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Let X, Xy, ..., X, be i.i.d. Gaussian vectors with values in R9, with
EX = 0 and with covariance operator ¥ = E(X ® X) € C¢.

@ Given a smooth function f : R — R and a linear operator
B:RY — RY with ||B||; < 1, estimate (f(X), B) based on
X1 g eeey Xn.

@ More precisely, we are interested in finding asymptotically efficient
estimators of (f(X), B) with \/n-convergence rate in the case
when d = d, — .

@ Suppose d, < n® for some « > 0. Is there s(«) such that for all
s > s(«) and for all functions f of smoothness s, asymptotically
efficient estimation is possible?
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Some Related Results

@ Efficient estimation of smooth functionals in nonparametric
models: Levit (1975, 1978), Ibragimov and Khasminskii (1981);

@ In particular, in Gaussian shift model: lbragimov, Nemirovski and
Khasminskii (1987), Nemirovski (1990, 2000)

@ Girko (1987-): asymptotically normal estimators of a number of
special functionals (such as log det(X) = tr(log X), Stieltjes
transform of spectral function of ¥ : tr((/ + t£)~ ")), ... Based on
martingale CLT

@ Asymptotic normality of log-determinant log det(3-) has been

studied by many authors (see, e.g., Cai, Liang and Zhou (2015)
for a recent result)
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Some Related Results

@ Asymptotic normality of tr(f(%)) for a smooth function f : R +— R :
(linear spectral statistic). Common topic in random matrix theory
(both for Wigner and for Wishart matrices): Bai and Silverstein
(2004), Lytova and Pastur (2009), Sosoe and Wong (2015)

@ Estimation of functionals of covariance matrices under sparsity:
Fan, Rigollet and Wang (2015)

@ Bernstein—von Mises theorems for functionals of covariance: Gao
and Zhou (2016)

@ Efficient estimation of linear functionals of principal components:
Koltchinskii, Loffler and Nickl (2017)
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e Part 1.
Effective Rank and Sample Covariance

e Part 2.
Taylor Expansions of Operator Functions and
Normal Approximation of Plug-In Estimators of
Smooth Functionals of Covariance

e Part 3.
Wishart Operators, Bootstrap Chains, Invariant
Functions and Bias Reduction

e Part 4.
Asymptotic Efficiency
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Part 1.
Effective Rank and Sample Covariance
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Covariance Operator

@ (E,| - ||) a separable Banach space, E* its dual space
@ X a centered random variable in E, E[(X, u)|? < +o00,u € E*
@ The covariance operator:

Yu:=E(X,u)X, ue E".

@ Y : E* — E a bounded symmetric nonnegatively definite operator.
If E||X||2 < +o0, then ¥ is nuclear
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Sample Covariance Operator

@ Xj,...,Xpi.i.d. copies of X.
@ The sample (empirical) covariance operator 3 : E* — E,

n
Su:=n") (X, u)X;, ucE"

j=1
@ Problems:
o What is the size of E||~ — X, where || - || is the operator norm?
e Concentration inequalities for ||X — X|| around its expectation or
median.
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Subgaussian Random Variables

Definition
A centered random variable X in E will be called subgaussian iff, for all
ueE*,

(X, Wl S KX U Ly(p)-

Notations: Given a convex nondecreasing function ¢ : Ry — R,
¥(0) = 0, n ar.v. on a probability space (2, 4, P),

Iy = inf{C >0:Ey <‘g‘) < 1}.

Po(U) == e“2—1,u20
i(u) == e —1.
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A Bound in the Finite Dimensional Case

E =R9 d > 1 (Euclidean space)

Suppose that X is subgaussian. Then, there exists an absolute
constant C > 0 such that, for all t > 1, with probability at least 1 — e~!

I£ -5 < cl=) (@\/%\/ﬁ\/%) |
E|I$ - 5 < Gl (@\/%) .

It implies that
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Sketch of the proof

@ M c S%'is a1/4-net of the unit sphere S9—1, card(M) < 9¢
°

15— 5| S max [((£ - )u, V)|
u,veM

n

n= Y (X, u) (X, v) — E(X u)(X, v)

=1

= max
u,veM

@ Use the union bound and Bernstein inequality

{ >H§Hw1<\/ng\/t+ 2I099)d>}

< exp{—t—(2log9)d}

for independent vy random variables §; := (X}, u)(X;, v).

51 T+ fn
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Effective Rank

Assuming that X is a centered Gaussian random variable in E with
covariance operator ¥, define

(r) = E||X|? _ Esupjy)jv<i{X; u){X, v)
O IEL supyyv<t BOX u) (X, v)

o If Eis a Hilbert space, E[| X|[2 = u(¥) and K(¥) = &,
@ r(X) is called “effective rank” (Vershynin (2012)).
@ r(X) < rank(X).

@ If dim(H) = d < 400 and X is of isotropic type, that is, for some
constants 0 < ¢y < ¢ < 00, C1ly = X < Coly, thenr(X) < d.
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Bounds in Terms of Effective Rank

@ Vershynin (2012)
ElX-%| 5

| I
max{|\2||‘/2E‘/2 max X517 /°99 & m max |1 °9d}
s/sn n

The proof is based on the approach by Rudelson (1999) and relies
on noncommutative Khintchine inequality due to Lust-Picard and
Pisier (1991).

@ Note that, in the subgaussian case,

2 < tr(X), which
1

implies that
E max || Xj|[? < t(X)log n = ||Z||r(Z) log n.
1<j<n
This implies
E$ 5| < =] max \/r(Z) Ioidlog n (%) Io%dlog n
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Bounds in Terms of Effective Rank

If X is subgaussian, then with some constant C > 0 and with
probability at least 1 — e~!

55| <CHZHmax{ /r(X)logd +t r(Z)Iogd+t)Iogn}
— n ) n *

The proof is based on a version of noncommutative Bernstein type
inequality (Ahlswede and Winter (2002), Tropp (2012)).
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Bounds for subgaussian r.v. in a separable Banach

space

@ E a separable Banach space

@ Recall that »
_E[YI

)=

Y ~N(0;X)

Definition

A weakly square integrable centered random variable X in E with
covariance operator ¥ is called pregaussian iff there exists a centered
Gaussian random variable Y in E with the same covariance operator
Y.
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Bounds for subgaussian r.v. in a separable Banach
space (Koltchinskii and Lounici (2014))

Let X, Xi,...,Xn be i.i.d. weakly square integrable centered random
vectors in E with covariance operator . If X is subgaussian and
pregaussian, then

B[S - 5  [15) max{ ") @}

"'n

Moreover, if X is Gaussian, then

I maX{ "), @} SEIE- 1) 5 |z max{ (=) @} |

n

v
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Proof of the Upper Bound: Gaussian Case

Lemma (Decoupling)
Let Xy,..., Xn, X],..., X! beiid. N(O;X). Then

n

Y0 X ).

J=1

E|f-Z| <2E sup
lull,lIviI<1
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Proof of the Upper Bound: Gaussian Case

n
BIS-5|=E sup |n > 0 )X, v) — E(X, u)(X, v)
llulllIv][<1 j=1
“E sup [En Z(X,,ux,,v (X, U)X, V)
llull, lIv][<1

(X U)X V) — (X)X, v>> \

noX+ X X — X!
<2E sup |n' < ! /,u>< /,v>
Jull IvII<1 ; V2 V2

n
=2E sup |~} (X, u)(X],v)|
lull,[Ivil<1 =
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Proof of the Upper Bound: Gaussian Case

Y(u,v):=n"1/? i()(j, u)(X/, v)
j=1

A 1 &
2(.v) = VEIE| X 0+ VEIE (S g ),
j=1

where 3 is the sample covariance based on X{,..., X, and {g;}
are i.i.d, N(0, 1) r.v. independent of {X;}, {X/}

@ Conditionally on Xj’,j =1,...,n (u,v) — Y(u,v) and
(u,v) — Z(u,v) are mean zero Gaussian processes
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Proof of the Upper Bound: Gaussian Case

Gaussian Comparison Inequality (Slepian-Fernique-Sudakov):
conditionally on X}, ..., X},
°
Exg(Y(u,v) = Y(U,V))? <Exg(Z(u,v) - Z(U, V)2

Exg sup Y(u,v)<Exg sup Z(u,v)
llull,[Ivii<1 lull,lIv]i<1

1 n

< V2||2|V2EIIX|| + V2| £ 2Eq
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Proof of the Upper Bound: Gaussian Case

@ Combining this with the decoupling inequality and using the fact

that
1/2
H fZ@X/ ( -1Zg,> E|X| <E|X||
@ we get
A:=E|L -]

vn v

<2vaa"?x) 2y /"2 ¢ avae) /13,

and the upper bound follows by solving the above inequality w.r.t.
A.
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Proof of the Upper Bound: Subgaussian Case

The proof is based on generic chaining bounds for empirical processes
indexed by squares of functions (Mendelson (2012))
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Preliminaries: Generic Chaining

@ (T,d) a metric space

@ {A,} anincreasing sequence of partitions of T

@ {A,} admissible iff card(A,) < N,, where N, := 22" n > 1,
Ny :=1.

@ Fort e T, Ay(t) denotes the unique set of the partition A, that
contains t.

@ AC T, D(A) denotes the diameter of set A.
@ Generic Chaining Complexity

v2(T,d) = infsup Y ~2"2D(An(t)),
teT n—0

where the infimum is taken over all admissible sequences.
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Preliminaries: Talagrand Theorem

Let X(t),t € T be a centered Gaussian process and suppose that

d(t,s) := E”Z(X(t) = X(s))z, t,seT.
Then, there exists an absolute constant K > 0 such that

K~ "(T; d) < Esup X(t) < Kya(T; d)
teT
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Preliminaries: Mendelson (2010)

Let X, Xq,...,Xn be i.i.d. random variables in S with common
distribution P and let F be a class of measurable functions on (S, A)
such that f € F implies —f € F and Ef(X) = 0. Then

Fi1b2) 75(7:?1/12)}'

Esup |— Z 2(X;) — Ef3(X)
feF

vn ' n

< max { sup |}y, 22¢
feF
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Proof of the Upper Bound: Subgaussian Case

(*]
n

. 1
EX —X||=E sup |- E (X, u)? — (Xu, u)
llul| <1 ”,- ”

ZfQ (X;) — Ef2(X)],

=Esup |-
feF

where F := {(-,u> ue UE*}, Ue- = {ue E*: |u| <1} and P
is the distribution of random variable X.
@ Since X is subgaussian,

oo

= H(X,u)

Y2 = H<X’ U>‘ Y1 La(P)

@ Therefore,
supWHw < sup EVE(X,u)? < ||x|"/2.

ueUg+
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Proof of the Upper Bound: Subgaussian Case

@ Also, since X is pregaussian, there exists Y ~ N(0, X)
)
dy(u,v) = [|(-,u) — ¢, V)[lypy, U, v € U

@ Using Talagrand Theorem,

Yo(F,¥2) S v2(F, L2) = y2(Ug+; dy) SE sup (Y,u) <E[Y].

ueUgx
Therefore,
. E|Y] (E|Y])2
B - 5 < max {22 2L S
suzumax{ r(z)r(z)}
n n

Vladimir Koltchinskii (Georgia Tech) Efficiency in Covariance Estimation Lubbenau, March 2018 27 /172



Proof of the Lower Bound

o
R n
E|E —X|| > sup E||n~" Z(Xj, uyX; — E(X, u)XH.
lull<1 j=1
@ For afixed u € E* with ||u|| <1 and (Xu,u) > 0, define
/. __ _ i /. ZU .

X =X <X’u><2u,u>’ X = Xj— (X,,u}<Z 00 J=1,...,n
{X', X/ :j=1,....n} and {{X,u),(Xj,u) : j=1,...,n} are
independent.

°
n
B0 (X, u)X; — E(X, u>XH =
j=1
n ZU n
El[n~ Z(<)(ja u)? — E(X, U>2)m +n Z(Xp wX;||,
j=1 ’ j=1
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Proof of the Lower Bound

@ Conditionally on (X}, u),j = 1,..., n, the distribution of r.v.
n
oG uX
j=1
is Gaussian and it coincides with the distribution of r.v.

n 1/2 X/

() 7
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Proof of the Lower Bound

Denote E’ the conditional expectation given X, ..., X/.

E

n n 172 v
TS X ()

= EE’

n n 1/2 v
nt ;ux,, w2 — E(X, u>2)<;uf’u> n (n-1 SOX u>2) X

> |

) n 1/2 yor
BT Y (08B, ) ot ® (T 007 7

n 1/2 121y
- I[Z(n_1 > (X, u>2> EU/);”.
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Proof of the Lower Bound

>u 2 ||xu
B = B - B — g /2 IR

(Xu, u) 7 (Xu, u)!/?
and
n n 1/2 /
>u X
E|n~" X-,u‘Z—IEX,uer(n1 X-,u2> =
(050~ X+ ()
n 12EIX| — /2 _zul
> (Xu,u 1/2IE< Z > X1 \\/[,§<Zu7u>1/27
where

_ X0

I—W,j:1,...,n lldNN(0,1)
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Proof of the Lower Bound

Since
n 1/2
]E<n1Zij> > ¢ >0,
j=1
n n 1/2 /
u X
Bl N2 2 —1 1\2 2
7YX - B g+ (1 j:Z1<>9,u>) 2
(Lu,u) 2E| X — /2] Zu]
> C .
NG
Therefore

) (Su,u) 2E|X] — /2] Zu]
E[X — X[ > ¢ sup
lull<1 vn

IZI2E) X — /2 )% e /M(T) — /2
>0 /n > Cz||z||< n )
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Proof of the Lower Bound

Also,
n
EHi - ZH > sup n_1 Z<)(j¢ U>2 - E<Xa U>2
llull<1 j=1
¢ 1=l
= sup (Tu,W)EIn~ "y Z% - 1‘ > oy,
Jul<1 ; ! vn

implying that, for small enough c,,

) Y- /=
E[$ - 5| > call=]| (Csmif)n [> \/04“},'7'

3o () a2 s g2V
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Proof of the Lower Bound

On the other hand, if r(X) > 2n,

n
B %) > B[] - |Z) > E sup n' 3" (X, 0)% - ||
[Jul|<1 j=1
E|LX|?
n

X 2
> E sup M — Iz =
luj<t 1

~ (" 1) 2 iz 2

= 1=l

Vladimir Koltchinskii (Georgia Tech) Efficiency in Covariance Estimation Lubbenau, March 2018 34/172



Concentration inequality (Koltchinskii and Lounici
(2014))

Theorem

Let M be either the median, or the mean of |% — X||. There exists a

constant C > 0 such that, for all t > 1 with probability at least1 — e~!,
the following bound holds:

£ — =i - M| < c{nzu(\/@w)\@\/ uzug].
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Corrolaries

Corollary

There exists a constant C > 0 such that, for all t > 1, with probability at
least1 — e~ !,

LY (VA 2AVIVAVES)

This implies that for all p > 1

EVIE - 2P 5o 170y 1V 7).
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Proof of concentration inequality:

@ The proof is based on Gaussian concentration

@ Another proof: based on a concentration inequality for sup-norms
of Gaussian chaos, Adamczak (2014)
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Proof of concentration Inequality

Let X, Xq,..., X, beiid. centereq Gaussian random vectors in E with
covariance ¥ and let M := Med(||x — X||). Then, there exist constants
C > 0 such that for all t > 1 with probability at least 1 — e,

I - ) - M| < ¢ =) (\/%\/ SV uzu”ZM”Zﬁ].

Note that

M=Med(|E —Z|)) <2E|E - | < ||| [\/@\/ r(m

implying the concentration inequality in the explicit form.
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Proof of Concentration Inequality, reduction to the
finite-dimensional case

Let X be a centered Gaussian random variable in a separable Banach
space E. Then there exists a sequence {xy : k > 1} of vectors in E
and a sequence {Zj : k > 1} of i.i.d. standard normal random
variables such that X = " ; Zixx, where the series in the right hand
side converges in E a.s. and >3 ||xk||? < +oo.

It easily follows from this result that it is enough to proof the
concentration inequality when

m m
X=> Zxi. X = Zijxi. Z = (Zkjk=1,...,mj=1,....n).
k=1 k=1
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Gaussian Concentration

Denote

(2) = g%, %) = [ W10,
where
oW=3%_-%,

@ ¢ is a Lipschitz function with constant 1 on R, , 0 < o(s) < 1,
p(s)=1,8<1,¢(s)=0,5> 2,
@ § > 0is fixed

There exists a numerical constant D > 0 such that, for all Z,Z' € R™,

12) - 1201 < DI IEEVE (5257 7,z )™

Vvn

j=1 k=1
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Gaussian Concentration

By Gaussian concentration inequality, for all £ > 1 with probability at
least 1 — e,

)Q(Xh---,Xn) - Med(g(X1,...,Xn))‘ < Dy (HZH + HZHVZ\/S) \/Z

where Dy is a numerical constant. It follows that, on the event || W|| < 4,

t

< Med(|W]) + D; (=] + [£"/2V8) /L = A+ BV,
n

t t
A= Med(|W]) + Dy uzu\fn, B:= Dy uzuvzﬁ

Then we have

where

}P’{J > W) >A+ BJS} <e .
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Proof of Concentration Inequality: Iterative Bounds

@ Denote
8o .= Ds||Z|| [r(z) <\ﬁ\/ ;) + 1) + 1] :

@ lItis easy to prove that

B{1W) 2} < et
@ Define §, for k > 1 as follows:

Ok = A+ B\/0k_1.

@ ltis easy to check that {04} is decreasing with limit §,

5=A+BV3, §<AVB

2—k
5k—S§Uk::BZ<50> .

@ Moreover,
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Proof of Concentration Inequality: Iterative Bounds

2—k
o Letk:= min{k: (g;) §2}.Then

0x SAV B, k <loglog(cir(x))\/ loglog(cin)

@ Since IP’{cSk_1 > ||W] > 5k} < e, we get that with probability at
least 1 — (k +1)e !,

t t
IW|| < 6% S AV B2 S Med(| W) \/ =] (ﬁ\/ n)

@ With a bit more effort, it follows that with probability at least 1 — e~ !

wi = 1§ =1 < efveagwn Vi (y/ SV £)]
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Gaussian Concentration
o Take
t+2 t+2
= o|meagwp /121 (2T 2.

@ Since P{||W|| > ¢} <2e 172" < 1/4,

P{g(X1,...,Xn) > Med(||W|))} > 1/4,
P{g(X1,...,Xn) < Med(||W|)} > 1/2.

@ To complete the proof, note that, by Gaussian isoperimetric
inequality, on the event where |W/|| < 4,

[I1£ = 2| = Med(| WI)| = |g(X, ..., Xa) — Med(| W)

t
<0y (j) + =1 2va), [

with probability at least 1 — e L.
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Generic Chaining Tail Bound: Dirksen (2014), Bednorz
(2014), Mendelson (2013, 2015)

Let X, Xq,...,Xn be i.i.d. random variables in S with common
distribution P and let F be a class of measurable functions on (S, A).

Then, there exists a constant C > 0 such that for all t > 1 with
probability at least 1 — e™!

sup |—
feF

Y2(F;v2) Y5(F:¢2) 2 \/T o t
< Cmax< sup ||f , ,sup ||f —,sup||fll5, = ¢ -
{fefn o oS5, 7 sup I,

Zf2 X)) — Ef3(X )'

v

Vladimir Koltchinskii (Georgia Tech)

Efficiency in Covariance Estimation

Liibbenau, March 2018 45/172



Part 2.

Taylor Expansions of Operator Functions and Normal
Approximation of Plug-In Estimators of Smooth

Functionals of Covariance
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@ Let H be a separable Hilbert space

o Let X, Xi,..., X, be i.i.d. Gaussian vectors with values in H with
EX = 0 and with covariance operator ¥ = E(X @ X).
@ Problems

e Given a smooth function f : R — R and a nuclear operator
B:H — H, estimate (f(X), B) based on Xi,..., X.
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Sample Covariance Operator and Effective Rank

o Let .
S=n) XeX
j=1
be the sample covariance based on (X, ..., Xp).

@ Effective Rank: (=)
tr

rY) = 2

&)= 15

@ r(X) < rank(X) < dim(H)
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Expectation bounds in terms of effective rank

Theorem (Koltchinskii and Lounici (2014))

Let X, Xy, ..., X, be i.i.d centered Gaussian random vectors in H with
covariance operator .. Then

EJS - %) < qu(\/@\/ 1B,
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Concentration Inequality

Theorem (Koltchinskii and Lounici (2014))

There exists a constant C > 0 such that, for all t > 1 with probability at
least 1 — e, the following bound holds:

IE -z - M| < CHZII[(\/T?\/Q\/Z\/;].

where M is either the mean, or the median of |5 — X ||.

The results are also true for Gaussian random variables in separable
. 2
Banach spaces with r(X) := ZIXI

=l -
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Further exponential and moment bounds

Corollary

There exists a constant C > 0 such that, for all t > 1, with probability at
least1 — e~!,

L (VA 2AVIVIAVES)

This implies that for all p > 1

EVPIE - 5P 5o 12y "V ).
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Normal Approximation Bounds for Smooth Functions

of Sample Covariance

Problems
Let f: R — R be a given smooth function and B be a given operator

with || B[y < o0
n'/2(f($)—Ef(3),B)

@ For given f and B, show that the distribution of r.v. o(5B)
is close to standard normal for a proper o¢(X; B) when n — oo and
rHX)=o(n)

N

@ Is the plug-in estimator (f(X), B) asymptotically efficient (is
Vn(f(¥) — f(X), B) asymptotically normal with limit variance
o¢(X; B) as small as possible)?
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Entire Functions of Exponential Type

@ f: C — C be an entire function

@ Foro > 0, fis of exponential type o if Ve > 0 3C = C(e,0,f) >0

such that
f(z)| < Celo+9lZl z ¢ C.

e &, = &,(C) denotes the space of all entire functions of exponential

type o.
@ According to Paley-Wiener theorem,

Ex [\ Loo(R) = {f € Loo(R) : supp(FF) C [0, 0]}
@ Bernstein inequality: Vf € £, (] Lo(R)

11 Le®) < OlfllLom):
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Littlewood-Paley Decomposition

@ Letwe C*(R), w>0,supp(w) C [-2,2], w(t) =1,t € [-1,1]
and w(—t) = w(t),t € R.
wo(t) := w(t/2) — w(t),t € R, supp(wp) C {t:1 < |t| <4}
w(t) :== wo(27/t),t € R, supp(w;) C {t: 2/ < |t| < 2/*2} j>0.
Then w(t) + > 5o wi(t) =1, teR.
Let W, W, € S(R),
w(t) = (FW)(1), wi(t) = (FWj)(t),t € R,j > 0.
@ For f € S'(R), define its Littlewood-Paley dyadic decomposition:
for=Ff«xW, fh=Ff«W,_1,n>1
@ Note that f, € Eni1 [ Loo(R) and

Y =t

n>0

with convergence of the series in the space S’(R).
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@ Besov norms:

Ifles., =D 2"l fallL(r) S € R
n>0

@ Besov spaces:
S A / .
S 1(R) = {f eS'(R): [fles , < oo}.

o If f e BS {(R)for some s > 0, then 3 f, converges uniformly
to fin R wh|ch easily implies that f € Cy(R) and

Il < IFles,
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Perturbation Theory: Operator Lipschitz and Operator

Differentiable Functions

@ Bsa(H) the space of self-adjoint bounded operators in H

@ A continuous function f : R — R is called operator Lipschitz with
respect to the operator norm iff there exists a constant L; > 0
such that for all A, B € Bsa(H)

1f(A) - 1(B)I| < Lsl|A— BJ|.

@ If f is operator Lipschitz, then it is Lipschitz; however, f(t) = |{| is
not operator Lipschitz (Kato (1972)).

@ A continuous function f : R — R is called operator differentiable iff
Bsa(H) > A f(A) € Bsa(H) is Fréchet differentiable at any
A € L(H), i.e., there exists a bounded linear mapping
Bsa(H) > E — Df(A; E) = Df(A)E € Bsa(H) such that

f(A+ E) — f(A) = Df(A; E) + o(||E|) as | E|| — 0.
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Perturbation Theory: Operator Lipschitz and Operator
Differentiable Functions

Theorem (Peller)

Iff € B! ,(R) then f is operator Lipschitz with Lipschitz constant
Ly =||f]| g1 1 and operator differentiable.

Moreover, if A € Bsa(H) is an operator with spectral decomposition
A= > APy,
Xeo(A)
then (Loewner, Daletsky-Krein)
DI(AE)= > I\ pn)PEP,
A peoa(A)
where

(N, p) = M, A OGN = ().
A—p
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Perturbation Theory: Bounds on the Remainder of
Differentiation

Let St(A; E) = f(A+ E) — f(A) — (Df)(A; E) be the remainder of
differentiation. If, for some s € [1,2], f € BS_;(R), then the following
bounds hold:

1SH(A; E)II < 2°~°|Ifllgs_ IIEI°

A

and

1SH(A; E) — St(A; E")l| < 2 °|Ifllgs  (IENI V IE'I)*IE" — EJ.

The proof is based on Littlewood-Paley decomposition of f and on
operator versions of Bernstein inequalities for entire functions of
exponential type (as in the work by Peller on operator Lipschitz
functions).
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Bounds for Entire Functions of Exponential Type

Letf e & (Lwo(R). Then, forall A,H, H € Bsa(H),

[1F(A+ H) = (A < ollfll e mlIHII;

IDF(A; )| < ol fll Lo my 1 1],

2
g
IS A H)I| < S I1Fll oy 1 HI1

and

1SH(A; H') = S{(A; H)I| < 02| fllL.. ) 0(H, H)IIH' = H]|,
where '
|H — HIl

6(H, H') == (IHIl A THID +
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Proof of Operator Lipschitz Property

@ E a complex Banach space

@ &,(E) the space of entire functions F : C — E of exponential type
o:Fe&(E)iffve >03C = C(e,0,F)>0:

IF(2)|l < Cel"t)l, z e C.

o If F e &(E) and sup,cr || F(X)|| < +o0, then Bernstein inequality
holds for F :
sup | F'(x)[| < o sup||F(x)|
xeR xeR

and
[F(x+h)— F(x)|| < o Sup IFCOIAL

xe
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Proof of Operator Lipschitz Property

@ Given A, H € Bgg(H) and f € &, () Lo(R), define
F(z):=f(A+zH),z e C.

@ Then F € & (B(H)). Indeed, F is complex-differentiable at any
point z € C with derivative F'(z) = Df(A + zH; H) and, by von
Neumann theorem,

IF(2)|| = |f(A+zH)|| < sup  |f(Q)] < |IfllL.rye” Al IHIIZ,
[CI<IAI+zlI1H]

implying that F is of exponential type o||H]||.
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Proof of Operator Lipschitz Property

@ Note also that
sup [|[F(x)|| = sup [[f(A+ xH)|| < sup [f(X)| = |fllL..(r)-
X€ER X€ER XER

@ Hence

If(A+ H) = f(A)l = IF(1) = FO)]| < sup[[F'(x)]|

XER
< o|Hl[sup [[F(x)I| < ollfll .. ey I HII-
XeR
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Proof Operator Lipschitz Property for f € B! ,(R)

@ Forfe B;Q1 (R), the series > f» converges uniformly in R to
function f.

@ Since A,A+ H, A+ H' are bounded self-adjoint operators, we also
get

> " f(A) = £(A), Y f(A+H) = f(A+H), Y fh(A+H') = f(A+H')

n>0 n>0 n>0

with convergence of the series in the operator norm.

o
IF(A+ H) — f(A)| = || [(A+ H) — fo(A ]H
n>0
<D A+ H) = (A < > 2" ifoll oy 1HI = 211l g1 IH]I-
n>0 n>0 '
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Higher Order Operator Differentiability

o If g: Bsa(H) — Bsa(H) is a k times Fréchet differentiable function,
its k-th derivative DXg(A), A € Bsa(H) can be viewed as a
symmetric multilinear operator valued form

DKg(A)(Hs, ..., Hk) = DXg(A; Hy, ..., Hk), Hs, ..., Hk € Bsa(H).

@ For a k-linear form M : Bsa(H) x - - - X Bgg(H) — Bsa(H), define its
operator norm as

IM|| = sup IIM(Hy, ..., Hy)l.

@ The derivatives DXg(A) are defined iteratively:

DXg(A)(Hs, ..., Hk_1, Hk) = D(D*"1g(A)(Hs, . .., Hk_1))(Hx)-

Vladimir Koltchinskii (Georgia Tech) Efficiency in Covariance Estimation Lubbenau, March 2018 64 /172



Higher Order Operator Differentiability

Lemma

Letf e & () Lo(R). Then

ID“F(A)| < o* 1 Fllioo(m)s A € Bsa(H),

ID*F(A+ H; Hy, ..., H) — DKF(A Hy, . Hy)ll
< o |l ol 1] - - 1 HIHI
and

k+2
o
[ Sprt(ity,....Ho) (A H)| < T||f||Loo(R)||H1||---||Hk||||H||2-
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Higher Order Operator Differentiability

Lemma

Suppose f € BY_ |(R). Then the function Bsa(H) > A — f(A) € Bsa(H)
is k times Fréchet differentiable and

|DF(A) < 2|flly_ A€ Bsall),j=1,.... k.
Moreover, if for some s € (k, k + 1], f € BS_(R), then

ID"f(A+ H) — D“F(A)| < 247|fllgs  IHII*™", A, H € Bsa(H).
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Higher Order Operator Differentiability

For an open set G C Bsa(H), a k-times Fréchet differentiable functions
g: G+ Bsa(H) and, for s = k + 3, 8 € (0, 1], define

, |D¥g(A + H) — D¥g(A)|
s(q) ;= max sup ||[Dg(A su :
lgllce(a) 0050k Aep IDoAl \/A,A+H6FC)3,H7£0 I1H117

Suppose that, for some s > 0,s € (k, k + 1], we have f € BS_,(R).
Then

k1
1llcs(Beary <27 [Ifllgs_,-
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Normal Approximation for Smooth Functions of

Sample Covariance

@ LetY :=} ,.,(x) AP» be the spectral decomposition of ¥, o(X)
being the spectrum of * and P, being the spectral projection
corresponding to the eigenvalue A

o feBl ((R)

° [|Blly < o0

@ o4(X; B) := 2| X'/2Df(X; B)X'/?||,

Vladimir Koltchinskii (Georgia Tech) Efficiency in Covariance Estimation Lubbenau, March 2018 68 /172



Perturbation Theory: Application to Functions of

Sample Covariance (Delta Method)

o
(F(£) — f(X), B) = (DF(Z; 5 — X), B) + (S¢(Z; 5 — ¥), B)
o The linear term (Df(%; % — ¥), B) is of the order O(n~'/?) and
n'/2(Df(L; ¥ — ), B) is close in distribution to N(0; 02(X; B)).
@ Forse (1,2, |S¢(%: % - %) < |[fllgs_ |- — Z||%, implying that

A~

(SHEE — ), B)| < [|1B1]SH(E: £ — E)
o)) =t

(Ef(X) - £(T), B)| = (ES(E; L - ¥), B)|
- o(("2)") -t
)

n
provided that r(X) = o(n'/s~).
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Perturbation Theory: Application to Functions of

Sample Covariance (Delta Method)

@ The bounds are sharp, for instance, for
f(x)=x3,B=u®u,s=2:

sup |(Ef() — f(X),u® u)| = sup [(ES(E;$ —),us u)| =
flull<1 [lufl<1

n n

@ For s = 2, the Delta Method works if r(X) = o(n'/?). What if
r(X) > n'2 r(X) = o(n)?
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Normal Approximation for Smooth Functions of

Sample Covariance

Let G(r; a) = {z IZ) < a,r(E) < r}.

Letf e BS (R) for some s € (1,2] and let B be a linear operator with
|B||1 < cc. Suppose a > 0,052 > 0 and

m=o(n) as n— oo.

Then

sup sup Pz{ n1/2<f(3(_£;f(i)’ B> < x} — ®(x)

zeG(rm;a),of(x;B)>00 XER
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Normal Approximation Bounds for Smooth Functions

of Sample Covariance

@ LetX :=) ., (x)AP» be the spectral decomposition of =
o fe Bl (R)
® [|Blly < oo
@ o4(X; B) := v2||'/2Df(X; B)X'/?||5
® 11/(%: B) == |£V2DKE; B)X'/2 |5
Ifllgs_ IBIII=I®
@ (D)= —ira—
@ 1h(X) == ths(f; ) := | —logs(f; T) + S5 log ('&)ﬂ V1.
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Normal Approximation Bounds for Smooth Functions
of Sample Covariance

Letf e BS (R) for some s € (1,2]. Then

A

{n1/2<f(i) — Ef(Y), B> . x} 00| <

sup P
XeR

(X, B)

(8 3

+7s(f; Z)<< (n))(S 1)/2\/(tn(nz))(s1)/2\/(t(n )S 1/2>ﬁ

S
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Perturbation Theory for Functions of Sample

Covariance

(F(£) — f(X), B) = (DF(Z; 5 — X), B) + (S¢(Z; 5 — ¥), B)

implies that
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Perturbation Theory for Functions of Sample

Covariance

@ The linear term
(DF(X)B,x — %)

=n! Zn:wf(z; B)X;, X;) — E(Df(Z, B)X, X)
j=1

is of the order O(n~"/2) and it is approximated by a normal
distribution using Berry-Esseen bound.

@ The centered remainder
(ST £ - X) -ESH(X; £ - X),B)

is of the order o(n~'/2) when r(X) = o(n) and it is controlled using
Gaussian concentration inequalities.

Vladimir Koltchinskii (Georgia Tech) Efficiency in Covariance Estimation Lubbenau, March 2018 75/172



Normal Approximation for the Linear Term

@ Denote by \;,j > 1 the eigenvalues of £'/2Ax /2

@ Then
(AX, X) Z)\kzk,
k>1

where Z;, 2>, ... are i.i.d. standard normal random variables.
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Normal Approximation for the Linear Term

Lemma

The following bound holds:

n'/2(Df(%; B),s — ¥) }
sup|P 2 < xp—P(x
R {\/EIIZ”?Df(Z;B)Z”zllz = )

_ (I="2Df(x; B)T123\° 1
~ \X"2Df(x; B)X'2|2 ) /n'

n'/2(Df(X;B),X -~ ¥) 4 21 Yot M Z = 1)
2|=12DHE)T 2],
V2| (R)=22 yypr/2 <2F21 Yot Ml 2R — 1)>

where {Z ;} are i.i.d. standard normal random variables and \x the
eigenvalues of Df(X; B). It remains to use Berry-Esseen bound. O

4

)
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Concentration of the Remainder

Suppose that, for some s € (1,2], f € BS ,(R) and also thatr(¥X) < n.

Then, there exists a constant C = Cs > 0 such that, for all t > 1, with
probability at least 1 — e !

‘<s,(z; YY) -ESH(L; L - %), B>'

< Cllfles_, 1B HZ”S(C(,?)(S1)/2\/<,l;)(81)/2\/<t)51/2> t

n n
v

Note: the centered remainder is op(n~"/2) provided that r(X) = o(n).
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Concentration of the Remainder

@ g : Bsa(H) — R Fréchet differentiable function with respect to the
operator norm with derivative Dg(A; H), H € Bsa(H).

@ Sy(A; H) the remainder of the first order Taylor expansion of g :
Sg(A; H) .= g(A+ H) — g(A) — Dg(A; H), A, H € Bsa(H).

@ Let s € [1,2]. Assume there exists a constant Ly s > 0 such that,
forall X € C.(H),H, H' € Bsa(H),

[Sg(%5 H') — Sg(%: H)| < Lys(|HIl V IH)* [ H — H].
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Concentration of the Remainder

Theorem

There exists a constant Ks > 0 such that for all t > 1 with probability at
least1 — et

1Sg(Z; 5 — T) —ESy(L; 5 - ¥)|

- Kng,sHZHS<(@>(S_1)/2\/(Lf)f_m\/G)(S_ﬂ/z\/(i)s_”z

n n

v
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Sketch of the Proof

@ 0 R=R pu)=1,u<1,p(u)=0u>2,
p(uy=2-u,uc(1,2)

e E=%-%

@ For g > 0, define

h(Xi, ..., Xn) = S(T; E)y (H?II)
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Sketch of the Proof

Lemma

The following bound holds with some constant Cs > 0 for all
Xty X, X, .., Xy e HE:

\h(Xq,. ... Xn) — h(X],..., X.)]

CsLg,s(||Z]"/2 + V8)55" [ /2
< S Q,S(H H\/ﬁ ) (Z ”)(j_)(jl”z) )

=
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Sketch of the Proof

(X4, .., Xn) — h(XL, ..., X0
< IS(E. E) — So(. )| + +[So(%. E)|E ~ E|
< Los(IEN v IE'I) 1/~ Ell + Los H|EI°IE ~ E|.
e Ifboth ||[E|| < 26 and ||E’|| < 24, then
\A( X1, .., Xn) — A(X{, ..., X0)| < (257" 4+ 25)Lg 565 ||E' — E|

with similar bounds holding in other cases.
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Sketch of the Proof

IE' |l =

n n
XXy X e X
J=1 j=1

n
<|In7"Y (X - XD @ X + —1Zx' ® (X — X))
j=1
n n
= sup |n ) (X=XLu)(X,v)|+ sup |nT' Y O u)(X—X],v)
l[ull:[vii<1 = llull,[v]I<1 =
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Sketch of the Proof

n 1/2 n 1/2
< sup (n 3006 X.02) sup (Y062

ui<t\ 5 mist\ 5
n 1/2 n 1/2
+ sup (n1 > (X, u>2> sup (n1 > X - X, v>2>
[lufl<1 =1 Ivii<t j=1

1/2 s-/111/2 n 1/2

< (ZHZIIV2 + IIEHV2 + HE’HVZ)

1/2
where A := ﬁ (Z}L | X; — ij”z) :

85/172
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By a simple further algebra,
IE' — E|| A6 < 4)|Z)|'2A\/(4V2 + 2)ViA,
which together with the bound
|A(X1, .., Xn) — A(X], ..., X})| Ss Lgs0 || E' — E||

implies the claim of the lemma.
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Sketch of the Proof

@ Foragivent > 0, let

§ = 65(t) =E|IS — = + C|I|| K\/@\/ 1)\[1;\/ rl;]

with constant C > 0 such that P{||~ — || > én()} < e~ L.
o Let M = Med(Sy(%; S — X))
@ By Gaussian concentration inequality, probability at least 1 — e~!

— t
(X, Xn) = M| Ss Lg,s6° ‘<||zu1/2+61/2)|12H”2\ﬁ

@ Onthe event {||S — | < 4}, replace h(Xi, ..., Xp) by Sg(X; £ — )
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Assumptions on the Loss Function

Let £ be the class of functions ¢ : R — R such that
@ ((0)=0
@ ((u)=4(-u),ueR
@ /is nondecreasing and convex on R
@ For some constants ¢, > 0

(u) < c1e®?¥ u>0.
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When is Plug-In Estimator Asymptotically Efficient?

Suppose, for some s € (1,2], f € B {(R). Let B be a nuclear operator

and leta > 0,09 > 0. Suppose thatr, >1 and r, = o(n1*1€) as
n — oo. Then

sup sup
YeG(rm;a),of(X;B)>09 XER

—0

1/201§($ _
Pz{n (<f(23;(BZ>; B)<f(2),B>) - X}_q)(x)

as n — oo. Moreover, under the same assumptions on f and r,, and
for any loss function ¢ € L

A

1/2 _
(0 08

as n — oo, where Z is a standard normal random variable.

sup
zeg(fn;a),o’f(z;B)Zo‘o
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Efficient Estimation of (f(X), B) : A Lower Bound

Suppose f € B;o,1 (R). Suppose r, > 1,a> 1,00 > 0 are such that, for
some 1 < & < aand o, > oo and for all large enough n,

g(rn,a')ﬂ{z co¢(X; B) > 06} £ ().

Then the following bound holds:

2
mEx (To(Xi, ., Xn) — ((%), B))
liminf inf sup >1

n Tn 5 €G(rm;a),04(;:B)>00 U?(Z? B) 7

where the infimum is taken over all sequences of estimators
Tn = Tn(X‘]’ oo ,Xn).
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Part 3.

Wishart Operators, Bootstrap Chains, Invariant
Functions and Bias Reduction
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Wishart Operators and Bias Reduction

@ Our next goal is to find an estimator 9(%) of f(X) with a small bias
Esg(X) — f(X) (of the order o(n~'/2)) and such that

n'2((9(%), B) — (Exg(%), B))

is asymptotically normal.

@ To this end, one has to find a sufficiently smooth approximate
solution of the equation

Exg(¥) = f(¥),% € 9.
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Wishart Operators

° Tg(x):=Exg(¥) = Jos g(V)P(X;dV), T € Y,

where Markov kernel P( -) is a rescaled Wishart distribution
Wa(XZ;n): X
P(%; A) :=Pg{¥ € A},Ac cl.

@ Ford < n, P(%;dV)=np(X;nV)dV,
p(x; V) =

1 1
det(V))("—9-1)/2 ——w(ZV) Y,
2”d/2(d6t(z))”/2rd<g> (det(V)) exp{ 2t ( )}

where Iy is the multivariate gamma function:

d .
() = fie(§15).
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Bias Reduction

@ To find an estimator of f(¥) with a small bias, one needs to solve
(approximately) the following integral equation
@ the Wishart equation:

Tg(x) = f(X),z ecl.

@ Bias operator: B:=7T —I.
@ Formally, the solution of the Wishart equation is given by
Neumann series:

9X)=(Z+B) H(Z)=(Z-B+B%—...)(X)

@ Given a smooth function f : R — R, define
k k

f(T) =D (—1YBIf(x T)+ Y (-1YBIf(T

j=0 J=1
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Bias Reduction

Proposition

The bias of estimator f(3) of f(X) is given by the following formula:

Exfi(X) — f(Z) = (1) B*(%).

Exfi(X) — 9(X) = Th(X) — f(X) = (Z + B)(X) — f(X)

k k+1
=> (-1)VB1(%) - i(—1)f8jf(2) —f(X) = (=) BTH(T).
j=0 j=1
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Bootstrap Chain

° TY(¥):=Esg(s = Jes 9(V)P(x:dV), X e ¢
@ Thg(X) =Esg(stk )) ¥ €9, where

SO _y 55 50,

is a Markov chain in C¢ with transition probability kernel P(-;-).

@ Note that >-U+1) is the sample covariance based on ni.i.d.
observations ~ N(0; £)) (conditionally on 50))

@ Conditionally on (), with a “high probability",

200 - 0y < 20y, /9

@ The Markov Chain {£(),j = 0,1, ...} will be called the Bootstrap
Chain.
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k-th order difference

@ k-th order difference along the Markov chain: by Newton binomial
formula,

k K\
BKI(E) = (T = 2)f(£) = > (1) (j)T/f(z)

® > (1 )K= (§)£(0) is the k-th order difference of f along the
trajectory of the Bootstrap Chain.
@ Question. Suppose f is of smoothness k. Is BXf(X) of the order

(V)"
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Orthogonally Invariant Functions

@ Afunction g € L(C9) is called orthogonally invariant iff, for all
orthogonal transformations U of RY,

g(ULU ") = g(x). T e cd.

@ Any orthogonally invariant function g could be represented as
9(X) = p(M(X), ..., Ag(X)), where A\ (X) > ... \y(X) are the
eigenvalues of ¥ and ¢ is a symmetric function of d variables.

@ A typical example: g(X¥) = tr(¢(X)) for a function of real variable
.

o Let L(CY) be the space of all orthogonally invariant functions
from Loo(C9).
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Orthogonally Invariant Functions

If g € LE(CY), then Tg € LY (CY) and Bg € L (C9).

| A\

Proof.
Indeed, the transformation X — UL U~ is a bijection of C9,

TULU ") =Eysy-19(X) = Exg(USU ') =Exg(%) = Tg(X)

and the function Tg is uniformly bounded. Ol Ol
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Orthogonally Equivariant Functions

g : C9 — Bsa(RY) is called orthogonally equivariant iff for all orthogonal
transformations U

g(UzU ")y = Ug(2)U", T e 9.

g : C9 — Bsa(RY) is continuously differentiable in CY iff there exists a
uniformly bounded, Lipschitz with respect to the operator norm and
continuously differentiable extension of g to an open set G,

CY c G C Bsa(RY).

Proposition

If g: Cﬂ — R is orthogonally invariant and continuously differentiable in
c9 with derivative Dg, then Dg is orthogonally equivariant.
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Orthogonally Equivariant Functions

First suppose that ¥ is positively definite (then extend to Cj’_ by
continuity). For all H € Bsa(RY),

g(UZU " +tH) — g(UZU)

(Dg(UZ L), H) = lim

t
_ i 9UE + U HU)U) — g(UEU)
t—0 t
_im 9E FWUTTHU)) — (%)
t—0 t

= (Dg(X), U 'HU) = (UDg(X)U~ ', H).
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“Lifting" Operator D and Reduction to Orthogonally

Invariant Functions

@ Define the following differential operator (“lifting" operator):
Dg(X) := X'/2Dg(x)x!/?

acting on continuously differentiable functions in C4.
@ Suppose f(x) = x¢'(x)
@ Let g(X) := tr(¢(X))
@ g is orthogonally invariant function on Cﬂ
e Dg(x) = /(%)
® Dg(x) = £(¥)
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“Lifting" Operator D and Reduction to Invariant

Functions

@ Suppose, for some ¢ > 0, o(X) C [24, 0).

@ Lety5(x) =~(x/d), v : R~ [0,1] be a nondecreasing C*
function, v(x) =0,x < 1/2,y(x) =1,x > 1.

@ Define f5(x) = f(x)v5(x), x € R.

@ Then, f(X) = fs(X) and, for all ¥ with (%) C [26, 00),
Df(X) = Dfs(X).

o Let p(x) = [t x >0, p(x) = 0,x < 0.

@ Clearly, f5(x) = x¢/'(x),x € R.

@ Let g(C) := tr(¢(C)), C € Bsa(RY). Then

Dg(C) = C'2,/(C)C'/? = f5(C),C e CC.
@ Moreover,

IDgllcs 27 (57 v aT)IIfge -

1
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Operator D and its Commutativity Properties

Proposition

Suppose d < n. For all functions g € L2 (€Y) that are continuously
differentiable in C¢ with a uniformly bounded derivative Dg and for all
Yecd

DTg(X) = TDg(X) and DBg(X) = BDg(X).
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Operator D and its Commutativity Properties (Proof)

@ Note that S £ ¥1/2Wx1/2 where W is the sample covariance
based on i.i.d. standard normal random variables Z;, ..., Z, in RY.

@ Let X'/2W"/2 = RU be the polar decomposition of ¥'/2 W1/2 with
positively semidefinite R and orthogonal U.

@ Then,
z 21/2 Wz1/2 21/2 W1/2w1/2:1/2 RUU~ R R2
and

W12y Wwi/2 = wi/2s1/2y1/21/2
— U 'RRU = U 'R?U = U '2"V2wWs 2y = U 'S UL
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Operator D and its Commutativity Properties (Proof)

@ Since g is orthogonally invariant, we have
T9(X) = Esg(3) = Eg(Z'2Wx'/2) = Eg(W'/2zW'/2), ¥ € ¢9.

@ For simplicity, aassume that X is positively definite.
@ Let H € Bsa(RY) and X; := ¥ + tH, t > 0. Note that

DTg(X)
_iim J9(%1) —T9(%)
t—0 t
1/2 1/2y _ 1/2 1/2
t—0 t
— E<W1/2Dg( W1/22 W1/2)W1/2, H>

= (EW'2Dg(W' 2z W'/2)W'/2 H).

Vladimir Koltchinskii (Georgia Tech) Efficiency in Covariance Estimation Liubbenau, March 2018 106 /172



Operator D and its Commutativity Properties (Proof)

@ It follows that
DTg(X) = EW'2Dg(W' 2z w'/2yw'/2,

@ Since W'/2xW'/2 = U~'$ U and Dg is an orthogonally
equivariant function, we get

Dg(W'2xW'/2) = U~ Dg(%)U.
@ Therefore,
DTg(X) =x'2DTg(x)x'/?
— 21/2E( W1/2Dg( W1/2: W1/2) W1/2)z1/2
_ E(Z1/2 W1/2Dg( W‘I/ZZ W1/2) W1/221/2)
_ E(Z1/2 W1 /2 U—1 Dg(i)UW1 /221/2)
— E(RUU~'Dg(¥X)UU'R) = E(RDg(%)R) = Ex(3'/2Dg(%)51/2)
= EsDg(3) = TDg(X). [
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Properties of Operators 7% and B*

Let Wy, ..., Wy, ... bei.i.d. copies of W.
Proposition

Suppose d < n. Then, for all g € L2 (CY) and for all k > 1,

Th(T) = Eg(W, 2 .. W2 w]/? . w)/?)

and

Bo(z)=E (-1)<g(AizA),
Ic{1,....k}

where A; =[], W,.1/2.
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Properties of Operators 7% and B* (Proof)

e Since $ £ ¥12Wx12 WIRTW1/2 = U-1S12Wx1/2U, where U
is an orthogonal operator, and g is orthogonally invariant, we have

T9(X) = Exg(¥) = Eg(W' 2z W'/?).

@ Orthogonal invariance of g implies the same property of 7 g and,
by induction, of TXg for all k > 1. Then, also by induction,

Tkg() = Eg(W /2 .. W) 2s Wi /2 . w!/?).
o IfIc{1,...,k} with |/| = card(/) = jand A, =], VVi1/27 i

implies that _
T'g(x) = Eg(ATZA)).
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Properties of Operators 7% and B* (Proof)

@ Recall that

k

B5g(5) = (T — 1) g(%) = Z(—n"—f(’;) Tig(s)

j=0

@ Therefore,
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Properties of Operators 7% and B*

Suppose that d < n and that g is continuously differentiable in Cﬂ with
a uniformly bounded derivative Dg. Then

.....

Q Forall ¥ 9,

DT g(X) = T*Dg(X) and DB g(X) = BXDg(X).

B*Dg(%) = DBFg(X)

= ( 3 (—1)’“"'):1/2A,Dg(A7‘ZA,)A721/2>.
Ic{1,...k}
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An Integral Representation of Operator BfDg(X)

@ Linear interpolation between / and W11/2, e W,:/z :
Vi(t) =1+ (W2 1), 5 € [0,1].1 <j < k.

@ Forallj=1,....k,t €[0,1], Vj(t;) € c9.
°

R:=R(t,....t) = Vi(t;)... Vi(t),
Li=L(t,....t) = Vk(t)... Vi(ty) = R,
S:=S(ty,....,t) = L(ty,..., t)XR(ty, ..., &), (t,- .., &) € [0,1]%.
o Let
ot ... k) :=X"2R(t, ..., t)Dg(S(ty, ..., t))L(ts, ..., t)Z /2.
o Let(ty,....t) €{0,1},/:={j:1<j <k ti=1}. Then
o(ty,... tx) = X/2ADg(ATLA)AIL!/2,
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An Integral Representation of Operator BfDg(X)

Proposition

Suppose g € L2(C9) is k + 1 times continuously differentiable function
with uniformly bounded derivatives D/g,j = 1,...,k + 1. Then the
function ¢ is k times continuously differentiable in [0, 1]% and

8 |

K Voko(ty,. .., t) g
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An Integral Representation of Operator BfDg(X)

(Proof)

@ Given a function ¢ : [0, 1] — R, define for 1 < i < k finite
difference operators

Aig(t, ... 1)
= ¢(t1)"'7ti—1717ti+17"'7tk)_¢(t17"')ti—1)07tf—‘,—‘la-'-atk)

@ Then

Av. D= > (=)l ).

(t1 ,...,tk)€{0,1}k

@ It is well known that if ¢ is k times continuously differentiable in

[0, 1], then
Mo(ty,... k)
A
k= / / ot of oo e
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An Integral Representation of Operator BfDg(X)

(Proof)

B*Dg(Y) = DB g(¥)

:E( 3 (—1)k*“'21/2A,Dg(A7‘ZA,)A’;Z1/2>
Ic{1,...k}

= > (=0 lEIpt, )
(tr,..,t)€{0,1}K
=EAq... Agp.

@ Since Dg is k times continuously differentiable and the functions
S(t,..., &), R(t,..., t) are polynomials with respect to t,.. ., l,
the function ¢ is k times continuously differentiable in [0, 1].

@ This implies

1 1 ok
0 (,0(t1,...,tk)
k d
Dg(x) =E _— 2 .
5'Pg(x) /o /o oty ... 0l oty i X € C
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A bound on B*Dg(%)

Suppose that k < d < nandthat g € L (C?) is k + 1 times

continuously differentiable function with uniformly bounded derivatives
Dg,j=1,...,k+ 1. Then, forsome C > 1,

. k/2
|BDg(E)| < O maxt kst IDglle. (IZIF+ v I (€)™
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Bounds on the bias of Dgk(%)

Corollary

Suppose that k +1 < d < nand that g € L(C?) is k + 2 times
continuously differentiable function with uniformly bounded derivatives
Dg,j=1,...,k+ 2. Then, forsome C > 1,

HEzng(i) - DQ(Z)H
a\ (k+1)/2
< G max || Dig| (IZIF2 Vv IED(Z)"

1<j<k+2

If, for some o € (1/2,1),2logn < d < n“and k > 1%, then

IExDgk(¥) - DY(T)| = o(n~'/?).
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Further bound on the bias of Dgx (%)

Suppose g € L2 (C9) is k + 2 times continuously differentiable for
some k < d < n and, for some 3 € (0,1], |Dg||cx+1+5 < oo. In addition,

suppose that for some 6 > 0 o(X) C [5, H Then, for some constant
C>0,

|IExDgk(%) — Dg(T)]

0c?(2/5 g\ (k+1+8)/2
< ck?gg“uogucw(uzu v 1)“3/2\\211( )

n
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Sketch of the proof: bounding partial derivatives

@ To compute %, we derive formulas for partial derivatives of
operator-valued function h(S(t, ..., %)), h = Dg. Recall that

R:=R(t,....t) = Vi(tr) ... Vk(t),
L:=L(ty,.... ) = Vi(t) ... Vi(ty) = R*,
S .= S(t1,...,tk) = L(t1,...,tk)ZR(t1,...,tk).

o Given T={t,,....t, } C{t,... t}, let 978 := W
(similar notations are used for partial derivatives of h(S), etc.).

@ Let D; r be the set of all partitions (Aq,...,A;) of T C {t,..., &}
with non-empty sets A;,i = 1,...,J (partitions with different order
of Aq,...,A; being identical).

@ For A =(Aq,..., Aj) € Djr, set oaS = (0a,S,... 78A/S)-

T
@ Denote D1 := U,":|1 DjT.
@ ForA=(Ay,...,4)) € Dy, setja :=.
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Sketch of the proof: bounding partial derivatives

Lemma

Suppose, for some m < k, h = Dg € L(C%; Bsa(RY)) is m times
continuously differentiable with derivatives D'h,j < m. Then the
function [0,11% > (..., t&) — h(S(t, ..., t)) is m times continuously
differentiable and forany T C {t;,...,t&} with|T| =m

orh(8) = Y D*h(S)(0aS) = Z > Dh(S)(0aS).

AeDT Jj=1 AED] T
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Sketch of the proof: bounding partial derivatives

Denote
5= |W;—I|,i=1,....k.

Lemma

Forall T c {t;,..., &},

k

i

lorAl < TT +55 [10 + .
teT i=1

k
5.
fortl < [T 20 Tt +
teT i=1

k

Oi
lorsi <24 [ 5 [I00+06)%

teT =1
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Sketch of the proof: bounding partial derivatives

Lemma

Suppose that, for some 0 < m < k, h = Dg € L..(C%; Bsa(RY)) is m
times differentiable with uniformly bounded continuous derivatives
Dhj=1,....m. Thenforall T C {t;,..., 4} with|T| =

k
h(S)|| < 2m(k+m+1) Dh | AVE 5;)%m :
197h(S)|| < max [|Dhl ()™ v )E + teHH”
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Sketch of the proof: bounding partial derivatives

Lemma

‘8%(1‘17---,&)’

oty ... 0l
k
< akok(2k+1) ' Kk+1 2h+1.
< 32HE0 max |0gl (VEI v I [T 61 +4)

where 6; .= |W; — I||.
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Sketch of the proof: bound on ||B*Dg(X)||

IB*Dg(X)|| = |PB*g(Z)]|
Hoke(t, ..., t)

<E
- oty ...0ft

‘dﬁ ... diy

k
< gkokEk+) ,nax_ 1D gl (IZIFH v AIZIDE [ 0i(1 4 67)%
<j< .
i=1

< 3kok(2k+1) k+1
<82 max | Dge. (1T v )

k
< (BIW = 11(1+ W = 1])*+)

. ) g\ K/2
<0 max (Digl (=1 vz ()

1<j<k+1
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Part 4.
Asymptotic Efficiency
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Let X, Xy, ..., X, be i.i.d. Gaussian vectors with values in R9, with
EX = 0 and with covariance operator ¥ = E(X ® X) € C¢.

@ Given a smooth function f : R — R and a linear operator
B:RY — RY with ||B||; < 1, estimate (f(X), B) based on
X1 g eeey Xn.

@ More precisely, we are interested in finding asymptotically efficient
estimators of (f(X), B) with \/n-convergence rate in the case
when d = d, — .

@ Suppose d, < n® for some « > 0. Is there s(«) such that for all
s > s(«) and for all functions f of smoothness s, asymptotically
efficient estimation is possible?
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Sample Covariance Operator

o Let .
Si=n") XX
j=1
be the sample covariance based on (X, ..., Xp).
@ Let

Sad = {ZeCi:a‘1/dejald},a>1.

@ If X € Sa4,then

. dy,d
w15~ =1 <o 1211/ 9/ )

and, for all t > 1 with probability at least 1 — e,

-z mn( 2V EV YV L),
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Operator Differentiability

@ Let f e C'(R) and let fl'I()\, 1) be the Loewner kernel:

) o= TOZID s a0y = )
—
® A f(A) is Fréchet differentiable at A =}, ;4 APx with
derivative
Df(AH) = Y (X p)PyHP,.
A peo(A)
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Assumptions and Notations

o Let
o2(X; B) := 2|='/2Df(x; B)£'/?|2.

@ Loss functions. Let £ be the class of functions ¢ : R — R, such
that
e (/(0)=0
o /(—t)=((t),teR
e (is convex and nondecreasing on R
e Forsome ¢ >0, /(t) = O(e‘") as t —

@ Suppose that

o A1.d,>3logn
e A2 forsome a € (0,1), d, < n®
o A3. Forsome s > 1, f € BS (R).
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Efficient Estimation of (f(X), B)

Under assumptions A.1-A.3, there exists an estimator h(3) such that
for all oy > 0

n'/2((h($), B) - (f(Z), B))
su sup|P <Xx;—%(x)|—0
ZGSa’dn,Uf(pZ;B)ZO'O xeﬂg Z{ O-f(z’ B) } ( )
and, forallt € L,
n'/2((h(£), B) - ((X), B))
su Es? — E¢(2)| — 0.
ZGSaﬂn,Gf(p):;B)Zcro > ( Uf(z7 B) > ( )‘
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Efficient Estimation of (f(X), B) : A Lower Bound

Let, forsomes e (1,2], f € B;J(]R{). Suppose d, > 1,a> 1,00 >0
are such that, for some 1 < @ < a and o, > o and for all large
enough n,

{Z € Sady 0t(X; B) > Uo} # 0.
Then, the following bound holds:

2
NEs (Ta(X1,..., Xn) = ((Z), B))
liminf inf sup

2(y.
) Tn ZESa’dn,Uf(Z;B)ZO'O Jf (Z’ B)

>1

il

where the infimum is taken over all sequences of estimators
Tn = Tn(X1,. . ,Xn).
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Lower bound: sketch of the proof

@ Let

tH
Zt = ZO —|— % and Sc7n(zo7 H) = {zt . t 6 [_07 C]},

where
H:= ZODf(Zo; B)Zo

@ For all large enough n,

Sc,n(ZOa H) C Sa,dn N {Z : Jf(za B) > UO}'
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Lower bound: sketch of the proof

@ Consider the following parametric model:
Xi,..., Xy iid. ~ N(0; %), t € [—c,cC].

@ The goal is to estimate the function

o(t) := (f(X1), B).
which is continuously differentiable with derivative

¢'(t) = %(Df(z,; H),B),t € [-c,c].

@ The Fisher information:

In(t) = nl(t) = ;u(on, H) = (57 @ 57 H. H)

—_

_ _ 1 172, ,—1/2
§<Z "HE; 1 H) = *tr(zr1HZt1H):§Hzt /HZ, /Hg‘

Vladimir Koltchinskii (Georgia Tech) Efficiency in Covariance Estimation Liubbenau, March 2018 133/172



Lower bound: sketch of the proof

1
c

( ) for a smooth density mon [—1,1] with
(1) = 7w(=1) =

0and J, = [’ 1
@ Van Trees Inequality: for any estlmator T(Xq,

sup E¢(To(Xi,..., Xn) — o(t))?
te[—c,c]

C
z/ Ee(To(X,. .

—C

..,Xn)7

2 (f o ¢ (O)me() dt)
+Xn) = (1)) me(t)at = S n(t)me(t)at + I,
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Lower bound: sketch of the proof

Denote o2(t) := 02(; B), t € [—c, c]. Then

sup NEs(Ta(X1, ..., Xn) — (f(X), B>)2
TESa0y.01(X:B) 200 o2(%; B)
NE(Th(X1,..., Xn) — @(t))z 1 —ync(f; B; & 09)
= sup 5 2 \oliBa)
te[—c,c] o4(t) 14+ ===
a5
where
3a3||f/HZzOOHBH(1SC + 4azs”f||BS Ilf,H) HBII1+SCS ! + JJ
s—1)/2 >
’Yn,c(f; B; a; 0¢) = vn ; 35 c
1 o, 3&|F}_lIBljc A
300t - vn +
and
6ca’|f|3_|IBI3 24c> @I IIflles, BT
AnlF: Br @) = 117 1Bl N -

n1/2 n(S—1)/2
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Construction of an Asymptotically Efficient Estimator

e If d, < n® for some a € (0,1/2) and s > 1, then the plug-in

estimator (f(Xx), B) is asymptotically efficient with convergence
rate \/n.

@ If d, > n® for some « > 1/2, then the plug-in estimator (f(%), B),
for “generic" smooth functions f has a large bias (larger than
n~1/2) and it is not even /n consistent.

@ In the last case, the crucial problem is to construct an estimator
with a reduced bias.
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Bounds on the Remainder of Differentiation

Lemma

Let S¢(A; H) = f(A+ H) — f(A) — (Df)(A; H) be the remainder of
differentiation. If, for some s € [1,2], f € BS_,(R), then the following
bounds hold:

I1SH(A H)Il < 2°°||fllge,  IIHII®

and

1S¢(A; H) — Se(A H)| < 27°Ifllgs_, (IHI v IIH' 1) IIH — HII.

The proof is based on Littlewood-Paley decomposition of f and on
operator versions of Bernstein inequalities for entire functions of
exponential type (as in the work by Peller (1985, 2006), Aleksandrov
and Peller (2016) on operator Lipschitz and operator differentiable
functions).
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Perturbation Theory: Application to Functions of

Sample Covariance (The Delta Method)

o
(F(X) — f(X), B) = (DF(Z; 5 — X), B) + (S¢(L; % — ¥), B)

© The linear term (Df(%; % — ¥), B) is of the order O(n~'/?) and
n'/2(Df(L; ¥ — ), B) is close in distribution to N(0; 02(%; B)).
@ Forse (1,2, |S¢(%: % - X)|| < [Ifllgs_IIE — X||°, implying that

(SHEE ~ %), B)| < [IB1]ISH(E: &~ D)

— O((%>s/2> — O(n(1=)s/2) — o(n=1/2)
and, similarly,
(EA(E) ~ £(£). B)| = |(ES(%: £ — X). B)| = o(n"?)

provided that s > -, a € (0,1/2). In this case, h(%) = f(%).
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Wishart Operators and Bias Reduction

@ Our next goal is to find an estimator 9(%) of f(X) with a small bias
Esg(X) — f(X) (of the order o(n~'/2)) and such that

n'2((9(%), B) — (Exg(%), B))

is asymptotically normal.

@ To this end, one has to find a sufficiently smooth approximate
solution of the equation

Exg(¥) = f(¥),% € 9.
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Wishart Operators and Bias Reduction

T9(X) =Esg(X)= [ g(V)P(Z;dV),¥ e ¢

g

@ To find an estimator of f(X) with a small bias, one needs to solve

(approximately) the following integral equation (“the Wishart
equation”)
Tg(x) = f(X),x ecl.

@ Bias operator: B:=7T —I.

@ Formally, the solution of the Wishart equation is given by
Neumann series:

9X)=(Z+B) H(Z)=(Z-B+B2—..)(X)
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Wishart Operators and Bias Reduction

@ Given a smooth function f : R — R, define

k k
f(2) =) (—1YBI(Z T)+ > (~1YBIf(

j=0 J=1

@ Then

Exfi(£) — f(Z) = (Z + B)f(T) — f(X) = (—1)kBFHT (D).

@ Asymptotically efficient estimator is h( A) f (%), where k is an
integer such that, for some g € (0,1] <k+1+p5<s.

’1a
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Bootstrap Chain

o
T9(E) =Esg(¥)= | g(V)P(;dV),x e
cd

Trg(¥) = Exg(£®),x e g,
where
Oy 50 =35 5@
is a Markov chain in C¢ with transition probability kernel P.

o Note that >-U+") is the sample covariance based on ni.i.d.
observations ~ N(0; £1)) (conditionally on 50))
@ Conditionally on 30), with a “high probability",

260 - 50 < 20y, /9
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k-th order difference

@ k-th order difference along the Markov chain:

BXf(X) = (T — 1) i <)Tff( )

j=0

—.

° ZI’.‘:O(—1 )"—f(’j?) f(30)) is the k-th order difference of f along the
trajectory of the Bootstrap Chain. For f of smoothness k, it should

be of the order (ﬁ)k.

Vladimir Koltchinskii (Georgia Tech) Efficiency in Covariance Estimation Liubbenau, March 2018 143 /172



A bound on B*f(X)

Suppose that f € BY_ | (R) and that k < d < n. Then, for some C > 1,

k/2
B < C¥Ifll e (IZIF v ”Z”)<%) '
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Bounds on the bias of f(5)

Corollary
Suppose f € BX1(R) and k + 1 < d < n. Then, for some C > 1,

~ (k+1)/2
IB=f(£) — A < CE )i fllgen (1142 v 20) ($)

If, for some o € (1/2,1),2logn < d < n“and k > 1%, then

IExfi(%) — ()] = o(n~"/2).
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“Lifting" Operator D and Reduction to Orthogonally

Invariant Functions

@ Define the following differential operator (“lifting" operator):
Dg(X) := X'/2Dg(x)x!/?

acting on continuously differentiable functions in C4.
@ Suppose f(x) = x¢'(x)
@ Let g(X) := tr(¢(X))
@ g is orthogonally invariant function on Cﬂ
e Dg(x) = /(%)
® Dg(x) = £(¥)
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An Integral Representation for Operator 3%

@ Linear interpolation between / and W11/2, e W,l/z (i.i.d. copies of
W=n"Y",Z®2Z):

Vity) == 1+ §(W2 = 1), 5 € [0,1],1 <j < k.
@ Forallj=1,....k,t €[0,1], Vj(t;) € 9.
o

R:=R(t,....t%) = Vi(t)... Vi(t),
L:=L(t,... t) = Vi(t)... Vi(ty) = R",
S:=8(t,....t) =L(ty,....t0)ZRty, ..., t), (t,..., t) € [0, 1]

o Let

(b, te) = V2R, t)DY(S(t, - t))L(t, ., t) T2,
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An Integral Representation for Operator 3%

Proposition

Suppose g € L2(C9) is k + 1 times continuously differentiable function
with uniformly bounded derivatives D/g,j = 1,...,k + 1. Then the
function ¢ is k times continuously differentiable in [0, 1]% and

8 |

K Voko(ty,. .., t) g
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A bound on B*Dg(%)

Suppose that k < d < nandthat g € L (C?) is k + 1 times

continuously differentiable function with uniformly bounded derivatives
Dg,j=1,...,k+ 1. Then, forsome C > 1,

. k/2
|BDg(E)| < O maxt kst IDglle. (IZIF+ v I (€)™
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Bounds on the bias of Dgk(%)

Corollary

Suppose that k +1 < d < nand that g € L(C?) is k + 2 times
continuously differentiable function with uniformly bounded derivatives
Dg,j=1,...,k+ 2. Then, forsome C > 1,

HEzng(i) - DQ(Z)H
a\ (k+1)/2
< G max || Dig| (IZIF2 Vv IED(Z)"

1<j<k+2

If, for some o € (1/2,1),2logn < d < n“and k > 1%, then

IExDgk(¥) - DY(T)| = o(n~'/?).
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Further bounds on the bias of Dgk(%)

Suppose g € L2 (C9) is k + 2 times continuously differentiable for
some k < d < n and, for some 3 € (0,1], |Dg||cx+1+5 < oo. In addition,

suppose that for some 6 > 0 o(X) C [5, H Then, for some constant
C>0,

|IExDgk(%) — Dg(T)]

0c?(2/5 g\ (k+1+8)/2
< ck?gg“uogucw(uzu v 1)“3/2\\211( )

n
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Further details of the proof

@ We use the representation

(Dg(%) — Dg(%), > <Dng( )(= - X),B)
+ S (T -5) —ES, (X -%) + <Eng(f) Dg(%), B),
where 04 (X) := (Dgk(X), B>
@ We control the bias (EDgx(%) — Dg(X), B) as follows:
. (k+1+8)/2
(EDgu(E) - Pg(®). B) = O %) — o(n"?)

provided that d < n*,a € (0,1)and s > k+1+ 3> .
@ We also need to prove concentration of

S (L% — %) —ES, (L5 - ).
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Lipschitz Condition for the Remainder of Taylor
Expansion of Dgk(X)

Suppose that, for some k < d, g is k + 2 times continuously
differentiable and, for some /5 € (0,1], || Dg|| ck+1+5 < oo. Suppose also

that g € L (C9), d < n/2 and that, for some § € (0,1), o(X) C [5, H
Denote

Yok(Ziu) := (JZ]| v uv D)2y uP),u>0,8€0,1],k > 1.
Then, for some constant C > 1 and for all H, H' € Bsa(R)
ISpgi (i H') — Spg, (X H)|

2log?(2/6
< Ty ng) s (I IHIDIH — .
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Sketch of the proof of the Lemma

@ Letv: R — R be a C* function such that:

0 <y(u) <Vu,u>0,y(u)=Vu,ue [57%}7

o 2 log(2/6
supp(1) < [5.5] and I gy, 5 22,

1

@ For instance, one can take v(u) := A(u/d)/u(1 — \(6u/2)), where
A is a C* non-decreasing function with values in [0, 1],
AMu)y=0,u<1/2and \(u) =1,u>1.
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Further Integral Representations

°
At bk S1,82) ==
(Z(s1,82))R(t, . -, tk)DQ(L(H,---,Tk)i(SnSz)R(fn---Jk))
L(t,. ... t)v(E(s1,52))
where
Y(81,8) =X+ StH+ sp(H' — H),sy,8 € R.
@ Note that

o(t, ..., ) =o(t,...,%,0,0).
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Further Integral Representations

o
Bk(X) := B*Dg(X), Di(X):=Dgk(X)
o
k
Di(Z) =) (-1YB(%)
j=0
o

! Toke(ty,... . 14,0,0)
BK(Z)._IE/O /0 T PR
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Further Integral Representations

Sg, (% H') — Sg,(X; H)
=DBk(X+ H;H" — H) — DB((X; H' — H) + Sg, (X + H; H' — H)

DB(( + H; H' — H) — DB(Z; H — H)

E/ / ak+1¢t17 . atka1’0)
a oty ...0t0So

_ ak+1¢(t17’-'7tk7070)
Oty ...0t0So

}dﬁ...dtk
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Further Integral Representations

S, (X + H; H —

_E/ / / ak+1¢t1,...,tk,1732)
at1 atk@Sg
8k+1¢(t1,...,tk71’0)
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@ The rest of the proof is based on bounding the partial derivatives
involved in the integral representations, such as, for instance,

gty 4,1,0) 9 Te(H,...,1%,0,0)
oty ...0t0s oty ...0t0so

log®(2/6
< O pg) curea (IS + N2V 1)

K
[T o0+ 62 *SUHI v IHIDIH ~ HI,
=1

where 6; == ||W; — I||.
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Concentration of the Remainder: A More General
Version

Assume that, for all X € C(H), H, H' € Bsa(H),

[Sh(E: H') — Sn(E3 H)| < (s 1] v [HDIH = HI,

where 0 < § — n(X; ¢) is a nondecreasing function of the following
form:

n(X;0) :=n1 (X))o \/ .. \/nm(z)dam,

for given nonnegative functions 7y, ..., nm, on C(H) and given positive
numbers ay, ... am.

v
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Concentration of the Remainder: A More General
Version

For all t > 1 with probability at least 1 — e,

|Sh(Z; 5 — X) —ESp(T; 5 — X)|

o 2035005 0) (VT + /A D)V &

where

DI (CEAVLC2AVVEAVENE
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Concentration Inequality for the Remainder of Taylor
Expansion of (Dgk(X), B)

Lemma

With probability at least1 — e,

S0 (52 — ) —ESy, (%2 — T

< C¥*Ri 5(9: T By k(T: 8n(%; 1) <\/HT+\/6n (% t) HZH\/z,
where
on(=i ) = ||| (ﬂ V \/Z V f,)

A5(9: Z: B) := |1Bll111Dgli g (11 V IE7T ) log?(UIZI v I£77))-

Vladimir Koltchinskii (Georgia Tech) Efficiency in Covariance Estimation Liubbenau, March 2018 162 /172



Normal Approximation of (Dgk(¥) — Dg(X), B)

@ Recall that

(Dg(%) - Dg(X). B) = (DDg(E)(E ~ £), B)
b S5 T) - BSu(TiF - )+ (EDGH(E) - Da(). B

@ It follows from the concentration bound on the remainder that, for
d = o(n),

S0 (52 — ) —ES, (T2 — 5)| = 0p(n™"/?)
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Normal Approximation of (Dgk(¥) — Dg(X), B)

@ By the bound on the bias,

d (k+14-8)/2
) =o(n1/?)

|(EDgx(%) — Dg(X), B)| = O(n
provided that d < n*,a € (0,1)and s > k + 1+ 8 > .
@ Thus
(Dgk(%) — DY(X), B) = (DD (£)( — X), B) + op(n~/?),

and asymptotic normality of n'/2(DDgx(£)(% — £), B) follows
from Berry-Esseen bound.

Vladimir Koltchinskii (Georgia Tech) Efficiency in Covariance Estimation Liubbenau, March 2018 164 /172



Efficient Estimation of Linear Functionals of Principal

Components (Koltchinskii, Loffler and Nickl (2017))

° M%) =[]
@ \(X) eigenvalue of multiplicity 1

® g(X) = dist(A(X); o(X) \ {A(X)})

@ ¢(X) eigenvector of X corresponding to A(X), ||0(X)| = 1 (the top
principal component)

@ Problem: given u € H, estimate ((X), u) based on i.i.d.
observations Xj,..., X, ~ N(0; X)
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Efficient Estimation of Linear Functionals of Principal

Components

® X =2 reo(x) AP
0 C(X) = X rco(m)aga) )\—)1\():) P
0 o2(%) = |yzH<ZC(z)u, C(Z)u>

@ Forr>1,a> 1,05 > 0, denote
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Efficient Estimation of Linear Functionals: Lower
Bound

Letr>1,a> 1,0(2) > 0. Suppose, for some r' < r,a < aand oy > oo

S(r';d)n{T: ou(X) > og} # 0.
Then

2
e

liminf inf sup =1,
Th xe8(r;a),0u(X)>00 ULZI(Z)

n

where the infimum is taken over all sequences of estimators
Th = Tn(Xh- = e aXn)‘
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Efficient Estimation of Linear Functionals: Asymptotic
Normality

Suppose a > 1,03 > 0 and r, = o(n) as n — occ. There exists a

sequence of estimators 0, = 0,(X, ..., X,) € H such that
n'/2((0n, u) — (O(%), 1))
sup sup ]P’z{ < x} —d(x)|—0
Y eS(rm;a),0u(X)>g XER ou(X)
and, foralll € L,
n'/2( (0, u) — (%), 1))
sup Ez€< ) — EK(Z)’ —0
TES(m;a),0u(E)>ag ou(X)

as n — oo.
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Plug-in estimator 6(%,)

Theorem (Koltchinskii and Lounici (2016))

Suppose r, = o(n). Then

ZES(’"?:)li?u(i)zcro R PZ{CH(Z; u) < X} - q’(x)‘ — 0as N — oo,
where
Ca(S: 1) = ”1/2<<9(in)7 u) — dn()(6(X), u>)
ou(X)
and

—

Moreover, a2(X) = 1 + by(X) with [by(5)] = ng(g)r(%
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Plug-in estimator 6(%,)

@ (9(,), u) “concentrates around" d,(X)(0(X), u)
@ Its “bias" (dn(X) — 1)(4(X), u) could be as large as
e If /n < r, = o(n), the bias is too large.
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Bias Reduction (Koltchinskii and Lounici (2016))

@ Suppose n =21’

e (M 5 are sample covariances based on two sub-samples of
size

@ by:= (1), 0(£@)) —1

@ For some 6, — 0, SUPscs(r,:a) ]P’z{|i3,, — bpja(¥)] > \5}} -0

@ Letd, :=1/1+ b,andd,:=6(>"))/d,. Then, under the
assumption r, = o(n),

. { V3 (. u) = 6(5), 0)) < x}—d> ”

ou(X) -

sup sup
Ye8(m;a),ou(X)>09 XER
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Construction of Asymptotically Efficient Estimators 4,.

@ Recall that r, = o(n)

@ Let m = m, be such that m, = o(n) and r, = o(mj).

@ Split the sample Xj, ..., X; into three sub-samples, the first one of
size ’ = n— 2m and two others of size m each and construct
three sample covariances, 3(1), 3 and 5, based on each of
the sub-samples.

@ Finally, define A A
-~ (0(xM),6(x®))

T (0(E@),0(50))1/2

n-—

and
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