WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework \#15

Problem 1. Consider the initial value problem $u_{t}+F(u)_{x}=0$ subject to the initial condition $u(0, x)=g(x)$. Assuming that $g \in C^{1}(\mathbb{R})$ with $\sup _{x \in \mathbb{R}}\left|g^{\prime}(x)\right|<\infty$ and that $F \in C^{2}(\mathbb{R})$ with $\sup _{x \in \mathbb{R}}\left|F^{\prime \prime}(x)\right|<\infty$, prove that there exists a unique classical solution $u \in C^{1}\left(\left[0, T^{*}\right) \times \mathbb{R}\right)$ where $T^{*}>0$, possibly infinity. Give a formula for T^{*}.
Proof. Suppose that $u \in C^{1}([0, T], \mathbb{R})$ is a classical solution. Then u is constant a long the characteristic curves $(t, x(t))$, that is

$$
\frac{d}{d t} u(t, x(t))=u_{t}(t, x(t))+u_{x}(t, x(t)) x^{\prime}(t)=0
$$

and $x^{\prime}(t)=F^{\prime}(u(t, x(t))$. This is an ordinary differential equation which can be solved in a unique fashion, provided an initial condition is given. Choose $x(0)=x_{0} \in \mathbb{R}$. Since $u(t, x(t))$ is constant, we have

$$
x(t)=F^{\prime}\left(g\left(x_{0}\right)\right) t+x_{0} .
$$

Note that the equation $x=F^{\prime}\left(g\left(x_{0}\right) t+x_{0}\right.$ can be solved for x_{0} for small t in a unique fashion since the function $G(x, y)=x-y-F^{\prime}(g(y)) t$ satisfies

$$
G_{y}(x, y)=-1-F^{\prime \prime}(g(y)) g^{\prime}(y) t \neq 0 .
$$

If $F^{\prime \prime}(g(y)) g^{\prime}(y) \geq 0$ for all $\in \mathbb{R}$, then a solution can be found for all $t>0$. Otherwise, with

$$
\begin{equation*}
T^{*}=\frac{-1}{\inf _{y \in \mathbb{R}} F^{\prime \prime}(g(y)) g^{\prime}(y)}, \tag{1}
\end{equation*}
$$

for given x there is a unique solution for every $t \in\left(0, T^{*}\right)$. This way one establishes the unique existence of a solution $u \in C^{1}\left(\left[0, T^{*}\right) \times \mathbb{R}\right)$ to the initial value problem

Finally, one can verify that it is not possible to extend u as a C^{1} function to any time beyond T^{*}. Let $v(t)=F^{\prime \prime}\left(u(t, x(t)) u_{x}(t, x(t))\right.$ and differentiate this function. Using the fact that $u_{t x}=-F^{\prime \prime}(u) u_{x}^{2}-F^{\prime}(u) u_{x x}$ and that $F^{\prime \prime}(u)$ is constant along a characteristic curve, one obtains

$$
\begin{aligned}
& \frac{d}{d t}\left[F^{\prime \prime}\left(u(t, x(t)) u_{x}(t, x(t))\right]=F^{\prime \prime}\left(u(t, x(t)) u_{t x}(t, x(t))\right.\right. \\
&+u_{x x}(t, x(t)) F^{\prime}\left(u (t , x (t)) F ^ { \prime \prime } \left(u(t, x(t))=-\left[F^{\prime \prime}(u(t, x(t))]^{2} u_{x}^{2}(t, x(t))\right.\right.\right.
\end{aligned}
$$

which tells us that $v^{\prime}(t)=-[v(t)]^{2}$. If T^{*} is finite there exists a value $x_{0} \in \mathbb{R}$ such that $v(0)=F^{\prime \prime}\left(g\left(x_{0}\right)\right) g^{\prime}\left(x_{0}\right)<0$. The solution to the initial value problem for the function v can be solved using separation of variables. One obtains

$$
v(t)=\frac{1}{t+\frac{1}{v(0)}}
$$

which shows that in view of (1) that there exist a point $x_{0} \in \mathbb{R}$ such that

$$
\lim _{t \nexists T^{*}} v(t)=\infty
$$

Hence u cannot be of class C^{1} for any $t \geq T^{*}$. However, it may be possible to extend you as an integral solution. The formation of a discontinuity at time T^{*} is one of the motivation to introduce the concept of weak solutions.

Problem 2. a.) Prove that for $k \in \mathbb{R}$, the entropy $e(u)=|u-k|$ has the entropy-flux $f(u)=[F(u)-F(k)] \operatorname{sgn}(u-k)$.

Proof. Note that $e, f \in W_{\infty}^{1}(a, b)$ for any interval $(a, b) \subset \mathbb{R}$. This is to say that the distributional derivatives are in $L_{\infty}(a, b)$. Indeed,
$e^{\prime}(u)=\operatorname{sgn}(u-k)$ and $f^{\prime}(u)=F^{\prime}(u) \operatorname{sgn}(u-k)+[F(u)-F(k)] \delta(u-k)=F^{\prime}(u) \operatorname{sgn}(u-k)$, which establishes $f^{\prime}(u)=F^{\prime}(u) e^{\prime}(u)$.
b.) Suppose that u is a piece-wise differentiable entropy solution to the conservation law $u_{t}+F(u)_{x}=0$ which is discontinuous along the C^{1}-curve $C=\{(t, x(t)): t>0\}$. Set

$$
V_{l}=\left\{(t, x) \in \mathbb{R}_{+} \times \mathbb{R}: x(t)<t\right\} \quad \text { and } \quad V_{r}=\left\{(t, x) \in \mathbb{R}_{+} \times \mathbb{R}: x(t)>t\right\}
$$

Use the entropy/entropy-flux pair e, f of part a.) to prove the Lax shock inequality

$$
F^{\prime}\left(u_{l}\right) \geq x^{\prime}(t) \geq F^{\prime}\left(u_{r}\right) \quad \text { for all }(t, x)=(t, x(t))
$$

where

$$
u_{l}(t, x)=\lim _{V_{\vartheta} \ni\left(t_{n}, x_{n}\right) \rightarrow(t, x)} u\left(t_{n}, x_{n}\right), \quad u_{r}(t, x)=\lim _{V_{r} \ni\left(t_{n}, x_{n}\right) \rightarrow(t, x)} u_{n}\left(t_{n}, x_{n}\right), \quad(t, x) \in C .
$$

Hint: Use the definition of an entropy solution to derive the inequality

$$
\left[F\left(u_{l}\right)+F\left(u_{r}\right)-2 F(k)-x^{\prime}(t)\left(u_{l}+u_{r}-2 k\right)\right] \operatorname{sgn}\left(u_{l}-u_{r}\right) \geq 0 \quad(t, x) \in C
$$

where k is between u_{l} and u_{r}. Then make use of the Rankine-Hugoniot condition and consider the limits for $k \rightarrow u_{l}$ and $k \rightarrow u_{r}$, respectively.

Proof. Since u is an entropy solution we know that

$$
\int_{0}^{\infty} \int_{\mathbb{R}}\left\{e(u) \varphi_{t}+f(u) \varphi_{x}\right\} d x d t \geq 0
$$

for all $\varphi \in C_{0}^{\infty}\left(\mathbb{R}_{+} \times \mathbb{R}\right), \varphi \geq 0$ and $k \in \mathbb{R}$. Here e and f are a differentiable entropy/entropy flux pair. Splitting the integral along the curve C and using integration by
parts gives

$$
\begin{aligned}
0 \leq & \int_{0}^{\infty} \int_{-\infty}^{x(t)}\left\{e(u) \varphi_{t}+f(u) \varphi_{x}\right\} d x d t+\int_{0}^{\infty} \int_{x(t)}^{\infty}\left\{e(u) \varphi_{t}+f(u) \varphi_{x}\right\} d x d t \\
= & \int_{0}^{\infty} \frac{d}{d t} \int_{-\infty}^{x(t)} e(u) \varphi d x d t-\int_{0}^{\infty} x^{\prime}(t) e\left(u_{l}(t, x(t))\right) \varphi(t, x(t)) d x d t \\
& -\int_{0}^{\infty} \int_{-\infty}^{x(t)}\left\{e(u)_{t}+f(u)_{x}\right\} \varphi d x d t+\int_{0}^{\infty} f\left(u_{l}(t, x(t))\right) \varphi(t, x(t)) d t \\
& +\int_{0}^{\infty} \frac{d}{d t} \int_{x(t)}^{\infty} e(u) \varphi d x d t-\int_{0}^{\infty} x^{\prime}(t) e\left(u_{r}(t, x(t))\right) \varphi(t, x(t)) d x d t \\
& -\int_{0}^{\infty} \int_{x(t)}^{\infty}\left\{e(u)_{t}+f(u)_{x}\right\} \varphi d x d t-\int_{0}^{\infty} f\left(u_{r}(t, x(t))\right) \varphi(t, x(t)) d t
\end{aligned}
$$

The first integral on the right hand side vanishes since φ has compact support in $\mathbb{R}_{+} \times \mathbb{R}$. Hence

$$
\begin{gathered}
\int_{0}^{\infty}\left\{f\left(u_{l}(t, x(t))\right)-f\left(u_{r}(t, x(t))\right)-x^{\prime}(t)\left[e\left(u_{l}(t, x(t))\right)-e\left(u_{r}(t, x(t))\right)\right]\right\} \varphi(t, x(t)) d x d t \\
\quad-\int_{0}^{\infty} \int_{-\infty}^{x(t)}\left\{e(u)_{t}+f(u)_{x}\right\} \varphi d x d t-\int_{0}^{\infty} \int_{x(t)}^{\infty}\left\{e(u)_{t}+f(u)_{x}\right\} \varphi d x d t \geq 0
\end{gathered}
$$

Since u is an entropy solution we know that $e(u)_{t}+f(u)_{x}=e^{\prime}(u)\left[u_{t}+F^{\prime}(u) u_{x}\right]=0$ for all $(t, x) \notin C$ and consequently, since $\varphi \geq 0$

$$
[f(u)]-[e(u)] x^{\prime}(t) \geq 0 \quad \text { for all }(t, x) \in C
$$

Here $[f(u)]=f\left(u_{l}\right)-f\left(u_{r}\right)$ and $[e(u)]=e\left(u_{l}\right)-e\left(u_{r}\right)$. At this point one uses now the entropy/entropy flux pair from part a.). This pair is not differentiable but one can approximate it by differentiable functions and justify this way the following computation. With $k \in \mathbb{R}$ between u_{l} and u_{r} one has

$$
\left[F\left(u_{l}\right)-F(k)\right] \operatorname{sgn}\left(u_{l}-k\right)-\left[F\left(u_{r}\right)-F(k)\right] \operatorname{sgn}\left(u_{r}-k\right)-x^{\prime}(t)\left[\left|u_{l}-k\right|-\left|u_{r}-k\right|\right] \geq 0
$$

Since $u_{l}-k$ and $u_{r}-k$ have opposite sign, this simplifies to

$$
\begin{equation*}
\left[F\left(u_{l}\right)+F\left(u_{r}\right)-2 F(k)-x^{\prime}(t)\left(u_{l}+u_{r}-2 k\right)\right] \operatorname{sgn}\left(u_{l}-u_{r}\right) \geq 0 \quad(t, x) \in C \tag{2}
\end{equation*}
$$

The Rankine-Hugoniot condition is now used to eliminate $F\left(u_{r}\right)$ out of this inequality. We have

$$
F\left(u_{r}\right)=F\left(u_{l}\right)-\left(u_{l}-u_{r}\right) x^{\prime}(t)
$$

and thus

$$
\begin{equation*}
\left[F\left(u_{l}\right)-F(k)-x^{\prime}(t)\left(u_{l}-k\right)\right] \operatorname{sgn}\left(u_{l}-u_{r}\right) \geq 0 \tag{3}
\end{equation*}
$$

which gives since k is between u_{r} and u_{l}

$$
\begin{equation*}
\frac{F\left(u_{l}\right)-F(k)}{u_{l}-k} \geq x^{\prime}(t) \tag{4}
\end{equation*}
$$

To make this argument more transparent one can distinguish cases.
Case 1. $u_{r}<u_{l}, k \in\left(u_{r}, u_{l}\right)$. Then (3) simplifies to $F\left(u_{l}\right)-F(k) \geq x^{\prime}(t)\left(u_{l}-k\right)$.
Case 2. $u_{l}<u_{r}, k \in\left(u_{l}, u_{r}\right)$. Then formula (3) becomes $F\left(u_{l}\right)-F(k) \leq x^{\prime}(t)\left(u_{l}-k\right)$.
In both cases one obtains after division by $u_{l}-k$ formula (4). Taking the one-sided limit
$k \rightarrow u_{l}$ results in $F^{\prime}\left(u_{l}\right) \geq x^{\prime}(t)$. If one uses the Rankine-Hugoniot condition to replace $F\left(u_{l}\right)$ in formula (2) one gets

$$
F\left(u_{r}\right)-F(k)-x^{\prime}(t)\left(u_{r}-k\right) \operatorname{sgn}\left(u_{l}-u_{r}\right) \geq 0,
$$

which after a similar argument turns into $x^{\prime}(t) \geq F^{\prime}\left(u_{r}\right)$.
c.) Suppose now that F is uniformly convex, that is $F^{\prime \prime}(z) \geq \theta>0$ for some positive constant θ, for all $z \in \mathbb{R}$. What condition on the initial data u_{l} and u_{r} are needed to guarantee that the Riemann problem has a discontinuous entropy solution?

Solution. In order to obtain an entropy solution with a discontinuity one needs that $F^{\prime}\left(u_{l}\right) \geq F^{\prime}\left(u_{r}\right)$. The convexity of F implies that F^{\prime} is strictly increasing. Thus $u_{l}>u_{r}$.

