WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework #13 due 01/29/2016

Problem 1. a.) Suppose that $u : [a, b] \to [0, \infty)$ and $v : [a, b] \to \mathbb{R}$ are continuous functions and there exists a constant $C \in \mathbb{R}$ such that

$$v(t) \le C + \int_{a}^{t} v(s)u(s) \, ds$$
 for all $t \in [a, b]$

Prove that

$$v(t) \le C \exp\left(\int_{a}^{t} u(s) \, ds\right) \quad \text{for all } t \in [a, b] \; .$$

b.) Suppose that $u : [0,T] \to \mathbb{R}$ and $f : [0,T] \to \mathbb{R}$ are continuous functions, that f is non-negative, and that there exist two constant $C_0 \in \mathbb{R}$ and $C_1 > 0$ such that

$$u(t) \le C_0 + C_1 \int_0^t [u(s) + f(s)] \, ds$$
 for all $t \in [0, T]$.

Prove that

$$u(t) \le e^{C_1 t} \left(C_0 + C_1 \int_0^t f(s) \, ds \right) \quad \text{for all } t \in [0, T] .$$

Both results are know as Gronwall's Lemma or Gronwall's inequality.

Problem 2. Suppose that $w_1 \in \mathring{H}^1(\Omega)$ is a first normalized eigenfunction of the Dirichlet Laplacian, that is $-\Delta w_1 = \lambda_1 w_1$ in Ω in the weak sense and that $||w_1||_{L_2(\Omega)} = 1$.

a.) Let $\lambda_1 > 0$ be the first (smallest) eigenvalue of the Dirichlet-Laplacian in Ω . Prove that

$$\lambda_1 = \min \int_{\Omega} |\nabla u|^2 \, dx = \int_{\Omega} |\nabla w_1|^2 \, dx$$

where the minimum is taken over all $u \in \mathring{H}^1(\Omega)$ such that $||u||_{L_2(\Omega)} = 1$. (Hint: Use the fact that there exists an orthonormal basis of Dirichlet eigenfunctions w_1, w_2, \dots in $L_2(\Omega)$.)

- b.) Prove that we can choose $w_1 > 0$ in Ω .
- c.) Show that λ_1 is a simple eigenvalue.