
Lecture 4:
Kernel-based methods for
bandit convex optimization

Sébastien Bubeck
Machine Learning and Optimization group, MSR AI

Kernel-based methods

Notation: 〈f , g〉 :=
∫
x∈Rn f (x)g(x)dx . The expected regret with

respect to point x can be written as
∑T

t=1〈pt − δx , `t〉.

Kernel: K : K ×K → R+ which we view as a linear operator over
measures via Kq(x) =

∫
K (x , y)q(y)dy . The adjoint K ∗ acts on

functions: K ∗f (y) =
∫
f (x)K (x , y)dx (since 〈Kq, f 〉 = 〈q,K ∗f 〉).

q

K (x , ·)x

Kernel-based methods

Notation: 〈f , g〉 :=
∫
x∈Rn f (x)g(x)dx . The expected regret with

respect to point x can be written as
∑T

t=1〈pt − δx , `t〉.

Kernel: K : K ×K → R+ which we view as a linear operator over
measures via Kq(x) =

∫
K (x , y)q(y)dy . The adjoint K ∗ acts on

functions: K ∗f (y) =
∫
f (x)K (x , y)dx (since 〈Kq, f 〉 = 〈q,K ∗f 〉).

q

K (x , ·)x

Kernel-based methods

Notation: 〈f , g〉 :=
∫
x∈Rn f (x)g(x)dx . The expected regret with

respect to point x can be written as
∑T

t=1〈pt − δx , `t〉.

Kernel: K : K ×K → R+ which we view as a linear operator over
measures via Kq(x) =

∫
K (x , y)q(y)dy . The adjoint K ∗ acts on

functions: K ∗f (y) =
∫
f (x)K (x , y)dx (since 〈Kq, f 〉 = 〈q,K ∗f 〉).

q

K (x , ·)x

Kernel-based methods
Notation: 〈f , g〉 :=

∫
x∈Rn f (x)g(x)dx . The expected regret with

respect to point x can be written as
∑T

t=1〈pt − δx , `t〉.

Kernel: K : K ×K → R+ which we view as a linear operator over
measures via Kq(x) =

∫
K (x , y)q(y)dy . The adjoint K ∗ acts on

functions: K ∗f (y) =
∫
f (x)K (x , y)dx (since 〈Kq, f 〉 = 〈q,K ∗f 〉).

Key point: canonical estimator of K ∗f based on bandit feedback
on f :

Ex∼q
f (x)K (x , ·)

q(x)
= K ∗f

Kernelized regret? Say pt is full info strat with ˜̀t = `t(xt)Kt(xt ,·)
qt(xt)

and xt ∼ qt . Then we can hope to control the regret with terms
〈pt − δx ,K ∗t `t〉 = 〈Kt(pt − δx), `t〉 while we want to control
〈qt − δx , `t〉. Seems reasonable to take qt := Ktpt and then we
want: 〈Ktpt − δx , `t〉 . 〈Kt(pt − δx), `t〉

Kernel-based methods
Notation: 〈f , g〉 :=

∫
x∈Rn f (x)g(x)dx . The expected regret with

respect to point x can be written as
∑T

t=1〈pt − δx , `t〉.

Kernel: K : K ×K → R+ which we view as a linear operator over
measures via Kq(x) =

∫
K (x , y)q(y)dy . The adjoint K ∗ acts on

functions: K ∗f (y) =
∫
f (x)K (x , y)dx (since 〈Kq, f 〉 = 〈q,K ∗f 〉).

Key point: canonical estimator of K ∗f based on bandit feedback
on f :

Ex∼q
f (x)K (x , ·)

q(x)
= K ∗f

Kernelized regret? Say pt is full info strat with ˜̀t = `t(xt)Kt(xt ,·)
qt(xt)

and xt ∼ qt .

Then we can hope to control the regret with terms
〈pt − δx ,K ∗t `t〉 = 〈Kt(pt − δx), `t〉 while we want to control
〈qt − δx , `t〉. Seems reasonable to take qt := Ktpt and then we
want: 〈Ktpt − δx , `t〉 . 〈Kt(pt − δx), `t〉

Kernel-based methods
Notation: 〈f , g〉 :=

∫
x∈Rn f (x)g(x)dx . The expected regret with

respect to point x can be written as
∑T

t=1〈pt − δx , `t〉.

Kernel: K : K ×K → R+ which we view as a linear operator over
measures via Kq(x) =

∫
K (x , y)q(y)dy . The adjoint K ∗ acts on

functions: K ∗f (y) =
∫
f (x)K (x , y)dx (since 〈Kq, f 〉 = 〈q,K ∗f 〉).

Key point: canonical estimator of K ∗f based on bandit feedback
on f :

Ex∼q
f (x)K (x , ·)

q(x)
= K ∗f

Kernelized regret? Say pt is full info strat with ˜̀t = `t(xt)Kt(xt ,·)
qt(xt)

and xt ∼ qt . Then we can hope to control the regret with terms
〈pt − δx ,K ∗t `t〉 = 〈Kt(pt − δx), `t〉 while we want to control
〈qt − δx , `t〉.

Seems reasonable to take qt := Ktpt and then we
want: 〈Ktpt − δx , `t〉 . 〈Kt(pt − δx), `t〉

Kernel-based methods
Notation: 〈f , g〉 :=

∫
x∈Rn f (x)g(x)dx . The expected regret with

respect to point x can be written as
∑T

t=1〈pt − δx , `t〉.

Kernel: K : K ×K → R+ which we view as a linear operator over
measures via Kq(x) =

∫
K (x , y)q(y)dy . The adjoint K ∗ acts on

functions: K ∗f (y) =
∫
f (x)K (x , y)dx (since 〈Kq, f 〉 = 〈q,K ∗f 〉).

Key point: canonical estimator of K ∗f based on bandit feedback
on f :

Ex∼q
f (x)K (x , ·)

q(x)
= K ∗f

Kernelized regret? Say pt is full info strat with ˜̀t = `t(xt)Kt(xt ,·)
qt(xt)

and xt ∼ qt . Then we can hope to control the regret with terms
〈pt − δx ,K ∗t `t〉 = 〈Kt(pt − δx), `t〉 while we want to control
〈qt − δx , `t〉. Seems reasonable to take qt := Ktpt and then we
want: 〈Ktpt − δx , `t〉 . 〈Kt(pt − δx), `t〉

A good kernel for convex losses
〈Ktpt − δx , `t〉 . 〈Kt(pt − δx), `t〉

Thus for a given p we want a kernel K such that ∀x and f convex
one has (for some λ ∈ (0, 1))

〈Kp−δx , f 〉 ≤
1

λ
〈K (p−δx), f 〉 ⇔ K ∗f (x) ≤ (1−λ)〈Kp, f 〉+λf (x)

Natural kernel: Kδx is the distribution of (1− λ)Z + λx for some
random variable Z to be defined. Indeed in this case one has

K ∗f (x) = Ef ((1− λ)Z + λx) ≤ (1− λ)Ef (Z) + λf (x)

Thus we would like Z to be equal to Kp, that is Z satisfies the
following distributional identity, where X ∼ p,

Z
D
= (1− λ)Z + λX

A good kernel for convex losses
〈Ktpt − δx , `t〉 . 〈Kt(pt − δx), `t〉

Thus for a given p we want a kernel K such that ∀x and f convex
one has (for some λ ∈ (0, 1))

〈Kp−δx , f 〉 ≤
1

λ
〈K (p−δx), f 〉 ⇔ K ∗f (x) ≤ (1−λ)〈Kp, f 〉+λf (x)

Natural kernel: Kδx is the distribution of (1− λ)Z + λx for some
random variable Z to be defined. Indeed in this case one has

K ∗f (x) = Ef ((1− λ)Z + λx) ≤ (1− λ)Ef (Z) + λf (x)

Thus we would like Z to be equal to Kp, that is Z satisfies the
following distributional identity, where X ∼ p,

Z
D
= (1− λ)Z + λX

A good kernel for convex losses
〈Ktpt − δx , `t〉 . 〈Kt(pt − δx), `t〉

Thus for a given p we want a kernel K such that ∀x and f convex
one has (for some λ ∈ (0, 1))

〈Kp−δx , f 〉 ≤
1

λ
〈K (p−δx), f 〉 ⇔ K ∗f (x) ≤ (1−λ)〈Kp, f 〉+λf (x)

Natural kernel: Kδx is the distribution of (1− λ)Z + λx for some
random variable Z to be defined. Indeed in this case one has

K ∗f (x) = Ef ((1− λ)Z + λx) ≤ (1− λ)Ef (Z) + λf (x)

Thus we would like Z to be equal to Kp, that is Z satisfies the
following distributional identity, where X ∼ p,

Z
D
= (1− λ)Z + λX

A good kernel for convex losses
〈Ktpt − δx , `t〉 . 〈Kt(pt − δx), `t〉

Thus for a given p we want a kernel K such that ∀x and f convex
one has (for some λ ∈ (0, 1))

〈Kp−δx , f 〉 ≤
1

λ
〈K (p−δx), f 〉 ⇔ K ∗f (x) ≤ (1−λ)〈Kp, f 〉+λf (x)

Natural kernel: Kδx is the distribution of (1− λ)Z + λx for some
random variable Z to be defined. Indeed in this case one has

K ∗f (x) = Ef ((1− λ)Z + λx) ≤ (1− λ)Ef (Z) + λf (x)

Thus we would like Z to be equal to Kp, that is Z satisfies the
following distributional identity, where X ∼ p,

Z
D
= (1− λ)Z + λX

Generalized Bernoulli convolutions

Z
D
= (1− λ)Z + λX

We say that Z is the core of p. It satisfies Z =
∑+∞

k=0 λ(1− λ)kXk

with (Xk) i.i.d. sequence from p. We need to understand the
“smoothness” of Z (which will translate in smoothness of the
corresponding kernel).

Consider the core νλ of a random sign (this is a distinguished
object introduced in the 1930’s known as a Bernoulli convolution):

I Wintner 1935: νλ is either absolutely continuous or singular
w.r.t. Lebesgue. For λ ∈ (1/2, 1) is it singular, and for
λ = 1/2 it is a.c.

I Erdős 1939: ∃∞ of singular λ ∈ (0, 1/2).

I Erdős 1940, Solomyak 1996: a.e. λ ∈ (0, 1/2) is a.c.

I For any k ∈ N, ∃λk ≈ 1/k s.t. νλk has a C k density.

Generalized Bernoulli convolutions

Z
D
= (1− λ)Z + λX

We say that Z is the core of p. It satisfies Z =
∑+∞

k=0 λ(1− λ)kXk

with (Xk) i.i.d. sequence from p. We need to understand the
“smoothness” of Z (which will translate in smoothness of the
corresponding kernel).

Consider the core νλ of a random sign (this is a distinguished
object introduced in the 1930’s known as a Bernoulli convolution):

I Wintner 1935: νλ is either absolutely continuous or singular
w.r.t. Lebesgue. For λ ∈ (1/2, 1) is it singular, and for
λ = 1/2 it is a.c.

I Erdős 1939: ∃∞ of singular λ ∈ (0, 1/2).

I Erdős 1940, Solomyak 1996: a.e. λ ∈ (0, 1/2) is a.c.

I For any k ∈ N, ∃λk ≈ 1/k s.t. νλk has a C k density.

Generalized Bernoulli convolutions

Z
D
= (1− λ)Z + λX

We say that Z is the core of p. It satisfies Z =
∑+∞

k=0 λ(1− λ)kXk

with (Xk) i.i.d. sequence from p. We need to understand the
“smoothness” of Z (which will translate in smoothness of the
corresponding kernel).

Consider the core νλ of a random sign (this is a distinguished
object introduced in the 1930’s known as a Bernoulli convolution):

I Wintner 1935: νλ is either absolutely continuous or singular
w.r.t. Lebesgue. For λ ∈ (1/2, 1) is it singular, and for
λ = 1/2 it is a.c.

I Erdős 1939: ∃∞ of singular λ ∈ (0, 1/2).

I Erdős 1940, Solomyak 1996: a.e. λ ∈ (0, 1/2) is a.c.

I For any k ∈ N, ∃λk ≈ 1/k s.t. νλk has a C k density.

Generalized Bernoulli convolutions

Z
D
= (1− λ)Z + λX

We say that Z is the core of p. It satisfies Z =
∑+∞

k=0 λ(1− λ)kXk

with (Xk) i.i.d. sequence from p. We need to understand the
“smoothness” of Z (which will translate in smoothness of the
corresponding kernel).

Consider the core νλ of a random sign (this is a distinguished
object introduced in the 1930’s known as a Bernoulli convolution):

I Wintner 1935: νλ is either absolutely continuous or singular
w.r.t. Lebesgue. For λ ∈ (1/2, 1) is it singular, and for
λ = 1/2 it is a.c.

I Erdős 1939: ∃∞ of singular λ ∈ (0, 1/2).

I Erdős 1940, Solomyak 1996: a.e. λ ∈ (0, 1/2) is a.c.

I For any k ∈ N, ∃λk ≈ 1/k s.t. νλk has a C k density.

Generalized Bernoulli convolutions

Z
D
= (1− λ)Z + λX

We say that Z is the core of p. It satisfies Z =
∑+∞

k=0 λ(1− λ)kXk

with (Xk) i.i.d. sequence from p. We need to understand the
“smoothness” of Z (which will translate in smoothness of the
corresponding kernel).

Consider the core νλ of a random sign (this is a distinguished
object introduced in the 1930’s known as a Bernoulli convolution):

I Wintner 1935: νλ is either absolutely continuous or singular
w.r.t. Lebesgue. For λ ∈ (1/2, 1) is it singular, and for
λ = 1/2 it is a.c.

I Erdős 1939: ∃∞ of singular λ ∈ (0, 1/2).

I Erdős 1940, Solomyak 1996: a.e. λ ∈ (0, 1/2) is a.c.

I For any k ∈ N, ∃λk ≈ 1/k s.t. νλk has a C k density.

Generalized Bernoulli convolutions

Z
D
= (1− λ)Z + λX

We say that Z is the core of p. It satisfies Z =
∑+∞

k=0 λ(1− λ)kXk

with (Xk) i.i.d. sequence from p. We need to understand the
“smoothness” of Z (which will translate in smoothness of the
corresponding kernel).

Consider the core νλ of a random sign (this is a distinguished
object introduced in the 1930’s known as a Bernoulli convolution):

I Wintner 1935: νλ is either absolutely continuous or singular
w.r.t. Lebesgue. For λ ∈ (1/2, 1) is it singular, and for
λ = 1/2 it is a.c.

I Erdős 1939: ∃∞ of singular λ ∈ (0, 1/2).

I Erdős 1940, Solomyak 1996: a.e. λ ∈ (0, 1/2) is a.c.

I For any k ∈ N, ∃λk ≈ 1/k s.t. νλk has a C k density.

Generalized Bernoulli convolutions

Z
D
= (1− λ)Z + λX

We say that Z is the core of p. It satisfies Z =
∑+∞

k=0 λ(1− λ)kXk

with (Xk) i.i.d. sequence from p. We need to understand the
“smoothness” of Z (which will translate in smoothness of the
corresponding kernel).

Consider the core νλ of a random sign (this is a distinguished
object introduced in the 1930’s known as a Bernoulli convolution):

I Wintner 1935: νλ is either absolutely continuous or singular
w.r.t. Lebesgue. For λ ∈ (1/2, 1) is it singular, and for
λ = 1/2 it is a.c.

I Erdős 1939: ∃∞ of singular λ ∈ (0, 1/2).

I Erdős 1940, Solomyak 1996: a.e. λ ∈ (0, 1/2) is a.c.

I For any k ∈ N, ∃λk ≈ 1/k s.t. νλk has a C k density.

What is left to do?
Summarizing the discussion so far, let us play from Ktpt , where Kt

is the kernel described above (i.e., it “mixes in” the core of pt) and
pt is the continuous exponential weights strategy on the estimated
losses ˜̀s = `s(xs) Ks(xs ,·)

Ksps(xs)
(that is dpt(x)/dx is proportional to

exp(−η
∑

s<t
˜̀
s(x))).

Using the classical analysis of continuous exponential weights
together with the previous slides we get for any q,

E
T∑
t=1

〈Ktpt − q, `t〉 ≤
1

λ
E

T∑
t=1

〈Kt(pt − q), `t〉

=
1

λ
E

T∑
t=1

(〈pt − q, ˜̀t〉)
≤ 1

λ
E

(
Ent(q‖p1)

η
+
η

2

T∑
t=1

〈pt ,
(
Kt(xt , ·)
Ktpt(xt)

)2

〉

)
.

What is left to do?
Summarizing the discussion so far, let us play from Ktpt , where Kt

is the kernel described above (i.e., it “mixes in” the core of pt) and
pt is the continuous exponential weights strategy on the estimated
losses ˜̀s = `s(xs) Ks(xs ,·)

Ksps(xs)
(that is dpt(x)/dx is proportional to

exp(−η
∑

s<t
˜̀
s(x))).

Using the classical analysis of continuous exponential weights
together with the previous slides we get for any q,

E
T∑
t=1

〈Ktpt − q, `t〉 ≤
1

λ
E

T∑
t=1

〈Kt(pt − q), `t〉

=
1

λ
E

T∑
t=1

(〈pt − q, ˜̀t〉)
≤ 1

λ
E

(
Ent(q‖p1)

η
+
η

2

T∑
t=1

〈pt ,
(
Kt(xt , ·)
Ktpt(xt)

)2

〉

)
.

Variance calculation

All that remains to be done is to control the variance term
Ex∼Kp〈p, ˜̀2〉 where ˜̀(y) = K(x ,y)

Kp(x) = K(x ,y)∫
K(x ,y ′)p(y ′)dy

. More precisely

if this quantity is O(1) then we obtain a regret of Õ
(

1
λ

√
nT
)

.

It is sufficient to control from above K (x , y)/K (x , y ′) for all y , y ′

in the support of p and all x in the support of Kp (in fact it is
sufficient to have it with probability at least 1− 1/T 10 w.r.t.
x ∼ Kp).
Observe also that, with c denoting the core of p, one always has

K (x , y) = Kδy (x) = cst× c
(
x−λy
1−λ

)
. Thus we want to bound

w.h.p w.r.t. x ∼ Kp,

sup
y ,y ′∈supp(p)

c

(
x − λy
1− λ

)/
c

(
x − λy ′

1− λ

)
.

Variance calculation

All that remains to be done is to control the variance term
Ex∼Kp〈p, ˜̀2〉 where ˜̀(y) = K(x ,y)

Kp(x) = K(x ,y)∫
K(x ,y ′)p(y ′)dy

. More precisely

if this quantity is O(1) then we obtain a regret of Õ
(

1
λ

√
nT
)

.

It is sufficient to control from above K (x , y)/K (x , y ′) for all y , y ′

in the support of p and all x in the support of Kp (in fact it is
sufficient to have it with probability at least 1− 1/T 10 w.r.t.
x ∼ Kp).

Observe also that, with c denoting the core of p, one always has

K (x , y) = Kδy (x) = cst× c
(
x−λy
1−λ

)
. Thus we want to bound

w.h.p w.r.t. x ∼ Kp,

sup
y ,y ′∈supp(p)

c

(
x − λy
1− λ

)/
c

(
x − λy ′

1− λ

)
.

Variance calculation

All that remains to be done is to control the variance term
Ex∼Kp〈p, ˜̀2〉 where ˜̀(y) = K(x ,y)

Kp(x) = K(x ,y)∫
K(x ,y ′)p(y ′)dy

. More precisely

if this quantity is O(1) then we obtain a regret of Õ
(

1
λ

√
nT
)

.

It is sufficient to control from above K (x , y)/K (x , y ′) for all y , y ′

in the support of p and all x in the support of Kp (in fact it is
sufficient to have it with probability at least 1− 1/T 10 w.r.t.
x ∼ Kp).
Observe also that, with c denoting the core of p, one always has

K (x , y) = Kδy (x) = cst× c
(
x−λy
1−λ

)
. Thus we want to bound

w.h.p w.r.t. x ∼ Kp,

sup
y ,y ′∈supp(p)

c

(
x − λy
1− λ

)/
c

(
x − λy ′

1− λ

)
.

Variance calculation heuristic
Control w.h.p w.r.t. x ∼ Kp,

sup
y ,y ′∈supp(p)

c

(
x − λy
1− λ

)/
c

(
x − λy ′

1− λ

)
.

Let us assume

1. p = N (0, In) (its core is c = N (0, λ
2−λ In)).

2. supp(p) ⊂ {y : |y | ≤ R = Õ(
√
n)}

Thus our quantity of interest is

exp

(
2− λ

2λ

(∣∣∣∣x − λy ′1− λ

∣∣∣∣2 − ∣∣∣∣x − λy1− λ

∣∣∣∣2
))

≤ exp

(
1

(1− λ)2
(4R|x |+ 2λR2)

)
.

Finally note that w.h.p. one has |x | . λR +
√
λn log(T), and

thus with λ = Õ(1/n2) we have a constant variance.

Variance calculation heuristic
Control w.h.p w.r.t. x ∼ Kp,

sup
y ,y ′∈supp(p)

c

(
x − λy
1− λ

)/
c

(
x − λy ′

1− λ

)
.

Let us assume

1. p = N (0, In) (its core is c = N (0, λ
2−λ In)).

2. supp(p) ⊂ {y : |y | ≤ R = Õ(
√
n)}

Thus our quantity of interest is

exp

(
2− λ

2λ

(∣∣∣∣x − λy ′1− λ

∣∣∣∣2 − ∣∣∣∣x − λy1− λ

∣∣∣∣2
))

≤ exp

(
1

(1− λ)2
(4R|x |+ 2λR2)

)
.

Finally note that w.h.p. one has |x | . λR +
√
λn log(T), and

thus with λ = Õ(1/n2) we have a constant variance.

Variance calculation heuristic
Control w.h.p w.r.t. x ∼ Kp,

sup
y ,y ′∈supp(p)

c

(
x − λy
1− λ

)/
c

(
x − λy ′

1− λ

)
.

Let us assume

1. p = N (0, In) (its core is c = N (0, λ
2−λ In)).

2. supp(p) ⊂ {y : |y | ≤ R = Õ(
√
n)}

Thus our quantity of interest is

exp

(
2− λ

2λ

(∣∣∣∣x − λy ′1− λ

∣∣∣∣2 − ∣∣∣∣x − λy1− λ

∣∣∣∣2
))

≤ exp

(
1

(1− λ)2
(4R|x |+ 2λR2)

)
.

Finally note that w.h.p. one has |x | . λR +
√
λn log(T), and

thus with λ = Õ(1/n2) we have a constant variance.

Variance calculation heuristic
Control w.h.p w.r.t. x ∼ Kp,

sup
y ,y ′∈supp(p)

c

(
x − λy
1− λ

)/
c

(
x − λy ′

1− λ

)
.

Let us assume

1. p = N (0, In) (its core is c = N (0, λ
2−λ In)).

2. supp(p) ⊂ {y : |y | ≤ R = Õ(
√
n)}

Thus our quantity of interest is

exp

(
2− λ

2λ

(∣∣∣∣x − λy ′1− λ

∣∣∣∣2 − ∣∣∣∣x − λy1− λ

∣∣∣∣2
))

≤ exp

(
1

(1− λ)2
(4R|x |+ 2λR2)

)
.

Finally note that w.h.p. one has |x | . λR +
√
λn log(T), and

thus with λ = Õ(1/n2) we have a constant variance.

A reduction to the Gaussian case

We reduce to the Gaussian situation by observing that taking Z (in
the definition of the kernel) to be the core of a measure convexly
dominated by p is sufficient (instead of taking it to be directly the
core of p), and furthermore one has:

Lemma
Any isotropic log-concave measure p approximately convexly
dominates a centered Gaussian with covariance Õ(1n)In.

Proof.
We show that p dominates any q supported on a small ball of cst
radius. Pick a test function f , w.l.o.g. its minimum is 0 at 0 and
the maximum on the ball is 1. By convexity f is above a linear
function (maxed with 0) of constant slope. By light tails of
log-concave, 〈p, f 〉 is then at least a constant.

What about assumption 2?

A reduction to the Gaussian case

We reduce to the Gaussian situation by observing that taking Z (in
the definition of the kernel) to be the core of a measure convexly
dominated by p is sufficient (instead of taking it to be directly the
core of p), and furthermore one has:

Lemma
Any isotropic log-concave measure p approximately convexly
dominates a centered Gaussian with covariance Õ(1n)In.

Proof.
We show that p dominates any q supported on a small ball of cst
radius. Pick a test function f , w.l.o.g. its minimum is 0 at 0 and
the maximum on the ball is 1. By convexity f is above a linear
function (maxed with 0) of constant slope. By light tails of
log-concave, 〈p, f 〉 is then at least a constant.

What about assumption 2?

A reduction to the Gaussian case

We reduce to the Gaussian situation by observing that taking Z (in
the definition of the kernel) to be the core of a measure convexly
dominated by p is sufficient (instead of taking it to be directly the
core of p), and furthermore one has:

Lemma
Any isotropic log-concave measure p approximately convexly
dominates a centered Gaussian with covariance Õ(1n)In.

Proof.
We show that p dominates any q supported on a small ball of cst
radius. Pick a test function f , w.l.o.g. its minimum is 0 at 0 and
the maximum on the ball is 1. By convexity f is above a linear
function (maxed with 0) of constant slope. By light tails of
log-concave, 〈p, f 〉 is then at least a constant.

What about assumption 2?

A reduction to the Gaussian case

We reduce to the Gaussian situation by observing that taking Z (in
the definition of the kernel) to be the core of a measure convexly
dominated by p is sufficient (instead of taking it to be directly the
core of p), and furthermore one has:

Lemma
Any isotropic log-concave measure p approximately convexly
dominates a centered Gaussian with covariance Õ(1n)In.

Proof.
We show that p dominates any q supported on a small ball of cst
radius. Pick a test function f , w.l.o.g. its minimum is 0 at 0 and
the maximum on the ball is 1. By convexity f is above a linear
function (maxed with 0) of constant slope. By light tails of
log-concave, 〈p, f 〉 is then at least a constant.

What about assumption 2?

Restart and increasing learning rate

Unfortunately assumption 2 brings out a serious difficulty: it forces
the algorithm to focus on smaller and smaller region of space.
What if the adversary makes us focus on a region only to move the
optimum far outside of it at a later time?

Idea: if the estimated optimum is too close to the boundary of the
focus region then we restart the algorithm (similar idea appeared in
Hazan and Li 2016).

To be proved: negative regret at restart times (indeed the
adversary must “pay” for making us focus and then move out the
optimum). Technically this negative regret can come from a large
relative entropy at some previous time.

Challenge: avoid the telescopic sum of entropies. For this we use a
last idea: every time the focus region changes scale we also
increase the learning rate.

Restart and increasing learning rate

Unfortunately assumption 2 brings out a serious difficulty: it forces
the algorithm to focus on smaller and smaller region of space.
What if the adversary makes us focus on a region only to move the
optimum far outside of it at a later time?

Idea: if the estimated optimum is too close to the boundary of the
focus region then we restart the algorithm (similar idea appeared in
Hazan and Li 2016).

To be proved: negative regret at restart times (indeed the
adversary must “pay” for making us focus and then move out the
optimum). Technically this negative regret can come from a large
relative entropy at some previous time.

Challenge: avoid the telescopic sum of entropies. For this we use a
last idea: every time the focus region changes scale we also
increase the learning rate.

Restart and increasing learning rate

Unfortunately assumption 2 brings out a serious difficulty: it forces
the algorithm to focus on smaller and smaller region of space.
What if the adversary makes us focus on a region only to move the
optimum far outside of it at a later time?

Idea: if the estimated optimum is too close to the boundary of the
focus region then we restart the algorithm (similar idea appeared in
Hazan and Li 2016).

To be proved: negative regret at restart times (indeed the
adversary must “pay” for making us focus and then move out the
optimum). Technically this negative regret can come from a large
relative entropy at some previous time.

Challenge: avoid the telescopic sum of entropies. For this we use a
last idea: every time the focus region changes scale we also
increase the learning rate.

Restart and increasing learning rate

Unfortunately assumption 2 brings out a serious difficulty: it forces
the algorithm to focus on smaller and smaller region of space.
What if the adversary makes us focus on a region only to move the
optimum far outside of it at a later time?

Idea: if the estimated optimum is too close to the boundary of the
focus region then we restart the algorithm (similar idea appeared in
Hazan and Li 2016).

To be proved: negative regret at restart times (indeed the
adversary must “pay” for making us focus and then move out the
optimum). Technically this negative regret can come from a large
relative entropy at some previous time.

Challenge: avoid the telescopic sum of entropies. For this we use a
last idea: every time the focus region changes scale we also
increase the learning rate.

Summary of the algorithm
I Compute the Gaussian Nt “inside” pt , its associated core N ′t

(when Nt is isotropic: N ′t =
√

λ
2−λNt), and the corresponding

kernel: Ktδy = (1− λ)N ′t + λy (i.e.

Kt(x , y) = N ′t(
x−λy
1−λ) ∝ exp(− n

λ‖x − λy‖
2
pt)).

I Sample Xt ∼ pt and play xt = (1− λ)N ′t + λXt ∼ Ktpt .
I Update the exponential weights distribution:

pt+1(y) ∝ pt(y) exp(−ηt ˜̀t(y))

where

˜̀
t(y) =

`t(xt)

Ktpt(xt)
Kt(xt , y) ∝ exp(−nλ‖y − xt/λ‖2pt)

(note that ‖xt/λ‖ ≈ 1/
√
λ and the standard deviation of the

above Gaussian is ≈ 1/
√
nλ).

I Restart business: check if adversary is potentially moving out
of focus region (if so restart the algorithm), check if updating
the focus region would change the problem’s scale (if so make
the update and increase the learning rate multiplicatively by
(1 + 1

Õ(poly(n))
)).

Summary of the algorithm
I Compute the Gaussian Nt “inside” pt , its associated core N ′t

(when Nt is isotropic: N ′t =
√

λ
2−λNt), and the corresponding

kernel: Ktδy = (1− λ)N ′t + λy (i.e.

Kt(x , y) = N ′t(
x−λy
1−λ) ∝ exp(− n

λ‖x − λy‖
2
pt)).

I Sample Xt ∼ pt and play xt = (1− λ)N ′t + λXt ∼ Ktpt .

I Update the exponential weights distribution:
pt+1(y) ∝ pt(y) exp(−ηt ˜̀t(y))

where

˜̀
t(y) =

`t(xt)

Ktpt(xt)
Kt(xt , y) ∝ exp(−nλ‖y − xt/λ‖2pt)

(note that ‖xt/λ‖ ≈ 1/
√
λ and the standard deviation of the

above Gaussian is ≈ 1/
√
nλ).

I Restart business: check if adversary is potentially moving out
of focus region (if so restart the algorithm), check if updating
the focus region would change the problem’s scale (if so make
the update and increase the learning rate multiplicatively by
(1 + 1

Õ(poly(n))
)).

Summary of the algorithm
I Compute the Gaussian Nt “inside” pt , its associated core N ′t

(when Nt is isotropic: N ′t =
√

λ
2−λNt), and the corresponding

kernel: Ktδy = (1− λ)N ′t + λy (i.e.

Kt(x , y) = N ′t(
x−λy
1−λ) ∝ exp(− n

λ‖x − λy‖
2
pt)).

I Sample Xt ∼ pt and play xt = (1− λ)N ′t + λXt ∼ Ktpt .
I Update the exponential weights distribution:

pt+1(y) ∝ pt(y) exp(−ηt ˜̀t(y))

where

˜̀
t(y) =

`t(xt)

Ktpt(xt)
Kt(xt , y) ∝ exp(−nλ‖y − xt/λ‖2pt)

(note that ‖xt/λ‖ ≈ 1/
√
λ and the standard deviation of the

above Gaussian is ≈ 1/
√
nλ).

I Restart business: check if adversary is potentially moving out
of focus region (if so restart the algorithm), check if updating
the focus region would change the problem’s scale (if so make
the update and increase the learning rate multiplicatively by
(1 + 1

Õ(poly(n))
)).

Summary of the algorithm
I Compute the Gaussian Nt “inside” pt , its associated core N ′t

(when Nt is isotropic: N ′t =
√

λ
2−λNt), and the corresponding

kernel: Ktδy = (1− λ)N ′t + λy (i.e.

Kt(x , y) = N ′t(
x−λy
1−λ) ∝ exp(− n

λ‖x − λy‖
2
pt)).

I Sample Xt ∼ pt and play xt = (1− λ)N ′t + λXt ∼ Ktpt .
I Update the exponential weights distribution:

pt+1(y) ∝ pt(y) exp(−ηt ˜̀t(y)) where

˜̀
t(y) =

`t(xt)

Ktpt(xt)
Kt(xt , y) ∝ exp(−nλ‖y − xt/λ‖2pt)

(note that ‖xt/λ‖ ≈ 1/
√
λ and the standard deviation of the

above Gaussian is ≈ 1/
√
nλ).

I Restart business: check if adversary is potentially moving out
of focus region (if so restart the algorithm), check if updating
the focus region would change the problem’s scale (if so make
the update and increase the learning rate multiplicatively by
(1 + 1

Õ(poly(n))
)).

Summary of the algorithm
I Compute the Gaussian Nt “inside” pt , its associated core N ′t

(when Nt is isotropic: N ′t =
√

λ
2−λNt), and the corresponding

kernel: Ktδy = (1− λ)N ′t + λy (i.e.

Kt(x , y) = N ′t(
x−λy
1−λ) ∝ exp(− n

λ‖x − λy‖
2
pt)).

I Sample Xt ∼ pt and play xt = (1− λ)N ′t + λXt ∼ Ktpt .
I Update the exponential weights distribution:

pt+1(y) ∝ pt(y) exp(−ηt ˜̀t(y)) where

˜̀
t(y) =

`t(xt)

Ktpt(xt)
Kt(xt , y) ∝ exp(−nλ‖y − xt/λ‖2pt)

(note that ‖xt/λ‖ ≈ 1/
√
λ and the standard deviation of the

above Gaussian is ≈ 1/
√
nλ).

I Restart business: check if adversary is potentially moving out
of focus region (if so restart the algorithm), check if updating
the focus region would change the problem’s scale (if so make
the update and increase the learning rate multiplicatively by
(1 + 1

Õ(poly(n))
)).

Summary of the algorithm
I Compute the Gaussian Nt “inside” pt , its associated core N ′t

(when Nt is isotropic: N ′t =
√

λ
2−λNt), and the corresponding

kernel: Ktδy = (1− λ)N ′t + λy (i.e.

Kt(x , y) = N ′t(
x−λy
1−λ) ∝ exp(− n

λ‖x − λy‖
2
pt)).

I Sample Xt ∼ pt and play xt = (1− λ)N ′t + λXt ∼ Ktpt .
I Update the exponential weights distribution:

pt+1(y) ∝ pt(y) exp(−ηt ˜̀t(y)) where

˜̀
t(y) =

`t(xt)

Ktpt(xt)
Kt(xt , y) ∝ exp(−nλ‖y − xt/λ‖2pt)

(note that ‖xt/λ‖ ≈ 1/
√
λ and the standard deviation of the

above Gaussian is ≈ 1/
√
nλ).

I Restart business: check if adversary is potentially moving out
of focus region (if so restart the algorithm), check if updating
the focus region would change the problem’s scale (if so make
the update and increase the learning rate multiplicatively by
(1 + 1

Õ(poly(n))
)).

