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Online combinatorial optimization

Parameters: action set A ⊂ {a ∈ {0, 1}n : ‖a‖1 = m}, number of
rounds T .

Protocol: For each round t ∈ [T ], player chooses at ∈ A and
simultaneously adversary chooses a loss function `t ∈ [0, 1]n. Loss
suffered is `t · at .
Feedback model: In the full information game the player observes
the complete loss function `t . In the bandit game the player only
observes her own loss `t · at . In the semi-bandit game one observes
at � `t .

Performance measure: The regret is the difference between the
player’s accumulated loss and the minimum loss she could have
obtained had she known all the adversary’s choices:

RT := E
T∑
t=1

`t · at −min
a∈A

E
T∑
t=1

`t · a .
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Mirror descent and MW are now different!

Playing MW on A and accounting for the scale of the losses and
the size of the action set one gets a
O(m

√
m log(n/m)T ) = Õ(m3/2

√
T )-regret.

However playing mirror descent with the negentropy regularizer on
the set conv(A) gives a better bound! Indeed the variance term is
controlled by m, while one can easily check that the radius term is
controlled by m log(n/m), and thus one obtains a Õ(m

√
T )-regret.

This was first noticed in [Koolen, Warmuth, Kivinen 2010], and
both phenomenon were shown to be “inherent” in [Audibert, B.,
Lugosi 2011] (in the sense that there is a lower bound of
Ω(m3/2

√
T ) for MW with any learning rate, and that Ω(m

√
T ) is

a lower bound for all algorithms).
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Semi-bandit [Audibert, B., Lugosi 2011, 2014]

Denote vt = Etat ∈ conv(A). A natural unbiased estimator in this
context is given by: ˜̀

t(i) =
`t(i)at(i)

vt(i)
.

It is an easy exercise to show that the variance term for this
estimator is ≤ n, which leads to an overall regret of Õ(

√
nmT ).

Notice that the gap between full information and semi-bandit is√
n/m, which makes sense (and is optimal).
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A tentative bandit estimator [Dani, Hayes, Kakade 2008]
DHK08 proposed the following (beautiful) unbiased estimator with
bandit information:˜̀

t = Σ−1
t ata

>
t `t where Σt = Ea∼pt (aa

>).

Amazingly, the variance in MW is automatically controlled:

E(Ea∼pt (
˜̀>
t a)2) = E˜̀>t Σt

˜̀
t ≤ m2Ea>t Σ−1

t at = m2ETr(Σ−1
t atat) = m2n .

This suggests a regret in Õ(m
√
nmT ), which is in fact optimal

([Koren et al 2017]). Note that this extra factor m suggests that
for bandit it is enough to consider the normalization `t · at ≤ 1,
and we focus now on this case.

However there is one small issue: this estimator can take negative
values, and thus the “well-conditionning” property of the entropic
regularizer is not automatically verified! Resolving this issue will
take us in the territory of self-concordant barriers. But first, can
we gain some confidence that the claimed bound
O(
√

n log(|A|)T ) is correct?
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Back to the information theoretic argument
Assume A = {a1, . . . , a|A|}. Recall from Lecture 1 that Thompson
Sampling satisfies∑

i

pt(i)(¯̀
t(i)− ¯̀

t(i , i)) ≤
√

C
∑
i ,j

pt(i)pt(j)(¯̀
t(i , j)− ¯̀

t(i))2

⇒ RT ≤
√
C T log(|A|)/2,

where ¯̀
t(i) = Et`t(i) and ¯̀

t(i , j) = Et(`t(i)|i∗ = j).

Writing ¯̀
t(i) = a>i

¯̀
t , ¯̀

t(i , j) = a>i
¯̀j
t , and

(Mi ,j) =
(√

pt(i)pt(j)a
>
i (¯̀

t − ¯̀j
t)
)

we want to show that

Tr(M) ≤
√
C‖M‖F .

Using the eigenvalue formula for the trace and the Frobenius norm
one can see that Tr(M)2 ≤ rank(M)‖M‖2

F . Moreover the rank of
M is at most n since M = UV> where U,V ∈ R|A|×n (the i th row
of U is

√
pt(i)ai and for V it is

√
pt(i)(¯̀

t − ¯̀i
t)).
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Bandit linear optimization
We now come back to the general online linear optimization
setting: the player plays in a convex body K ⊂ Rn and the
adversary plays in K ◦ = {` : |` · x | ≤ 1, ∀x ∈ K}. An important
point we have ignored so far but which matters for bandit feedback
is the sampling scheme: this is a map p : K → ∆(K ) such that if
MD recommends x ∈ K then one plays at random from p(x).

Observe that the MD-variance term for ˜̀t = Σ−1
t (at − xt)a

>
t `t is:

E[(‖˜̀t‖∗xt )2] ≤ E[(‖Σ−1
t (at − xt)‖∗xt )

2]

= E(at − xt)
>Σ−1

t ∇2Φ(xt)
−1Σ−1

t (at − xt)

= E Tr(∇2Φ(xt)
−1Σ−1

t ) ,

where the last equality follows from using cyclic invariance of the
trace and E[(at − xt)(at − xt)

>|xt ] = Σ(xt).
Notice that Σ−1

t has to explode when xt tends to an extremal
point of K , and thus in turns ∇2Φ(xt) would also have to explode
to hope to compensate in the variance. This makes the
well-conditionning problem more acute.
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A small detour: Interior Point Methods
Barrier method: given Φ : int(K )→ R such that Φ(x)→ +∞ as
x → ∂K ,

x(t) = argmin
x∈Rn

tc · x + Φ(x), t ≥ 0

Interior point method: From x(t) to x(t ′), t ′ > t, via Newton’s
method (Karmakar 1984). Smoothness of barrier’s Hessian is
critical, Nesterov and Nemirovski introduced the notion of a
self-concordant function:

∇3Φ(x)[h, h, h] ≤ 2(∇2Φ(x)[h, h])3/2. (1)

To control the rate at which t can be increased, one needs ν-self
concordance:

∇Φ(x)[h] ≤
√
ν · ∇2Φ(x)[h, h]. (2)

Theorem (Nesterov and Nemirovski 1989)

∃ a O(n)-s.c.b. For K = [−1, 1]n any ν-s.c.b. satisfies ν ≥ n.
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tc · x + Φ(x), t ≥ 0
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Basic properties of self-concordant barriers

Theorem

1. If Φ is ν-self-concordant then for any x , y ∈ int(K ),

Φ(y)− Φ(x) ≤ ν log

(
1

1− πx(y)

)
,

where πx(y) is the Minkowski gauge, i.e.,
πx(y) = inf{t > 0 : x + 1

t (y − x) ∈ K}.
2. Φ is self-concordant if and only if Φ∗ is self-concordant.

3. If Φ is self-concordant then for any x ∈ int(K) and h such
that ‖h‖x < 1 and x + h ∈ int(K ),

DΦ(x + h, x) ≤ ‖h‖2
x

1− ‖h‖x
.

4. If Φ is a self-concordant barrier then for any x ∈ int(K ),
{x + h : ‖h‖x ≤ 1} ⊂ K .



Abernethy-Hazan-Rakhlin sampling scheme

Given a point x ∈ int(K) let p(x) be uniform on the boundary of
the Dikin ellipsoid {x + h : ‖h‖x ≤ 1} (this is valid by property 4).

Another description of p is as follows: let U be uniform on the
n − 1 dimensional sphere {u ∈ Rn : |u| = 1} and
X = x +∇2Φ(x)−1/2U, then X has law p(x). In particular with
this description we readily see that Σ(x) = 1

n∇
2Φ(x)−1 (since

E UU> = 1
n In).

We can now bound (almost surely) the dual local norm of the loss
estimator as follows (we write at = xt +∇2Φ(x)−1/2ut)

‖˜̀t‖∗xt ≤ ‖Σ(xt)
−1(at − xt)‖∗xt = n‖∇2Φ(xt)

1/2ut‖∗xt = n|ut | = n.

In particular we get the well-conditioning as soon as η ≤ 1/n (by
property 3), and the regret bound is of the form (using property 1)
ν log(T )/η + n2η, that is Õ(n

√
νT ).
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The entropic barrier
Canonical exponential family on K : {pθ, θ ∈ Rn} where

dpθ
dx

=
1

Z (θ)
exp(〈θ, x〉)1{x ∈ K}.

For x ∈ int(K ) let θ(x) be such that EX∼pθ(x)
X = x .

Theorem (B. and Eldan 2015)

e : x 7→ −H(pθ(x)) is a (1 + o(1))n-s.c.b.

Moreover it gives a regret for BLO in Õ(n
√
T ).

Proof.
(i)

self-concordance is invariant by Fenchel duality

(ii)

∇k
e
∗(x) = EX∼pθ(x)

(X − EX )⊗k for k ∈ {1, 2, 3}.

(iii)

X log-concave

⇒ E(X − EX )⊗3[h, h, h] ≤ 2
(
E(X − EX )⊗2[h, h]

)3/2

(iv)

Brunn-Minkowski ⇒ “sub-CLT” for pθ ⇒ ν-s.c (bit more
involved than (i)-(ii)-(iii))
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(iv) in a nutshell

∇e(x)[h] ≤
√
ν · ∇2

e(x)[h, h]

⇔ [∇2
e(x)]−1[∇e(x),∇e(x)] ≤ ν

⇔ Cov(pθ)[θ, θ] ≤ ν

⇔ Var(Y ) ≤ ν

|θ|2
where Y = 〈X , θ/|θ|〉,X ∼ pθ

Let u be the log-density of Y and v the log-marginal of the
uniform measure on K in the direction θ/|θ|, that is
u(y) = v(y) + y |θ|+ cst.
By Brunn-Minkowski v ′′ ≤ − 1

n (v ′)2 and so

u′′ ≤ −1

n
(u′ − |θ|)2,

which implies for any y close enough to the maximum y0 of u,

u(y) ≤ −|y − y0|2

2n/|θ|2
+ cst.
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Beyond BLO: Bandit Convex Optimization [Flaxman,
Kalai, McMahan 2004; Kleinberg 2004]

We now assume that the adversary plays a Lipschitz convex
function `t : K → [0, 1].

It turns out that we might as well assume that the adversary plays
the linear function ∇`t(xt) in the sense that:

`t(xt)− `t(x) ≤ ∇`t(xt) · (xt − x) .

In particular online convex optimization with full information
simply reduces to online linear optimization.

However with bandit feedback the scenario becomes different:
given access to a value of the function, can we give an unbiased
estimator with low variance of the gradient?
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BCO via small perturbations

Say that given `t(at) with at ∼ pt(xt) we obtain g̃t such that
Et g̃t = ∇`t(xt), then we have:

E
T∑
t=1

(`t(at)− `t(x)) ≤ E
T∑
t=1

(`t(xt)− `t(x) + ‖at − xt‖)

≤ E
T∑
t=1

(∇`t(xt) · (xt − x) + ‖at − xt‖)

≤ E
T∑
t=1

(g̃t · (xt − x) + ‖at − xt‖) .

Using mirror descent on g̃t we are left with controlling E‖g̃t‖2.

Question: how to get a gradient estimate at a point x with a value
function estimate at a small perturbation of x? Answer:
divergence theorem!
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One-point gradient estimator

Lemma
Let f : Rn → R be a differentiable function, B the unit ball in Rn,
and σ the normalized Haar measure on the sphere ∂B. Then one
has

∇
∫
B
f (u)du = n

∫
∂B

f (u)u dσ(u) .

In particular define ¯̀
t(x) = `t(x + εu) where u is uniform in B.

Then one has ∇¯̀
t(x) = n

εE `t(x + εv)v with v = u/‖u‖.

Playing at = xt + εvt and setting g̃t = n
ε `t(at)vt one obtains a

regret in

O

(
εT + ηT

n2

ε2
+

1

η

)
.

Optimizing the parameters yields a regret in O(n1/2T 3/4).
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has

∇
∫
B
f (u)du = n

∫
∂B

f (u)u dσ(u) .

In particular define ¯̀
t(x) = `t(x + εu) where u is uniform in B.

Then one has ∇¯̀
t(x) = n

εE `t(x + εv)v with v = u/‖u‖.

Playing at = xt + εvt and setting g̃t = n
ε `t(at)vt one obtains a

regret in

O

(
εT + ηT

n2

ε2
+

1

η

)
.

Optimizing the parameters yields a regret in O(n1/2T 3/4).



The quest for
√
T -BCO

For a decade the T 3/4 remained the state of the art, despite many
attempts by the community. Some partial progress on the way was
obtained by making further assumptions (smoothness, strong
convexity, dimension 1). The first proof that

√
T is achievable was

via the information theoretic argument and the following geometric
theorem:

Theorem (B. and Eldan 2015)

Let f : K → [0,+∞) be convex and 1-Lipschitz, and ε > 0. There
exists a probability measure µ on K such that the following holds
true. For every α ∈ K and for every convex and 1-Lipschitz
function g : K → R satisfying g(α) < −ε, one has

µ
({

x ∈ K : |f (x)− g(x)| > Õ
( ε

n7.5

)})
> Õ

(
1

n3

)
.

Later Hazan and Li provided an algorithm with regret in
exp(poly(n))

√
T . In the final lecture we will discuss the efficient

algorithm by B., Eldan and Lee which obtains Õ(n9.5
√
T ) regret.
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