WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE
DIFFERENTIALGLEICHUNGEN

Homework #13 Key

Problem 1. a.) Suppose that u : [a,b] — [0,00) and v : [a,b] — R are continuous
functions and there exists a constant C' € R such that

¢
v(t) < C —i—/ v(s)u(s)ds for all t € [a,b] .
Prove that
t
v(t) < Cexp (/ u(s) ds) for all ¢ € [a,b] .
Proof. Start with

v(t) —/ v(s)u(s)ds < C

and multiply this inequality with

u(t)exp{— / () ds} |

Because of our assumptions this expression is non-negative. Thus,

{v(t)u(t) —ult) / Co(s)u(s) ds} exp {— / () ds} < Cu(t)exp {— / Cu(s) ds} |

Using the product rule this inequality can be written in the form

%[/:U(s)u(s) ds exp{—/atu(s) dsH < —C’%exp{—/atu(s) ds} .

Integrating over the interval [a,t] with ¢ € [a, b] gives

/:v(s)u(s) ds exp{—/atu(s) ds} <C [1—exp{—/:u(s) dsH

which results in

[ouras<clon{ [usash-1] roraree oy

The proof is finished by using the assumption one more time:

o(t) < C + /atv(s)u(s) ds < Cexp {/:u(s) ds} for all £ € [a, )] .



b.) Suppose that u : [0,7] — R and f : [0,7] — R are continuous functions, that f
is non-negative, and that there exist two constant Cy € R and C; > 0 such that

u(t) < Cop+ Cy /t[u(s) + f(s)]ds for all t € [0,7] .

Prove that .
u(t) < et (Co + C’l/ f(s) ds> for all t € [0, 7] .
0
Proof. Let
v(t) = Cy + C’l/ [u(s) + f(s)]ds , tel0,1].
0

Note that v is continuously differentiable and that

V() = Chlu(t) + f(1)] < Cilv(t) + f(2)] -
This inequality can be rewritten as

d
ety < e~ p(r)
Integrating over [0,¢] with ¢ € [0, T] gives
t
e~y (t) < v(0) +/ e 15 f(s) ds

0
and thus, since f is non-negative,

t t
v(t) < e“'(0) +/ e“1=9) f(5) ds < 1 (U(O) +/ f(s) ds) .
0 0
Finally, not that v(0) = Cj and since u(t) < v(t) the claim has been proved. O

Both results are know as Gronwall’s Lemma or Gronwall’s inequality.

Problem 2. Suppose that w; € H'() is a first normalized eigenfunction of the Dirichlet
Laplacian, that is —Aw; = Aw; in Q in the weak sense and that ||w/z,) = 1.

a.) Let Ay > 0 be the first (smallest) eigenvalue of the Dirichlet-Laplacian in §2. Prove
that

A= rnin/ |Vul? dx :/ |Vw; |*dx |
Q Q

where the minimum is taken over all u € H'(Q) such that llullro) = 1. (Hint: Use the
fact that there exists an orthonormal basis of Dirichlet eigenfunctions wy, ws, ... in Ly(€2).)

Proof. Suppose that u € H'(Q) and that |lu|| o) = 1. Then

o0

U= Zunwn with  w, = (u,w,)r,@ and Zui =1 Z)\nui < 00
n=1

n=1 n=1

Then
Vul|?dr = )\nuiz)\ .
[ 1 > 1



Observe that the proof shows that for all u € H 1(Q) the inequality

/\Vu\zdx>)\ /]u\2d1‘

holds. One sees this when one replace u in the proof above with u/||u| ). In other
words, the constant C' = A\;' is the best (i.e. smallest) constant in Poincaré’s inequality.

b.) Prove that we can choose w; > 0 in .
Proof. Let w™ = maz{0,w;} and w~ = min{0, w; } be the positive and negative part of
wy, respectively. Then

Vw; ae. on w <0

0 ae.on w; <0 0 ae.on w; >0

Vw+:{Vw1 a.e.on w; >0 and Vw_:{

(This statement is not obvious. It may deserve a proof.) Then with

a—/|w+|2dx and b—/[w ? dx

one has, using a.), in particular the remark following the proof,
A= / |V, | de = / Vw2 dx+/ Vw™|?dx > M\(a+b) = ).
Q Q Q

Hence, both w™ and w™ are eigenfunctions for the Dirichlet Laplacian with eigenvalue A;.
At least one of these two functions, say w™, cannot be identically zero. Then because of

the strong maximum principle for second order elliptic equations one obtains w; > 0 in
Q and w™ > 0. 0J

c.) Show that \; is a simple eigenvalue.

Solution. If there are two linearly independent eigenfunctions, according to part b.), they
must be both positive. However, then the cannot be orthogonal to each other.



