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Basic setting of online learning

Parameters: finite set of actions [n] and number of rounds T ≥ n.
Protocol: For each round t ∈ [T ], player chooses it ∈ [n] and
simultaneously adversary chooses a loss function `t : [n]→ [0, 1].

Feedback model: In the full information game the player observes
the complete loss function `t . In the bandit game the player only
observes her own loss `t(it).

Performance measure: The regret is the difference between the
player’s accumulated loss and the minimum loss she could have
obtained had she known all the adversary’s choices:

RT := E
T∑
t=1

`t(it)− min
i∈[n]

E
T∑
t=1

`t(i) =: LT − min
i∈[n]

Li ,T .

What’s it about? Full information game is about hedging, while
bandit game also features the fundamental tension between
exploration and exploitation.
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Applications

These challenges (scarce feedback, robustness to non i.i.d. data,
exploration vs exploitation) are crucial components of many
practical problems, hence the success of online learning and bandit
theory!

AI for games Brain computer interface Medical trials

Packets routing Ad placement Hyperparameter opt
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Hedging with multiplicative weights [Freund and Schapire
96, Littlestone and Warmuth 94, Vovk 90]

Assume for simplicity `t(i) ∈ {0, 1}. MW keeps weights wi ,t for
each action, plays from normalized weights, and update as follows:

wi ,t+1 = (1− η`t(i))wi ,t .

Key insight: if i∗ does not make a mistake on round t then we
get “closer” to δi∗ (i.e., we learn), and otherwise we might get
confused but i∗ had to pay for it.

Theorem
For any η ∈ [0, 1/2] and i ∈ [n],

LT ≤ (1 + η)Li ,T +
log(n)

η
.

By optimizing η one gets RT ≤ 2
√
T log(n).

Note that Ω(
√
T log(n)) is the best one could hope for.
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Potential based analysis
Define ψ(t) =

∑n
i=1 wi ,t . One has:

ψ(t + 1) =
n∑

i=1

(1− η`t(i))wi ,t = ψ(t)(1− η〈pt , `t〉) ,

so that (since ψ(1) = n):

ψ(T + 1) = n
T∏
t=1

(1− η〈pt , `t〉) ≤ n exp(−ηLT ) .

On the other hand ψ(T + 1) ≥ wi ,T+1 = (1− η)Li,T , and thus:

ηLT − log

(
1

1− η

)
Li ,T ≤ log(n) ,

and the proof is concluded by log
(

1
1−η

)
≤ η + η2 for η ∈ [0, 1/2].

The mirror descent framework (Lec. 2) will give a principled
approach to derive both the MW algorithm and its analysis.
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A principled game-theoretic approach to regret analysis
[Abernethy, Warmuth, Yellin 2008; Rakhlin, Sridharan, Tewari 2010; B., Dekel, Koren, Peres 2015]

Let us focus on an oblivious adversary, that is he chooses
`1, . . . , `T ∈ L at the beginning of the game.

A deterministic player’s strategy is specified by a sequence of
operators a1, . . . , aT , where in the full information case
as : ([0, 1]n)s−1 → K, and in the bandit case as : Rs−1 → K.
Denote A the set of such sequences of operators.

Write RT (a, `) for the regret of playing strategy a ∈ A against loss
sequence ` ∈ LT . Now we are interested in:

inf
µ∈∆(A)

sup
`∈LT

Ea∼µRT (a, `) = sup
ν∈∆(LT )

inf
µ∈∆(A)

E`∼ν,a∼µRT (a, `) ,

where the swap of min and max comes from Sion’s minimax
theorem.
In other words we can study the minimax regret by designing a
strategy for a Bayesian scenario where ` ∼ ν and ν is known.
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A Doob strategy [B., Dekel, Koren, Peres 2015]

Since we known ν, we also know the distribution of i∗. In fact as
we make observations, we can update our knowledge of i∗ with the
posterior distribution. Denote Et for this posterior distribution
(e.g., in full information Et := E[·|`1, . . . , `t−1]).

By convexity of ∆([n]) =: ∆n it is natural to consider playing from:

pt := Et δi∗ .

In other words we are playing from the posterior distribution of the
optimum, a kind of “probability matching”. This is also called
Thompson Sampling.
The regret of this strategy can be controlled via the movement of
this Doob martingale (recall ‖`t‖∞ ≤ 1)

E
T∑
t=1

〈pt − δi∗ , `t〉 = E
T∑
t=1

〈pt − pt+1, `t〉 ≤ E
T∑
t=1

‖pt − pt+1‖1 .
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How stable is a martingale?

Question: is a martingale in ∆n “stable”? Following famous
inequality is a possible answer (proof on the next slide):

E
T∑
t=1

‖pt − pt+1‖2
1 ≤ 2 log(n) .

This yields by Cauchy-Schwarz:

E
T∑
t=1

‖pt − pt+1‖1 ≤

√√√√T × E
T∑
t=1

‖pt − pt+1‖2
1 ≤

√
2T log(n) .

Thus we have recovered the regret bound of MW (in fact with an
optimal constant) by a purely geometric argument!
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Entropic proof of cotype for `n1

E
T∑
t=1

‖pt − pt+1‖2
1 ≤ 2 log(n) .

By Pinsker’s inequality:

1

2
‖pt − pt+1‖2

1 ≤ Ent(pt+1; pt) = Entt(i
∗|`t ; i∗) .

Now essentially by definition one has (recall that
I (X ,Y ) = H(X )− H(X |Y ) = EYEnt(pX |Y ; pX )):

E`tEntt(i∗|`t ; i∗) = Ht(i
∗)− Ht+1(i∗) .

Proof concluded by telescopic sum and maximal entropy being
log(n).
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A more general story: M-cotype

Let us generalize the setting. In online linear optimization, the
player plays xt ∈ K ⊂ Rn, and the adversary plays `t ∈ L ⊂ Rn.
We assume that there is a norm ‖ · ‖ such that ‖xt‖ ≤ 1 and
‖`t‖∗ ≤ 1.

The same game-theoretic argument goes through, and
denoting x∗ = argminx∈K

∑T
t=1〈`t , x〉, xt := Etx

∗, one has

E
T∑
t=1

〈`t , xt − x∗〉 = E
T∑
t=1

〈`t , xt − xt+1〉 ≤ E
T∑
t=1

‖xt − xt+1‖ .

The norm ‖ · ‖ has M-cotype (C , q) if for any martingale (xt) one
has: (

E
T∑
t=1

‖xt − xt+1‖q
)1/q

≤ C E‖xT+1‖ .

In particular this gives a regret in C T 1−1/q.
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‖`t‖∗ ≤ 1. The same game-theoretic argument goes through, and
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∗, one has
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A lower bound via M-type of the dual
Interestingly the analysis via cotype is tight in the following sense.

First if M-cotype (C , q) holds for ‖ · ‖, then so does M-type
(C ′, p) for ‖ · ‖∗ (where p is the conjugate of q), i.e., for any
martingale difference sequence (`t) one has

E

∥∥∥∥∥
T∑
t=1

`t

∥∥∥∥∥
∗

≤ C ′

(
E

T∑
t=1

‖`t‖p∗

)1/p

.

Moreover one can show that the violation of type/cotype can be
witnessed by a martingale with unit norm increments. Thus if
M-cotype (C , q) fails for ‖ · ‖, there must exist a martingale
difference sequence (`t) with ‖`t‖∗ = 1 that violates the above
inequality. In particular:

E
T∑
t=1

〈`t , xt − x∗〉 = E
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T∑
t=1

`t
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∗

≥ C ′T 1/p = C ′T 1−1/q .

Important: these are “dimension-free arguments”, if one brings
the dimension in the bounds then the story changes.



A lower bound via M-type of the dual
Interestingly the analysis via cotype is tight in the following sense.
First if M-cotype (C , q) holds for ‖ · ‖, then so does M-type
(C ′, p) for ‖ · ‖∗ (where p is the conjugate of q), i.e., for any
martingale difference sequence (`t) one has

E

∥∥∥∥∥
T∑
t=1

`t

∥∥∥∥∥
∗

≤ C ′

(
E

T∑
t=1

‖`t‖p∗

)1/p

.

Moreover one can show that the violation of type/cotype can be
witnessed by a martingale with unit norm increments. Thus if
M-cotype (C , q) fails for ‖ · ‖, there must exist a martingale
difference sequence (`t) with ‖`t‖∗ = 1 that violates the above
inequality. In particular:

E
T∑
t=1

〈`t , xt − x∗〉 = E

∥∥∥∥∥
T∑
t=1

`t

∥∥∥∥∥
∗

≥ C ′T 1/p = C ′T 1−1/q .

Important: these are “dimension-free arguments”, if one brings
the dimension in the bounds then the story changes.



A lower bound via M-type of the dual
Interestingly the analysis via cotype is tight in the following sense.
First if M-cotype (C , q) holds for ‖ · ‖, then so does M-type
(C ′, p) for ‖ · ‖∗ (where p is the conjugate of q), i.e., for any
martingale difference sequence (`t) one has

E

∥∥∥∥∥
T∑
t=1

`t

∥∥∥∥∥
∗

≤ C ′

(
E

T∑
t=1

‖`t‖p∗

)1/p

.

Moreover one can show that the violation of type/cotype can be
witnessed by a martingale with unit norm increments. Thus if
M-cotype (C , q) fails for ‖ · ‖, there must exist a martingale
difference sequence (`t) with ‖`t‖∗ = 1 that violates the above
inequality.

In particular:

E
T∑
t=1

〈`t , xt − x∗〉 = E

∥∥∥∥∥
T∑
t=1

`t

∥∥∥∥∥
∗

≥ C ′T 1/p = C ′T 1−1/q .

Important: these are “dimension-free arguments”, if one brings
the dimension in the bounds then the story changes.



A lower bound via M-type of the dual
Interestingly the analysis via cotype is tight in the following sense.
First if M-cotype (C , q) holds for ‖ · ‖, then so does M-type
(C ′, p) for ‖ · ‖∗ (where p is the conjugate of q), i.e., for any
martingale difference sequence (`t) one has

E

∥∥∥∥∥
T∑
t=1

`t

∥∥∥∥∥
∗

≤ C ′

(
E

T∑
t=1

‖`t‖p∗

)1/p

.

Moreover one can show that the violation of type/cotype can be
witnessed by a martingale with unit norm increments. Thus if
M-cotype (C , q) fails for ‖ · ‖, there must exist a martingale
difference sequence (`t) with ‖`t‖∗ = 1 that violates the above
inequality. In particular:

E
T∑
t=1

〈`t , xt − x∗〉 = E

∥∥∥∥∥
T∑
t=1

`t

∥∥∥∥∥
∗

≥ C ′T 1/p = C ′T 1−1/q .

Important: these are “dimension-free arguments”, if one brings
the dimension in the bounds then the story changes.



A lower bound via M-type of the dual
Interestingly the analysis via cotype is tight in the following sense.
First if M-cotype (C , q) holds for ‖ · ‖, then so does M-type
(C ′, p) for ‖ · ‖∗ (where p is the conjugate of q), i.e., for any
martingale difference sequence (`t) one has

E

∥∥∥∥∥
T∑
t=1

`t

∥∥∥∥∥
∗

≤ C ′

(
E

T∑
t=1

‖`t‖p∗

)1/p

.

Moreover one can show that the violation of type/cotype can be
witnessed by a martingale with unit norm increments. Thus if
M-cotype (C , q) fails for ‖ · ‖, there must exist a martingale
difference sequence (`t) with ‖`t‖∗ = 1 that violates the above
inequality. In particular:

E
T∑
t=1

〈`t , xt − x∗〉 = E

∥∥∥∥∥
T∑
t=1

`t

∥∥∥∥∥
∗

≥ C ′T 1/p = C ′T 1−1/q .

Important: these are “dimension-free arguments”, if one brings
the dimension in the bounds then the story changes.



What about the bandit game? [Russo, Van Roy 2014]
So far we only talked about the hedging aspect of the problem. In
particular for the full information game the “learning” part happens
automatically. This is captured by the fact that the variation in
the posterior is lower bounded by the instantaneous regret:

Et〈pt − δi∗ , `t〉 = Et〈pt − pt+1, `t〉 ≤ Et‖pt − pt+1‖1 .

In the bandit game the first equality is not true anymore and thus
the inequality does not hold a priori. In fact this is the whole
difficulty: learning is now costly because of the tradeoff between
exploration and exploitation.
Importantly note that the cotype inequality for `1 is proved by
relating the `1 variation squared to the mutual information
between OPT and the feedback. Thus a weaker inequality that
would suffice is:

Et〈pt − δi∗ , `t〉 ≤ C
√

It(i∗, (it , `t(it))),

which would lead to a regret in C
√
T log(n).



What about the bandit game? [Russo, Van Roy 2014]
So far we only talked about the hedging aspect of the problem. In
particular for the full information game the “learning” part happens
automatically. This is captured by the fact that the variation in
the posterior is lower bounded by the instantaneous regret:

Et〈pt − δi∗ , `t〉 = Et〈pt − pt+1, `t〉 ≤ Et‖pt − pt+1‖1 .

In the bandit game the first equality is not true anymore and thus
the inequality does not hold a priori. In fact this is the whole
difficulty: learning is now costly because of the tradeoff between
exploration and exploitation.

Importantly note that the cotype inequality for `1 is proved by
relating the `1 variation squared to the mutual information
between OPT and the feedback. Thus a weaker inequality that
would suffice is:

Et〈pt − δi∗ , `t〉 ≤ C
√

It(i∗, (it , `t(it))),

which would lead to a regret in C
√
T log(n).



What about the bandit game? [Russo, Van Roy 2014]
So far we only talked about the hedging aspect of the problem. In
particular for the full information game the “learning” part happens
automatically. This is captured by the fact that the variation in
the posterior is lower bounded by the instantaneous regret:

Et〈pt − δi∗ , `t〉 = Et〈pt − pt+1, `t〉 ≤ Et‖pt − pt+1‖1 .

In the bandit game the first equality is not true anymore and thus
the inequality does not hold a priori. In fact this is the whole
difficulty: learning is now costly because of the tradeoff between
exploration and exploitation.
Importantly note that the cotype inequality for `1 is proved by
relating the `1 variation squared to the mutual information
between OPT and the feedback. Thus a weaker inequality that
would suffice is:

Et〈pt − δi∗ , `t〉 ≤ C
√
It(i∗, (it , `t(it))),

which would lead to a regret in C
√

T log(n).



The Russo-Van Roy analysis
Let ¯̀

t(i) = Et`t(i) and ¯̀
t(i , j) = Et(`t(i)|i∗ = j). Then

Et〈pt − δi∗ , `t〉 =
∑
i

pt(i)(¯̀
t(i)− ¯̀

t(i , i)) ,

and

It((it , `t(it)), i∗) =
∑
i ,j

pt(i)pt(j)Ent(Lt(`t(i)|i∗ = j)‖Lt(`t(i)))

Now using Cauchy-Schwarz the instantaneous regret is bounded by√
n
∑
i

pt(i)2(¯̀
t(i)− ¯̀

t(i , i))2 ≤
√
n
∑
i ,j

pt(i)pt(j)(¯̀
t(i)− ¯̀

t(i , j))2 .

Pinsker’s inequality gives (using ‖`t‖∞ ≤ 1):

(¯̀
t(i)− ¯̀

t(i , j))2 ≤ Ent(Lt(`t(i)|i∗ = j)‖Lt(`t(i))) ,

Thus one obtains

Et〈pt − δi∗ , `t〉 ≤
√

n It((it , `t(it)), i∗) .
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