WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework \#12 due 01/22/2016
Problem 1. Consider the following initial-boundary value problem for the heat equation

$$
\begin{aligned}
u_{t}-\Delta u & =f \in L_{2}\left(Q_{T}\right) \\
u & =0 \text { in } \Sigma=(0, T) \times \partial \Omega \\
u(0, \cdot) & =g \in L_{2}(\Omega)
\end{aligned}
$$

a.) Construct a sequence of Faedo-Galerkin approximations, that is a sequence of functions $u_{m}:[0, T] \rightarrow \dot{H}^{1}(\Omega)$ of the form $u_{m}(t)=\sum_{k=1}^{m} d_{m}^{k}(t) w_{k}$ where the coefficients d_{m}^{k} satisfy

$$
d_{m}^{k}(0)=\left(g, w_{k}\right)_{L_{2}(\Omega)} \text { and }\left(u_{m}^{\prime}, w_{k}\right)_{L_{2}(\Omega)}+\left(\nabla u_{m}, \nabla w_{k}\right)_{L_{2}(\Omega)}=\left(f, w_{k}\right)_{L_{2}(\Omega)}
$$

for $k=1,2, \ldots, m$, where w_{k} are the orthonormal eigenfunctions of the Dirichlet Laplacian in Ω with respect to the L_{2} inner product.
b.) Establish the apriori estimate

$$
\max _{t \in[0, T]}\left\|u_{m}(t)\right\|_{L_{2}(\Omega)}+\left\|u_{m}\right\|_{L_{2}\left(0, T ; \dot{H}^{1}(\Omega)\right)}+\left\|u_{m}^{\prime}\right\|_{L_{2}\left(0, T ; H^{-1}(\Omega)\right)} \leq C\left(\|f\|_{L_{2}\left(Q_{T}\right)}+\|g\|_{L_{2}(\Omega)}\right)
$$

where C is a positive constant which does not depend on m, g, and f.
Problem 2. Suppose that $u \in L_{2}\left(0, T ; \dot{H}^{1}(\Omega)\right)$ satisfies $\partial u / \partial t \in L_{2}\left(0, T ; H^{-1}(\Omega)\right)$. Prove that $u \in C\left([0, T], L_{2}(\Omega)\right)$.

Problem 3. Consider the semilinear elliptic boundary-value problem

$$
\begin{aligned}
&-\Delta u+b(\nabla u)=f \text { in } \Omega \\
& u=0 \\
& \text { in } \partial \Omega
\end{aligned}
$$

Use Banach's fixed point theorem to show that there exists a unique solution $u \in H^{2}(\Omega) \cap$ $\dot{H}^{1}(\Omega)$ provided $f \in L_{2}(\Omega)$ and $b: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is Lipschitz continuous with a small enough Lipschitz constant.

