
WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE
DIFFERENTIALGLEICHUNGEN

Homework #15

Problem 1. Consider the initial value problem ut + F (u)x = 0 subject to the initial
condition u(0, x) = g(x). Assuming that g ∈ C1(R) with supx∈R |g′(x)| < ∞ and that
F ∈ C2(R) with supx∈R |F ′′(x)| < ∞, prove that there exists a unique classical solution
u ∈ C1([0, T ∗)× R) where T ∗ > 0, possibly infinity. Give a formula for T ∗.

Proof. Suppose that u ∈ C1([0, T ],R) is a classical solution. Then u is constant a long
the characteristic curves (t, x(t)), that is

d

dt
u(t, x(t)) = ut(t, x(t)) + ux(t, x(t))x′(t) = 0

and x′(t) = F ′(u(t, x(t)). This is an ordinary differential equation which can be solved
in a unique fashion, provided an initial condition is given. Choose x(0) = x0 ∈ R. Since
u(t, x(t)) is constant, we have

x(t) = F ′(g(x0))t+ x0 .

Note that the equation x = F ′(g(x0)t + x0 can be solved for x0 for small t in a unique
fashion since the function G(x, y) = x− y − F ′(g(y))t satisfies

Gy(x, y) = −1− F ′′(g(y))g′(y)t 6= 0 .

If F ′′(g(y))g′(y) ≥ 0 for all ∈ R, then a solution can be found for all t > 0. Otherwise,
with

(1) T ∗ =
−1

infy∈R F ′′(g(y))g′(y)
,

for given x there is a unique solution for every t ∈ (0, T ∗). This way one establishes the
unique existence of a solution u ∈ C1([0, T ∗)× R) to the initial value problem

Finally, one can verify that it is not possible to extend u as a C1 function to any time
beyond T ∗. Let v(t) = F ′′(u(t, x(t))ux(t, x(t)) and differentiate this function. Using the
fact that utx = −F ′′(u)u2x − F ′(u)uxx and that F ′′(u) is constant along a characteristic
curve, one obtains

d

dt
[F ′′(u(t, x(t))ux(t, x(t))] = F ′′(u(t, x(t))utx(t, x(t))

+ uxx(t, x(t))F ′(u(t, x(t))F ′′(u(t, x(t)) = −[F ′′(u(t, x(t))]2u2x(t, x(t)) ,

which tells us that v′(t) = −[v(t)]2. If T ∗ is finite there exists a value x0 ∈ R such that
v(0) = F ′′(g(x0))g

′(x0) < 0. The solution to the initial value problem for the function v
can be solved using separation of variables. One obtains

v(t) =
1

t+
1

v(0)
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which shows that in view of (1) that there exist a point x0 ∈ R such that

lim
t↗T ∗

v(t) =∞ .

Hence u cannot be of class C1 for any t ≥ T ∗. However, it may be possible to extend
you as an integral solution. The formation of a discontinuity at time T ∗ is one of the
motivation to introduce the concept of weak solutions. �

Problem 2. a.) Prove that for k ∈ R, the entropy e(u) = |u− k| has the entropy-flux
f(u) = [F (u)− F (k)]sgn(u− k).

Proof. Note that e, f ∈ W 1
∞(a, b) for any interval (a, b) ⊂ R. This is to say that the

distributional derivatives are in L∞(a, b). Indeed,

e′(u) = sgn(u−k) and f ′(u) = F ′(u)sgn(u−k)+[F (u)−F (k)]δ(u−k) = F ′(u)sgn(u−k) ,

which establishes f ′(u) = F ′(u)e′(u). �

b.) Suppose that u is a piece-wise differentiable entropy solution to the conservation
law ut + F (u)x = 0 which is discontinuous along the C1-curve C = {(t, x(t)) : t > 0}.
Set

Vl = {(t, x) ∈ R+ × R : x(t) < t} and Vr = {(t, x) ∈ R+ × R : x(t) > t} .

Use the entropy/entropy-flux pair e, f of part a.) to prove the Lax shock inequality

F ′(ul) ≥ x′(t) ≥ F ′(ur) for all (t, x) = (t, x(t)) ,

where

ul(t, x) = lim
Vl3(tn,xn)→(t,x)

u(tn, xn) , ur(t, x) = lim
Vr3(tn,xn)→(t,x)

un(tn, xn) , (t, x) ∈ C .

Hint: Use the definition of an entropy solution to derive the inequality

[F (ul) + F (ur)− 2F (k)− x′(t)(ul + ur − 2k)]sgn(ul − ur) ≥ 0 (t, x) ∈ C

where k is between ul and ur. Then make use of the Rankine-Hugoniot condition and
consider the limits for k → ul and k → ur, respectively.

Proof. Since u is an entropy solution we know that∫ ∞
0

∫
R
{e(u)ϕt + f(u)ϕx} dxdt ≥ 0

for all ϕ ∈ C∞0 (R+ × R), ϕ ≥ 0 and k ∈ R. Here e and f are a differentiable en-
tropy/entropy flux pair. Splitting the integral along the curve C and using integration by
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parts gives

0 ≤
∫ ∞
0

∫ x(t)

−∞
{e(u)ϕt + f(u)ϕx} dxdt+

∫ ∞
0

∫ ∞
x(t)

{e(u)ϕt + f(u)ϕx} dxdt

=

∫ ∞
0

d

dt

∫ x(t)

−∞
e(u)ϕdxdt−

∫ ∞
0

x′(t)e(ul(t, x(t)))ϕ(t, x(t)) dxdt

−
∫ ∞
0

∫ x(t)

−∞
{e(u)t + f(u)x}ϕdxdt+

∫ ∞
0

f(ul(t, x(t)))ϕ(t, x(t)) dt

+

∫ ∞
0

d

dt

∫ ∞
x(t)

e(u)ϕdxdt−
∫ ∞
0

x′(t)e(ur(t, x(t)))ϕ(t, x(t)) dxdt

−
∫ ∞
0

∫ ∞
x(t)

{e(u)t + f(u)x}ϕdxdt−
∫ ∞
0

f(ur(t, x(t)))ϕ(t, x(t)) dt .

The first integral on the right hand side vanishes since ϕ has compact support in R+×R.
Hence∫ ∞

0

{f(ul(t, x(t)))− f(ur(t, x(t)))− x′(t)[e(ul(t, x(t)))− e(ur(t, x(t)))]}ϕ(t, x(t)) dxdt

−
∫ ∞
0

∫ x(t)

−∞
{e(u)t + f(u)x}ϕdxdt−

∫ ∞
0

∫ ∞
x(t)

{e(u)t + f(u)x}ϕdxdt ≥ 0 .

Since u is an entropy solution we know that e(u)t + f(u)x = e′(u)[ut + F ′(u)ux] = 0 for
all (t, x) /∈ C and consequently, since ϕ ≥ 0

[f(u)]− [e(u)]x′(t) ≥ 0 for all (t, x) ∈ C .

Here [f(u)] = f(ul) − f(ur) and [e(u)] = e(ul) − e(ur). At this point one uses now
the entropy/entropy flux pair from part a.). This pair is not differentiable but one can
approximate it by differentiable functions and justify this way the following computation.
With k ∈ R between ul and ur one has

[F (ul)− F (k)]sgn(ul − k)− [F (ur)− F (k)]sgn(ur − k)− x′(t)[|ul − k| − |ur − k|] ≥ 0

Since ul − k and ur − k have opposite sign, this simplifies to

(2) [F (ul) + F (ur)− 2F (k)− x′(t)(ul + ur − 2k)]sgn(ul − ur) ≥ 0 (t, x) ∈ C
The Rankine-Hugoniot condition is now used to eliminate F (ur) out of this inequality.
We have

F (ur) = F (ul)− (ul − ur)x′(t)
and thus

(3) [F (ul)− F (k)− x′(t)(ul − k)]sgn(ul − ur) ≥ 0

which gives since k is between ur and ul

(4)
F (ul)− F (k)

ul − k
≥ x′(t) .

To make this argument more transparent one can distinguish cases.
Case 1. ur < ul, k ∈ (ur, ul). Then (3) simplifies to F (ul)− F (k) ≥ x′(t)(ul − k).
Case 2. ul < ur, k ∈ (ul, ur). Then formula (3) becomes F (ul)− F (k) ≤ x′(t)(ul − k).
In both cases one obtains after division by ul − k formula (4). Taking the one-sided limit
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k → ul results in F ′(ul) ≥ x′(t). If one uses the Rankine-Hugoniot condition to replace
F (ul) in formula (2) one gets

F (ur)− F (k)− x′(t)(ur − k)sgn(ul − ur) ≥ 0 ,

which after a similar argument turns into x′(t) ≥ F ′(ur). �

c.) Suppose now that F is uniformly convex, that is F ′′(z) ≥ θ > 0 for some positive
constant θ, for all z ∈ R. What condition on the initial data ul and ur are needed to
guarantee that the Riemann problem has a discontinuous entropy solution ?

Solution. In order to obtain an entropy solution with a discontinuity one needs that
F ′(ul) ≥ F ′(ur). The convexity of F implies that F ′ is strictly increasing. Thus ul > ur.


