WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework \#1 due 10/23/2015
Problem 1. Consider the homogeneous Maxwell equations for the electromagnetic field $(e, h)=\left(e_{1}, e_{2}, e_{3}, h_{1}, h_{2}, h_{3}\right)$ in $\mathbb{R}_{t} \times \mathbb{R}_{x}^{3}$,

$$
\begin{aligned}
\partial_{t}(\varepsilon e)-\nabla \times h+\sigma e & =0 \\
\partial_{t}(\mu h)+\nabla \times e & =0 \\
\nabla \cdot(\varepsilon e) & =0 \\
\nabla \cdot(\mu h) & =0
\end{aligned}
$$

where ε is the electric permittivity, μ the magnetic permeability, and σ is the conductivity. These parameters depend on the medium and they are 3×3 symmetric, positive definite matrices which may depend on space and time.
a) Show that if ε and μ are constant multiples of the identity matrix and if $\sigma=0$, that then each component of (e, h) satisfies the wave equation $u_{t t}-c^{2} \Delta u=0$ with some positive constant c. Hint: Apply the time derivative to the first (vector) equation and the curl to the second (vector) equation.
b) Show that if ε and μ are multiples of the identity matrix which depend on t and x, that then the Maxwell equations above can be rewritten as a second order system whose principal part is diagonal.
c) Show that if $\sigma=0$ and μ is the identity matrix and ε is a diagonal matrix which is not a scalar multiple of the identity matrix, that then Maxwell's equations cannot be diagonalized by means of differentiation.

Problem 2. Consider the Dirichlet problem in $\Omega=\left\{x \in \mathbb{R}^{d}:|x|<R\right\}$ for the equation of constant mean curvature equal to H

$$
-\sum_{j=1}^{d} \frac{\partial}{\partial x_{j}} \frac{u_{x_{j}}}{\sqrt{1+|\nabla u|^{2}}}=d H \quad \text { in } \Omega
$$

satisfying $u=0$ in $\partial \Omega$.
In the case $0 \leq H<1 / R$ use spheres to find an explicit solution for this equation. Hint: The mean curvature $\kappa=\kappa(x)$ of a surface $z=u(x)$ in \mathbb{R}^{d+1} in the point $(x, u(x)) \in \mathbb{R}^{d+1}$ is given by

$$
\kappa(x)=-\frac{1}{d} \sum_{j=1}^{d} \frac{\partial}{\partial x_{j}} \frac{u_{x_{j}}}{\sqrt{1+|\nabla u|^{2}}} .
$$

