WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework \#2 due 10/30/2015

Problem 1.

Let $p\left(x_{1}, \ldots, x_{N}\right)$ be the $N \times N$ Vandermonde determinant

$$
p\left(x_{1}, \ldots, x_{N}\right)=\operatorname{det}\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & \cdots & x_{N} \\
\vdots & \vdots & \ddots & \vdots \\
x_{1}^{N-1} & x_{2}^{N-1} & \cdots & x_{N}^{N-1}
\end{array}\right]
$$

a.) Show that $p\left(x_{1}, \ldots, x_{N}\right)$ is a polynomial of degree $N-1$ in x_{N} with roots equal $x_{1}, x_{2}, \ldots, x_{N-1}$.
b.) Show that the $N \times N$ linear system

$$
\sum_{j=1}^{N} a_{j}(-j)^{k}=1, \quad k=0,1, \ldots, N-1
$$

has a unique solution.
Problem 2. Let $s \in(0,1)$. Show that an equivalent norm in $H^{s}\left(\mathbb{R}^{d}\right)$ is given by

$$
\|u\|_{s}^{2}=\int_{\mathbb{R}^{d}}|u(x)|^{2} d x+\iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \frac{|u(x)-u(y)|^{2}}{|x-y|^{2 s+d}} d x d y .
$$

Recall that the norm in the Sobolev space $H^{s}\left(\mathbb{R}^{d}\right)$ is defined using the Fourier transform

$$
\|u\|_{H^{s}\left(\mathbb{R}^{d}\right)}^{2}=\int_{\mathbb{R}^{d}}\langle\xi\rangle^{2 s}|\hat{u}(\xi)|^{2} d \xi
$$

where $\langle\xi\rangle=\sqrt{1+|\xi|^{2}}$.
Problem 3. Sobolev space on the torus \mathbb{T}^{d}. The torus \mathbb{T}^{d} is the Cartesian product of d copies of the unit circle S^{1}. A function defined on the torus is a 2π periodic function with respect to each independent variable. If f is integrable on \mathbb{T}^{d}, then the Fourier coefficients of f are given by

$$
\mathcal{F}[f](k)=\hat{f}(k)=\frac{1}{(2 \pi)^{d / 2}} \int_{\mathbb{T}^{d}} f(\theta) e^{-i k \cdot \theta} d \theta, \quad k \in \mathbb{Z}^{d}
$$

The set of Fourier coefficients plays for the same role as the Fourier transform in \mathbb{R}^{d}. The expansion of a periodic function into a Fourier series is the analogue of the Fourier inversion formula, that is

$$
f(\theta)=\frac{1}{(2 \pi)^{d / 2}} \sum_{k \in \mathbb{Z}^{d}} \hat{f}(k) e^{i k \cdot \theta}, \quad \theta \in \mathbb{T}^{d}
$$

One can show that the map \mathcal{F} is a isomorphic between the function spaces $L_{2}\left(\mathbb{T}^{d}\right)$ and $l_{2}\left(\mathbb{Z}^{d}\right)$. Then, for $s \in \mathbb{R}, s \geq 0$ we define

$$
H^{s}\left(\mathbb{T}^{d}\right)=\left\{u \in L_{2}\left(\mathbb{T}^{d}\right): \sum_{k \in \mathbb{Z}^{d}}|\hat{u}(k)|^{2}\langle k\rangle^{2 s}<\infty\right\}
$$

where $\langle k\rangle=\sqrt{1+|k|^{2}}$.
a.) Show that $H^{s}\left(\mathbb{T}^{d}\right)^{\prime} \approx H^{-s}\left(\mathbb{T}^{d}\right)$ where

$$
H^{-s}\left(\mathbb{T}^{d}\right)=\left\{u \in \mathcal{D}^{\prime}\left(\mathbb{T}^{d}\right): \sum_{k \in \mathbb{Z}^{d}}|\hat{u}(k)|^{2}\langle k\rangle^{-2 s}<\infty\right\}
$$

Here $H^{s}\left(\mathbb{T}^{d}\right)^{\prime}$ denotes the dual space of $H^{s}\left(\mathbb{T}^{d}\right)$ with respect to the L_{2} inner product.
b.) Define the operator Λ^{σ} on $\mathcal{D}^{\prime}\left(\mathbb{T}^{d}\right)$ by

$$
\left[\Lambda^{\sigma} u\right](\theta)=\sum_{k \in \mathbb{Z}^{d}} \hat{u}(k)\langle k\rangle^{\sigma} e^{i k \cdot \theta}, \quad \sigma \in \mathbb{R}
$$

Then $H^{s}\left(\mathbb{T}^{d}\right)=\Lambda^{-s} L_{2}\left(\mathbb{T}^{d}\right)$ for all $s \in \mathbb{R}$. Show that, for any $s \in \mathbb{R}$, the natural injection operator

$$
j: H^{s+\sigma}\left(\mathbb{T}^{d}\right) \rightarrow H^{s}\left(\mathbb{T}^{d}\right)
$$

is compact for all $\sigma>0$. Hint: Note that the mapping $\Lambda^{\sigma}: H^{s+\sigma}\left(\mathbb{T}^{d}\right) \rightarrow H^{s}\left(\mathbb{T}^{d}\right)$ is continuous and that $j=\Lambda^{-\sigma} \circ \Lambda^{\sigma}$. Hence, to prove this statement it will suffice to show that $\Lambda^{-\sigma}: H^{s}\left(\mathbb{T}^{d}\right) \rightarrow H^{s}\left(\mathbb{T}^{d}\right)$ is a compact operator whenever $\sigma>0$.

