WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework \#5 due 11/20/2015
Problem 1. Consider the Neumann problem for the Laplacian in the 3-dimensional unit ball, that is the boundary value problem

$$
\Delta u=f \text { in } B(0,1), \quad \frac{\partial u}{\partial n}=g \text { in } S^{d-1}
$$

Here $B(0,1)=\left\{x \in \mathbb{R}^{3}:|x|<1\right\}$ and $S^{2}=\partial B(0,1)=\left\{x \in \mathbb{R}^{3}:|x|=1\right\}$, and n is the exterior unit norm vector of $B(0,1)$ on S^{2}.
a.) Show that $B(0,1)$ has a C^{∞} boundary.
b.) For a given neighborhood of $\mathscr{U}(x)$ with $x \in S^{2}$ and a coordinate mapping $\varphi \in C^{\infty}(\mathscr{U})$ found in part a.), give an explicit transformation of this boundary value problem to the half space.

Problem 2. Consider the stationary isotropic system of elasticity with constant coefficients in the half space, that is 3×3 system of second order

$$
\mu \Delta u+(\lambda+\mu) \nabla \nabla \cdot u=f \quad \text { in } \mathbb{R}_{+}^{3}
$$

where u and f are vector valued functions with 3 components each and λ and μ are real constants, called Lamé parameters.
a.) Under which conditions on μ and λ is this system elliptic?
b.) Reduce this system to a first order system of the form $\partial v / \partial y-K\left(D_{x}\right) v=F$.
c.) Reduce the boundary condition $[\nabla u]^{s} n=g$ on $\partial \mathbb{R}_{+}^{3}=\mathbb{R}^{2}$ to a boundary condition of order zero for the function v introduced in problem a.). Here $n=-e_{3}$ is the exterior unit normal vector (which coincides with the opposite of the last standard basis vector in \mathbb{R}^{3}) and $[\nabla u]^{s}$ is the 'symmetric gradient' of u, that is $[\nabla u]^{s}=\left[\nabla u+\nabla u^{T}\right] / 2$. (It may be better to call this expression the symmetric Jacobian since ∇u is the Jacobian matrix of u.)

Problem 3. The Sobolev space $H_{(k, s)}\left(\mathbb{R}^{d}\right)$. For a distribution $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right), k$ and $s \in \mathbb{R}$, one defines the norm

$$
\|u\|_{(k, s)}^{2}=\int_{-\infty}^{\infty} \int_{\mathbb{R}^{d-1}}|\hat{u}(\xi, \eta)|^{2}{\sqrt{1+|\xi|^{2}+|\eta|^{2}}}^{2 k}\langle\xi\rangle^{2 s} d \xi d \eta
$$

where $\xi=\left(\xi_{1}, \ldots, \xi_{d-1}\right),\left\langle\xi^{\prime}\right\rangle=\sqrt{1+\left|\xi^{\prime}\right|^{2}}, \eta \in \mathbb{R}$, and \hat{u} is the Fourier transform of u with respect to all d variables. Then one introduces the Sobolev space $H_{(k, s)}\left(\mathbb{R}^{d}\right)$ as the set

$$
\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right):\|u\|_{(k, s)}<\infty\right\}
$$

Show that for $k>1 / 2$ there exists a linear continuous operator T from $H_{(k, s)}\left(\mathbb{R}^{d}\right)$ into $H^{k+s-1 / 2}\left(\mathbb{R}^{d-1}\right)$ such that $(T u)(x)=u(x, 0)$ for all $u \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$.

