular values σ
1/2
j can be ordered in a decreasing fashion and have an accumulation point at zero.

The singular vectors (vj)
∞
j=1 and (uj)

∞
j=1 provide orthonormal basis for H and G respectively.
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A.3 Spectral theorem

The spectral theorem provides an explicit expression of A in terms of it singular systems, indeed

A =
∑
j

σ1/2uj ⊗ vj

where uj ⊗ vj : H → G is the rank one operator defined by uj ⊗ vjf = 〈vj , f〉H uj .

B Exercises

Risks and norms

• Prove that for all f ∈ L2(X , ρX ),
∥∥f − fρ∥∥2ρ = E(f)− E(fρ).

• Prove that for all f ∈ H,
∥∥f∥∥

ρ
= ‖(S∗ρSρ)1/2f‖H.

• Prove that for all f ∈ L2(X , ρX ), R(f)−R(bρ) ≤
∥∥f − fρ∥∥ρ.

Kernel operators

• Derive the explicit form of the operators Sρ, S
∗
ρ , S

∗
ρSρ, SρS

∗
ρ and their empirical counter parts.

• Derive the explicit form of this operators in the the case of the linear kernel.

• Compute Tr(S∗ρSρ) and
∥∥S∗ρSρ∥∥2.

Operator estimates and related inequalities

• Let A be a positive symmetric matrix. Estimate
∥∥(A+ λI)−1

∥∥.

• Compute the Lipschitz constant of the function σ 7→ σ/(σ + λ).

• Compute the maximum of the function σ 7→ λσr/(σ + λ).

• Let A be a positive symmetric matrix bounded by 1. Estimate
∥∥∑t−1

j=0(I −A)j
∥∥

• Compute the Lipschitz constant of the function σ 7→ σ
∑t−1

j=0(I − σ)j .

• Compute the maximum of the function σ 7→ (1− σ)tσr.

Concentration inequalties Recall the following inequality for random vectors. If z1, . . . , zn are i.i.d.
random vectors in Rd bounded by 1 and with mean µ, with probability at least 1− e−τ , τ > 1,∥∥ 1

n

n∑
i=1

zi − µ
∥∥ ≤ cτ√

n
, (19)

where c is a small numerical constants. For w∗ ∈ Rd, and let i = 1, . . . , n, let yi = w>∗ xi + εi, where xi
are i.i.d. random vectors with norm bounded by 1, and εi i.i.d. zero mean random numbers smaller than
1. Let Xn be the n by d matrix with rows x1, . . . , xn and y = (y1, . . . , yn). Use (19) to estimate

•
∥∥X>n y

n − X>n Xnw∗
n

∥∥, and

•
∥∥X>n Xn

n − E[X
>
n Xn
n ]

∥∥
2

where
∥∥·∥∥

2
is the Frobenius norm.
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