WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework \#4 due 11/13/2015
Problem 1. An alternative proof of Lemma 2.5.2. Prove the following statement. The number $i \eta$ is an eigenvalue of $K_{1}(\xi)$ if and only if $\operatorname{det} P_{m}(\xi, \eta)=0$. Here $\xi \in \mathbb{R}^{d-1} \backslash\{0\}$. Hint: Use the fact that there must exist an eigenvector $w \in \mathbb{C}^{m N}$ and exploit the equation $K_{1}(\xi) w=i \eta w$. Recall that

$$
K_{1}(\xi)=\left[\begin{array}{cccccc}
0 & |\xi| I_{N} & 0 & \cdots & \cdots & 0 \\
0 & 0 & |\xi| I_{N} & \cdots & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & & \vdots \\
\vdots & \vdots & & \ddots & \ddots & \vdots \\
0 & 0 & 0 & & & |\xi| I_{N} \\
\tilde{E}_{1} & \tilde{E}_{2} & \tilde{E}_{3} & \ldots & \ldots & \tilde{E}_{m}
\end{array}\right] \quad \text { with } \quad \tilde{E}_{j}=-\tilde{A}_{j-1}|\xi|^{j-m}
$$

where $\tilde{A}_{j}(\xi)$ denotes the principal part of $A_{j}(\xi)$, and that

$$
P(D)=\frac{\partial^{m}}{\partial y^{m}}+\sum_{j=0}^{m-1} A_{j}\left(D_{x}\right) \frac{\partial^{j}}{\partial y^{j}}
$$

where A_{j} is a tangential operator of order $m-j$ and $P_{m}(\xi, \eta)=(i \eta)^{m}+\sum_{j=0}^{m-1} \tilde{A}_{j}(\xi)(i \eta)^{j}$.
Problem 2. The Dunford-Taylor integral. The goal is to prove formula (2.5.2) for the spectral projection of the matrix $K_{1}(\xi)$. Let A be a square matrix and suppose that its spectrum (eigenvalues) $\sigma(A) \subset \omega$ where ω is open, bounded in \mathbb{C} with a smooth boundary γ. Let f be a holomorphic function on a neighborhood of ω and introduce the complex line integral

$$
f(A)=\frac{1}{2 \pi i} \int_{\gamma} f(\zeta)(\zeta I-A)^{-1} d \zeta
$$

Here I denotes the identity matrix which is of the same type as A.
a.) Show that, if $f(z)=1$, then $f(A)=I$ and that, if $f(z)=z$, then $f(A)=A$.
b.) Suppose now that $\omega=\omega_{+} \cup \omega_{-}$where

$$
\omega_{+} \subset\{z \in \mathbb{C}: \Re z>0\}, \quad \text { and } \quad \omega_{-} \subset\{z \in \mathbb{C}: \Re z<0\}
$$

such that $\bar{\omega}_{+} \cap \bar{\omega}_{-}=\emptyset$ and set

$$
E_{+}=\frac{1}{2 \pi i} \int_{\gamma_{+}}(\zeta I-A)^{-1} d \zeta, \quad \text { and } \quad E_{-}=\frac{1}{2 \pi i} \int_{\gamma_{-}}(\zeta I-A)^{-1} d \zeta
$$

where $\gamma_{ \pm}=\partial \omega_{ \pm}$. Using the fact that $(f g)(A)=f(A) g(A)$ for holomorphic functions f and g defined on a neighborhood of ω, prove that

$$
E_{+}+E_{-}=I, \quad E_{+}^{2}=E_{+}, \quad E_{-}^{2}=E_{-}, \quad E_{+} E_{-}=E_{-} E_{+}=0 .
$$

This shows that E_{+}and E_{-}are complementary projections.
The formula $(f g)(A)=f(A) g(A)$ may be familiar from Linear Algebra or Functional Analysis. If not, do not worry, just use it.

Problem 3. From the proof of Theorem 2.3.3 recall the operator

$$
R(x, D)=\chi_{\lambda}(x)[P(x, D)-P(\lambda, D)]=\chi_{\lambda} \sum_{|\alpha| \leq m}\left[a_{\alpha}(x)-a_{\alpha}(\lambda)\right] D^{\alpha}
$$

where χ_{λ} is a partition of unity subordinate to the lattice $\mathscr{O}_{\varepsilon}=\varepsilon \mathbb{Z}^{d}=\left\{\varepsilon j: j \in \mathbb{Z}^{d}\right\}$, that is $0 \leq \chi_{\lambda} \leq 1, \chi_{\lambda} \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right), \sum_{\lambda \in \Theta_{\varepsilon}} \chi_{\lambda}(x) \equiv 1$, and $\operatorname{supp} \chi_{\lambda} \subset\left\{x \in \mathbb{R}^{d}:|x-\lambda| \leq \varepsilon\right\}$. Note that the operator R depends also on $\varepsilon>0$.
a.) Prove the estimate (which is part of the Proof of Theorem 2.3.3)

$$
\left\|\sum_{\lambda \in \mathscr{O}_{\varepsilon}} R_{\lambda}(x, D) u\right\|_{H^{k}\left(\mathbb{R}^{d}\right)} \leq C(k) \varepsilon\|u\|_{H^{m+k}\left(\mathbb{R}^{d}\right)}+C(\varepsilon, k)\|u\|_{H^{m+k-1}\left(\mathbb{R}^{d}\right)}
$$

for all $u \in H^{m+k}\left(\mathbb{R}^{d}\right)$ with $\operatorname{supp} u \subset V \subset \subset \Omega$. Here k is a non-negative integer and it is important that the first constant in the estimate does not depend on ε whereas the second constant will depend on ε.
b.) Recall the operators $E_{\lambda}(D)$ introduced in the proof of Theorem 2.3.3. (and discussed in the Homework \#3) and prove the estimate

$$
\left\|\sum_{\lambda \in \mathscr{O}_{\varepsilon}} E_{\lambda}(D) R_{\lambda}(x, D) u\right\|_{H^{m}\left(\mathbb{R}^{d}\right)} \leq C \varepsilon\|u\|_{H^{m}\left(\mathbb{R}^{d}\right)}+C(\varepsilon)\|u\|_{H^{m-1}\left(\mathbb{R}^{d}\right)} .
$$

for all $u \in H^{m+k}\left(\mathbb{R}^{d}\right)$ with $\operatorname{supp} u \subset V \subset \subset \Omega$.

