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The Compressed Sensing Problem

§ Suppose x \ ∈Rd has s nonzero entries

§ Let Γ ∈Rm×d be a standard normal matrix

§ Observe z =Γx \ ∈Rm

§ Find estimate x̂ by solving convex program

minimize ‖x‖`1
subject to Γx = z

§ Hope: x̂ = x \

Sources: Donoho 2006; Candès & Tao 2006.
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Empirical Performance of Compressed Sensing
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What’s Going on Here?!?

§ What is the probability of success as a function of (s,m,d)?

§ Does a phase transition exist?

§ Can we locate the phase transition?

§ How wide is the transition region?

§ Is there a geometric explanation for this phenomenon?

§ Can we export this reasoning to understand other problems?

§ Who cares?

Sources: Donoho 2006; Donoho & Tanner 2009; Stojnic 2009, 2013; McCoy & Tropp 2013, 2014; Thrampoulidis et
al. 2013–2016; Amelunxen et al. 2014; Foygel & Mackey 2014; Goldstein et al. 2016.
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Case Study: Walnut Phantoms

Source: Jørgensen & Sidky 2014.
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Case Study: Walnut Phantoms

Source: Jørgensen & Sidky 2014.
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Case Study: Walnut Phantoms
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Source: Jørgensen & Sidky 2014.
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Case Study: Walnut Phantoms
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Atoms and Dictionaries

Definition 1. Consider a compact collection A of vectors:

A = {aξ : ξ ∈Ξ} ⊂Rd

The collection A is called a dictionary, and the elements aξ are called atoms.

§ Atoms are “elementary structures” that compose signals of interest
§ Closely related to definition from nonlinear approximation (1990s)
§ Terminology motivated by atomic decomposition in harmonic analysis (1970s)
§ Generalizes the concept of a frame in signal processing (1980s)

Sources: Duffin & Schaeffer 1952; Coifman 1974; Daubechies et al. 1986; Mallat & Zhang 1993; Davis et al. 1994; DeVore
& Temlyakov 1996; Chen et al. 1997, 2001; Temlyakov 2002; Donoho 2005; Fuchs 2005; Chandrasekaran et al. 2012.
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Example: Astronomical Image

Source: Starck et al. 2003; McCoy & Tropp 2013; McCoy et al. 2013; Amelunxen et al. 2014.
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Sparsity with Respect to a Dictionary

Definition 2. For a natural number s, define the set of vectors of the form

A s =
{

x = ∑
ω∈Ω

cωaω : cω≥ 0 and |Ω| ≤ s

}

The members of A s are said to be s-sparse with respect to the dictionary

§ A s are increasing approximation classes

§ Sparsity s parameterizes complexity of signals

§ A “semiparametric” model with wide application

Sources: Stechkin 1955; Miller 1989; Jones 1992; Barron 1993; Mallat & Zhang 1993; Davis et al. 1994; DeVore &
Temlyakov 1996; Chen et al. 1997, 2001; Donoho & Huo 2001; Temlyakov 2002.
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Sparse Approximation Problems

§ Given a vector x \ and a dictionary A ...

§ Minimize the error subject to a bound on the sparsity:

minimize ‖x −x \‖2 subject to x ∈A s

§ Minimize the sparsity subject to a bound on the error:

minimize s subject to x ∈A s and ‖x −x \‖2 ≤ ε

§ Fact (Natarajan 1995): In general, sparse approximation is NP-hard

‖·‖ always denotes the Euclidean norm

Sources: Schmidt 1908; Stechkin 1955; Friedman & Stuetzle 1981; Miller 1989; Jones 1992; Barron 1993; Mallat & Zhang
1993; Davis et al. 1994; Natarajan 1995; DeVore & Temlyakov 1996; Chen et al. 1997, 2001; Donoho & Huo 2001;
Temlyakov 2002; ....
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Advice for Research & Life

If at first you don’t succeed...

Lower your standards!
.

¦
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Relax: Approximation in Convex Hulls

conv(A )
Rd

x \

aξ

§ Carathéodory: Can write x \ as a convex combination of d +1 atoms
§ How well can we approximate x \ with s atoms?
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Approximate Carathéodory

Theorem 3 (Maurey 1970s). Assume

§ A is a dictionary

§ x \ ∈ conv(A )

Then there exists an s-sparse vector x s ∈A s with

‖x s −x \‖ ≤ diam(A ) · 1p
s

where diam(A ) = maxω,ξ∈Ξ‖aω−aξ‖

Sources: Maurey 1970s; Pisier 1980; Carl 1985; DeVore & Temlyakov 1996.
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Proof of Maurey’s Theorem: The Empirical Method

§ Carathéodory implies

x \ =
∑
ω∈Ω

pωaω where pω ≥ 0,
∑
ω∈Ω

pω = 1, |Ω| ≤ d +1

§ Define random vector z that takes values z = aω with probability pω

§ Observe: Ez = x \

§ Set z̄ = 1
s

∑s
i=1 z i ∈A s where z 1, . . . , z s are iid copies of z

§ Using orthogonality,

E‖z̄ −x \‖2 = 1

s2
E

∥∥∥∥∥ s∑
i=1

(z i −Ez i )

∥∥∥∥∥
2

= 1

s2

s∑
i=1

E‖z i −Ez i‖2 = 1

s
E‖z −x \‖2 ≤ diam2(A )

s

§ The probabilistic method yields the desired x s ∈A s
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Atomic Gauges

Definition 4. Let A be a dictionary. The atomic gauge is defined as

‖x‖A = min
{

t ≥ 0 : x ∈ t ·conv(A )
}

= min

{∑
ξ∈Ξ

cξ : x = ∑
ξ∈Ξ

cξaξ and cξ≥ 0

}

The gauge is nonnegative, positively homogeneous, and convex.

§ Gauges are norm-like functions

§ They are linear on rays from the origin

§ They can take the values zero or +∞ on an entire ray

Sources: Stechkin 1955; DeVore & Temlyakov 1996; Chen et al. 1997, 2001; Temlyakov 2002; Donoho 2005; Fuchs
2005; Chandrasekaran et al. 2012.
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Atomic Gauges and Sparse Approximation

Corollary 5. For any vector x \, there is an s-sparse vector x s ∈A s that achieves

‖x s −x \‖ ≤ diam(A ) · ‖x \‖Ap
s

§ Atomic gauge always controls the quality of sparse approximations

§ Evidence that atomic gauge is a reasonable proxy for complexity with respect to dictionary

§ Bound is optimal for worst-case x \

§ Very poor bound for exactly sparse x \

Sources: Stechkin 1955; Jones 1992; DeVore & Temlyakov 1996; Chen et al. 1997, 2001; Temlyakov 2002; Jaggi 2013.
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Examples of Dictionaries and Atomic Gauges

Signal Type Dictionary (A ) Atomic Gauge (‖·‖A )

Sparse vector {±ei } ‖·‖`1

Frequency-sparse {±fi } ‖F (·)‖`1

Spikes + sines {±ei }∪ {±fi } ‖·‖`1
ä‖F (·)‖`1

Sparse gradient {±(ei+1−ei )} ‖·‖TV

Sparse + nonnegative {ei } ‖·‖`1
if nn, else +∞

Saturated {±1}d ‖·‖`∞
Row-sparse matrix {ei u∗ : ‖u‖ = 1}

∑
i ‖(·)i :‖

Low-rank matrix {uv∗ : ‖u‖ = ‖v‖ = 1} ‖·‖S1

Low rank + psd {uu∗ : ‖u‖ = 1} ‖·‖S1
if psd, else +∞

Orthogonal {U : UU∗ =U∗U = I} ‖·‖S∞

Sources: Rudin et al. 1992; Mallat & Zhang 1993; DeVore & Temlyakov 1996; Chen et al. 1997, 2001; Donoho & Huo
2001; Temlyakov 2002; Fazel 2002; Tropp 2006; Chandrasekaran et al. 2012; Jaggi 2011, 2013; ....
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Atomic Regularization for Sparse Approximation

§ Given a vector x \ and a dictionary A ...

§ Minimize the error subject to a bound on the atomic gauge:

minimize ‖x −x \‖2 subject to ‖x‖A ≤α

§ Minimize the atomic gauge subject to a bound on the error:

minimize ‖x‖A subject to ‖x −x \‖2 ≤ ε

§ Tradeoff the value of the error and the atomic gauge:

minimize ‖x −x \‖2+λ‖x‖A

Sources: Chen et al. 1997, 2001; Donoho & Huo 2001; Gribonval & Nielson 2002; Donoho & Elad 2004; Tropp 2006;
Fuchs 2006; Donoho et al. 2006; Chandrasekaran et al. 2012; ....
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Conditional Gradient Method (CGM)

‖y‖A ≤ 1

x \−x s

x \

x s

a s

x s+1

Initialize x0 = 0; s = 0

a s = arg max
‖y‖A≤1

〈y , x \−x s〉

x s+1 = (1−θs)x s +θsa s

θs = (s +1)−1

min
‖x‖A≤1

‖x −x \‖2
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Sparse Approximation via CGM

Theorem 6 (CGM Convergence). Assume

§ A is a dictionary

§ x \ is a vector with ‖x \‖A ≤α, where α is known

Then, after s iterations, CGM produces an s-sparse vector x s with

‖x s −x \‖ ≤ diam(A ) · αp
s +1

§ If α is misspecified, CGM converges to best approximation of x \ with such α

§ CGM also known as Frank–Wolfe, Relaxed Greedy Algorithm, or Relaxed Matching Pursuit

Sources: Frank & Wolfe 1956; Levitin & Poljak 1967; Jones 1992; DeVore & Temlyakov 1996; Temlyakov 2002; Hazan
2008; Clarkson 2010; Jaggi 2011, 2013.
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Proof of CGM Convergence

§ Without loss, assume α= 1

§ Since x s+1 = (1−θs)x s +θsa s ,

‖x s+1 −x \‖2 = ‖x s −x \‖2 −2θs 〈x \−x s, a s −x s〉+θ2
s ‖a s −x s‖2

§ By construction of a s ,

〈x \−x s, a s −x s〉 = max
‖y‖A≤1

〈x \−x s, y −x s〉 ≥ 〈x \−x s, x \−x s〉 = ‖x s −x \‖2

§ Therefore,
‖x s+1 −x \‖2 ≤ (1−2θs)‖x s −x \‖2 +θ2

s diam2(A )

§ Since θs(1−θs) < θs+1, induction yields

‖x s −x \‖2 ≤ θs diam2(A )
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Exact Recovery Theorems

Theorem 7 (Donoho & Elad 2004; Fuchs 2004; Tropp 2004). Assume

§ A is a standardized dictionary (‖aξ‖ = 1)

§ the coherence µ= maxξ 6=ω |〈aξ, aω〉|
§ x \ ∈A s where s ≤ 1

2

√
µ−1+1

Then we can obtain an s-sparse representation of x \ by solving the linear program

minimize
∑
ξ∈Ξ

cξ subject to x \=
∑
ξ∈Ξ

cξaξ and cξ≥ 0

§ Can sometimes obtain optimal error bounds for sparse approximation!

Sources: Donoho & Huo 2001; Gribonval & Nielsen 2002; Gilbert et al. 2003; Fuchs 2004–2006; Gribonval &
Vandergheynst 2004; Donoho & Elad 2004; Tropp 2004, 2006.
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Applications of Sparse Models...

§ Denoising and estimation

§ Signal recovery, regression, and compressed sensing

§ Simultaneous sparse approximation and group sparsity

§ Demixing and morphological component analysis

§ Matrix completion and phase retrieval

§ Superresolution and line spectral estimation

§ Blind deconvolution and self-calibration

§ ...

Sources: Donoho & Johnstone 1992; Mallat & Zhang 1993; Chen et al. 1997, 2001; Fazel 2002; Starck et al. 2003; Tropp
et al. 2006; Recht et al. 2009, 2010; Bodmann et al. 2009; Jaggi 2011, 2013; Bhaskar et al. 2012; Fernandez-Granda
2013; Romberg et al. 2013; McCoy & Tropp 2013; Amelunxen et al. 2014; Ling & Strohmer 2015; ....
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Regularized Denoising

§ Let f :Rd →R be a convex “structural” penalty (e.g., an atomic gauge)

§ Let x \ be “structured” but unknown

§ Observe z = x \+ηg where g ∼ NORMAL(0,I)

§ Remove noise by solving the convex program

minimize ‖z −x‖2 subject to f (x) ≤ f (x \)

§ Hope: The minimizer x̂ approximates x \

§ Remark: Other formulations more practical, but this is easier to analyze

Sources: Donoho et al. 2009, 2013; Bhaskar et al. 2012; Chandrasekaran & Jordan 2013; Oymak & Hassibi 2013;
Amelunxen et al. 2014.
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Geometry of Atomic Denoising I

{
x : f (x) ≤ f (x \)

}
zηg

x̂

error

x \
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Cones and Projections

Definition 8. A convex cone is a convex set K that satisfies K ⊆ τK for τ≥ 0.

Definition 9. Let K be a convex cone. The polar is the closed convex cone
K ◦ = {

y : 〈y , x〉 ≤ 0 for all x ∈ K
}
.

Definition 10. Let K be a closed convex cone. The Euclidean projection onto K is

ΠK (x) = arg min
y∈K

‖y −x‖2

For a general convex cone C , defineΠC =Πclosure(C )

Sources: Rockafellar 1970; Rockafellar & Wets 1997; Hiriart–Urruty & Lemaréchal 2002.
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Moreau’s Theorem

K

K ◦

0

x ΠK (x)

ΠK ◦(x)

x =ΠK (x)+ΠK ◦(x)

ΠK (x) ⊥ΠK ◦(x)

Sources: Moreau 1965; Rockafellar 1970; Rockafellar & Wets 1997; Hiriart–Urruty & Lemaréchal 2002.
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Descent Cones

Definition 11. For convex f and a point x , the descent cone is the convex cone

D ( f , x) = {
u : f (x +εu) ≤ f (x) for some ε> 0

}

Sources: Rockafellar 1970; Rockafellar & Wets 1997; Hiriart–Urruty & Lemaréchal 2002.
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Geometry of Regularized Denoising II

{
x : f (x) ≤ f (x \)

}

x \+K

zηg

x̂ ≈ x \+ηΠK (g )

error

x \

K =D ( f , x \)
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Analysis of Regularized Denoising

Theorem 12 (Oymak & Hassibi 2013). Assume

§ f is a convex function and x \ ∈ dom( f )

§ Observe z = x \+ηg where g ∼ NORMAL(0,I)

§ The vector x̂ solves

minimize ‖x − z‖2 subject to f (x) ≤ f (x \)

Then

sup
η>0

E‖x̂ −x \‖2

η2
= lim

η↓0

E‖x̂ −x \‖2

η2
= E‖ΠK (g )‖2

where K =D ( f , x \)

Sources: Donoho et al. 2009, 2013; Oymak & Hassibi 2013; Chandrasekaran & Jordan 2013; Amelunxen et al. 2014.
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Regularized Denoising: Upper Bound

§ Change variables: u = x −x \

minimize ‖u −ηg‖2 subject to f (x \+u) ≤ f (x \)

§ First-order optimality for û = x̂ −x \:

〈v − û, û −ηg 〉 ≥ 0 for all feasible v

§ Choose v = 0 and use the fact û ∈D ( f , x \) = K :

‖û‖2 ≤ 〈ηg , û〉 = η
〈
ΠK (g )+ΠK ◦(g ), û

〉 ≤ η〈ΠK (g ), û〉 ≤ η‖û‖‖ΠK (g )‖

§ Rearrange and take expectation:

η−2E‖û‖2 ≤ E‖ΠK (g )‖2

§ The lower bound is technical
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Statistical Dimension

Definition 13. Let K be a convex cone in Rd . The statistical dimension is

δ(K ) = E‖ΠK (g )‖2 where g ∼ NORMAL(0,I)

An extension of linear dimension to cones:

§ 0 ≤ δ(K ) ≤ d

§ C ⊂ K implies δ(C ) ≤ δ(K )

§ If L is a subspace, δ(L) = dim(L)

Sources: Amelunxen et al. 2014; McCoy & Tropp 2014.

Joel A. Tropp (Caltech), Structured Signal Processing, Structural Inference in Statistics Spring School, Malente, March 2017 37



Properties of Statistical Dimension

§ Let C ,K be convex cones in Rd

§ Gaussian formulation: δ(K ) = E‖ΠK (g )‖2

§ Nonnegativity: δ(K ) ≥ 0
§ Subspaces: δ(L) = dim(L) for a subspace L
§ Rotational invariance: δ(K ) = δ(QK ) for any orthogonal Q

§ Complementarity: δ(K )+δ(K ◦) = d

§ Upper bound: δ(K ) ≤ d

§ Polar formulation: δ(K ) = Edist2(g ,K ◦)

§ Mean-squared-width formulation: δ(K ) = E(
sup‖u‖≤1,u∈K 〈g , u〉)2

§ Monotonicity: C ⊂ K implies δ(C ) ≤ δ(K )

Sources: Chandrasekaran et al. 2012; Amelunxen et al. 2014; McCoy & Tropp 2014.
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Proof of Statistical Dimension Properties

§ Moreau’s Theorem + basic facts about standard normal vectors

§ Complementarity:

d = E‖g‖2 = E‖ΠK (g )‖2 +E‖ΠK ◦(g )‖2 = δ(K )+δ(K ◦)

§ Polar formulation:

δ(K ) = E‖ΠK (g )‖2 = E‖g −ΠK ◦(g )‖2 = Edist2(g ,K ◦)

§ Mean-squared-width formulation:

sup
‖u‖≤1

u∈K

〈g , u〉 = sup
‖u‖≤1

u∈K

〈
ΠK (g )+ΠK ◦(g ), u

〉≤ sup
‖u‖≤1

u∈K

〈ΠK (g ), u〉 = ‖ΠK (g )‖

sup
‖u‖≤1

u∈K

〈g , u〉 ≥ 〈g , ΠK (g )/‖ΠK (g )‖〉 = ‖ΠK (g )‖
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Gaussian Width and Statistical Dimension

Proposition 14 (Amelunxen et al. 2014). Assume K is a convex cone in Rd and
g ∈Rd is standard normal. Then

δ(K )−1 ≤
(
E sup
‖u‖=1,u∈K

〈g , u〉
)2

≤ δ(K )

§ Upper bound (Jensen):(
E sup
‖u‖=1,u∈K

〈g , u〉
)2

≤ E
(

sup
‖u‖=1,u∈K

〈g , u〉
)2

≤ E
(

sup
‖u‖≤1,u∈K

〈g , u〉
)2

= δ(K )

§ Lower bound (Poincaré):

1+
(
E sup
‖u‖=1,u∈K

〈g , u〉
)2

≥ E
(

sup
‖u‖=1,u∈K

〈g , u〉
)2

≥ E
[(

sup
‖u‖=1,u∈K

〈g , u〉
)2

· 1g∈Rd \K ◦
]
= E

[(
sup

‖u‖≤1,u∈K
〈g , u〉

)2]
= δ(K )

Source: Amelunxen et al. 2014.
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Basic Examples of Statistical Dimension

Cone Notation Statistical Dimension

Subspace L j j

Nonnegative orthant Rd
+

1
2d

Second-order cone Ld+1 1
2(d +1)

Real psd cone Sd
+

1
4d(d −1)

Complex psd cone Hd
+

1
2d 2

Sources: Chandrasekaran et al. 2012; Amelunxen et al. 2014; McCoy & Tropp 2014.
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Circular Cones

0
0

1/4

1/2

3/4

1

1

§ For α ∈ (0,π/2), define Circd (α) = {x ∈Rd : x1 ≥ ‖x‖cos(α)}

§ δ
(
Circd (α)

)= d sin2(α)+cos(2α)+o(1)

Sources: Amelunxen et al. 2014; McCoy & Tropp 2014.

Joel A. Tropp (Caltech), Structured Signal Processing, Structural Inference in Statistics Spring School, Malente, March 2017 42



Polar Form of a Descent Cone

Definition 15. The subdifferential ∂ f of a convex function f at a point x is

∂ f (x) = {
u : f (y) ≥ f (x)+〈u, y −x〉 for all y

}
Fact 16. Assume that ∂ f (x) is nonempty, compact, and does not contain the origin.
Then

D ( f , x)◦ = ⋃
τ≥0

τ ·∂ f (x)

Remark: Compactness is not essential.

Sources: Rockafellar 1970; Rockafellar & Wets 1998; Hiriart-Urruty & Lemaréchal 2002.
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The Descent Cone Recipe

Proposition 17 (Amelunxen et al. 2014). Assume that f is a convex function whose
subdifferential ∂ f (x) is nonempty and does not contain the origin. Then

δ
(
D ( f , x)

) ≤ inf
τ≥0

E dist2 (
g ,τ ·∂ f (x)

) = inf
τ≥0

J (τ)

where g is standard normal

§ Assume ∂ f (x) is compact for simplicity

§ Calculate:

δ
(
D ( f , x)

)= E dist2 (
g ,D ( f , x)◦

)= E dist2
(

g ,
⋃
τ≥0

τ ·∂ f (x)
)

= E inf
τ≥0

dist2 (
g ,τ ·∂ f (x)

)≤ inf
τ≥0

E dist2 (
g ,τ ·∂ f (x)

)
Sources: Stojnic 2009, 2013; Chandrasekaran et al. 2012; Amelunxen et al. 2014; Foygel & Mackey 2014.
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The Descent Cone Recipe: Error Estimate

Theorem 18 (Amelunxen et al. 2014). Assume that f is a norm. For nonzero x ,

0 ≤ inf
τ≥0

J (τ)−δ(
D ( f , x)

) ≤ 2max
{‖u‖ : u ∈ ∂ f (x)

}
f (x/‖x‖)

§ Idea: Linearize τ 7→ dist2 (
g ,τ ·∂ f (x)

)
at minimizer τ? of J

§ Related result of Foygel & Mackey based on other ideas

§ Still room for improvement

Sources: Amelunxen et al. 2014; Foygel & Mackey 2014.
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Example: `1 Statistical Dimension I

§ Goal: Compute δ
(
D (‖·‖`1

, x s)
)

for vector x s ∈Rd with s nonzero entries

§ By symmetry, can assume x s = (1s,0d−s)

§ Subdifferential: ∂ f (x s) = {
(1s, v ) ∈Rd : ‖v‖∞ ≤ 1

}
§ Distance to scaled subdifferential:

Js(τ) = Edist2 (
g ,τ ·∂‖x s‖`1

)= s∑
i=1

E(gi −τ)2 +
d∑

i=s+1

Emin
|vi |≤1

(gi −τvi )2

= s ·E(g −τ)2 + (d − s) ·E(|g |−τ)2
+ ≤ s · (1+τ2)+2(d − s) ·e−τ2/2

§ Choose τ2 = 2log(d/s) to reach

δ
(
D (‖·‖`1 , x s)

) ≤ inf
τ≥0

Js(τ) ≤ 2s(1+ log(d/s))

Sources: Donoho 2006; Donoho & Tanner 2009; Stojnic 2009, 2013; Chandrasekaran et al. 2012; Amelunxen et
al. 2014; Foygel & Mackey 2014; Goldstein et al. 2014.
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Example: `1 Statistical Dimension II

§ x s ∈Rd has s nonzero entries

§ Observe z = x s +ηg

§ x̂ solves
minimize ‖x − z‖2 subject to ‖x‖`1

≤ ‖x s‖`1

§ Then
E‖x̂ −x \‖2 ≤ 2s(1+ log(d/s)) ·η2

§ Almost achieve same MSE as if we knew supp(x s)!
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Example: `1 Statistical Dimension III

0 1/4 1/2 3/4 1
0

1/4

1/2

3/4

1

1

§ With %= s/d ∈ [0,1],

δ
(
D ( f , x s)

)
d

≤ inf
τ≥0

[
%(1+τ2)+ (1−%)E(|g |−τ)2

+
] ≤ δ

(
D ( f , x s)

)
d

+ 1

d
p
%

Sources: Affentranger & Schneider 1992; Betke & Henk 1993; Böröczky & Henk 1999; Donoho 2006; Donoho & Tanner
2009; Stojnic 2009, 2013; McCoy & Tropp 2013; Amelunxen et al. 2014; Foygel & Mackey 2014; Goldstein et al. 2014.
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Compressed Sensing: Hmmm...
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Sources: Donoho et al. 2009–2013.

Joel A. Tropp (Caltech), Structured Signal Processing, Structural Inference in Statistics Spring School, Malente, March 2017 49



Example: S1 Statistical Dimension I

§ X r ∈Rd1×d2 has rank r

§ Observe Z = X r +ηG

§ X̂ solves

minimize ‖X −Z ‖2
F subject to ‖X ‖S1

≤ ‖X r‖S1

§ Then

E‖X̂ −X r‖2
F ≤ δ

(
D (‖·‖S1

, X \)
) ·η2 ≤ 3r (d1+d2− r ) ·η2
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Example: S1 Statistical Dimension II

0 1/4 1/2 3/4 1

1/4

1/2

3/4

1

0

Sources: Oymak et al. 2010; Chandrasekaran et al. 2012; Amelunxen et al. 2014; McCoy & Tropp 2013, 2014; Goldstein
et al. 2014.
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Matrix Compressed Sensing: Hmmm...
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Sources: Recht et al. 2010; Oymak et al. 2010; Donoho et al. 2013.
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A Conjecture...

The phase transition of matrix recovery from
Gaussian measurements matches the minimax
MSE of matrix denoising
David L. Donohoa,1, Matan Gavisha, and Andrea Montanaria,b

Departments of aStatistics and bElectrical Engineering, Stanford University, Stanford, CA 94305

Contributed by David L. Donoho, April 3, 2013 (sent for review February 5, 2013)

Let X0 be an unknown M by N matrix. In matrix recovery, one
takes n<MN linear measurements y1,…,yn of X0, where yi =
Tr(AT

i X0) and each Ai is an M by N matrix. A popular approach
for matrix recovery is nuclear norm minimization (NNM): solving
the convex optimization problemmin kXk

*
subject to yi =Tr(AT

i X)
for all 1≤ i≤n, where k · k* denotes the nuclear norm, namely, the
sum of singular values. Empirical work reveals a phase transition
curve, stated in terms of the undersampling fraction δ(n,M,N)=
n/(MN), rank fraction ρ= rank(X0)/minfM,Ng, and aspect ratio
β=M/N. Specifically when the measurement matrices Ai have in-
dependent standard Gaussian random entries, a curve δ*(ρ)=
δ*(ρ;β) exists such that, if δ> δ*(ρ), NNM typically succeeds for
large M,N, whereas if δ< δ*(ρ), it typically fails. An apparently
quite different problem is matrix denoising in Gaussian noise, in
which an unknown M by N matrix X0 is to be estimated based on
direct noisy measurements Y =X0 + Z , where the matrix Z has in-
dependent and identically distributed Gaussian entries. A popular
matrix denoising scheme solves the unconstrained optimization
problemminkY−Xk2

F/2+ λkXk
*
. When optimally tuned, this scheme

achieves the asymptotic minimax mean-squared error M(ρ;β)=
limM,N→∞infλsuprank(X)≤ρ ·MMSE(X,X̂λ), where M/N→ β. We report
extensive experiments showing that the phase transition δ*(ρ) in
the first problem, matrix recovery from Gaussian measurements,
coincides with the minimax risk curveM(ρ)= M(ρ;β) in the second
problem, matrix denoising in Gaussian noise: δ*(ρ)=M(ρ), for any
rank fraction 0< ρ< 1 (at each common aspect ratio β). Our experi-
ments considered matrices belonging to two constraint classes:
real M by N matrices, of various ranks and aspect ratios, and real
symmetric positive-semidefinite N by N matrices, of various ranks.

compressed sensing | matrix completion

Let X0 be an unknownM byNmatrix. How many measurements
must we obtain to “completely know”X0? Although it seems

thatMN measurements must be necessary, in recent years intense
research in applied mathematics, optimization, and information
theory has shown that, when X0 is of low rank, we may efficiently
recover it from a relatively small number of linear measurements
by convex optimization (1–3). Applications have been developed
in fields ranging widely, for example from video and image pro-
cessing (4) to quantum state tomography (5) to collaborative
filtering (2, 6).
Specifically, let A : RM ×N →Rn be a linear operator and con-

sider measurements y=AðX0Þ. If n<MN, the problem of in-
ferring X0 from y may be viewed as attempting to solve an
underdetermined system of equations. Under certain circum-
stances, it has been observed that this (seemingly hopeless) task
can be accomplished by solving the so-called nuclear norm
minimization problem:

ðPnucÞ minkXk
*
 subject to y=AðXÞ: [1]

Here, the nuclear norm kXk
*
is the sum of singular values of

X. For example, it was found that if X0 is sufficiently low rank,
with a principal subspace in a certain sense incoherent to the

measurement operator A, then the solution X1 =X1ðyÞ to ðPnucÞ
is precisely X0. Such incoherence can be obtained by letting A
be random, for instance if AðX0Þi =TrðAT

i X0Þ with Ai ∈Rm× n hav-
ing independent and identically distributed (i.i.d) Gaussian entries.
In this case we speak of “matrix recovery from Gaussian measure-
ments” (1).
A key phrase from the previous paragraph is “if X0 is sufficiently

low rank.” Clearly, there must be a quantitative tradeoff between
the rank ofX0 and the number ofmeasurements required, such that
higher-rank matrices require more measurements. In the Gaussian
measurements model, with N;M sufficiently large, empirical work
by Recht et al. (1, 7, 8), Tanner and Wei (9), and Oymak and
Hassibi (10) documents a phase transition phenomenon. For ma-
trices of a given rank, there is a fairly precise number of required
samples, in the sense that a transition from nonrecovery to com-
plete recovery takes place sharply as the number of samples varies
across this value. For example, in Table S1 we present data from
our own experiments, showing that, for reconstructing matrices of
size 60 by 60 that are of rank 20, 2,600 Gaussian measurements are
sufficient with very high probability, but 2,400 Gaussian measure-
ments are insufficient with very high probability.
In this paper, we present a simple and explicit formula for the

phase transition curve in matrix recovery from Gaussian mea-
surements. The formula arises in an apparently unrelated problem:
matrix denoising in Gaussian noise. In this problem, we again
let X0 denote an M by N matrix, and we observe Y =X0 +Z,
where Z is Gaussian i.i.d noise Zij ∼Nð0; 1Þ. We consider the
following nuclear norm denoising scheme:

�
Pnuc;λ

�
 min

�
1
2
kY−Xk2F + λkXk

*

�
: [2]

In this problem the measurements Y are direct, so in some sense
complete, but noisy. The solution X̂λðY Þ can be viewed as a
shrinkage estimator. In the basis of the singular vectors UY and
VY of Y, the solution X̂ λðY Þ is diagonal, and the diagonal entries
are produced by soft thresholding of the singular values of Y.
Because the measurements y in the matrix recovery problem

are noiseless but incomplete, whereas the measurements Y in the
matrix denoising problem are complete but noisy, the problems
seem quite different. Nevertheless, we show here that there is a
deep connection between the two problems.
Let us quantify performance in the denoising problem by the

minimax MSE, namely
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Slepian’s Lemma

Theorem 19 (Slepian 1962). Assume x ∈RN and y ∈RN be centered, jointly
Gaussian vectors whose covariance structures satisfy

{
EXi X j ≤ EYi Y j for all i 6= j

EX 2
i = EY 2

i for all i

Then, for all choices of λi ∈R,

P
(⋃N

i=1 {Yi >λi }
)
≤P

(⋃N
i=1 {Xi >λi }

)
In particular,

Emaxi Yi ≤ Emaxi Xi

Sources: Slepian 1962; Sudakov 1969, 1971; Marcus & Shepp 1970, 1972; Fernique 1974; Joag-Dev et al. 1983; Kahane
1986; Ledoux & Talagrand (Cor. 3.12).
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Chevet’s Theorem

Corollary 20 (Chevet 1977, Gordon 1985). Assume

§ U ⊂Rm and V ⊂Rn are compact subsets of the unit sphere
§ Γ ∈Rn×m and g ∈Rm and h ∈Rn are independent standard normal

Then

E max
u∈U ,v∈V

〈Γu, v〉 ≤ E max
u∈U ,v∈V

[〈g , u〉+〈h, v〉]

Sources: Chevet 1977; Gordon 1985, 1988; Ledoux & Talagrand (Thm. 3.20); Davidson & Szarek 2001; Stojnic 2013;
Amelunxen et al. 2014; Thrampoulidis et al. 2015; Amelunxen & Lotz 2015.
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Example: Spectral Norm of a Gaussian Matrix

§ Goal: For standard normal Γ ∈Rn×m, bound expectation of

‖Γ‖ = max
‖u‖=‖v‖=1

〈Γu, v〉

§ Apply Chevet’s Theorem:

E‖Γ‖ = E max
‖u‖=‖v‖=1

〈Γu, v〉

≤ E max
‖u‖=‖v‖=1

[〈g , u〉+〈h, v〉]
= E‖g‖+E‖h‖
≤p

m +p
n

§ Result is sharp, including constants!

Sources: Marchenko & Pastur 1967; Chevet 1977; Gordon 1985, 1988; Yin et al. 1988; Bai et al. 1988; Edelman 1988;
Ledoux & Talagrand (Thm. 3.20); Davidson & Szarek 2001.
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Proof of Chevet’s Theorem

§ Let γ ∈R be an independent standard normal

§ Define independent Gaussian processes on {(u, v ) : ‖u‖ = ‖v‖ = 1}:

Yuv = 〈Γu, v〉+γ and Xuv = 〈g , u〉+〈h, v〉

§ Compute the covariances:

EYuv Yu′v ′ = 〈u, u ′〉〈v , v ′〉+1 and EXuv Xu′v ′ = 〈u, u ′〉+〈v , v ′〉

§ Comparison:

EYuv Yu′v ′ −EXuv Xu′v ′ = (
1−〈u, u ′〉)(1−〈v , v ′〉)≥ 0

EY 2
uv −EX 2

uv = 0

§ Apply Slepian’s Lemma (on finite subsets of U , V ):

E max
‖u‖=‖v‖=1

〈Γu, v〉 = E max
‖u‖=‖v‖=1

Yuv ≤ E max
‖u‖=‖v‖=1

Xuv = E max
‖u‖=‖v‖=1

[〈g , u〉+〈h, v〉]
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Gordon’s Theorem

Theorem 21 (Gordon 1985). Assume X ∈RM×N and Y ∈RM×N are centered, jointly
Gaussian matrices whose covariance structures satisfy

EXi j Xk`≤ EYi j Yk` for all i 6= k and all j ,`

EXi j Xi`≥ EYi j Yi` for all i and j 6= `
EX 2

i j = EY 2
i j for all i , j

Then, for all choices of λi j ∈R,

P
(⋂M

i=1

⋃N
j=1

{
Yi j >λi j

})≥P(⋂M
i=1

⋃N
j=1

{
Xi j >λi j

})
In particular,

Emini max j Yi j ≥ Emini max j Xi j

Sources: Joag-Dev et al. 1983; Gordon 1985, 1988; Kahane 1986; Ledoux & Talagrand (Cor. 3.13).
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The Gaussian Minimax Theorem

Corollary 22 (Gordon 1985). Assume

§ U ⊂Rm and V ⊂Rn are compact subsets of the unit sphere
§ Γ ∈Rn×m and g ∈Rm and h ∈Rn are independent standard normal

Then

Emin
u∈U

max
v∈V

〈Γu, v〉 ≥ Emin
u∈U

max
v∈V

[〈g , u〉+〈h, v〉]

Sources: Chevet 1977; Gordon 1985, 1988; Ledoux & Talagrand (Thm. 3.20); Davidson & Szarek 2001; Stojnic 2013;
Amelunxen et al. 2014; Thrampoulidis et al. 2015; Amelunxen & Lotz 2015.
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Example: Minimum Singular Value of a Gaussian Matrix

§ Goal: For standard normal Γ ∈Rn×m, bound

Eσmin(Γ) = min
‖u‖=1

max
‖v‖=1

〈Γu, v〉

§ Gaussian Minimax Theorem:

Eσmin(Γ) = min
‖u‖=1

max
‖v‖=1

〈Γu, v〉

≥ Emin
‖u‖=1

max
‖v‖=1

[〈g , u〉+〈h, v〉]
= E‖h‖−E‖g‖
≥p

n −1−p
m

§ Result is sharp, including constants!
§ Remark: Can replace

p
n −1 with

p
n if you work hard enough

Sources: Marchenko & Pastur 1967; Chevet 1977; Silverstein 1985; Gordon 1985, 1988; Ledoux & Talagrand (Thm. 3.20);
Szarek 1991; Bai & Yin 1993; Davidson & Szarek 2001.
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Proof of Gaussian Minimax Theorem

§ Define independent Gaussian processes on {(u, v ) : u ∈U , v ∈V }:

Yuv = 〈Γu, v〉+γ and Xuv = 〈g , u〉+〈h, v〉

§ Compute the covariances:

EYuv Yu′v ′ = 〈u, u ′〉〈v , v ′〉+1 and EXuv Xu′v ′ = 〈u, u ′〉+〈v , v ′〉

§ Comparison:

EYuv Yu′v ′ −EXuv Xu′v ′ = (
1−〈u, u ′〉)(1−〈v , v ′〉)≥ 0

EYuv Yuv ′ −EXuv Xuv ′ = 0

EY 2
uv −EX 2

uv = 0

§ Apply Gordon’s Theorem (on finite subsets of U , V ):

Emin
u∈U

max
v∈V

〈Γu, v〉 = Emin
u∈U

max
v∈V

Yuv

≥ Emin
u∈U

max
v∈V

Xuv = Emin
u∈U

max
v∈V

[〈g , u〉+〈h, v〉]
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Kahane’s Approach to Gaussian Comparison

Theorem 23 (Kahane 1986). Assume x ∈RN and y ∈RN are centered, jointly
Gaussian vectors. For sets A,B ⊂ {1, . . . , N }2, assume that the covariance structures
satisfy 

EXi X j ≤ EYi Y j for (i , j ) ∈ A

EXi X j ≥ EYi Y j for (i , j ) ∈ B

EXi X j = EYi Y j for (i , j ) ∉ A∪B

Let f :RN →R be a function whose second (distributional) derivative satisfies{
∂i j f ≥ 0 for (i , j ) ∈ A

∂i j f ≤ 0 for (i , j ) ∈ B

Then
E f (x) ≤ E f (y)

Sources: Joag-Dev et al. 1983; Kahane 1986; Ledoux & Talagrand (Thm. 3.11).
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Gaussian Integration by Parts I

Lemma 24 (Univariate Gaussian IBP). Let γ ∈R be a standard normal random
variable. For “any” function f :R→R,

E
[
γ f (γ)

]= E[
f ′(γ)

]

§ Calculate:

E
[
γ f (γ)

]= 1p
2π

∫
R

u f (u)e−u2/2 du = 1p
2π

∫
R

f ′(u)e−u2/2 du = E[
f ′(γ)

]

§ Sufficient that f absolutely continuous and f ′ ∈ L1(dγ)
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Gaussian Integration by Parts II

Lemma 25 (Gaussian IBP). Let x ∈Rn be a centered, jointly Gaussian vector with
covariance Σ. For “any” function f :Rn →R,

E
[

Xi f (x)
]= n∑

j=1

(Σ)i j E
[
(∂ j f )(x)

]
§ Since x ∼Σ1/2z for standard normal z ∈Rn,

E
[

Xi f (x)
]= n∑

k=1

(
Σ1/2)

i k E
[

Zk f
(
Σ1/2z

)]= n∑
k=1

(
Σ1/2)

i k E
[

Zk g (z)
]

§ By univariate Gaussian IBP,

E
[

Zk g (z)
]= E[

(∂k g )(z)
]= n∑

j=1

(
Σ1/2)

k j E
[
(∂ j f )

(
Σ1/2z

)]= n∑
j=1

(
Σ1/2)

k j E
[
(∂ j f )(x)

]
§ Therefore,

E
[

Xi f (x)
]= n∑

j ,k=1

(
Σ1/2)

i k

(
Σ1/2)

k j E
[
(∂ j f )(x)

]= n∑
j=1

Σi j E
[
(∂ j f )(x)

]
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Gaussian Interpolation

Lemma 26 (Gaussian Interpolation). Let x ∈Rn and y ∈Rn be independent, centered,
jointly Gaussian vectors with covariances Σx and Σy . Define

z(t ) =p
t x +p

1− t y for t ∈ [0,1]

For “any” function f :Rn →R,

d

dt
E
[

f (z(t ))
]= 1

2

n∑
i , j=1

(
(Σx)i j − (Σy )i j

)
E
[
(∂i j f )(z(t ))

]
§ Calculate:

d

dt
E
[

f (z(t ))
]= n∑

i=1

E
[
(∂i f )(z(t ))(∂i z)(t )

]= 1

2

n∑
i=1

E

[
(∂i f )(z(t ))

(
1p

t
Xi − 1p

1− t
Yi

)]

§ Apply Gaussian IBP to each term; e.g.,

1p
t
E
[
(∂i f )(z(t ))Xi

]= n∑
j=1

(Σx)i j E
[
(∂i j f )(z(t ))

]
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Proof of Kahane’s Theorem

§ Observe that f (z(0)) = f (y) and f (z(1)) = f (x)

§ By Gaussian interpolation,

d

dt
E
[

f (z(t ))
]= 1

2

n∑
i , j=1

(
(Σx)i j − (Σy )i j

)
E
[
(∂i j f )(z(t ))

]
§ By hypothesis,

for (i , j ) ∈ A, (Σx)i j ≤ (Σy )i j and ∂i j f ≥ 0

for (i , j ) ∈ B , (Σx)i j ≥ (Σy )i j and ∂i j f ≤ 0

otherwise, (Σx)i j = (Σy )i j

§ Thus,
d

dt
E
[

f (z(t ))
]≤ 0

§ Conclude: E f (x) ≤ E f (y)

Joel A. Tropp (Caltech), Structured Signal Processing, Structural Inference in Statistics Spring School, Malente, March 2017 67



Proof of Slepian’s Lemma

§ Let x ∈RN and y ∈RN be centered, jointly Gaussian vectors withEXi X j ≤ EYi Y j for all i 6= j

EX 2
i = EY 2

i for all i

§ Set A = {(i , j ) : i 6= j } and B =;. Define the function

f (w ) =
N∏

i=1

1{wi ≤λi }

§ For (i , j ) ∈ A, compute second derivative:

(∂i f )(w ) =−1{wi =λi }
∏
j 6=i

1{w j ≤λ j }

(∂i j f )(w ) = 1{wi =λi , w j =λ j }
∏

k∉{i , j }

1{wk ≤λk} ≥ 0

§ Apply Kahane’s Theorem:

P
(⋂N

i=1{Xi ≤λi }
)
= E f (x) ≤ E f (y) =P

(⋂N
i=1{Yi ≤λi }

)
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Proof of Gordon’s Theorem I

§ Let X ∈RM×N and Y ∈RM×N be centered, jointly Gaussian matrices with
EXi j Xk` ≤ EYi j Yk` for all i 6= k and all j ,`

EXi j Xi` ≥ EYi j Yi` for all i and j 6= `
EX 2

i j = EY 2
i j for all i , j

§ Set A = {((i , j ), (k,`)) : i 6= k} and B = {((i , j ), (k,`)) : i = k, j 6= `}. Define

f (W ) =
N∏

i=1

[
1−

M∏
j=1

1{wi j ≤λi j }

]

§ Compute first derivative:

(∂(i , j ) f )(W ) = 1{wi j =λi j }
∏
j ′ 6= j

1{wi j ′ ≤λi j ′}
∏
i ′ 6=i

[
1−∏

j ′
1{wi ′ j ′ ≤λi ′ j ′}

]
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Proof of Gordon’s Theorem II

§ For ((i , j ), (k,`)) ∈ B , compute second derivative:

(∂(i , j ),(k,`) f )(W ) =−1{wi j =λi j , wi` =λi`}

× ∏
j ′∉{ j ,`}

1{wi j ′ ≤λi j ′}
∏
i ′ 6=i

[
1−∏

j ′
1{wi ′ j ′ ≤λi ′ j ′}

]
≤ 0

§ For ((i , j ), (k,`)) ∈ A, compute second derivative:

(∂(i , j ),(k,`) f )(W ) = 1{wi j =λi j , wk` =λk`}

× ∏
j ′ 6= j

1{wi j ′ ≤λi j ′}
∏
j ′ 6=`

1{wk j ′ ≤λk j ′}
∏

i ′∉{i ,k}

[
1−∏

j ′
1{wi ′ j ′ ≤λi ′ j ′}

]
≥ 0

§ Apply Kahane’s Theorem:

P

(⋂N
i=1

(⋂M
j=1{Xi j ≤λi j }

)Ù)= E f (x) ≤ E f (y) =P
(⋂N

i=1

(⋂M
j=1{Yi j ≤λi j }

)Ù)
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Gaussian Concentration

Theorem 27. Assume

§ f :Rd →R is a Lipschitz function: | f (x)− f (y)| ≤ L · ‖x − y‖ for all x , y

§ Z = f (g ) where g is standard normal

Then

Var[Z ] = E(Z −EZ )2 ≤ L2 (Poincaré)

P {|Z −EZ | ≥ t } ≤ e−t 2/(2L2) for all t ≥ 0 (concentration)

Sources: Ledoux & Talagrand (Sec. 1.1); Bogachev (Sec. 1.7); Boucheron et al. (Sec. 3.7, 5.4).
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Pisier’s Approach to Gaussian Concentration

Theorem 28 (Pisier 1986). Assume

§ f :Rd →R is an L-Lipschitz function
§ x ∈Rd and γ ∈R are standard normal
§ Φ :R→R is convex
§ t 7→Φ(t )+Φ(−t ) is increasing on R+

Then
EΦ

(
f (x)−E f (x)

) ≤ EΦ
(

1
2πLγ

)
In particular,

Φ(t ) = t 2 : Var[ f (x)] ≤ 1
4π

2L2

Φ(t ) = eθt : logEeθ( f (x)−E f (x)) ≤ 1
8π

2L2θ2 for θ ∈R

Sources: Pisier 1986; Ledoux & Talagrand (Eqn. (1.5)).
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Proof of Pisier’s Theorem

§ Let x , y be independent standard normal variables
§ Define z(α) = cos(α)x + sin(α)y and z ′(α) =−sin(α)x +cos(α)y

§ For fixed α, the vectors z(α) and z ′(α) are independent standard normal
§ Calculate:

EΦ
(

f (x)−E f (y)
)≤ EΦ(

f (x)− f (y)
)

= EΦ
(∫ π/2

0

〈∇ f (z(α)), z ′(α)
〉

dα

)
≤ 2

π

∫ π/2

0
EΦ

(π
2

〈∇ f (z(α)), z ′(α)
〉)

dα

= EΦ
(π

2

〈∇ f (x), y
〉)

= EΦ
(π

2
‖∇ f (x)‖ ·γ

)
≤ EΦ

(π
2

L ·γ
)
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Signal.
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Convex Signal Recovery

§ Let f :Rd →R be a convex structural penalty (e.g., an atomic gauge)

§ Let x \ ∈Rd be “structured” but unknown

§ LetΦ ∈Rm×d be a known measurement matrix

§ Observe z =Φx \ ∈Rm

§ Find estimate x̂ by solving convex program

minimize f (x) subject to Φx = z

§ Hope: x̂ = x \

Sources: Chen et al. 1997, 2001; Chandrasekaran et al. 2012, McCoy & Tropp 2013; Oymak et al. 2013; Amelunxen et
al. 2014; Thrampoulidis et al. 2014–2016; Tropp 2015.
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Geometry of Convex Signal Recovery

{
x : f (x) ≤ f (x \)

}

x \+D ( f , x \)

x \+null(Φ)
x \
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Analysis of Convex Signal Recovery: Success

Proposition 29 (Geometric Formulation). Convex signal recovery succeeds (x̂ = x \) if
and only if

D ( f , x \)∩null(Φ) = {0}

Proposition 30 (Analytic Condition for Success). Convex signal recovery succeeds if

σmin(Φ;K ) = inf
‖x‖=1

x∈K

‖Φx‖ > 0 (“Minimum conic singular value”)

where K =D ( f , x \)

Sources: Rudelson & Vershynin 2006; Stojnic 2009, 2013; Oymak et al. 2010; Chandrasekaran et al. 2012; McCoy &
Tropp 2013; Oymak et al. 2013; Amelunxen et al. 2014; Thrampoulidis et al. 2014–2016; Tropp 2015.
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Gaussian Measurements

Proposition 31 (Gaussian Measurements). Assume Γ ∈Rm×d is a standard normal
matrix. Then null(Γ) is a uniformly distributed subspace of Rd with codimension
m ∧d , almost surely.

Sources: Donoho 2006; Candès & Tao 2006; Rudelson & Vershynin 2006; Stojnic 2009, 2013; Donoho & Tanner
2009; Recht et al. 2010; Oymak et al. 2010; Chandrasekaran et al. 2012; McCoy & Tropp 2013; Oymak et al. 2013;
Amelunxen et al. 2014; Goldstein et al. 2014; Thrampoulidis et al. 2014–2016; Tropp 2015.
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Minimum Conic Singular Value of a Gaussian Matrix

Proposition 32. Assume

§ K is a convex cone in Rd

§ Γ ∈Rm×d is standard normal

Then
Eσmin(Γ;K ) ≥ p

m −1 −
√
δ(K )

§ Write σmin(Γ;K ) = inf‖u‖=1,u∈K max‖v‖=1 〈Γu, v〉
§ Gaussian Minimax Theorem:

Eσmin(Γ;K ) ≥ E inf‖u‖=1,u∈K max‖v‖=1

[〈g , u〉+〈h, v〉]
≥ p

m −1 − Esup‖u‖=1,u∈K 〈g , u〉 ≥ p
m −1 −

√
δ(K )

Sources: Gordon 1985, 1988; Rudelson & Vershynin 2006; Stojnic 2009, 2013; Oymak et al. 2010; Chandrasekaran et
al. 2012; Oymak et al. 2013; Amelunxen et al. 2014, Thrampoulidis et al. 2014–2016; Tropp 2015.
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Concentration of Minimum Conic Singular Value

Proposition 33. Assume K is a convex cone, and let Γ be standard normal. Then

P {σmin(Γ;K ) < Eσmin(Γ;K )− t } ≤ e−t 2/2

§ Bound the Lipschitz constant of σmin(·;K ):

inf
‖u‖=1,u∈K

‖Γu‖− inf
‖u‖=1,u∈K

‖Γ′u‖ ≤ ‖Γu ′‖−‖Γ′u ′‖ ≤ ‖(Γ−Γ′)u ′‖ ≤ ‖Γ−Γ′‖F

where u ′ is a near-minimizer of the second term

§ Apply Gaussian concentration with L = 1

Sources: Rudelson & Vershynin 2006; Stojnic 2009, 2013; Oymak et al. 2010; Chandrasekaran et al. 2012; Oymak et
al. 2013; Amelunxen et al. 2014, Thrampoulidis et al. 2013–2016; Tropp 2015.
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Gaussian Measurements: Success

Theorem 34 (Chandrasekaran et al. 2012). Assume

§ f :Rd →R is a convex function and x \ ∈ dom( f )

§ Observe z =Γx \ where Γ ∈Rm×d is standard normal
§ The vector x̂ solves

minimize f (x) subject to Γx = z

Then
m ≥ δ(K )+C

p
d implies x̂ = x \ with high probability

where K =D ( f , x \)

Sources: Rudelson & Vershynin 2006; Stojnic 2009, 2013; Chandrasekaran et al. 2012; Amelunxen et al. 2014;
Thrampoulidis et al. 2014–2016; Tropp 2015.
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Gaussian Measurements: Success Proof

§ Let K =D ( f , x \)

§ Combine last two results:

e−t 2/2 ≥P {σmin(Γ;K ) < Eσmin(Γ;K )− t }

≥P
{
σmin(Γ;K ) <p

m −1−
√
δ(K )− t

}
§ Set t = 3 to achieve probability less than 2%

§ Success (σmin(Γ;K ) > 0):
p

m −1−p
δ(K )−3 > 0

§ Equivalently, m > δ(K )+6
p
δ(K )+10

§ Use upper bound δ(K ) ≤ d
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Separation of Convex Cones

Theorem 35 (Klee 1955). Assume C and K are convex cones in Rd , one of which is
not a subspace. Then

C ∩K = {0} implies C ◦∩ (−K )◦ 6= {0}

C

K

0
C ◦

(−K )◦
0

Source: Klee 1955.
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Analysis of Convex Signal Recovery: Failure

Proposition 36 (Geometric Formulation). Convex signal recovery fails (i.e., x \ is not
the unique solution) if and only if

D ( f , x \)∩null(Φ) 6= {0}

If D ( f , x \) is not a subspace, a sufficient condition for failure is(
D ( f , x \)

)◦∩null(Φ)◦ = {0}

Proposition 37 (Analytic Condition for Failure). LetΨ be a matrix with
null(Ψ) = null(Φ)◦. Convex signal recovery fails if

σmin(Ψ;K ◦) = min
‖x‖=1
x∈K ◦

‖Ψx‖ > 0

where K =D ( f , x \)

Sources: Stojnic 2013; McCoy & Tropp 2013; Amelunxen et al. 2014; Thrampoulidis et al. 2014–2016; Tropp 2015.
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Gaussian Measurements: Failure

Theorem 38 (Amelunxen et al. 2014). Assume

§ f :Rd →R is a convex function and x \ ∈ dom( f )

§ Observe z =Γx \ where Γ ∈Rm×d is standard normal
§ The vector x̂ solves

minimize f (x) subject to Γx = z

Then

m ≤ δ(K )−C
p

d implies x \ is not the unique solution with high prob.

where K =D ( f , x \)

Sources: Stojnic 2013; Oymak et al. 2013; Amelunxen et al. 2014; Foygel & Mackey 2014; Thrampoulidis et
al. 2014–2016; Tropp 2015.
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Gaussian Measurements: Failure Proof

§ Can assume m < d or else failure with probability zero

§ If D ( f , x \) is a subspace, just count dimensions

§ Let Γ◦ ∈R(d−m)×d be standard normal

§ null(Γ◦) has same distribution as null(Γ)◦ (a unif. rdm subspace, codim m)

§ Let K =D ( f , x \). As before,

e−t 2/2 ≥P{
σmin(Γ◦;K ◦) < Eσmin(Γ◦;K ◦)− t

}
≥P

{
σmin(Γ◦;K ◦) <

p
d −m −1−

√
δ(K ◦)− t

}
§ Failure (σmin(Γ◦;K ◦) > 0):

p
d −m −1−p

δ(K ◦)−3 > 0

§ Equivalently, d −m > δ(K ◦)+6
p
δ(K ◦)+10

§ Use facts δ(K ◦) = d −δ(K ) ≤ d

Joel A. Tropp (Caltech), Structured Signal Processing, Structural Inference in Statistics Spring School, Malente, March 2017 86



Gaussian Measurements: Summary

Theorem 39 (Chandrasekaran et al. 2012; Amelunxen et al. 2014). Assume

§ f :Rd →R is a convex function and x \ ∈ dom( f )

§ Observe z =Γx \ where Γ ∈Rm×d is standard normal
§ The vector x̂ solves

minimize f (x) subject to Γx = z

Then

m ≤ δ(K )−C
p

d implies success with high probability

m ≥ δ(K )+C
p

d implies failure with high probability

where K =D ( f , x \)

Sources: Rudelson & Vershynin 2006; Stojnic 2009, 2013; Oymak et al. 2010, 2013; Chandrasekaran et al. 2012;
Amelunxen et al. 2014; Foygel & Mackey 2014; Thrampoulidis et al. 2014–2016; Tropp 2015.
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Gaussian Measurements: Improved

Theorem 40 (Amelunxen et al. 2014). Assume

§ f :Rd →R is a convex function and x \ ∈ dom( f )

§ Observe z =Γx \ where Γ ∈Rm×d is standard normal
§ The vector x̂ solves

minimize f (x) subject to Γx = z

Then

m ≤ δ(K )−C
√
δ(K )∧δ(K ◦) implies success with high prob.

m ≥ δ(K )+C
√
δ(K )∧δ(K ◦) implies failure with high prob.

where K =D ( f , x \)

Sources: Amelunxen et al. 2014; Thrampoulidis et al. 2014–2016; Goldstein et al. 2017.
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Example: `1 Minimization

§ Suppose x \ ∈Rd has s nonzero entries

§ Let Γ ∈Rm×d be a standard normal matrix

§ Observe z =Γx \

§ Find estimate x̂ by solving convex program

minimize ‖x‖`1
subject to Γx = z

§ Hope: x̂ = x \

Sources: Donoho 2004, 2006; Candès & Tao 2006; Rudelson & Vershynin 2006; Donoho & Tanner 2009; Stojnic
2009, 2013; Chandrasekaran et al. 2012; Amelunxen et al. 2014; Foygel & Mackey 2014; Goldstein et al. 2017.
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`1 Statistical Dimension Curve
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Sources: Affentranger & Schneider 1992; Betke & Henk 1993; Böröczky & Henk 1999; Donoho 2006; Donoho & Tanner
2009; Stojnic 2009, 2013; Chandrasekaran et al. 2012; McCoy & Tropp 2013; Amelunxen et al. 2014; Foygel & Mackey
2014.
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Example: Performance of `1 Minimization
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Example: Emergence of `1 Phase Transition
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Example: S1 Minimization

§ Suppose X \ ∈Rd1×d2 has rank r

§ Let Γ ∈Rm×(d1×d2) be a standard normal matrix

§ Observe z =Γ(vec X \)

§ Find estimate X̂ by solving convex program

minimize ‖X ‖S1
subject to Γ(vec X ) = z

§ Hope: X̂ = X \

Sources: Fazel 2002; Recht et al. 2010; Oymak et al. 2010, 2013; Chandrasekaran et al. 2012; Amelunxen et al. 2014;
Thrampoulidis et al. 2014–2016; Tropp 2015; Goldstein et al. 2017.
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S1 Statistical Dimension Curve
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Example: Performance of S1 Minimization
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Complements

§ Universality

§ Signal recovery with noise

§ Sharp analysis for Gaussian signal recovery with Gaussian noise

§ Non-Gaussian measurements

§ Demixing

§ ...

Joel A. Tropp (Caltech), Structured Signal Processing, Structural Inference in Statistics Spring School, Malente, March 2017 97



Universality I

Theorem 41 (Oymak & Tropp 2015). Assume

§ f :Rd →R is a convex function and x \ ∈ dom( f )

§ Φ ∈Rm×d has iid standardized, symmetric entries with 4+ moments
§ Observe z =Φx \
§ The vector x̂ solves

minimize f (x) subject to Φx = z

Then

m ≤ δ(K )−o(d) implies success with high probability

m ≥ δ(K )+o(d) implies failure with high probability

where K =D ( f , x \)

Sources: Donoho & Tanner 2009; Bayati et al. 2015; Oymak & Tropp 2015.
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Universality II
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minimize ‖x‖`1
subject to Φx =Φx s
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Signal Recovery with Noise I

Theorem 42. Assume

§ f :Rd →R is a convex function and x \ ∈ dom( f )

§ The matrixΦ ∈Rm×d

§ Observe z =Φx \+e where ‖e‖ ≤ η
§ The vector x̂ solves

minimize f (x) subject to ‖Φx − z‖ ≤ η

Then
‖x̂ −x \‖ ≤ 2η

σmin(Φ;K )
where K =D ( f , x \)

Sources: Candès et al. 2006; Chandrasekaran et al. 2012; Tropp 2015.
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Signal Recovery with Noise II

‖Φ(x −x \)‖ ≤ 2η

null(Φ)

{x : f (x) ≤ f (x \)}

x \

D ( f , x \)
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Signal Recovery with Noise III

Theorem 43 (Oymak et al. 2013). Assume

§ f :Rd →R is a convex function and x \ ∈ dom( f )

§ Let Γ ∈Rm×d is standard normal
§ Observe z =Φx \+ηg where g is standard normal
§ The vector x̂ solves

minimize ‖Φx − z‖2 subject to f (x) ≤ f (x \)

Then (roughly)

sup
η>0

E‖x̂ −x \‖2

η2
= lim

η↓0

E‖x̂ −x \‖2

η2
= m

m −δ(K )

where K =D ( f , x \)

Sources: Oymak et al. 2013; Thrampoulidis et al. 2014–2016.
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Non-Gaussian Measurements

Proposition 44 (Mendelson 2013). Assume

§ The rows ofΦ ∈Rm×d are iid copies ofϕ ∈Rd

§ K is a convex cone

§ Define the small ball probability

Q = inf
‖u‖≤1,u∈K

P {|〈u, ϕ〉| ≥ 1/6}

§ For independent Rademacher variables {εi }, define the mean empirical width

Wm = E sup
‖u‖=1,u∈K

〈
u,

1p
m

m∑
i=1

εiϕi

〉

Then, for all t > 0,

σmin(Φ;K ) ≥ 1
3

p
m Q −2Wm − t with prob. ≥ 1−e−18t 2

Sources: Mendelson et al. 2013–2016; Tropp 2015.
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Demixing I

Theorem 45 (Amelunxen et al. 2014). Assume

§ f , g :Rd →R are convex functions
§ x \ ∈ dom( f ) and y \ ∈ dom(g )

§ Observe z = x \+Q y \ where Q ∈Rd×d is random orthogonal
§ The pair (x̂ , ŷ) solves

minimize f (x) subject to z = x +Q y , g (y) ≤ g (y \)

Then

δ(C )+δ(K ) ≤ d −O(
p

d) implies (x̂ , ŷ) = (x \, y \) with high prob.

δ(C )+δ(K ) ≥ d +O(
p

d) implies (x̂ , ŷ) 6= (x \, y \) with high prob.

where C =D ( f , x \) and K =D (g , y \)

Sources: Amelunxen et al. 2014.
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Demixing II
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Source: Starck et al. 2003; McCoy & Tropp 2013; McCoy et al. 2013; Amelunxen 2014.
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Demixing III

Source: Starck et al. 2003; McCoy & Tropp 2013; McCoy et al. 2013; Amelunxen 2014.
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§ Oymak, “Convex relaxation for low-dimensional representation...,” PhD Thesis, Caltech, 2014
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