WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework #12 due 01/22/2016

Problem 1. Consider the following initial-boundary value problem for the heat equation

$$u_t - \Delta u = f \in L_2(Q_T)$$

$$u = 0 \text{ in } \Sigma = (0, T) \times \partial \Omega$$

$$u(0, \cdot) = g \in L_2(\Omega) .$$

a.) Construct a sequence of Faedo-Galerkin approximations, that is a sequence of functions $u_m: [0,T] \to \mathring{H}^1(\Omega)$ of the form $u_m(t) = \sum_{k=1}^m d_m^k(t) w_k$ where the coefficients d_m^k satisfy

$$d_m^k(0) = (g, w_k)_{L_2(\Omega)}$$
 and $(u'_m, w_k)_{L_2(\Omega)} + (\nabla u_m, \nabla w_k)_{L_2(\Omega)} = (f, w_k)_{L_2(\Omega)}$

for k = 1, 2, ..., m, where w_k are the orthonormal eigenfunctions of the Dirichlet Laplacian in Ω with respect to the L_2 inner product.

b.) Establish the apriori estimate

$$\max_{t \in [0,T]} \|u_m(t)\|_{L_2(\Omega)} + \|u_m\|_{L_2(0,T;\mathring{H}^1(\Omega))} + \|u_m'\|_{L_2(0,T;H^{-1}(\Omega))} \le C \left(\|f\|_{L_2(Q_T)} + \|g\|_{L_2(\Omega)} \right) ,$$

where C is a positive constant which does not depend on m, g, and f.

Problem 2. Suppose that $u \in L_2(0, T; \mathring{H}^1(\Omega))$ satisfies $\partial u/\partial t \in L_2(0, T; H^{-1}(\Omega))$. Prove that $u \in C([0, T], L_2(\Omega))$.

Problem 3. Consider the semilinear elliptic boundary-value problem

$$-\Delta u + b(\nabla u) = f$$
 in Ω ,
 $u = 0$ in $\partial \Omega$.

Use Banach's fixed point theorem to show that there exists a unique solution $u \in H^2(\Omega) \cap \mathring{H}^1(\Omega)$ provided $f \in L_2(\Omega)$ and $b : \mathbb{R}^d \to \mathbb{R}$ is Lipschitz continuous with a small enough Lipschitz constant.